diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 5be7688b06e..1c32eee6036 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -57,11 +57,11 @@ jobs: - name: Test with pytest skipping openai tests if: matrix.python-version != '3.10' && matrix.os == 'ubuntu-latest' run: | - pytest test --skip-openai --durations=10 --durations-min=1.0 + pytest test --ignore=test/agentchat/contrib --skip-openai --durations=10 --durations-min=1.0 - name: Test with pytest skipping openai and docker tests if: matrix.python-version != '3.10' && matrix.os != 'ubuntu-latest' run: | - pytest test --skip-openai --skip-docker --durations=10 --durations-min=1.0 + pytest test --ignore=test/agentchat/contrib --skip-openai --skip-docker --durations=10 --durations-min=1.0 - name: Coverage if: matrix.python-version == '3.10' run: | diff --git a/.github/workflows/contrib-openai.yml b/.github/workflows/contrib-openai.yml index 5e4ba170370..c60a45b3ad1 100644 --- a/.github/workflows/contrib-openai.yml +++ b/.github/workflows/contrib-openai.yml @@ -41,11 +41,15 @@ jobs: pip install -e . python -c "import autogen" pip install coverage pytest-asyncio + - name: Install PostgreSQL + run: | + sudo apt install postgresql -y + - name: Start PostgreSQL service + run: sudo service postgresql start - name: Install packages for test when needed run: | pip install docker - pip install qdrant_client[fastembed] - pip install -e .[retrievechat] + pip install -e .[retrievechat-qdrant,retrievechat-pgvector] - name: Coverage env: OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} @@ -53,7 +57,7 @@ jobs: AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }} OAI_CONFIG_LIST: ${{ secrets.OAI_CONFIG_LIST }} run: | - coverage run -a -m pytest test/agentchat/contrib/test_retrievechat.py::test_retrievechat test/agentchat/contrib/test_qdrant_retrievechat.py::test_retrievechat + coverage run -a -m pytest test/agentchat/contrib/test_retrievechat.py::test_retrievechat test/agentchat/contrib/test_qdrant_retrievechat.py::test_retrievechat test/agentchat/contrib/test_pgvector_retrievechat.py::test_retrievechat coverage xml - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 @@ -334,3 +338,42 @@ jobs: with: file: ./coverage.xml flags: unittests + + AgentOptimizer: + strategy: + matrix: + os: [ ubuntu-latest ] + python-version: [ "3.11" ] + runs-on: ${{ matrix.os }} + environment: openai1 + steps: + # checkout to pr branch + - name: Checkout + uses: actions/checkout@v4 + with: + ref: ${{ github.event.pull_request.head.sha }} + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v5 + with: + python-version: ${{ matrix.python-version }} + - name: Install packages and dependencies + run: | + docker --version + python -m pip install --upgrade pip wheel + pip install -e . + python -c "import autogen" + pip install coverage pytest + - name: Coverage + env: + OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} + AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }} + AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }} + OAI_CONFIG_LIST: ${{ secrets.OAI_CONFIG_LIST }} + run: | + coverage run -a -m pytest test/agentchat/contrib/test_agent_optimizer.py + coverage xml + - name: Upload coverage to Codecov + uses: codecov/codecov-action@v3 + with: + file: ./coverage.xml + flags: unittests diff --git a/.github/workflows/contrib-tests.yml b/.github/workflows/contrib-tests.yml index 719ff086183..4e042b458e0 100644 --- a/.github/workflows/contrib-tests.yml +++ b/.github/workflows/contrib-tests.yml @@ -42,16 +42,20 @@ jobs: - name: Install qdrant_client when python-version is 3.10 if: matrix.python-version == '3.10' run: | - pip install qdrant_client[fastembed] + pip install .[retrievechat-qdrant] - name: Install unstructured when python-version is 3.9 and on linux - if: matrix.python-version == '3.9' && matrix.os == 'ubuntu-latest' run: | sudo apt-get update sudo apt-get install -y tesseract-ocr poppler-utils pip install unstructured[all-docs]==0.13.0 - - name: Install packages and dependencies for RetrieveChat + - name: Install and Start PostgreSQL + runs-on: ubuntu-latest run: | - pip install -e .[retrievechat] + sudo apt install postgresql -y + sudo service postgresql start + - name: Install packages and dependencies for PGVector + run: | + pip install -e .[retrievechat-pgvector] - name: Set AUTOGEN_USE_DOCKER based on OS shell: bash run: | @@ -256,6 +260,44 @@ jobs: file: ./coverage.xml flags: unittests + GeminiTest: + runs-on: ${{ matrix.os }} + strategy: + fail-fast: false + matrix: + os: [ubuntu-latest, macos-latest, windows-2019] + python-version: ["3.9", "3.10", "3.11", "3.12"] + steps: + - uses: actions/checkout@v4 + with: + lfs: true + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v5 + with: + python-version: ${{ matrix.python-version }} + - name: Install packages and dependencies for all tests + run: | + python -m pip install --upgrade pip wheel + pip install pytest + - name: Install packages and dependencies for Gemini + run: | + pip install -e .[gemini,test] + - name: Set AUTOGEN_USE_DOCKER based on OS + shell: bash + run: | + if [[ ${{ matrix.os }} != ubuntu-latest ]]; then + echo "AUTOGEN_USE_DOCKER=False" >> $GITHUB_ENV + fi + - name: Coverage + run: | + coverage run -a -m pytest test/oai/test_gemini.py --skip-openai + coverage xml + - name: Upload coverage to Codecov + uses: codecov/codecov-action@v3 + with: + file: ./coverage.xml + flags: unittests + ContextHandling: runs-on: ${{ matrix.os }} strategy: diff --git a/.github/workflows/lfs-check.yml b/.github/workflows/lfs-check.yml new file mode 100644 index 00000000000..e2bcfb5668e --- /dev/null +++ b/.github/workflows/lfs-check.yml @@ -0,0 +1,15 @@ +name: "Git LFS Check" + +on: pull_request +permissions: {} +jobs: + lfs-check: + runs-on: ubuntu-latest + steps: + - name: Checkout + uses: actions/checkout@v4 + with: + lfs: true + - name: Check Git LFS files for consistency + run: | + git lfs fsck diff --git a/.gitignore b/.gitignore index 49a41e9ed2c..4c925f739ec 100644 --- a/.gitignore +++ b/.gitignore @@ -172,6 +172,10 @@ test/my_tmp/* # Storage for the AgentEval output test/test_files/agenteval-in-out/out/ +# local cache or coding foler +local_cache/ +coding/ + # Files created by tests *tmp_code_* test/agentchat/test_agent_scripts/* @@ -179,7 +183,10 @@ test/agentchat/test_agent_scripts/* # test cache .cache_test .db +local_cache notebook/result.png samples/apps/autogen-studio/autogenstudio/models/test/ + +notebook/coding diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 53b6207a301..fcea09223c6 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -43,6 +43,8 @@ repos: website/static/img/ag.svg | website/yarn.lock | website/docs/tutorial/code-executors.ipynb | + website/docs/topics/code-execution/custom-executor.ipynb | + website/docs/topics/non-openai-models/cloud-gemini.ipynb | notebook/.* )$ # See https://jaredkhan.com/blog/mypy-pre-commit diff --git a/OAI_CONFIG_LIST_sample b/OAI_CONFIG_LIST_sample index ef027f815ba..9fc0dc803a0 100644 --- a/OAI_CONFIG_LIST_sample +++ b/OAI_CONFIG_LIST_sample @@ -5,7 +5,8 @@ [ { "model": "gpt-4", - "api_key": "" + "api_key": "", + "tags": ["gpt-4", "tool"] }, { "model": "", diff --git a/README.md b/README.md index 857b9d3cf22..dffa451db98 100644 --- a/README.md +++ b/README.md @@ -14,7 +14,7 @@

--> -:fire: Mar 26, 2024: Andrew Ng gave a shoutout to AutoGen in [What's next for AI agentic workflows](https://youtu.be/sal78ACtGTc?si=JduUzN_1kDnMq0vF) at Sequoia Capital's AI Ascent. +:fire: Apr 17, 2024: Andrew Ng cited AutoGen in [The Batch newsletter](https://www.deeplearning.ai/the-batch/issue-245/) and [What's next for AI agentic workflows](https://youtu.be/sal78ACtGTc?si=JduUzN_1kDnMq0vF) at Sequoia Capital's AI Ascent (Mar 26). :fire: Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://microsoft.github.io/autogen/blog/2024/03/03/AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU). diff --git a/autogen/agentchat/chat.py b/autogen/agentchat/chat.py index a07f3302ae9..b527f8e0bae 100644 --- a/autogen/agentchat/chat.py +++ b/autogen/agentchat/chat.py @@ -25,10 +25,12 @@ class ChatResult: """The chat history.""" summary: str = None """A summary obtained from the chat.""" - cost: tuple = None # (dict, dict) - (total_cost, actual_cost_with_cache) - """The cost of the chat. a tuple of (total_cost, total_actual_cost), where total_cost is a - dictionary of cost information, and total_actual_cost is a dictionary of information on - the actual incurred cost with cache.""" + cost: Dict[str, dict] = None # keys: "usage_including_cached_inference", "usage_excluding_cached_inference" + """The cost of the chat. + The value for each usage type is a dictionary containing cost information for that specific type. + - "usage_including_cached_inference": Cost information on the total usage, including the tokens in cached inference. + - "usage_excluding_cached_inference": Cost information on the usage of tokens, excluding the tokens in cache. No larger than "usage_including_cached_inference". + """ human_input: List[str] = None """A list of human input solicited during the chat.""" @@ -169,6 +171,9 @@ def initiate_chats(chat_queue: List[Dict[str, Any]]) -> List[ChatResult]: - `"carryover"` - It can be used to specify the carryover information to be passed to this chat. If provided, we will combine this carryover with the "message" content when generating the initial chat message in `generate_init_message`. + - `"finished_chat_indexes_to_exclude_from_carryover"` - It can be used by specifying a list of indexes of the finished_chats list, + from which to exclude the summaries for carryover. If 'finished_chat_indexes_to_exclude_from_carryover' is not provided or an empty list, + then summary from all the finished chats will be taken. Returns: (list): a list of ChatResult objects corresponding to the finished chats in the chat_queue. """ @@ -180,9 +185,16 @@ def initiate_chats(chat_queue: List[Dict[str, Any]]) -> List[ChatResult]: while current_chat_queue: chat_info = current_chat_queue.pop(0) _chat_carryover = chat_info.get("carryover", []) + finished_chat_indexes_to_exclude_from_carryover = chat_info.get( + "finished_chat_indexes_to_exclude_from_carryover", [] + ) + if isinstance(_chat_carryover, str): _chat_carryover = [_chat_carryover] - chat_info["carryover"] = _chat_carryover + [r.summary for r in finished_chats] + chat_info["carryover"] = _chat_carryover + [ + r.summary for i, r in enumerate(finished_chats) if i not in finished_chat_indexes_to_exclude_from_carryover + ] + __post_carryover_processing(chat_info) sender = chat_info["sender"] chat_res = sender.initiate_chat(**chat_info) diff --git a/autogen/agentchat/contrib/agent_builder.py b/autogen/agentchat/contrib/agent_builder.py index a257a6dcf61..272d954ff27 100644 --- a/autogen/agentchat/contrib/agent_builder.py +++ b/autogen/agentchat/contrib/agent_builder.py @@ -203,9 +203,6 @@ def _create_agent( Returns: agent: a set-up agent. """ - from huggingface_hub import HfApi - from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError - config_list = autogen.config_list_from_json( self.config_file_or_env, file_location=self.config_file_location, @@ -218,10 +215,15 @@ def _create_agent( f"If you load configs from json, make sure the model in agent_configs is in the {self.config_file_or_env}." ) try: + from huggingface_hub import HfApi + from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError + hf_api = HfApi() hf_api.model_info(model_name_or_hf_repo) model_name = model_name_or_hf_repo.split("/")[-1] server_id = f"{model_name}_{self.host}" + except ImportError: + server_id = self.online_server_name except GatedRepoError as e: raise e except RepositoryNotFoundError: @@ -495,9 +497,6 @@ def build_from_library( agent_list: a list of agents. cached_configs: cached configs. """ - import chromadb - from chromadb.utils import embedding_functions - if code_execution_config is None: