Skip to content

Latest commit

 

History

History
139 lines (107 loc) · 8.08 KB

SECURITY.md

File metadata and controls

139 lines (107 loc) · 8.08 KB

Using TensorFlow Securely

This document discusses how to safely deal with untrusted programs (models or model parameters), and input data. Below, we also provide guidelines on how to report vulnerabilities in TensorFlow.

TensorFlow models are programs

TensorFlow's runtime system interprets and executes programs. What machine learning practitioners term models are expressed as programs that TensorFlow executes. TensorFlow programs are encoded as computation graphs. The model's parameters are often stored separately in checkpoints.

At runtime, TensorFlow executes the computation graph using the parameters provided. Note that the behavior of the computation graph may change depending on the parameters provided. TensorFlow itself is not a sandbox. When executing the computation graph, TensorFlow may read and write files, send and receive data over the network, and even spawn additional processes. All these tasks are performed with the permissions of the TensorFlow process. Allowing for this flexibility makes for a powerful machine learning platform, but it has implications for security.

The computation graph may also accept inputs. Those inputs are the data you supply to TensorFlow to train a model, or to use a model to run inference on the data.

TensorFlow models are programs, and need to be treated as such from a security perspective.

Running untrusted models

As a general rule: Always execute untrusted models inside a sandbox (e.g., nsjail).

There are several ways in which a model could become untrusted. Obviously, if an untrusted party supplies TensorFlow kernels, arbitrary code may be executed. The same is true if the untrusted party provides Python code, such as the Python code that generates TensorFlow graphs.

Even if the untrusted party only supplies the serialized computation graph (in form of a GraphDef, SavedModel, or equivalent on-disk format), the set of computation primitives available to TensorFlow is powerful enough that you should assume that the TensorFlow process effectively executes arbitrary code. One common solution is to whitelist only a few safe Ops. While this is possible in theory, we still recommend you sandbox the execution.

It depends on the computation graph whether a user provided checkpoint is safe. It is easily possible to create computation graphs in which malicious checkpoints can trigger unsafe behavior. For example, consider a graph that contains a tf.cond depending on the value of a tf.Variable. One branch of the tf.cond is harmless, but the other is unsafe. Since the tf.Variable is stored in the checkpoint, whoever provides the checkpoint now has the ability to trigger unsafe behavior, even though the graph is not under their control.

In other words, graphs can contain vulnerabilities of their own. To allow users to provide checkpoints to a model you run on their behalf (e.g., in order to compare model quality for a fixed model architecture), you must carefully audit your model, and we recommend you run the TensorFlow process in a sandbox.

Accepting untrusted Inputs

It is possible to write models that are secure in a sense that they can safely process untrusted inputs assuming there are no bugs. There are two main reasons to not rely on this: first, it is easy to write models which must not be exposed to untrusted inputs, and second, there are bugs in any software system of sufficient complexity. Letting users control inputs could allow them to trigger bugs either in TensorFlow or in dependent libraries.

In general, it is good practice to isolate parts of any system which is exposed to untrusted (e.g., user-provided) inputs in a sandbox.

A useful analogy to how any TensorFlow graph is executed is any interpreted programming language, such as Python. While it is possible to write secure Python code which can be exposed to user supplied inputs (by, e.g., carefully quoting and sanitizing input strings, size-checking input blobs, etc.), it is very easy to write Python programs which are insecure. Even secure Python code could be rendered insecure by a bug in the Python interpreter, or in a bug in a Python library used (e.g., this one).

What is a vulnerability?

Given TensorFlow's flexibility, it is possible to specify computation graphs which exhibit unexpected or unwanted behavior. The fact that TensorFlow models can perform arbitrary computations means that they may read and write files, communicate via the network, produce deadlocks and infinite loops, or run out of memory. It is only when these behaviors are outside the specifications of the operations involved that such behavior is a vulnerability.

A FileWriter writing a file is not unexpected behavior and therefore is not a vulnerability in TensorFlow. A MatMul allowing arbitrary binary code execution is a vulnerability.

This is more subtle from a system perspective. For example, it is easy to cause a TensorFlow process to try to allocate more memory than available by specifying a computation graph containing an ill-considered tf.tile operation. TensorFlow should exit cleanly in this case (it would raise an exception in Python, or return an error Status in C++). However, if the surrounding system is not expecting the possibility, such behavior could be used in a denial of service attack (or worse). Because TensorFlow behaves correctly, this is not a vulnerability in TensorFlow (although it would be a vulnerability of this hypothetical system).

As a general rule, it is incorrect behavior for Tensorflow to access memory it does not own, or to terminate in an unclean way. Bugs in TensorFlow that lead to such behaviors constitute a vulnerability.

One of the most critical parts of any system is input handling. If malicious input can trigger side effects or incorrect behavior, this is a bug, and likely a vulnerability.

Vulnerabilities in TensorFlow-DirectML-Plugin or the DirectML Backend

If you believe you have found a security vulnerability in any of the source code related to TensorFlow-DirectML-Plugin or the DirectML backend that meets Microsoft's definition of a security vulnerability, please report it to the Microsoft Security Response Center (MSRC) at https://msrc.microsoft.com/create-report.

If you prefer to submit without logging in, send email to [email protected]. If possible, encrypt your message with our PGP key; please download it from the the Microsoft Security Response Center PGP Key page.

You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at microsoft.com/msrc.

Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:

  • Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
  • Full paths of source file(s) related to the manifestation of the issue
  • The location of the affected source code (tag/branch/commit or direct URL)
  • Any special configuration required to reproduce the issue
  • Step-by-step instructions to reproduce the issue
  • Proof-of-concept or exploit code (if possible)
  • Impact of the issue, including how an attacker might exploit the issue

This information will help us triage your report more quickly.

If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our Microsoft Bug Bounty Program page for more details about our active programs.

We prefer all communications to be in English.

Microsoft follows the principle of Coordinated Vulnerability Disclosure.