Skip to content

Latest commit

 

History

History
299 lines (188 loc) · 8.21 KB

README.rst

File metadata and controls

299 lines (188 loc) · 8.21 KB

datanommer

This is datanommer. It is comprised of only a fedmsg consumer that stuffs every message in a sqlalchemy database.

There are also a handful of CLI tools to dump information from the database.

Build Status

Branch Status
master Build Status - master branch
develop Build Status - develop branch

Try it out

Using a virtualenv

Using a virtual environment is highly recommended, although this is not a must. Using virtualenvwrapper can isolate your development environment. You will be able to work on the latest datanommer from git checkout without messing the installed datanommer copy in your system.

Install virtualenvwrapper by:

$ sudo yum install python-virtualenvwrapper

Note: If you decide not to use python-virtualenvwrapper, you can always use latest update of fedmsg and datanommer in fedora. If you are doing this, simply ignore all mkvirtualenv and workon commands in these instructions. You can install fedmsg with sudo yum install fedmsg, and datanommer with sudo yum install datanommer.

Development dependencies

Get:

$ sudo yum install python-virtualenv openssl-devel zeromq-devel gcc

Note: If submitting patches, you should check Contributing for style guidelines.

Set up virtualenv

Create a new, empty virtualenv and install all the dependencies from pypi:

$ mkvirtualenv datanommer
(datanommer)$ cdvirtualenv

Note: If the mkvirtualenv command is unavailable try source /usr/bin/virtualenvwrapper.sh on Fedora (if you do not run Fedora you might have to adjust the command a little). You can also add this command to your ~/.bashrc file to have it run automatically for you.

Cloning upstream the git repo

The source code is on github.

Get fedmsg:

(datanommer)$ git clone https://github.com/fedora-infra/fedmsg.git

Get datanommer:

(datanommer)$ git clone https://github.com/fedora-infra/datanommer.git

Set up fedmsg:

(datanommer)$ cd fedmsg

For development, avoid editing master branch. Checkout develop branch:

(datanommer)$ git checkout develop
(datanommer)$ python setup.py develop

Switch to datanommer:

(datanommer)$ cd ../datanommer

Please note that you should set up the three packages in the following sequence: "datanommer.models", "datanommer.commands" and "datanommer.consumer".

There is a script that will do this for you:

(datanommer)$ ./.travis-dev-setup.sh

Or, if for some reason you wanted to do it on your own, go to the three subfolders in sequence and type:

(datanommer)$ git checkout develop
(datanommer)$ python setup.py develop

Finally, initialize the datanommer db:

(datanommer)$ datanommer-create-db

Try out datanommer

Open three terminals to try out the commands. In each of them, activate your virtualenv with:

$ workon datanommer

In one terminal, type:

(datanommer)$ fedmsg-relay

In another, type:

(datanommer)$ fedmsg-hub

In a third, emit a message, which gets picked up by the relay, rebroadcasted, consumed by datanommer, and inserted into datanommer.db:

(datanommer)$ echo "this is a test" | fedmsg-logger

Try the commands. Was the message stored?:

(datanommer)$ datanommer-stats

LoggerMessage should have entries.:

(datanommer)$ datanommer-dump

Inspect the database:

(datanommer)$ sqlite3 datanommer.db
> select* from messages;

You should see a line similar to:

1|1|org.fedoraproject.dev.logger.log|2012-11-30 23:33:12.077429|||{"log": "this is a test"}

Programming against the datanommer API

The datanommer.models module provides an API that will let other trusted applications make queries against datanommer. It was designed specifically for use by the datagrepper and fedbadges applications. Untrusted applications will have to go another route (like make http GET queries on datagrepper); we simply can't allow them a direct connection to the datanommer database.

Querying Messages

Before making any queries, you'll need to initialize the module-level session for datanommer.models:

import datanommer.models as m
url = 'sqlite:///some_database.db'
m.init(url)

In our production environment, datanommer's db URL is kept in /etc/fedmsg.d/, so you can conveniently access it like this:

import fedmsg.config
config = fedmsg.config.load_config()
url = config['datanommer.sqlalchemy.url']

import datanommer.models as m
m.init(url)

You can query datanommer from python like this:

import datetime

# Get all messages in the last hour
then = datetime.datetime.now() - datetime.timedelta(hours=1)
messages = m.Message.query.filter(m.Message.timestamp>=then).all()

It's SQLAlchemy, after all. You can query for only bodhi messages like this:

messages = m.Message.query.filter(m.Message.category=='bodhi').all()

Another useful query might be to find all the messages for the user @lmacken which you could accomplish with this:

user = m.User.query.filter(m.User.name=='lmacken').one()
messages = user.messages

Conversely, you can get the User and Package objects associated with a message by accessing attributes:

message = m.Message.query.first()
packages = message.packages
users = message.users

Formatting Messages

The raw JSON message is accessible from a .msg attribute:

for message in messages:
    print message.msg

Of course, the datanommer Message model plays nice with fedmsg's utilities. You can use fedmsg.encoding to print a nicely formatted version of your query:

import fedmsg.encoding
for message in messages:
    print fedmsg.encoding.pretty_dumps(message)

And, if you yum install python-fedmsg-meta-fedora-infrastructure, you'll have access to all the metadata processors provided there. Install it and try:

import fedmsg.config
import fedmsg.meta

config = fedmsg.config.load_config()

for message in messages
    print fedmsg.meta.msg2title(message, **config)
    print " ", fedmsg.meta.msg2subtitle(message, **config)

Take a look at the list of topics and message types that fedmsg.meta understands.

Migration with Alembic

When the database models are changed, we use alembic to retain the data. Alembic is located in the models:

(datanommer)$ cd datanommer.models

To check the current models version:

(datanommer)$ alembic current

If your models are up to date, you should see:

INFO  [alembic.migration] Context impl SQLiteImpl.
INFO  [alembic.migration] Will assume transactional DDL.
Current revision for sqlite:///../datanommer.db: 198447250956 -> ae2801c4cd9 (head), add category column

If your result is:

INFO  [alembic.migration] Context impl SQLiteImpl.
INFO  [alembic.migration] Will assume transactional DDL.
Current revision for sqlite:///../datanommer.db: None

then migrate to the most recent version with:

(datanommer)$ alembic upgrade head

You should see:

INFO  [alembic.migration] Context impl SQLiteImpl.
INFO  [alembic.migration] Will assume transactional DDL.
INFO  [alembic.migration] Running upgrade None -> 198447250956
INFO  [alembic.migration] Running upgrade 198447250956 -> ae2801c4cd9