code_execution_config = { "last_n_messages": 2, @@ -528,6 +527,9 @@ def build_from_library( print("==> Looking for suitable agents in library...") if embedding_model is not None: + import chromadb + from chromadb.utils import embedding_functions + chroma_client = chromadb.Client() collection = chroma_client.create_collection( name="agent_list", diff --git a/autogen/agentchat/contrib/capabilities/teachability.py b/autogen/agentchat/contrib/capabilities/teachability.py index 3a64f061963..596e449ce34 100644 --- a/autogen/agentchat/contrib/capabilities/teachability.py +++ b/autogen/agentchat/contrib/capabilities/teachability.py @@ -86,7 +86,7 @@ def prepopulate_db(self): """Adds a few arbitrary memos to the DB.""" self.memo_store.prepopulate() - def process_last_received_message(self, text): + def process_last_received_message(self, text: Union[Dict, str]): """ Appends any relevant memos to the message text, and stores any apparent teachings in new memos. Uses TextAnalyzerAgent to make decisions about memo storage and retrieval. @@ -103,7 +103,7 @@ def process_last_received_message(self, text): # Return the (possibly) expanded message text. return expanded_text - def _consider_memo_storage(self, comment): + def _consider_memo_storage(self, comment: Union[Dict, str]): """Decides whether to store something from one user comment in the DB.""" memo_added = False @@ -161,7 +161,7 @@ def _consider_memo_storage(self, comment): # Yes. Save them to disk. self.memo_store._save_memos() - def _consider_memo_retrieval(self, comment): + def _consider_memo_retrieval(self, comment: Union[Dict, str]): """Decides whether to retrieve memos from the DB, and add them to the chat context.""" # First, use the comment directly as the lookup key. @@ -195,7 +195,7 @@ def _consider_memo_retrieval(self, comment): # Append the memos to the text of the last message. return comment + self._concatenate_memo_texts(memo_list) - def _retrieve_relevant_memos(self, input_text): + def _retrieve_relevant_memos(self, input_text: str) -> list: """Returns semantically related memos from the DB.""" memo_list = self.memo_store.get_related_memos( input_text, n_results=self.max_num_retrievals, threshold=self.recall_threshold @@ -213,7 +213,7 @@ def _retrieve_relevant_memos(self, input_text): memo_list = [memo[1] for memo in memo_list] return memo_list - def _concatenate_memo_texts(self, memo_list): + def _concatenate_memo_texts(self, memo_list: list) -> str: """Concatenates the memo texts into a single string for inclusion in the chat context.""" memo_texts = "" if len(memo_list) > 0: @@ -225,7 +225,7 @@ def _concatenate_memo_texts(self, memo_list): memo_texts = memo_texts + "\n" + info return memo_texts - def _analyze(self, text_to_analyze, analysis_instructions): + def _analyze(self, text_to_analyze: Union[Dict, str], analysis_instructions: Union[Dict, str]): """Asks TextAnalyzerAgent to analyze the given text according to specific instructions.""" self.analyzer.reset() # Clear the analyzer's list of messages. self.teachable_agent.send( @@ -246,10 +246,16 @@ class MemoStore: Vector embeddings are currently supplied by Chroma's default Sentence Transformers. """ - def __init__(self, verbosity, reset, path_to_db_dir): + def __init__( + self, + verbosity: Optional[int] = 0, + reset: Optional[bool] = False, + path_to_db_dir: Optional[str] = "./tmp/teachable_agent_db", + ): """ Args: - verbosity (Optional, int): 1 to print memory operations, 0 to omit them. 3+ to print memo lists. + - reset (Optional, bool): True to clear the DB before starting. Default False. - path_to_db_dir (Optional, str): path to the directory where the DB is stored. """ self.verbosity = verbosity @@ -304,7 +310,7 @@ def reset_db(self): self.uid_text_dict = {} self._save_memos() - def add_input_output_pair(self, input_text, output_text): + def add_input_output_pair(self, input_text: str, output_text: str): """Adds an input-output pair to the vector DB.""" self.last_memo_id += 1 self.vec_db.add(documents=[input_text], ids=[str(self.last_memo_id)]) @@ -321,7 +327,7 @@ def add_input_output_pair(self, input_text, output_text): if self.verbosity >= 3: self.list_memos() - def get_nearest_memo(self, query_text): + def get_nearest_memo(self, query_text: str): """Retrieves the nearest memo to the given query text.""" results = self.vec_db.query(query_texts=[query_text], n_results=1) uid, input_text, distance = results["ids"][0][0], results["documents"][0][0], results["distances"][0][0] @@ -338,7 +344,7 @@ def get_nearest_memo(self, query_text): ) return input_text, output_text, distance - def get_related_memos(self, query_text, n_results, threshold): + def get_related_memos(self, query_text: str, n_results: int, threshold: Union[int, float]): """Retrieves memos that are related to the given query text within the specified distance threshold.""" if n_results > len(self.uid_text_dict): n_results = len(self.uid_text_dict) diff --git a/autogen/agentchat/contrib/capabilities/transform_messages.py b/autogen/agentchat/contrib/capabilities/transform_messages.py index 46c8d4e0a4d..e96dc39fa7b 100644 --- a/autogen/agentchat/contrib/capabilities/transform_messages.py +++ b/autogen/agentchat/contrib/capabilities/transform_messages.py @@ -1,10 +1,9 @@ import copy from typing import Dict, List -from termcolor import colored - from autogen import ConversableAgent +from ....formatting_utils import colored from .transforms import MessageTransform @@ -43,12 +42,14 @@ class TransformMessages: ``` """ - def __init__(self, *, transforms: List[MessageTransform] = []): + def __init__(self, *, transforms: List[MessageTransform] = [], verbose: bool = True): """ Args: transforms: A list of message transformations to apply. + verbose: Whether to print logs of each transformation or not. """ self._transforms = transforms + self._verbose = verbose def add_to_agent(self, agent: ConversableAgent): """Adds the message transformations capability to the specified ConversableAgent. @@ -61,31 +62,26 @@ def add_to_agent(self, agent: ConversableAgent): agent.register_hook(hookable_method="process_all_messages_before_reply", hook=self._transform_messages) def _transform_messages(self, messages: List[Dict]) -> List[Dict]: - temp_messages = copy.deepcopy(messages) + post_transform_messages = copy.deepcopy(messages) system_message = None if messages[0]["role"] == "system": system_message = copy.deepcopy(messages[0]) - temp_messages.pop(0) + post_transform_messages.pop(0) for transform in self._transforms: - temp_messages = transform.apply_transform(temp_messages) - - if system_message: - temp_messages.insert(0, system_message) - - self._print_stats(messages, temp_messages) + # deepcopy in case pre_transform_messages will later be used for logs printing + pre_transform_messages = ( + copy.deepcopy(post_transform_messages) if self._verbose else post_transform_messages + ) + post_transform_messages = transform.apply_transform(pre_transform_messages) - return temp_messages + if self._verbose: + logs_str, had_effect = transform.get_logs(pre_transform_messages, post_transform_messages) + if had_effect: + print(colored(logs_str, "yellow")) - def _print_stats(self, pre_transform_messages: List[Dict], post_transform_messages: List[Dict]): - pre_transform_messages_len = len(pre_transform_messages) - post_transform_messages_len = len(post_transform_messages) + if system_message: + post_transform_messages.insert(0, system_message) - if pre_transform_messages_len < post_transform_messages_len: - print( - colored( - f"Number of messages reduced from {pre_transform_messages_len} to {post_transform_messages_len}.", - "yellow", - ) - ) + return post_transform_messages diff --git a/autogen/agentchat/contrib/capabilities/transforms.py b/autogen/agentchat/contrib/capabilities/transforms.py index cc4faace3f1..6dc1d59fe9c 100644 --- a/autogen/agentchat/contrib/capabilities/transforms.py +++ b/autogen/agentchat/contrib/capabilities/transforms.py @@ -1,5 +1,6 @@ +import copy import sys -from typing import Any, Dict, List, Optional, Protocol, Union +from typing import Any, Dict, List, Optional, Protocol, Tuple, Union import tiktoken from termcolor import colored @@ -25,6 +26,20 @@ def apply_transform(self, messages: List[Dict]) -> List[Dict]: """ ... + def get_logs(self, pre_transform_messages: List[Dict], post_transform_messages: List[Dict]) -> Tuple[str, bool]: + """Creates the string including the logs of the transformation + + Alongside the string, it returns a boolean indicating whether the transformation had an effect or not. + + Args: + pre_transform_messages: A list of dictionaries representing messages before the transformation. + post_transform_messages: A list of dictionaries representig messages after the transformation. + + Returns: + A tuple with a string with the logs and a flag indicating whether the transformation had an effect or not. + """ + ... + class MessageHistoryLimiter: """Limits the number of messages considered by an agent for response generation. @@ -60,6 +75,18 @@ def apply_transform(self, messages: List[Dict]) -> List[Dict]: return messages[-self._max_messages :] + def get_logs(self, pre_transform_messages: List[Dict], post_transform_messages: List[Dict]) -> Tuple[str, bool]: + pre_transform_messages_len = len(pre_transform_messages) + post_transform_messages_len = len(post_transform_messages) + + if post_transform_messages_len < pre_transform_messages_len: + logs_str = ( + f"Removed {pre_transform_messages_len - post_transform_messages_len} messages. " + f"Number of messages reduced from {pre_transform_messages_len} to {post_transform_messages_len}." + ) + return logs_str, True + return "No messages were removed.", False + def _validate_max_messages(self, max_messages: Optional[int]): if max_messages is not None and max_messages < 1: raise ValueError("max_messages must be None or greater than 1") @@ -121,15 +148,10 @@ def apply_transform(self, messages: List[Dict]) -> List[Dict]: assert self._max_tokens_per_message is not None assert self._max_tokens is not None - temp_messages = messages.copy() + temp_messages = copy.deepcopy(messages) processed_messages = [] processed_messages_tokens = 0 - # calculate tokens for all messages - total_tokens = sum( - _count_tokens(msg["content"]) for msg in temp_messages if isinstance(msg.get("content"), (str, list)) - ) - for msg in reversed(temp_messages): # Some messages may not have content. if not isinstance(msg.get("content"), (str, list)): @@ -154,16 +176,24 @@ def apply_transform(self, messages: List[Dict]) -> List[Dict]: processed_messages_tokens += msg_tokens processed_messages.insert(0, msg) - if total_tokens > processed_messages_tokens: - print( - colored( - f"Truncated {total_tokens - processed_messages_tokens} tokens. Tokens reduced from {total_tokens} to {processed_messages_tokens}", - "yellow", - ) - ) - return processed_messages + def get_logs(self, pre_transform_messages: List[Dict], post_transform_messages: List[Dict]) -> Tuple[str, bool]: + pre_transform_messages_tokens = sum( + _count_tokens(msg["content"]) for msg in pre_transform_messages if "content" in msg + ) + post_transform_messages_tokens = sum( + _count_tokens(msg["content"]) for msg in post_transform_messages if "content" in msg + ) + + if post_transform_messages_tokens < pre_transform_messages_tokens: + logs_str = ( + f"Truncated {pre_transform_messages_tokens - post_transform_messages_tokens} tokens. " + f"Number of tokens reduced from {pre_transform_messages_tokens} to {post_transform_messages_tokens}" + ) + return logs_str, True + return "No tokens were truncated.", False + def _truncate_str_to_tokens(self, contents: Union[str, List], n_tokens: int) -> Union[str, List]: if isinstance(contents, str): return self._truncate_tokens(contents, n_tokens) diff --git a/autogen/agentchat/contrib/qdrant_retrieve_user_proxy_agent.py b/autogen/agentchat/contrib/qdrant_retrieve_user_proxy_agent.py index