-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathprepare_distill_dataset.py
307 lines (258 loc) · 13.7 KB
/
prepare_distill_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Binary for combine model output and model input into one set of files."""
import os
import time
import numpy as np
import tensorflow as tf
from tensorflow import app
from tensorflow import flags
from tensorflow import gfile
from tensorflow import logging
import json
import utils
import readers
FLAGS = flags.FLAGS
if __name__ == '__main__':
flags.DEFINE_string("output_dir", "",
"The file to save the predictions to.")
flags.DEFINE_string(
"input_data_pattern", "",
"File globs defining the input dataset in tensorflow.SequenceExample format.")
flags.DEFINE_string("input_feature_names", "mean_rgb,mean_audio", "Name of the feature "
"to use for training.")
flags.DEFINE_string("input_feature_sizes", "1024,128", "Length of the feature vectors.")
flags.DEFINE_string("prediction_feature_names", "predictions", "Name of the feature "
"to use for training.")
flags.DEFINE_integer("batch_size", 256,
"How many examples to process per batch.")
flags.DEFINE_integer("file_size", 512,
"Number of samples per record file.")
flags.DEFINE_string("model_file", "", "Seed model used to do inference.")
flags.DEFINE_integer("num_readers", 12,
"How many threads to use for reading input files.")
def get_input_evaluation_tensors(reader,
data_pattern,
batch_size=1024,
num_readers=1):
"""Creates the section of the graph which reads the evaluation data.
Args:
reader: A class which parses the training data.
data_pattern: A 'glob' style path to the data files.
batch_size: How many examples to process at a time.
num_readers: How many I/O threads to use.
Returns:
A tuple containing the features tensor, labels tensor, and optionally a
tensor containing the number of frames per video. The exact dimensions
depend on the reader being used.
Raises:
IOError: If no files matching the given pattern were found.
"""
logging.info("Using batch size of " + str(batch_size) + " for evaluation.")
with tf.name_scope("eval_input"):
files = gfile.Glob(data_pattern)
if not files:
raise IOError("Unable to find the evaluation files.")
logging.info("number of evaluation files: " + str(len(files)))
filename_queue = tf.train.string_input_producer(
files, shuffle=False, num_epochs=1)
eval_data = [
reader.prepare_reader(filename_queue) for _ in range(num_readers)
]
return tf.train.batch_join(
eval_data,
batch_size=batch_size,
capacity=4 * batch_size,
allow_smaller_final_batch=True,
enqueue_many=True)
# Prepare the inputs
def fetc_inputs(reader,
eval_data_pattern,
batch_size=1024,
num_readers=1):
video_id_batch, model_input_raw, labels_batch, num_frames, quant_feats = get_input_evaluation_tensors(reader,
eval_data_pattern,
batch_size=batch_size,
num_readers=num_readers)
return video_id_batch, model_input_raw, labels_batch, num_frames, quant_feats
# Builds the record strucutre
def get_output_feature(video_id, video_label, video_rgb, video_audio, video_prediction, video_num_frame):
_bytes_feature_list = lambda x: tf.train.Feature(bytes_list=tf.train.BytesList(value=[x.tobytes()]))
example = tf.train.SequenceExample(
context = tf.train.Features(feature={
"video_id": tf.train.Feature(bytes_list=tf.train.BytesList(value=[video_id])),
"labels": tf.train.Feature(int64_list=tf.train.Int64List(value=video_label)),
"predictions": tf.train.Feature(float_list=tf.train.FloatList(value=video_prediction))
}),
feature_lists = tf.train.FeatureLists(feature_list={
"rgb": tf.train.FeatureList(feature=map(_bytes_feature_list, video_rgb[:video_num_frame])),
"audio": tf.train.FeatureList(feature=map(_bytes_feature_list, video_audio[:video_num_frame])),
})
)
return example
# Write the records
def write_to_record(video_ids, video_labels, video_rgbs, video_audios, video_predictions,
video_num_frames, filenum, num_examples_processed):
writer = tf.python_io.TFRecordWriter(FLAGS.output_dir + '/' + 'predictions-%05d.tfrecord' % filenum)
for i in range(num_examples_processed):
video_id = video_ids[i]
video_label = np.nonzero(video_labels[i,:])[0]
video_rgb = video_rgbs[i,:]
video_audio = video_audios[i,:]
video_prediction = video_predictions[i]
video_num_frame = video_num_frames[i]
example = get_output_feature(video_id, video_label, video_rgb, video_audio, video_prediction, video_num_frame)
serialized = example.SerializeToString()
writer.write(serialized)
writer.close()
def inference_loop():
model_path = FLAGS.model_file
assert os.path.isfile(model_path + ".meta"), "Specified model does not exist."
model_flags_path = os.path.join(os.path.dirname(model_path), "model_flags.json")
directory = FLAGS.output_dir # We will store the predictions here.
