-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtransition.py
71 lines (56 loc) · 1.77 KB
/
transition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import math
import numpy as np
import logging
log = logging.getLogger('transition')
categorical = lambda alpha: np.random.multinomial(1,alpha).nonzero()[0][0]
class Transition:
def __init__(self, K, A):
self.alpha = [np.array([1.0/(K-1) for i in range(K)]) for j in range(K)]
for i in range(K):
self.alpha[i][i] = 0
self.K = K
self.states = range(K)
#A = A + 0.0001
#for i in self.states:
# A[i] = A[i]/A[i].sum()
self.A = A
def likelihood(self,i,j):
assert i in self.states
assert j in self.states
#assert i != j
return np.log(self.A[i,j])
def sample_x(self, i):
try:
return categorical(self.A[i].flatten())
except:
print self.A[i].flatten()
raise
def sample_A(self, Zs):
n = dict([(i,dict([(j,0) for j in self.states])) for i in self.states])
for Z in Zs:
X = [z[0] for z in Z]
now = X[0]
for x in X:
if now != x:
n[now][x] += 1
now = x
A = np.zeros((self.K,self.K))
for i in self.states:
A[i] = np.random.dirichlet(self.alpha[i] + n[i].values())
#A = A + 0.0001
#for i in self.states:
# A[i] /= A[i].sum()
log.debug('sampled A:\n%s'%A)
return A
def update(self, Z):
self.A = self.sample_A(Z)
if __name__ == "__main__":
import pylab as pb
Z = np.load('Z.npy')
A = Transition(
K=3,
A=pb.array([[0, 0.3, 0.7], [0.6, 0, 0.4], [0.3, 0.7, 0]])
)
for i in range(10):
print A.sample_A(Z)
print "\n"