c68ce809d8d..1ece138963f 100644 --- a/autogen/agentchat/contrib/qdrant_retrieve_user_proxy_agent.py +++ b/autogen/agentchat/contrib/qdrant_retrieve_user_proxy_agent.py @@ -1,17 +1,21 @@ -import logging from typing import Callable, Dict, List, Optional from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent +from autogen.agentchat.contrib.vectordb.utils import ( + chroma_results_to_query_results, + filter_results_by_distance, + get_logger, +) from autogen.retrieve_utils import TEXT_FORMATS, get_files_from_dir, split_files_to_chunks -logger = logging.getLogger(__name__) +logger = get_logger(__name__) try: import fastembed from qdrant_client import QdrantClient, models from qdrant_client.fastembed_common import QueryResponse except ImportError as e: - logging.fatal("Failed to import qdrant_client with fastembed. Try running 'pip install qdrant_client[fastembed]'") + logger.fatal("Failed to import qdrant_client with fastembed. Try running 'pip install qdrant_client[fastembed]'") raise e @@ -136,6 +140,11 @@ def retrieve_docs(self, problem: str, n_results: int = 20, search_string: str = collection_name=self._collection_name, embedding_model=self._embedding_model, ) + results["contents"] = results.pop("documents") + results = chroma_results_to_query_results(results, "distances") + results = filter_results_by_distance(results, self._distance_threshold) + + self._search_string = search_string self._results = results @@ -298,6 +307,7 @@ class QueryResponse(BaseModel, extra="forbid"): # type: ignore data = { "ids": [[result.id for result in sublist] for sublist in results], "documents": [[result.document for result in sublist] for sublist in results], + "distances": [[result.score for result in sublist] for sublist in results], "metadatas": [[result.metadata for result in sublist] for sublist in results], } return data diff --git a/autogen/agentchat/contrib/retrieve_user_proxy_agent.py b/autogen/agentchat/contrib/retrieve_user_proxy_agent.py index 34dbe28d098..476c7c0739d 100644 --- a/autogen/agentchat/contrib/retrieve_user_proxy_agent.py +++ b/autogen/agentchat/contrib/retrieve_user_proxy_agent.py @@ -1,3 +1,5 @@ +import hashlib +import os import re from typing import Any, Callable, Dict, List, Optional, Tuple, Union @@ -7,15 +9,28 @@ import chromadb except ImportError: raise ImportError("Please install dependencies first. `pip install pyautogen[retrievechat]`") -from autogen import logger from autogen.agentchat import UserProxyAgent from autogen.agentchat.agent import Agent +from autogen.agentchat.contrib.vectordb.base import Document, QueryResults, VectorDB, VectorDBFactory +from autogen.agentchat.contrib.vectordb.utils import ( + chroma_results_to_query_results, + filter_results_by_distance, + get_logger, +) from autogen.code_utils import extract_code -from autogen.retrieve_utils import TEXT_FORMATS, create_vector_db_from_dir, query_vector_db +from autogen.retrieve_utils import ( + TEXT_FORMATS, + create_vector_db_from_dir, + get_files_from_dir, + query_vector_db, + split_files_to_chunks, +) from autogen.token_count_utils import count_token from ...formatting_utils import colored +logger = get_logger(__name__) + PROMPT_DEFAULT = """You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the context provided by the user. You should follow the following steps to answer a question: Step 1, you estimate the user's intent based on the question and context. The intent can be a code generation task or @@ -65,6 +80,8 @@ Context is: {input_context} """ +HASH_LENGTH = int(os.environ.get("HASH_LENGTH", 8)) + class RetrieveUserProxyAgent(UserProxyAgent): """(In preview) The Retrieval-Augmented User Proxy retrieves document chunks based on the embedding @@ -107,9 +124,17 @@ def __init__( "code", "qa" and "default". System prompt will be different for different tasks. The default value is `default`, which supports both code and qa, and provides source information in the end of the response. + - `vector_db` (Optional, Union[str, VectorDB]) - the vector db for the retrieve chat. + If it's a string, it should be the type of the vector db, such as "chroma"; otherwise, + it should be an instance of the VectorDB protocol. Default is "chroma". + Set `None` to use the deprecated `client`. + - `db_config` (Optional, Dict) - the config for the vector db. Default is `{}`. Please make + sure you understand the config for the vector db you are using, otherwise, leave it as `{}`. + Only valid when `vector_db` is a string. - `client` (Optional, chromadb.Client) - the chromadb client. If key not provided, a default client `chromadb.Client()` will be used. If you want to use other vector db, extend this class and override the `retrieve_docs` function. + **Deprecated**: use `vector_db` instead. - `docs_path` (Optional, Union[str, List[str]]) - the path to the docs directory. It can also be the path to a single file, the url to a single file or a list of directories, files and urls. Default is None, which works only if the @@ -123,8 +148,11 @@ def __init__( By default, "extra_docs" is set to false, starting document IDs from zero. This poses a risk as new documents might overwrite existing ones, potentially causing unintended loss or alteration of data in the collection. - - `collection_name` (Optional, str) - the name of the collection. - If key not provided, a default name `autogen-docs` will be used. + **Deprecated**: use `new_docs` when use `vector_db` instead of `client`. + - `new_docs` (Optional, bool) - when True, only adds new documents to the collection; + when False, updates existing documents and adds new ones. Default is True. + Document id is used to determine if a document is new or existing. By default, the + id is the hash value of the content. - `model` (Optional, str) - the model to use for the retrieve chat. If key not provided, a default model `gpt-4` will be used. - `chunk_token_size` (Optional, int) - the chunk token size for the retrieve chat. @@ -143,6 +171,7 @@ def __init__( models can be found at `https://www.sbert.net/docs/pretrained_models.html`. The default model is a fast model. If you want to use a high performance model, `all-mpnet-base-v2` is recommended. + **Deprecated**: no need when use `vector_db` instead of `client`. - `embedding_function` (Optional, Callable) - the embedding function for creating the vector db. Default is None, SentenceTransformer with the given `embedding_model` will be used. If you want to use OpenAI, Cohere, HuggingFace or other embedding @@ -156,10 +185,14 @@ def __init__( `Update Context` will be triggered. - `update_context` (Optional, bool) - if False, will not apply `Update Context` for interactive retrieval. Default is True. - - `get_or_create` (Optional, bool) - if True, will create/return a collection for the - retrieve chat. This is the same as that used in chromadb. - Default is False. Will raise ValueError if the collection already exists and - get_or_create is False. Will be set to True if docs_path is None. + - `collection_name` (Optional, str) - the name of the collection. + If key not provided, a default name `autogen-docs` will be used. + - `get_or_create` (Optional, bool) - Whether to get the collection if it exists. Default is True. + - `overwrite` (Optional, bool) - Whether to overwrite the collection if it exists. Default is False. + Case 1. if the collection does not exist, create the collection. + Case 2. the collection exists, if overwrite is True, it will overwrite the collection. + Case 3. the collection exists and overwrite is False, if get_or_create is True, it will get the collection, + otherwise it raise a ValueError. - `custom_token_count_function` (Optional, Callable) - a custom function to count the number of tokens in a string. The function should take (text:str, model:str) as input and return the @@ -176,6 +209,8 @@ def __init__( included files and urls will be chunked regardless of their types. - `recursive` (Optional, bool) - whether to search documents recursively in the docs_path. Default is True. + - `distance_threshold` (Optional, float) - the threshold for the distance score, only + distance smaller than it will be returned. Will be ignored if < 0. Default is -1. `**kwargs` (dict): other kwargs in [UserProxyAgent](../user_proxy_agent#__init__). @@ -183,6 +218,7 @@ def __init__( Example of overriding retrieve_docs - If you have set up a customized vector db, and it's not compatible with chromadb, you can easily plug in it with below code. + **Deprecated**: Use `vector_db` instead. You can extend VectorDB and pass it to the agent. ```python class MyRetrieveUserProxyAgent(RetrieveUserProxyAgent): def query_vector_db( @@ -215,9 +251,12 @@ def retrieve_docs(self, problem: str, n_results: int = 20, search_string: str = self._retrieve_config = {} if retrieve_config is None else retrieve_config self._task = self._retrieve_config.get("task", "default") + self._vector_db = self._retrieve_config.get("vector_db", "chroma") + self._db_config = self._retrieve_config.get("db_config", {}) self._client = self._retrieve_config.get("client", chromadb.Client()) self._docs_path = self._retrieve_config.get("docs_path", None) self._extra_docs = self._retrieve_config.get("extra_docs", False) + self._new_docs = self._retrieve_config.get("new_docs", True) self._collection_name = self._retrieve_config.get("collection_name", "autogen-docs") if "docs_path" not in self._retrieve_config: logger.warning( @@ -236,6 +275,7 @@ def retrieve_docs(self, problem: str, n_results: int = 20, search_string: str = self.customized_answer_prefix = self._retrieve_config.get("customized_answer_prefix", "").upper() self.update_context = self._retrieve_config.get("update_context", True) self._get_or_create = self._retrieve_config.get("get_or_create", False) if self._docs_path is not None else True + self._overwrite = self._retrieve_config.get("overwrite", False) self.custom_token_count_function = self._retrieve_config.get("custom_token_count_function", count_token) self.custom_text_split_function = self._retrieve_config.get("custom_text_split_function", None) self._custom_text_types = self._retrieve_config.get("custom_text_types", TEXT_FORMATS) @@ -244,18 +284,95 @@ def retrieve_docs(self, problem: str, n_results: int = 20, search_string: str = self._collection = True if self._docs_path is None else False # whether the collection is created self._ipython = get_ipython() self._doc_idx = -1 # the index of the current used doc - self._results = {} # the results of the current query + self._results = [] # the results of the current query self._intermediate_answers = set() # the intermediate answers self._doc_contents = [] # the contents of the current used doc self._doc_ids = [] # the ids of the current used doc self._current_docs_in_context = [] # the ids of the current context sources self._search_string = "" # the search string used in the current query + self._distance_threshold = self._retrieve_config.get("distance_threshold", -1) # update the termination message function self._is_termination_msg = ( self._is_termination_msg_retrievechat if is_termination_msg is None else is_termination_msg ) + if isinstance(self._vector_db, str): + if not isinstance(self._db_config, dict): + raise ValueError("`db_config` should be a dictionary.") + if "embedding_function" in self._retrieve_config: + self._db_config["embedding_function"] = self._embedding_function + self._vector_db = VectorDBFactory.create_vector_db(db_type=self._vector_db, **self._db_config) self.register_reply(Agent, RetrieveUserProxyAgent._generate_retrieve_user_reply, position=2) + def _init_db(self): + if not self._vector_db: + return + + IS_TO_CHUNK = False # whether to chunk the raw files + if self._new_docs: + IS_TO_CHUNK = True + if not self._docs_path: + try: + self._vector_db.get_collection(self._collection_name) + logger.warning(f"`docs_path` is not provided. Use the existing collection `{self._collection_name}`.") + self._overwrite = False + self._get_or_create = True + IS_TO_CHUNK = False + except ValueError: + raise ValueError( + "`docs_path` is not provided. " + f"The collection `{self._collection_name}` doesn't exist either. " + "Please provide `docs_path` or create the collection first." + ) + elif self._get_or_create and not self._overwrite: + try: + self._vector_db.get_collection(self._collection_name) + logger.info(f"Use the existing collection `{self._collection_name}`.", color="green") + except ValueError: + IS_TO_CHUNK = True + else: + IS_TO_CHUNK = True + + self._vector_db.active_collection = self._vector_db.create_collection( + self._collection_name, overwrite=self._overwrite, get_or_create=self._get_or_create + ) + + docs = None + if IS_TO_CHUNK: + if self.custom_text_split_function is not None: + chunks, sources = split_files_to_chunks( + get_files_from_dir(self._docs_path, self._custom_text_types, self._recursive), + custom_text_split_function=self.custom_text_split_function, + ) + else: + chunks, sources = split_files_to_chunks( + get_files_from_dir(self._docs_path, self._custom_text_types, self._recursive), + self._max_tokens, + self._chunk_mode, + self._must_break_at_empty_line, + ) + logger.info(f"Found {len(chunks)} chunks.") + + if self._new_docs: + all_docs_ids = set( + [ + doc["id"] + for doc in self._vector_db.get_docs_by_ids(ids=None, collection_name=self._collection_name) + ] + ) + else: + all_docs_ids = set() + + chunk_ids = [hashlib.blake2b(chunk.encode("utf-8")).hexdigest()[:HASH_LENGTH] for chunk in chunks] + chunk_ids_set = set(chunk_ids) + chunk_ids_set_idx = [chunk_ids.index(hash_value) for hash_value in chunk_ids_set] + docs = [ + Document(id=chunk_ids[idx], content=chunks[idx], metadata=sources[idx]) + for idx in chunk_ids_set_idx + if chunk_ids[idx] not in all_docs_ids + ] + + self._vector_db.insert_docs(docs=docs, collection_name=self._collection_name, upsert=True) + def _is_termination_msg_retrievechat(self, message): """Check if a message is a termination message. For code generation, terminate when no code block is detected. Currently only detect python code blocks. @@ -288,41 +405,42 @@ def get_max_tokens(model="gpt-3.5-turbo"): def _reset(self, intermediate=False): self._doc_idx = -1 # the index of the current used doc - self._results = {} # the results of the current query + self._results = [] # the results of the current query if not intermediate: self._intermediate_answers = set() # the intermediate answers self._doc_contents = [] # the contents of the current used doc self._doc_ids = [] # the ids of the current used doc - def _get_context(self, results: Dict[str, Union[List[str], List[List[str]]]]): + def _get_context(self, results: QueryResults): doc_contents = "" self._current_docs_in_context = [] current_tokens = 0 _doc_idx = self._doc_idx _tmp_retrieve_count = 0 - for idx, doc in enumerate(results["documents"][0]): + for idx, doc in enumerate(results[0]): + doc = doc[0] if idx <= _doc_idx: continue - if results["ids"][0][idx] in self._doc_ids: + if doc["id"] in self._doc_ids: continue - _doc_tokens = self.custom_token_count_function(doc, self._model) + _doc_tokens = self.custom_token_count_function(doc["content"], self._model) if _doc_tokens > self._context_max_tokens: - func_print = f"Skip doc_id {results['ids'][0][idx]} as it is too long to fit in the context." + func_print = f"Skip doc_id {doc['id']} as it is too long to fit in the context." print(colored(func_print, "green"), flush=True) self._doc_idx = idx continue if current_tokens + _doc_tokens > self._context_max_tokens: break - func_print = f"Adding doc_id {results['ids'][0][idx]} to context." + func_print = f"Adding content of doc {doc['id']} to context." print(colored(func_print, "green"), flush=True) current_tokens += _doc_tokens - doc_contents += doc + "\n" - _metadatas = results.get("metadatas") - if isinstance(_metadatas, list) and isinstance(_metadatas[0][idx], dict): - self._current_docs_in_context.append(results["metadatas"][0][idx].get("source", "")) + doc_contents += doc["content"] + "\n" + _metadata = doc.get("metadata") + if isinstance(_metadata, dict): + self._current_docs_in_context.append(_metadata.get("source", "")) self._doc_idx = idx - self._doc_ids.append(results["ids"][0][idx]) - self._doc_contents.append(doc) + self._doc_ids.append(doc["id"]) + self._doc_contents.append(doc["content"]) _tmp_retrieve_count += 1 if _tmp_retrieve_count >= self.n_results: break @@ -416,21 +534,40 @@ def _generate_retrieve_user_reply( def retrieve_docs(self, problem: str, n_results: int = 20, search_string: str = ""): """Retrieve docs based on the given problem and assign the results to the class property `_results`. - In case you want to customize the retrieval process, such as using a different vector db whose APIs are not - compatible with chromadb or filter results with metadata, you can override this function. Just keep the current - parameters and add your own parameters with default values, and keep the results in below type. - - Type of the results: Dict[str, List[List[Any]]], should have keys "ids" and "documents", "ids" for the ids of - the retrieved docs and "documents" for the contents of the retrieved docs. Any other keys are optional. Refer - to `chromadb.api.types.QueryResult` as an example. - ids: List[string] - documents: List[List[string]] + The retrieved docs should be type of `QueryResults` which is a list of tuples containing the document and + the distance. Args: problem (str): the problem to be solved. n_results (int): the number of results to be retrieved. Default is 20. search_string (str): only docs that contain an exact match of this string will be retrieved. Default is "". + Not used if the vector_db doesn't support it. + + Returns: + None. """ + if isinstance(self._vector_db, VectorDB): + if not self._collection or not self._get_or_create: + print("Trying to create collection.") + self._init_db() + self._collection = True + self._get_or_create = True + + kwargs = {} + if hasattr(self._vector_db, "type") and self._vector_db.type == "chroma": + kwargs["where_document"] = {"$contains": search_string} if search_string else None + results = self._vector_db.retrieve_docs( + queries=[problem], + n_results=n_results, + collection_name=self._collection_name, + distance_threshold=self._distance_threshold, + **kwargs, + ) + self._search_string = search_string + self._results = results + print("VectorDB returns doc_ids: ", [[r[0]["id"] for r in rr] for rr in results]) + return + if not self._collection or not self._get_or_create: print("Trying to create collection.") self._client = create_vector_db_from_dir( @@ -460,9 +597,13 @@ def retrieve_docs(self, problem: str, n_results: int = 20, search_string: str = embedding_model=self._embedding_model, embedding_function=self._embedding_function, ) + results["contents"] = results.pop("documents") + results = chroma_results_to_query_results(results, "distances") + results = filter_results_by_distance(results, self._distance_threshold) + self._search_string = search_string self._results = results - print("doc_ids: ", results["ids"]) + print("doc_ids: ", [[r[0]["id"] for r in rr] for rr in results]) @staticmethod def message_generator(sender, recipient, context): diff --git a/autogen/agentchat/contrib/vectordb/base.py b/autogen/agentchat/contrib/vectordb/base.py index 187d0d6acbb..29a08008619 100644 --- a/autogen/agentchat/contrib/vectordb/base.py +++ b/autogen/agentchat/contrib/vectordb/base.py @@ -185,7 +185,7 @@ class VectorDBFactory: Factory class for creating vector databases. """ - PREDEFINED_VECTOR_DB = ["chroma"] + PREDEFINED_VECTOR_DB = ["chroma", "pgvector"] @staticmethod def create_vector_db(db_type: str, **kwargs) -> VectorDB: @@ -203,6 +203,10 @@ def create_vector_db(db_type: str, **kwargs) -> VectorDB: from .chromadb import ChromaVectorDB return ChromaVectorDB(**kwargs) + if db_type.lower() in ["pgvector", "pgvectordb"]: + from .pgvectordb import PGVectorDB + + return PGVectorDB(**kwargs) else: raise ValueError( f"Unsupported vector database type: {db_type}. Valid types are {VectorDBFactory.PREDEFINED_VECTOR_DB}." diff --git a/autogen/agentchat/contrib/vectordb/chromadb.py b/autogen/agentchat/contrib/vectordb/chromadb.py index 6e571d58abc..3f1fbc86a44 100644 --- a/autogen/agentchat/contrib/vectordb/chromadb.py +++ b/autogen/agentchat/contrib/vectordb/chromadb.py @@ -24,7 +24,7 @@ class ChromaVectorDB(VectorDB): """ def __init__( - self, *, client=None, path: str = None, embedding_function: Callable = None, metadata: dict = None, **kwargs + self, *, client=None, path: str = "tmp/db", embedding_function: Callable = None, metadata: dict = None, **kwargs ) -> None: """ Initialize the vector database. @@ -32,7 +32,7 @@ def __init__( Args: client: chromadb.Client | The client object of the vector database. Default is None. If provided, it will use the client object directly and ignore other arguments. - path: str | The path to the vector database. Default is None. + path: str | The path to the vector database. Default is `tmp/db`. The default was `None` for version <=0.2.24. embedding_function: Callable | The embedding function used to generate the vector representation of the documents. Default is None, SentenceTransformerEmbeddingFunction("all-MiniLM-L6-v2") will be used. metadata: dict | The metadata of the vector database. Default is None. If None, it will use this diff --git a/autogen/agentchat/contrib/vectordb/pgvectordb.py b/autogen/agentchat/contrib/vectordb/pgvectordb.py new file mode 100644 index 00000000000..ae9d5cbbbec --- /dev/null +++ b/autogen/agentchat/contrib/vectordb/pgvectordb.py @@ -0,0 +1,736 @@ +import os +import re +from typing import Callable, List + +import numpy as np +from sentence_transformers import SentenceTransformer + +from .base import Document, ItemID, QueryResults, VectorDB +from .utils import get_logger + +try: + import pgvector + from pgvector.psycopg import register_vector +except ImportError: + raise ImportError("Please install pgvector: `pip install pgvector`") + +try: + import psycopg +except ImportError: + raise ImportError("Please install pgvector: `pip install psycopg`") + +PGVECTOR_MAX_BATCH_SIZE = os.environ.get("PGVECTOR_MAX_BATCH_SIZE", 40000) +logger = get_logger(__name__) + + +class Collection: + """ + A Collection object for PGVector. + + Attributes: + client: The PGVector client. + collection_name (str): The name of the collection. Default is "documents". + embedding_function (Callable): The embedding function used to generate the vector representation. + metadata (Optional[dict]): The metadata of the collection. + get_or_create (Optional): The flag indicating whether to get or create the collection. + + """ + + def __init__( + self, + client=None, + collection_name: str = "autogen-docs", + embedding_function: Callable = None, + metadata=None, + get_or_create=None, + ): + """ + Initialize the Collection object. + + Args: + client: The PostgreSQL client. + collection_name: The name of the collection. Default is "documents". + embedding_function: The embedding function used to generate the vector representation. + metadata: The metadata of the collection. + get_or_create: The flag indicating whether to get or create the collection. + + Returns: + None + """ + self.client = client + self.embedding_function = embedding_function + self.name = self.set_collection_name(collection_name) + self.require_embeddings_or_documents = False + self.ids = [] + self.embedding_function = ( + SentenceTransformer("all-MiniLM-L6-v2") if embedding_function is None else embedding_function + ) + self.metadata = metadata if metadata else {"hnsw:space": "ip", "hnsw:construction_ef": 32, "hnsw:M": 16} + self.documents = "" + self.get_or_create = get_or_create + + def set_collection_name(self, collection_name): + name = re.sub("-", "_", collection_name) + self.name = name + return