From dbec62be96c68e9d09bc502dcb86cf0c5f75b4bb Mon Sep 17 00:00:00 2001 From: Jacobew <1003380053@qq.com> Date: Mon, 22 Apr 2019 19:30:45 +0800 Subject: [PATCH] Evaluation details (#705) * Update documentation for testing and calculating mAP for each class * Update documentation for testing and calculating mAP for each class --- README.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/README.md b/README.md index b7cda0a62..baa7c6bc4 100644 --- a/README.md +++ b/README.md @@ -152,6 +152,14 @@ python -m torch.distributed.launch --nproc_per_node=$NGPUS /path_to_maskrcnn_ben ``` Note we should set `MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN` follow the rule in Single-GPU training. +## Evaluation +You can test your model directly on single or multiple gpus. Here is an example for Mask R-CNN R-50 FPN with the 1x schedule on 8 GPUS: +```bash +export NGPUS=8 +python -m torch.distributed.launch --nproc_per_node=$NGPUS /path_to_maskrcnn_benchmark/tools/test_net.py --config-file "configs/e2e_mask_rcnn_R_50_FPN_1x.yaml" TEST.IMS_PER_BATCH 16 +``` +To calculate mAP for each class, you can simply modify a few lines in [coco_eval.py](https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/data/datasets/evaluation/coco/coco_eval.py). See [#524](https://github.com/facebookresearch/maskrcnn-benchmark/issues/524#issuecomment-475118810) for more details. + ## Abstractions For more information on some of the main abstractions in our implementation, see [ABSTRACTIONS.md](ABSTRACTIONS.md).