if not os.path.exists(directory):
os.makedirs(directory)
else:
raise IOError("Output path exists! path='" + directory + "'")
if not os.path.exists(model_flags_path):
raise IOError(("Cannot find file %s. Did you run train.py on the same "
"--train_dir?") % model_flags_path)
flags_dict = json.loads(open(model_flags_path).read())
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(flags_dict["feature_names"],
flags_dict["feature_sizes"])
if flags_dict["frame_features"]:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes,
prepare_distill=True)
else:
raise NotImplementedError
video_ids_batch, inputs_batch, labels_batch, num_frames, quant_inpt = fetc_inputs(reader,
FLAGS.input_data_pattern,
FLAGS.batch_size,
FLAGS.num_readers)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
meta_graph_location = model_path + ".meta"
logging.info("loading meta-graph: " + meta_graph_location)
with tf.device("/gpu:0"):
saver = tf.train.import_meta_graph(meta_graph_location, clear_devices=True)
saver.restore(sess, model_path)
input_tensor = tf.get_collection("input_batch_raw")[0]
num_frames_tensor = tf.get_collection("num_frames")[0]
predictions_batch = tf.get_collection("predictions")[0]
# Workaround for num_epochs issue.
def set_up_init_ops(variables):
init_op_list = []
for variable in list(variables):
if "train_input" in variable.name:
init_op_list.append(tf.assign(variable, 1))
variables.remove(variable)
init_op_list.append(tf.variables_initializer(variables))
return init_op_list
sess.run(set_up_init_ops(tf.get_collection_ref(tf.GraphKeys.LOCAL_VARIABLES)))
# Start the queue runners.
fetches1 = [video_ids_batch, labels_batch, inputs_batch, num_frames, quant_inpt]
fetches2 = [predictions_batch]
coord = tf.train.Coordinator()
start_time = time.time()
video_ids = []
video_labels = []
video_rgbs = []
video_audios = []
video_predictions = []
video_num_frames = []
filenum = 0
num_examples_processed = 0
total_num_examples_processed = 0
try:
threads = []
for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
threads.extend(qr.create_threads(
sess, coord=coord, daemon=True,
start=True))
while not coord.should_stop():
ids_val = None
ids_val, labels_val, inputs_val, num_frames_val, quant_inpt_val = sess.run(fetches1)
rgbs_val, audios_val = quant_inpt_val[:, :, :1024].copy(), quant_inpt_val[:, :, 1024:].copy()
predictions_val = sess.run(fetches2, feed_dict={input_tensor: inputs_val,
num_frames_tensor: num_frames_val})[0]
video_ids.append(ids_val)
video_labels.append(labels_val)
video_rgbs.append(rgbs_val)
video_audios.append(audios_val)
video_predictions.append(predictions_val)
video_num_frames.append(num_frames_val)
num_examples_processed += len(ids_val)
ids_shape = ids_val.shape[0]
inputs_shape = inputs_val.shape[0]
predictions_shape = predictions_val.shape[0]
assert ids_shape == inputs_shape == predictions_shape, "tensor ids(%d), inputs(%d) and predictions(%d) should have equal rows" % (
ids_shape, inputs_shape, predictions_shape)
ids_val = None
if num_examples_processed >= FLAGS.file_size:
assert num_examples_processed == FLAGS.file_size, "num_examples_processed should be equal to %d" % FLAGS.file_size
video_ids = np.concatenate(video_ids, axis=0)
video_labels = np.concatenate(video_labels, axis=0)
video_rgbs = np.concatenate(video_rgbs, axis=0)
video_audios = np.concatenate(video_audios, axis=0)
video_num_frames = np.concatenate(video_num_frames, axis=0)
video_predictions = np.concatenate(video_predictions, axis=0)
write_to_record(video_ids, video_labels, video_rgbs, video_audios, video_predictions,
video_num_frames, filenum, num_examples_processed)
video_ids = []
video_labels = []
video_rgbs = []
video_audios = []
video_predictions = []
video_num_frames = []
filenum += 1
total_num_examples_processed += num_examples_processed
now = time.time()
logging.info("num examples processed: " + str(
num_examples_processed) + " elapsed seconds: " + "{0:.2f}".format(now - start_time))
num_examples_processed = 0
except tf.errors.OutOfRangeError as e:
if ids_val is not None:
video_ids.append(ids_val)
video_labels.append(labels_val)
video_rgbs.append(rgbs_val)
video_audios.append(audios_val)
video_predictions.append(predictions_val)
video_num_frames.append(num_frames_val)
num_examples_processed += len(ids_val)
if 0 < num_examples_processed <= FLAGS.file_size:
video_ids = np.concatenate(video_ids, axis=0)
video_labels = np.concatenate(video_labels, axis=0)
video_rgbs = np.concatenate(video_rgbs, axis=0)
video_audios = np.concatenate(video_audios, axis=0)
video_num_frames = np.concatenate(video_num_frames, axis=0)
video_predictions = np.concatenate(video_predictions, axis=0)
write_to_record(video_ids, video_labels, video_rgbs, video_audios, video_predictions,
video_num_frames, filenum, num_examples_processed)
total_num_examples_processed += num_examples_processed
now = time.time()
logging.info(
"num examples processed: " + str(total_num_examples_processed) + " elapsed seconds: " + "{0:.2f}".format(
now - start_time))
logging.info(
"Done with inference. %d samples was written to %s" % (total_num_examples_processed, FLAGS.output_dir))
# except Exception as e: # pylint: disable=broad-except
# logging.info("Unexpected exception: " + str(e))
finally:
coord.request_stop()
coord.join(threads, stop_grace_period_secs=10)
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
inference_loop()
if __name__ == "__main__":
app.run()