self.name + + def add(self, ids: List[ItemID], embeddings: List, metadatas: List, documents: List): + """ + Add documents to the collection. + + Args: + ids (List[ItemID]): A list of document IDs. + embeddings (List): A list of document embeddings. + metadatas (List): A list of document metadatas. + documents (List): A list of documents. + + Returns: + None + """ + cursor = self.client.cursor() + + sql_values = [] + for doc_id, embedding, metadata, document in zip(ids, embeddings, metadatas, documents): + sql_values.append((doc_id, embedding, metadata, document)) + sql_string = f"INSERT INTO {self.name} (id, embedding, metadata, document) " f"VALUES (%s, %s, %s, %s);" + cursor.executemany(sql_string, sql_values) + cursor.close() + + def upsert(self, ids: List[ItemID], documents: List, embeddings: List = None, metadatas: List = None) -> None: + """ + Upsert documents into the collection. + + Args: + ids (List[ItemID]): A list of document IDs. + documents (List): A list of documents. + embeddings (List): A list of document embeddings. + metadatas (List): A list of document metadatas. + + Returns: + None + """ + cursor = self.client.cursor() + sql_values = [] + if embeddings is not None and metadatas is not None: + for doc_id, embedding, metadata, document in zip(ids, embeddings, metadatas, documents): + metadata = re.sub("'", '"', str(metadata)) + sql_values.append((doc_id, embedding, metadata, document, embedding, metadata, document)) + sql_string = ( + f"INSERT INTO {self.name} (id, embedding, metadatas, documents)\n" + f"VALUES (%s, %s, %s, %s)\n" + f"ON CONFLICT (id)\n" + f"DO UPDATE SET embedding = %s,\n" + f"metadatas = %s, documents = %s;\n" + ) + elif embeddings is not None: + for doc_id, embedding, document in zip(ids, embeddings, documents): + sql_values.append((doc_id, embedding, document, embedding, document)) + sql_string = ( + f"INSERT INTO {self.name} (id, embedding, documents) " + f"VALUES (%s, %s, %s) ON CONFLICT (id)\n" + f"DO UPDATE SET embedding = %s, documents = %s;\n" + ) + elif metadatas is not None: + for doc_id, metadata, document in zip(ids, metadatas, documents): + metadata = re.sub("'", '"', str(metadata)) + embedding = self.embedding_function.encode(document) + sql_values.append((doc_id, metadata, embedding, document, metadata, document, embedding)) + sql_string = ( + f"INSERT INTO {self.name} (id, metadatas, embedding, documents)\n" + f"VALUES (%s, %s, %s, %s)\n" + f"ON CONFLICT (id)\n" + f"DO UPDATE SET metadatas = %s, documents = %s, embedding = %s;\n" + ) + else: + for doc_id, document in zip(ids, documents): + embedding = self.embedding_function.encode(document) + sql_values.append((doc_id, document, embedding, document)) + sql_string = ( + f"INSERT INTO {self.name} (id, documents, embedding)\n" + f"VALUES (%s, %s, %s)\n" + f"ON CONFLICT (id)\n" + f"DO UPDATE SET documents = %s;\n" + ) + logger.debug(f"Upsert SQL String:\n{sql_string}\n{sql_values}") + cursor.executemany(sql_string, sql_values) + cursor.close() + + def count(self): + """ + Get the total number of documents in the collection. + + Returns: + int: The total number of documents. + """ + cursor = self.client.cursor() + query = f"SELECT COUNT(*) FROM {self.name}" + cursor.execute(query) + total = cursor.fetchone()[0] + cursor.close() + try: + total = int(total) + except (TypeError, ValueError): + total = None + return total + + def get(self, ids=None, include=None, where=None, limit=None, offset=None): + """ + Retrieve documents from the collection. + + Args: + ids (Optional[List]): A list of document IDs. + include (Optional): The fields to include. + where (Optional): Additional filtering criteria. + limit (Optional): The maximum number of documents to retrieve. + offset (Optional): The offset for pagination. + + Returns: + List: The retrieved documents. + """ + cursor = self.client.cursor() + if include: + query = f'SELECT (id, {", ".join(map(str, include))}, embedding) FROM {self.name}' + else: + query = f"SELECT * FROM {self.name}" + if ids: + query = f"{query} WHERE id IN {ids}" + elif where: + query = f"{query} WHERE {where}" + if offset: + query = f"{query} OFFSET {offset}" + if limit: + query = f"{query} LIMIT {limit}" + retreived_documents = [] + try: + cursor.execute(query) + retrieval = cursor.fetchall() + for retrieved_document in retrieval: + retreived_documents.append( + Document( + id=retrieved_document[0][0], + metadata=retrieved_document[0][1], + content=retrieved_document[0][2], + embedding=retrieved_document[0][3], + ) + ) + except (psycopg.errors.UndefinedTable, psycopg.errors.UndefinedColumn): + logger.info(f"Error executing select on non-existent table: {self.name}. Creating it instead.") + self.create_collection(collection_name=self.name) + logger.info(f"Created table {self.name}") + cursor.close() + return retreived_documents + + def update(self, ids: List, embeddings: List, metadatas: List, documents: List): + """ + Update documents in the collection. + + Args: + ids (List): A list of document IDs. + embeddings (List): A list of document embeddings. + metadatas (List): A list of document metadatas. + documents (List): A list of documents. + + Returns: + None + """ + cursor = self.client.cursor() + sql_values = [] + for doc_id, embedding, metadata, document in zip(ids, embeddings, metadatas, documents): + sql_values.append((doc_id, embedding, metadata, document, doc_id, embedding, metadata, document)) + sql_string = ( + f"INSERT INTO {self.name} (id, embedding, metadata, document) " + f"VALUES (%s, %s, %s, %s) " + f"ON CONFLICT (id) " + f"DO UPDATE SET id = %s, embedding = %s, " + f"metadata = %s, document = %s;\n" + ) + logger.debug(f"Upsert SQL String:\n{sql_string}\n") + cursor.executemany(sql_string, sql_values) + cursor.close() + + @staticmethod + def euclidean_distance(arr1: List[float], arr2: List[float]) -> float: + """ + Calculate the Euclidean distance between two vectors. + + Parameters: + - arr1 (List[float]): The first vector. + - arr2 (List[float]): The second vector. + + Returns: + - float: The Euclidean distance between arr1 and arr2. + """ + dist = np.linalg.norm(arr1 - arr2) + return dist + + @staticmethod + def cosine_distance(arr1: List[float], arr2: List[float]) -> float: + """ + Calculate the cosine distance between two vectors. + + Parameters: + - arr1 (List[float]): The first vector. + - arr2 (List[float]): The second vector. + + Returns: + - float: The cosine distance between arr1 and arr2. + """ + dist = np.dot(arr1, arr2) / (np.linalg.norm(arr1) * np.linalg.norm(arr2)) + return dist + + @staticmethod + def inner_product_distance(arr1: List[float], arr2: List[float]) -> float: + """ + Calculate the Euclidean distance between two vectors. + + Parameters: + - arr1 (List[float]): The first vector. + - arr2 (List[float]): The second vector. + + Returns: + - float: The Euclidean distance between arr1 and arr2. + """ + dist = np.linalg.norm(arr1 - arr2) + return dist + + def query( + self, + query_texts: List[str], + collection_name: str = None, + n_results: int = 10, + distance_type: str = "euclidean", + distance_threshold: float = -1, + ) -> QueryResults: + """ + Query documents in the collection. + + Args: + query_texts (List[str]): A list of query texts. + collection_name (Optional[str]): The name of the collection. + n_results (int): The maximum number of results to return. + distance_type (Optional[str]): Distance search type - euclidean or cosine + distance_threshold (Optional[float]): Distance threshold to limit searches + Returns: + QueryResults: The query results. + """ + if collection_name: + self.name = collection_name + + if distance_threshold == -1: + distance_threshold = "" + elif distance_threshold > 0: + distance_threshold = f"< {distance_threshold}" + + cursor = self.client.cursor() + results = [] + for query in query_texts: + vector = self.embedding_function.encode(query, convert_to_tensor=False).tolist() + if distance_type.lower() == "cosine": + index_function = "<=>" + elif distance_type.lower() == "euclidean": + index_function = "<->" + elif distance_type.lower() == "inner-product": + index_function = "<#>" + else: + index_function = "<->" + + query = ( + f"SELECT id, documents, embedding, metadatas FROM {self.name}\n" + f"ORDER BY embedding {index_function} '{str(vector)}'::vector {distance_threshold}\n" + f"LIMIT {n_results}" + ) + cursor.execute(query) + for row in cursor.fetchall(): + fetched_document = Document(id=row[0], content=row[1], embedding=row[2], metadata=row[3]) + fetched_document_array = self.convert_string_to_array(array_string=fetched_document.get("embedding")) + if distance_type.lower() == "cosine": + distance = self.cosine_distance(fetched_document_array, vector) + elif distance_type.lower() == "euclidean": + distance = self.euclidean_distance(fetched_document_array, vector) + elif distance_type.lower() == "inner-product": + distance = self.inner_product_distance(fetched_document_array, vector) + else: + distance = self.euclidean_distance(fetched_document_array, vector) + results.append((fetched_document, distance)) + cursor.close() + results = [results] + logger.debug(f"Query Results: {results}") + return results + + @staticmethod + def convert_string_to_array(array_string) -> List[float]: + """ + Convert a string representation of an array to a list of floats. + + Parameters: + - array_string (str): The string representation of the array. + + Returns: + - list: A list of floats parsed from the input string. If the input is + not a string, it returns the input itself. + """ + if not isinstance(array_string, str): + return array_string + array_string = array_string.strip("[]") + array = [float(num) for num in array_string.split()] + return array + + def modify(self, metadata, collection_name: str = None): + """ + Modify metadata for the collection. + + Args: + collection_name: The name of the collection. + metadata: The new metadata. + + Returns: + None + """ + if collection_name: + self.name = collection_name + cursor = self.client.cursor() + cursor.execute( + "UPDATE collections" "SET metadata = '%s'" "WHERE collection_name = '%s';", (metadata, self.name) + ) + cursor.close() + + def delete(self, ids: List[ItemID], collection_name: str = None): + """ + Delete documents from the collection. + + Args: + ids (List[ItemID]): A list of document IDs to delete. + collection_name (str): The name of the collection to delete. + + Returns: + None + """ + if collection_name: + self.name = collection_name + cursor = self.client.cursor() + cursor.execute(f"DELETE FROM {self.name} WHERE id IN ({ids});") + cursor.close() + + def delete_collection(self, collection_name: str = None): + """ + Delete the entire collection. + + Args: + collection_name (Optional[str]): The name of the collection to delete. + + Returns: + None + """ + if collection_name: + self.name = collection_name + cursor = self.client.cursor() + cursor.execute(f"DROP TABLE IF EXISTS {self.name}") + cursor.close() + + def create_collection(self, collection_name: str = None): + """ + Create a new collection. + + Args: + collection_name (Optional[str]): The name of the new collection. + + Returns: + None + """ + if collection_name: + self.name = collection_name + cursor = self.client.cursor() + cursor.execute( + f"CREATE TABLE {self.name} (" + f"documents text, id CHAR(8) PRIMARY KEY, metadatas JSONB, embedding vector(384));" + f"CREATE INDEX " + f'ON {self.name} USING hnsw (embedding vector_l2_ops) WITH (m = {self.metadata["hnsw:M"]}, ' + f'ef_construction = {self.metadata["hnsw:construction_ef"]});' + f"CREATE INDEX " + f'ON {self.name} USING hnsw (embedding vector_cosine_ops) WITH (m = {self.metadata["hnsw:M"]}, ' + f'ef_construction = {self.metadata["hnsw:construction_ef"]});' + f"CREATE INDEX " + f'ON {self.name} USING hnsw (embedding vector_ip_ops) WITH (m = {self.metadata["hnsw:M"]}, ' + f'ef_construction = {self.metadata["hnsw:construction_ef"]});' + ) + cursor.close() + + +class