From 77bff51ae9dc62dcb65570b885462c465d5f7981 Mon Sep 17 00:00:00 2001 From: nish112022 <148342058+nish112022@users.noreply.github.com> Date: Wed, 8 May 2024 14:25:25 +0530 Subject: [PATCH] modified example_tls1.py through MilvusClient (#2065) It is to make the example consistent with https://milvus.io/docs/tls.md.If these changes look fine I can modify the other example as well --------- Signed-off-by: Nischay Yadav --- examples/example_tls1.py | 156 +++++++++++++++------------------------ 1 file changed, 58 insertions(+), 98 deletions(-) diff --git a/examples/example_tls1.py b/examples/example_tls1.py index 8879ac750..4a8f43749 100644 --- a/examples/example_tls1.py +++ b/examples/example_tls1.py @@ -1,9 +1,8 @@ import random from pymilvus import ( - connections, + MilvusClient, FieldSchema, CollectionSchema, DataType, - Collection, utility ) @@ -17,6 +16,7 @@ _HOST = '127.0.0.1' _PORT = '19530' +_URI = f"https://{_HOST}:{_PORT}" # Const names _COLLECTION_NAME = 'demo' @@ -35,129 +35,89 @@ _TOPK = 3 -# Create a Milvus connection -def create_connection(): +def main(): + # create a connection print(f"\nCreate connection...") - connections.connect(host=_HOST, port=_PORT, secure=True, server_pem_path="cert/server.pem", server_name="localhost") - print(f"\nList connections:") - print(connections.list_connections()) + milvus_client = MilvusClient(uri=_URI, + secure=True, + server_pem_path="cert/server.pem", + server_name='localhost') + print(f"\nList connection:") + print(milvus_client._get_connection()) + # drop collection if the collection exists + if milvus_client.has_collection(_COLLECTION_NAME): + milvus_client.drop_collection(_COLLECTION_NAME) -# Create a collection named 'demo' -def create_collection(name, id_field, vector_field): - field1 = FieldSchema(name=id_field, dtype=DataType.INT64, description="int64", is_primary=True) - field2 = FieldSchema(name=vector_field, dtype=DataType.FLOAT_VECTOR, description="float vector", dim=_DIM, + # create collection + field1 = FieldSchema(name=_ID_FIELD_NAME, dtype=DataType.INT64, description="int64", is_primary=True) + field2 = FieldSchema(name=_VECTOR_FIELD_NAME, dtype=DataType.FLOAT_VECTOR, description="float vector", dim=_DIM, is_primary=False) schema = CollectionSchema(fields=[field1, field2], description="collection description") - collection = Collection(name=name, data=None, schema=schema) - print("\ncollection created:", name) - return collection - - -def has_collection(name): - return utility.has_collection(name) + milvus_client.create_collection(collection_name=_COLLECTION_NAME,schema=schema) + milvus_client.describe_collection(collection_name=_COLLECTION_NAME) + print("\ncollection created:", _COLLECTION_NAME) -# Drop a collection in Milvus -def drop_collection(name): - collection = Collection(name) - collection.drop() - print("\nDrop collection: {}".format(name)) - - -# List all collections in Milvus -def list_collections(): + # show collections print("\nlist collections:") - print(utility.list_collections()) - - -def insert(collection, num, dim): - data = [ - [i for i in range(num)], - [[random.random() for _ in range(dim)] for _ in range(num)], - ] - collection.insert(data) - return data[1] + print(milvus_client.list_collections()) + # insert 10000 vectors with 128 dimension + data_dict = [] + for i in range(10000): + entity = { + "id_field": i+1, # Assuming id_field is the _COLLECTION_NAME of the field corresponding to the ID + "float_vector_field": [random.random() for _ in range(_DIM)] + } + data_dict.append(entity) + insert_result = milvus_client.insert(collection_name=_COLLECTION_NAME,data=data_dict) -def get_entity_num(collection): - print("\nThe number of entity:") - print(collection.num_entities) - - -def create_index(collection, filed_name): - index_param = { - "index_type": _INDEX_TYPE, - "params": {"nlist": _NLIST}, - "metric_type": _METRIC_TYPE} - collection.create_index(filed_name, index_param) - print("\nCreated index:\n{}".format(collection.index().params)) - - -def drop_index(collection): - collection.drop_index() - print("\nDrop index sucessfully") - + # get the number of entities + print(f"\nThe number of entity: {insert_result['insert_count']}") -def load_collection(collection): - collection.load() + # create index + index_params = milvus_client.prepare_index_params() + index_params.add_index( + field_name=_VECTOR_FIELD_NAME, + index_type=_INDEX_TYPE, + metric_type=_METRIC_TYPE, + params={"nlist": _NLIST} + ) -def release_collection(collection): - collection.release() + milvus_client.create_index( + collection_name=_COLLECTION_NAME, + index_params=index_params + ) + print("\nCreated index") + # load data to memory + milvus_client.load_collection(_COLLECTION_NAME) + vector = data_dict[1] + vectors = [vector["float_vector_field"]] -def search(collection, vector_field, id_field, search_vectors): + # search search_param = { - "data": search_vectors, - "anns_field": vector_field, + "anns_field": _VECTOR_FIELD_NAME, "param": {"metric_type": _METRIC_TYPE, "params": {"nprobe": _NPROBE}}, - "limit": _TOPK, - "expr": "id_field > 0"} - results = collection.search(**search_param) + "expr": f"{_ID_FIELD_NAME} > 0"} + results = milvus_client.search(collection_name=_COLLECTION_NAME,data=vectors,limit= _TOPK,search_params=search_param) for i, result in enumerate(results): print("\nSearch result for {}th vector: ".format(i)) for j, res in enumerate(result): print("Top {}: {}".format(j, res)) - -def main(): - # create a connection - create_connection() - - # drop collection if the collection exists - if has_collection(_COLLECTION_NAME): - drop_collection(_COLLECTION_NAME) - - # create collection - collection = create_collection(_COLLECTION_NAME, _ID_FIELD_NAME, _VECTOR_FIELD_NAME) - - # show collections - list_collections() - - # insert 10000 vectors with 128 dimension - vectors = insert(collection, 10000, _DIM) - - # get the number of entities - get_entity_num(collection) - - # create index - create_index(collection, _VECTOR_FIELD_NAME) - - # load data to memory - load_collection(collection) - - # search - search(collection, _VECTOR_FIELD_NAME, _ID_FIELD_NAME, vectors[:3]) - # release memory - release_collection(collection) + milvus_client.release_collection(_COLLECTION_NAME) # drop collection index - drop_index(collection) + milvus_client.drop_index(_COLLECTION_NAME,index_name=_VECTOR_FIELD_NAME) + print("\nDrop index sucessfully") # drop collection - drop_collection(_COLLECTION_NAME) + milvus_client.drop_collection(_COLLECTION_NAME) + print("\nDrop collection: {}".format(_COLLECTION_NAME)) if __name__ == '__main__':