PGVectorDB(VectorDB): + """ + A vector database that uses PGVector as the backend. + """ + + def __init__( + self, + *, + connection_string: str = None, + host: str = None, + port: int = None, + dbname: str = None, + connect_timeout: int = 10, + embedding_function: Callable = None, + metadata: dict = None, + ) -> None: + """ + Initialize the vector database. + + Note: connection_string or host + port + dbname must be specified + + Args: + connection_string: "postgresql://username:password@hostname:port/database" | The PGVector connection string. Default is None. + host: str | The host to connect to. Default is None. + port: int | The port to connect to. Default is None. + dbname: str | The database name to connect to. Default is None. + connect_timeout: int | The timeout to set for the connection. Default is 10. + embedding_function: Callable | The embedding function used to generate the vector representation + of the documents. Default is None. + metadata: dict | The metadata of the vector database. Default is None. If None, it will use this + setting: {"hnsw:space": "ip", "hnsw:construction_ef": 30, "hnsw:M": 16}. Creates Index on table + using hnsw (embedding vector_l2_ops) WITH (m = hnsw:M) ef_construction = "hnsw:construction_ef". + For more info: https://github.com/pgvector/pgvector?tab=readme-ov-file#hnsw + kwargs: dict | Additional keyword arguments. + + Returns: + None + """ + if connection_string: + self.client = psycopg.connect(conninfo=connection_string, autocommit=True) + elif host and port and dbname: + self.client = psycopg.connect( + host=host, port=port, dbname=dbname, connect_timeout=connect_timeout, autocommit=True + ) + self.embedding_function = ( + SentenceTransformer("all-MiniLM-L6-v2") if embedding_function is None else embedding_function + ) + self.metadata = metadata + self.client.execute("CREATE EXTENSION IF NOT EXISTS vector") + register_vector(self.client) + self.active_collection = None + + def create_collection( + self, collection_name: str, overwrite: bool = False, get_or_create: bool = True + ) -> Collection: + """ + Create a collection in the vector database. + Case 1. if the collection does not exist, create the collection. + Case 2. the collection exists, if overwrite is True, it will overwrite the collection. + Case 3. the collection exists and overwrite is False, if get_or_create is True, it will get the collection, + otherwise it raise a ValueError. + + Args: + collection_name: str | The name of the collection. + overwrite: bool | Whether to overwrite the collection if it exists. Default is False. + get_or_create: bool | Whether to get the collection if it exists. Default is True. + + Returns: + Collection | The collection object. + """ + try: + if self.active_collection and self.active_collection.name == collection_name: + collection = self.active_collection + else: + collection = self.get_collection(collection_name) + except ValueError: + collection = None + if collection is None: + collection = Collection( + collection_name=collection_name, + embedding_function=self.embedding_function, + get_or_create=get_or_create, + metadata=self.metadata, + ) + collection.set_collection_name(collection_name=collection_name) + collection.create_collection(collection_name=collection_name) + return collection + elif overwrite: + self.delete_collection(collection_name) + collection = Collection( + collection_name=collection_name, + embedding_function=self.embedding_function, + get_or_create=get_or_create, + metadata=self.metadata, + ) + collection.set_collection_name(collection_name=collection_name) + collection.create_collection(collection_name=collection_name) + return collection + elif get_or_create: + return collection + else: + raise ValueError(f"Collection {collection_name} already exists.") + + def get_collection(self, collection_name: str = None) -> Collection: + """ + Get the collection from the vector database. + + Args: + collection_name: str | The name of the collection. Default is None. If None, return the + current active collection. + + Returns: + Collection | The collection object. + """ + if collection_name is None: + if self.active_collection is None: + raise ValueError("No collection is specified.") + else: + logger.debug( + f"No collection is specified. Using current active collection {self.active_collection.name}." + ) + else: + self.active_collection = Collection( + client=self.client, collection_name=collection_name, embedding_function=self.embedding_function + ) + return self.active_collection + + def delete_collection(self, collection_name: str) -> None: + """ + Delete the collection from the vector database. + + Args: + collection_name: str | The name of the collection. + + Returns: + None + """ + self.active_collection.delete_collection(collection_name) + if self.active_collection and self.active_collection.name == collection_name: + self.active_collection = None + + def _batch_insert( + self, collection: Collection, embeddings=None, ids=None, metadatas=None, documents=None, upsert=False + ): + batch_size = int(PGVECTOR_MAX_BATCH_SIZE) + default_metadata = {"hnsw:space": "ip", "hnsw:construction_ef": 32, "hnsw:M": 16} + default_metadatas = [default_metadata] + for i in range(0, len(documents), min(batch_size, len(documents))): + end_idx = i + min(batch_size, len(documents) - i) + collection_kwargs = { + "documents": documents[i:end_idx], + "ids": ids[i:end_idx], + "metadatas": metadatas[i:end_idx] if metadatas else default_metadatas, + "embeddings": embeddings[i:end_idx] if embeddings else None, + } + if upsert: + collection.upsert(**collection_kwargs) + else: + collection.add(**collection_kwargs) + + def insert_docs(self, docs: List[Document], collection_name: str = None, upsert: bool = False) -> None: + """ + Insert documents into the collection of the vector database. + + Args: + docs: List[Document] | A list of documents. Each document is a TypedDict `Document`. + collection_name: str | The name of the collection. Default is None. + upsert: bool | Whether to update the document if it exists. Default is False. + kwargs: Dict | Additional keyword arguments. + + Returns: + None + """ + if not docs: + return + if docs[0].get("content") is None: + raise ValueError("The document content is required.") + if docs[0].get("id") is None: + raise ValueError("The document id is required.") + documents = [doc.get("content") for doc in docs] + ids = [doc.get("id") for doc in docs] + + collection = self.get_collection(collection_name) + if docs[0].get("embedding") is None: + logger.debug( + "No content embedding is provided. " + "Will use the VectorDB's embedding function to generate the content embedding." + ) + embeddings = None + else: + embeddings = [doc.get("embedding") for doc in docs] + if docs[0].get("metadata") is None: + metadatas = None + else: + metadatas = [doc.get("metadata") for doc in docs] + + self._batch_insert(collection, embeddings, ids, metadatas, documents, upsert) + + def update_docs(self, docs: List[Document], collection_name: str = None) -> None: + """ + Update documents in the collection of the vector database. + + Args: + docs: List[Document] | A list of documents. + collection_name: str | The name of the collection. Default is None. + + Returns: + None + """ + self.insert_docs(docs, collection_name, upsert=True) + + def delete_docs(self, ids: List[ItemID], collection_name: str = None) -> None: + """ + Delete documents from the collection of the vector database. + + Args: + ids: List[ItemID] | A list of document ids. Each id is a typed `ItemID`. + collection_name: str | The name of the collection. Default is None. + kwargs: Dict | Additional keyword arguments. + + Returns: + None + """ + collection = self.get_collection(collection_name) + collection.delete(ids=ids, collection_name=collection_name) + + def retrieve_docs( + self, + queries: List[str], + collection_name: str = None, + n_results: int = 10, + distance_threshold: float = -1, + ) -> QueryResults: + """ + Retrieve documents from the collection of the vector database based on the queries. + + Args: + queries: List[str] | A list of queries. Each query is a string. + collection_name: str | The name of the collection. Default is None. + n_results: int | The number of relevant documents to return. Default is 10. + distance_threshold: float | The threshold for the distance score, only distance smaller than it will be + returned. Don't filter with it if < 0. Default is -1. + kwargs: Dict | Additional keyword arguments. + + Returns: + QueryResults | The query results. Each query result is a list of list of tuples containing the document and + the distance. + """ + collection = self.get_collection(collection_name) + if isinstance(queries, str): + queries = [queries] + results = collection.query( + query_texts=queries, + n_results=n_results, + distance_threshold=distance_threshold, + ) + logger.debug(f"Retrieve Docs Results:\n{results}") + return results + + def get_docs_by_ids(self, ids: List[ItemID], collection_name: str = None, include=None, **kwargs) -> List[Document]: + """ + Retrieve documents from the collection of the vector database based on the ids. + + Args: + ids: List[ItemID] | A list of document ids. + collection_name: str | The name of the collection. Default is None. + include: List[str] | The fields to include. Default is None. + If None, will include ["metadatas", "documents"], ids will always be included. + kwargs: dict | Additional keyword arguments. + + Returns: + List[Document] | The results. + """ + collection = self.get_collection(collection_name) + include = include if include else ["metadatas", "documents"] + results = collection.get(ids, include=include, **kwargs) + logger.debug(f"Retrieve Documents by ID Results:\n{results}") + return results diff --git a/autogen/agentchat/contrib/vectordb/utils.py b/autogen/agentchat/contrib/vectordb/utils.py index ae1ef125251..3dcf79f1f55 100644 --- a/autogen/agentchat/contrib/vectordb/utils.py +++ b/autogen/agentchat/contrib/vectordb/utils.py @@ -25,6 +25,9 @@ def error(self, msg, *args, color="light_red", **kwargs): def critical(self, msg, *args, color="red", **kwargs): super().critical(colored(msg, color), *args, **kwargs) + def fatal(self, msg, *args, color="red", **kwargs): + super().fatal(colored(msg, color), *args, **kwargs) + def get_logger(name: str, level: int = logging.INFO) -> ColoredLogger: logger = ColoredLogger(name, level) diff --git a/autogen/agentchat/conversable_agent.py b/autogen/agentchat/conversable_agent.py index a49f8a5b43b..f457667cf8b 100644 --- a/autogen/agentchat/conversable_agent.py +++ b/autogen/agentchat/conversable_agent.py @@ -17,6 +17,7 @@ from .._pydantic import model_dump from ..cache.cache import AbstractCache from ..code_utils import ( + PYTHON_VARIANTS, UNKNOWN, check_can_use_docker_or_throw, content_str, @@ -1119,11 +1120,18 @@ def my_summary_method( @staticmethod def _last_msg_as_summary(sender, recipient, summary_args) -> str: """Get a chat summary from the last message of the recipient.""" + summary = "" try: - summary = recipient.last_message(sender)["content"].replace("TERMINATE", "") + content = recipient.last_message(sender)["content"] + if isinstance(content, str): + summary = content.replace("TERMINATE", "") + elif isinstance(content, list): + # Remove the `TERMINATE` word in the content list. + summary = "\n".join( + x["text"].replace("TERMINATE", "") for x in content if isinstance(x, dict) and "text" in x + ) except (IndexError, AttributeError) as e: warnings.warn(f"Cannot extract summary using last_msg: {e}. Using an empty str as summary.", UserWarning) - summary = "" return summary @staticmethod @@ -1171,6 +1179,23 @@ def _reflection_with_llm( response = self._generate_oai_reply_from_client(llm_client=llm_client, messages=messages, cache=cache) return response + def _check_chat_queue_for_sender(self, chat_queue: List[Dict[str, Any]]) -> List[Dict[str, Any]]: + """ + Check the chat queue and add the "sender" key if it's missing. + + Args: + chat_queue (List[Dict[str, Any]]): A list of dictionaries containing chat information. + + Returns: + List[Dict[str, Any]]: A new list of dictionaries with the "sender" key added if it was missing. + """ + chat_queue_with_sender = [] + for chat_info in chat_queue: + if chat_info.get("sender") is None: + chat_info["sender"] = self + chat_queue_with_sender.append(chat_info) + return chat_queue_with_sender + def initiate_chats(self, chat_queue: List[Dict[str, Any]]) -> List[ChatResult]: """(Experimental) Initiate chats with multiple agents. @@ -1180,16 +1205,13 @@ def initiate_chats(self, chat_queue: List[Dict[str, Any]]) -> List[ChatResult]: Returns: a list of ChatResult objects corresponding to the finished chats in the chat_queue. """ - _chat_queue = chat_queue.copy() - for chat_info in _chat_queue: - chat_info["sender"] = self + _chat_queue = self._check_chat_queue_for_sender(chat_queue) self._finished_chats = initiate_chats(_chat_queue) return self._finished_chats async def a_initiate_chats(self, chat_queue: List[Dict[str, Any]]) -> Dict[int, ChatResult]: - _chat_queue = chat_queue.copy() - for chat_info in _chat_queue: - chat_info["sender"] = self + + _chat_queue = self._check_chat_queue_for_sender(chat_queue) self._finished_chats = await a_initiate_chats(_chat_queue) return self._finished_chats @@ -1302,7 +1324,7 @@ def _generate_oai_reply_from_client(self, llm_client, messages, cache) -> Union[ extracted_response = llm_client.extract_text_or_completion_object(response)[0] if extracted_response is None: - warnings.warn("Extracted_response from {response} is None.", UserWarning) + warnings.warn(f"Extracted_response from {response} is None.", UserWarning) return None # ensure function and tool calls will be accepted when sent back to the LLM if not isinstance(extracted_response, str) and hasattr(extracted_response, "model_dump"): @@ -2079,7 +2101,7 @@ def execute_code_blocks(self, code_blocks): ) if lang in ["bash", "shell", "sh"]: exitcode, logs, image = self.run_code(code, lang=lang, **self._code_execution_config) - elif lang in ["python", "Python"]: + elif lang in PYTHON_VARIANTS: if code.startswith("# filename: "): filename = code[11 : code.find("\n")].strip() else: diff --git a/autogen/agentchat/utils.py b/autogen/agentchat/utils.py index eef3741605d..b32c2f5f0a0 100644 --- a/autogen/agentchat/utils.py +++ b/autogen/agentchat/utils.py @@ -1,5 +1,5 @@ import re -from typing import Any, Callable, Dict, List, Tuple, Union +from typing import Any, Callable, Dict, List, Union from .agent import Agent @@ -26,33 +26,46 @@ def consolidate_chat_info(chat_info, uniform_sender=None) -> None: ), "llm client must be set in either the recipient or sender when summary_method is reflection_with_llm." -def gather_usage_summary(agents: List[Agent]) -> Tuple[Dict[str, any], Dict[str, any]]: +def gather_usage_summary(agents: List[Agent]) -> Dict[Dict[str, Dict], Dict[str, Dict]]: r"""Gather usage summary from all agents. Args: agents: (list): List of agents. Returns: - tuple: (total_usage_summary, actual_usage_summary) + dictionary: A dictionary containing two keys: + - "usage_including_cached_inference": Cost information on the total usage, including the tokens in cached inference. + - "usage_excluding_cached_inference": Cost information on the usage of tokens, excluding the tokens in cache. No larger than "usage_including_cached_inference". Example: ```python - total_usage_summary = { - "total_cost": 0.0006090000000000001, - "gpt-35-turbo": { - "cost": 0.0006090000000000001, - "prompt_tokens": 242, - "completion_tokens": 123, - "total_tokens": 365 + { + "usage_including_cached_inference" : { + "total_cost": 0.0006090000000000001, + "gpt-35-turbo": { + "cost": 0.0006090000000000001, + "prompt_tokens": 242, + "completion_tokens": 123, + "total_tokens": 365 + }, + }, + + "usage_excluding_cached_inference" : { + "total_cost": 0.0006090000000000001, + "gpt-35-turbo": { + "cost": 0.0006090000000000001, + "prompt_tokens": 242, + "completion_tokens": 123, + "total_tokens": 365 + }, } } ``` Note: - `actual_usage_summary` follows the same format. - If none of the agents incurred any cost (not having a client), then the total_usage_summary and actual_usage_summary will be `{'total_cost': 0}`. + If none of the agents incurred any cost (not having a client), then the usage_including_cached_inference and usage_excluding_cached_inference will be `{'total_cost': 0}`. """ def aggregate_summary(usage_summary: Dict[str, Any], agent_summary: Dict[str, Any]) -> None: @@ -69,15 +82,18 @@ def aggregate_summary(usage_summary: Dict[str, Any], agent_summary: Dict[str, An usage_summary[model]["completion_tokens"] += data.get("completion_tokens", 0) usage_summary[model]["total_tokens"] += data.get("total_tokens", 0) - total_usage_summary = {"total_cost": 0} - actual_usage_summary = {"total_cost": 0} + usage_including_cached_inference = {"total_cost": 0} + usage_excluding_cached_inference = {"total_cost": 0} for agent in agents: if getattr(agent, "client", None): - aggregate_summary(total_usage_summary, agent.client.total_usage_summary) - aggregate_summary(actual_usage_summary, agent.client.actual_usage_summary) + aggregate_summary(usage_including_cached_inference, agent.client.total_usage_summary) + aggregate_summary(usage_excluding_cached_inference, agent.client.actual_usage_summary) - return total_usage_summary, actual_usage_summary + return { + "usage_including_cached_inference": usage_including_cached_inference, + "usage_excluding_cached_inference": usage_excluding_cached_inference, + } def parse_tags_from_content(tag: str, content: Union[str, List[Dict[str, Any]]]) -> List[Dict[str, Dict[str, str]]]: diff --git a/autogen/browser_utils.py b/autogen/browser_utils.py index c6ccbba38e1..99e51fcd4ca 100644 --- a/autogen/browser_utils.py +++ b/autogen/browser_utils.py @@ -36,6 +36,7 @@ def __init__( start_page: Optional[str] = None, viewport_size: Optional[int] = 1024 * 8, downloads_folder: Optional[Union[str, None]] = None, + bing_base_url: str = "https://api.bing.microsoft.com/v7.0/search", bing_api_key: Optional[Union[str, None]] = None, request_kwargs: Optional[Union[Dict[str, Any], None]] = None, ): @@ -47,6 +48,7 @@ def __init__( self.viewport_current_page = 0 self.viewport_pages: List[Tuple[int, int]] = list() self.set_address(self.start_page) + self.bing_base_url = bing_base_url self.bing_api_key = bing_api_key self.request_kwargs = request_kwargs @@ -145,7 +147,7 @@ def _bing_api_call(self, query: str) -> Dict[str, Dict[str, List[Dict[str, Union request_kwargs["stream"] = False # Make the request - response = requests.get("https://api.bing.microsoft.com/v7.0/search", **request_kwargs) + response = requests.get(self.bing_base_url, **request_kwargs) response.raise_for_status() results = response.json() diff --git a/autogen/code_utils.py b/autogen/code_utils.py index d4b2ae99cf0..5057c8615ea 100644 --- a/autogen/code_utils.py +++ b/autogen/code_utils.py @@ -35,12 +35,13 @@ DEFAULT_TIMEOUT = 600 WIN32 = sys.platform == "win32" PATH_SEPARATOR = WIN32 and "\\" or "/" +PYTHON_VARIANTS = ["python", "Python", "py"] logger = logging.getLogger(__name__) def content_str(content: Union[str, List[Union[UserMessageTextContentPart, UserMessageImageContentPart]], None]) -> str: - """Converts the `content` field of an OpenAI merssage into a string format. + """Converts the `content` field of an OpenAI message into a string format. This function processes content that may be a string, a list of mixed text and image URLs, or None, and converts it into a string. Text is directly appended to the result string, while image URLs are @@ -244,6 +245,8 @@ def get_powershell_command(): def _cmd(lang: str) -> str: + if lang in PYTHON_VARIANTS: + return "python" if lang.startswith("python") or lang in ["bash", "sh"]: return lang if lang in ["shell"]: diff --git a/autogen/coding/local_commandline_code_executor.py b/autogen/coding/local_commandline_code_executor.py index 44ba859265d..68ef76b7e7f 100644 --- a/autogen/coding/local_commandline_code_executor.py +++ b/autogen/coding/local_commandline_code_executor.py @@ -17,7 +17,7 @@ to_stub, ) -from ..code_utils import TIMEOUT_MSG, WIN32, _cmd +from ..code_utils import PYTHON_VARIANTS, TIMEOUT_MSG, WIN32, _cmd from .base import CodeBlock, CodeExecutor, CodeExtractor, CommandLineCodeResult from .markdown_code_extractor import MarkdownCodeExtractor from .utils import _get_file_name_from_content, silence_pip @@ -217,6 +217,9 @@ def _execute_code_dont_check_setup(self, code_blocks: List[CodeBlock]) -> Comman LocalCommandLineCodeExecutor.sanitize_command(lang, code) code = silence_pip(code, lang) + if lang in PYTHON_VARIANTS: + lang = "python" + if WIN32 and lang in ["sh", "shell"]: lang = "ps1" diff --git a/autogen/oai/client.py b/autogen/oai/client.py index de35e5c5273..3edfa40d4ec 100644 --- a/autogen/oai/client.py +++ b/autogen/oai/client.py @@ -42,6 +42,13 @@ TOOL_ENABLED = True ERROR = None +try: + from autogen.oai.gemini import GeminiClient + + gemini_import_exception: Optional[ImportError] = None +except ImportError as e: + gemini_import_exception = e + logger = logging.getLogger(__name__) if not logger.handlers: # Add the console handler. @@ -425,6 +432,10 @@ def _register_default_client(self, config: Dict[str, Any], openai_config: Dict[s self._configure_azure_openai(config, openai_config) client = AzureOpenAI(**openai_config) self._clients.append(OpenAIClient(client)) + elif api_type is not None and api_type.startswith("google"): + if gemini_import_exception: + raise ImportError("Please install `google-generativeai` to use Google OpenAI API.") + self._clients.append(GeminiClient(**openai_config)) else: client = OpenAI(**openai_config) self._clients.append(OpenAIClient(client)) diff --git a/autogen/oai/gemini.py b/autogen/oai/gemini.py new file mode 100644 index 00000000000..fcf7e09c025 --- /dev/null +++ b/autogen/oai/gemini.py @@ -0,0 +1,310 @@ +"""Create a OpenAI-compatible client for Gemini features. + + +Example: + llm_config={ + "config_list": [{ + "api_type": "google", + "model": "models/gemini-pro", + "api_key": os.environ.get("GOOGLE_API_KEY") + } + ]} + + agent = autogen.AssistantAgent("my_agent", llm_config=llm_config) + +Resources: +- https://ai.google.dev/docs +- https://cloud.google.com/vertex-ai/docs/generative-ai/migrate-from-azure +- https://blog.google/technology/ai/google-gemini-pro-imagen-duet-ai-update/ +- https://ai.google.dev/api/python/google/generativeai/ChatSession +""" + +from __future__ import annotations + +import base64 +import os +import random +import re +import time +import warnings +from io import BytesIO +from typing import Any, Dict, List, Mapping, Union + +import google.generativeai as genai +import requests +from google.ai.generativelanguage import Content, Part +from google.api_core.exceptions import InternalServerError +from openai.types.chat import ChatCompletion +from openai.types.chat.chat_completion import ChatCompletionMessage, Choice +from openai.types.completion_usage import CompletionUsage +from PIL import Image + + +class GeminiClient: + """Client for Google's Gemini API. + + Please visit this [page](https://github.com/microsoft/autogen/issues/2387) for the roadmap of Gemini integration + of AutoGen. + """ + + def __init__(self, **kwargs): + self.api_key = kwargs.get("api_key", None) + if not self.api_key: + self.api_key = os.getenv("GOOGLE_API_KEY") + + assert ( + self.api_key + ), "Please provide api_key in your config list entry for Gemini or set the GOOGLE_API_KEY env variable." + + def message_retrieval(self, response) -> List: + """ + Retrieve and return a list of strings or a list of Choice.Message from the response. + + NOTE: if a list of Choice.Message is returned, it currently needs to contain the fields of OpenAI's ChatCompletion Message object, + since that is expected for function or tool calling in the rest of the codebase at the moment, unless a custom agent is being used. + """ + return [choice.message for choice in response.choices] + + def cost(self, response) -> float: + return response.cost + + @staticmethod + def get_usage(response) -> Dict: + """Return usage summary of the response using RESPONSE_USAGE_KEYS.""" + # ... # pragma: no cover + return { + "prompt_tokens": response.usage.prompt_tokens, + "completion_tokens": response.usage.completion_tokens, + "total_tokens": response.usage.total_tokens, + "cost": response.cost, + "model": response.model, + } + + def create(self, params: Dict) -> ChatCompletion: + model_name = params.get("model", "gemini-pro") + if not model_name: + raise ValueError( + "Please provide a model name for the Gemini Client. " + "You can configurate it in the OAI Config List file. " + "See this [LLM configuration tutorial](https://microsoft.github.io/autogen/docs/topics/llm_configuration/) for more details." + ) + + params.get("api_type", "google") # not used + messages = params.get("messages", []) + stream = params.get("stream", False) + n_response = params.get("n", 1) + params.get("temperature", 0.5) + params.get("top_p", 1.0) + params.get("max_tokens", 4096) + + if stream: + # warn user that streaming is not supported + warnings.warn( + "Streaming is not supported for Gemini yet, and it will have no effect. Please set stream=False.", + UserWarning, + ) + + if n_response > 1: + warnings.warn("Gemini only supports `n=1` for now. We only generate one response.", UserWarning) + + if "vision" not in model_name: + # A. create and call the chat model. + gemini_messages = oai_messages_to_gemini_messages(messages) + + # we use chat model by default + model = genai.GenerativeModel(model_name) + genai.configure(api_key=self.api_key) + chat = model.start_chat(history=gemini_messages[:-1]) + max_retries = 5 + for attempt in range(max_retries): + ans = None + try: + response = chat.send_message(gemini_messages[-1].parts[0].text, stream=stream) + except InternalServerError: + delay = 5 * (2**attempt) + warnings.warn( + f"InternalServerError `500` occurs when calling Gemini's chat model. Retry in {delay} seconds...", + UserWarning, + ) + time.sleep(delay) + except Exception as e: + raise RuntimeError(f"Google GenAI exception occurred while calling Gemini API: {e}") + else: + # `ans = response.text` is unstable. Use the following code instead. + ans: str = chat.history[-1].parts[0].text + break + + if ans is None: + raise RuntimeError(f"Fail to get response from Google AI after retrying {attempt + 1} times.") + + prompt_tokens = model.count_tokens(chat.history[:-1]).total_tokens + completion_tokens = model.count_tokens(ans).total_tokens + elif model_name == "gemini-pro-vision": + # B. handle the vision model + # Gemini's vision model does not support chat history yet + model = genai.GenerativeModel(model_name) + genai.configure(api_key=self.api_key) + # chat = model.start_chat(history=gemini_messages[:-1]) + # response = chat.send_message(gemini_messages[-1]) + user_message = oai_content_to_gemini_content(messages[-1]["content"]) + if len(messages) > 2: + warnings.warn( + "Warning: Gemini's vision model does not support chat history yet.", + "We only use the last message as the prompt.", + UserWarning, + ) + + response = model.generate_content(user_message, stream=stream) + # ans = response.text + ans: str = response._result.candidates[0].content.parts[0].text + + prompt_tokens = model.count_tokens(user_message).total_tokens + completion_tokens = model.count_tokens(ans).total_tokens + + # 3. convert output + message = ChatCompletionMessage(role="assistant", content=ans, function_call=None, tool_calls=None) + choices = [Choice(finish_reason="stop", index=0, message=message)] + + response_oai = ChatCompletion( + id=str(random.randint(0, 1000)), + model=model_name, + created=int(time.time() * 1000), + object="chat.completion", + choices=choices, + usage=CompletionUsage( + prompt_tokens=prompt_tokens, + completion_tokens=completion_tokens, + total_tokens=prompt_tokens + completion_tokens, + ), + cost=calculate_gemini_cost(prompt_tokens, completion_tokens, model_name), + ) + + return response_oai + + +def calculate_gemini_cost(input_tokens: int, output_tokens: int, model_name: str) -> float: + if "1.5" in model_name or "gemini-experimental" in model_name: + # "gemini-1.5-pro-preview-0409" + # Cost is $7 per million input tokens and $21 per million output tokens + return 7.0 * input_tokens / 1e6 + 21.0 * output_tokens / 1e6 + + if "gemini-pro" not in model_name and "gemini-1.0-pro" not in model_name: + warnings.warn(f"Cost calculation is not implemented for model {model_name}. Using Gemini-1.0-Pro.", UserWarning) + + # Cost is $0.5 per million input tokens and $1.5 per million output tokens + return 0.5 * input_tokens / 1e6 + 1.5 * output_tokens / 1e6 + + +def oai_content_to_gemini_content(content: Union[str, List]) -> List: + """Convert content from OAI format to Gemini format""" + rst = [] + if isinstance(content, str): + rst.append(Part(text=content)) + return rst + + assert isinstance(content, list) + + for msg in content: + if isinstance(msg, dict): + assert "type" in msg, f"Missing 'type' field in message: {msg}" + if msg["type"] == "text": + rst.append(Part(text=msg["text"])) + elif msg["type"] == "image_url": + b64_img = get_image_data(msg["image_url"]["url"]) + img = _to_pil(b64_img) + rst.append(img) + else: + raise ValueError(f"Unsupported message type: {msg['type']}") + else: + raise ValueError(f"Unsupported message type: {type(msg)}") + return rst + + +def concat_parts(parts: List[Part]) -> List: + """Concatenate parts with the same type. + If two adjacent parts both have the "text" attribute, then it will be joined into one part. + """ + if not parts: + return [] + + concatenated_parts = [] + previous_part = parts[0] + + for current_part in parts[1:]: + if previous_part.text != "": + previous_part.text += current_part.text + else: + concatenated_parts.append(previous_part) + previous_part = current_part + + if previous_part.text == "": + previous_part.text = "empty" # Empty content is not allowed. + concatenated_parts.append(previous_part) + + return concatenated_parts + + +def oai_messages_to_gemini_messages(messages: list[Dict[str, Any]]) -> list[dict[str, Any]]: + """Convert messages from OAI format to Gemini format. + Make sure the "user" role and "model" role are interleaved. + Also, make sure the last item is from the "user" role. + """ + prev_role = None + rst = [] + curr_parts = [] + for i, message in enumerate(messages): + parts = oai_content_to_gemini_content(message["content"]) + role = "user" if message["role"] in ["user", "system"] else "model" + + if prev_role is None or role == prev_role: + curr_parts += parts + elif role != prev_role: + rst.append(Content(parts=concat_parts(curr_parts), role=prev_role)) + curr_parts = parts + prev_role = role + + # handle the last message + rst.append(Content(parts=concat_parts(curr_parts), role=role)) + + # The Gemini is restrict on order of roles, such that + # 1. The messages should be interleaved between user and model. + # 2. The last message must be from the user role. + # We add a dummy message "continue" if the last role is not the user. + if rst[-1].role != "user": + rst.append(Content(parts=oai_content_to_gemini_content("continue"), role="user")) + + return rst + + +def _to_pil(data: str) -> Image.Image: + """ + Converts a base64 encoded image data string to a PIL Image object. + + This function first decodes the base64 encoded string to bytes, then creates a BytesIO object from the bytes, + and finally creates and returns a PIL Image object from the BytesIO object. + + Parameters: + data (str): The base64 encoded image data string. + + Returns: + Image.Image: The PIL Image object created from the input data. + """ + return Image.open(BytesIO(base64.b64decode(data))) + + +def get_image_data(image_file: str, use_b64=True) -> bytes: + if image_file.startswith("http://") or image_file.startswith("https://"): + response = requests.get(image_file) + content = response.content + elif re.match(r"data:image/(?:png|jpeg);base64,", image_file): + return re.sub(r"data:image/(?:png|jpeg);base64,", "", image_file) + else: + image = Image.open(image_file).convert("RGB") + buffered = BytesIO() + image.save(buffered, format="PNG") + content = buffered.getvalue() + + if use_b64: + return base64.b64encode(content).decode("utf-8") + else: + return content diff --git a/autogen/oai/openai_utils.py b/autogen/oai/openai_utils.py index 80be557eadd..537390109c0 100644 --- a/autogen/oai/openai_utils.py +++ b/autogen/oai/openai_utils.py @@ -15,9 +15,7 @@ OAI_PRICE1K = { # https://openai.com/pricing # gpt-4-turbo - "gpt-4-0125-preview": (0.01, 0.03), - "gpt-4-1106-preview": (0.01, 0.03), - "gpt-4-1106-vision-preview": (0.01, 0.03), # TODO: support vision pricing of images + "gpt-4-turbo-2024-04-09": (0.01, 0.03), # gpt-4 "gpt-4": (0.03, 0.06), "gpt-4-32k": (0.06, 0.12), @@ -29,6 +27,9 @@ "davinci-002": 0.002, "babbage-002": 0.0004, # old model + "gpt-4-0125-preview": (0.01, 0.03), + "gpt-4-1106-preview": (0.01, 0.03), + "gpt-4-1106-vision-preview": (0.01, 0.03), # TODO: support vision pricing of images "gpt-3.5-turbo-1106": (0.001, 0.002), "gpt-3.5-turbo-0613": (0.0015, 0.002), # "gpt-3.5-turbo-16k": (0.003, 0.004), @@ -89,7 +90,7 @@ def is_valid_api_key(api_key: str) -> bool: Returns: bool: A boolean that indicates if input is valid OpenAI API key. """ - api_key_re = re.compile(r"^sk-[A-Za-z0-9]{32,}$") + api_key_re = re.compile(r"^sk-(proj-)?[A-Za-z0-9]{32,}$") return bool(re.fullmatch(api_key_re, api_key)) diff --git a/autogen/retrieve_utils.py b/autogen/retrieve_utils.py index e83f8a80f36..9393903ec86 100644 --- a/autogen/retrieve_utils.py +++ b/autogen/retrieve_utils.py @@ -1,4 +1,5 @@ import glob +import hashlib import os import re from typing import Callable, List, Tuple, Union @@ -156,7 +157,7 @@ def split_files_to_chunks( chunk_mode: str = "multi_lines", must_break_at_empty_line: bool = True, custom_text_split_function: Callable = None, -): +) -> Tuple[List[str], List[dict]]: """Split a list of files into chunks of max_tokens.""" chunks = [] @@ -275,15 +276,22 @@ def parse_html_to_markdown(html: str, url: str = None) -> str: return webpage_text +def _generate_file_name_from_url(url: str, max_length=255) -> str: + url_bytes = url.encode("utf-8") + hash = hashlib.blake2b(url_bytes).hexdigest() + parsed_url = urlparse(url) + file_name = os.path.basename(url) + file_name = f"{parsed_url.netloc}_{file_name}_{hash[:min(8, max_length-len(parsed_url.netloc)-len(file_name)-1)]}" + return file_name + + def get_file_from_url(url: str, save_path: str = None) -> Tuple[str, str]: """Download a file from a URL.""" if save_path is None: save_path = "tmp/chromadb" os.makedirs(save_path, exist_ok=True) if os.path.isdir(save_path): - filename = os.path.basename(url) - if filename == "": # "www.example.com/" - filename = url.split("/")[-2] + filename = _generate_file_name_from_url(url) save_path = os.path.join(save_path, filename) else: os.makedirs(os.path.dirname(save_path), exist_ok=True) @@ -327,7 +335,7 @@ def create_vector_db_from_dir( dir_path: Union[str, List[str]], max_tokens: int = 4000, client: API = None, - db_path: str = "/tmp/chromadb.db", + db_path: str = "tmp/chromadb.db", collection_name: str = "all-my-documents", get_or_create: bool = False, chunk_mode: str = "multi_lines", @@ -347,7 +355,7 @@ def create_vector_db_from_dir( dir_path (Union[str, List[str]]): the path to the directory, file, url or a list of them. max_tokens (Optional, int): the maximum number of tokens per chunk. Default is 4000. client (Optional, API): the chromadb client. Default is None. - db_path (Optional, str): the path to the chromadb. Default is "/tmp/chromadb.db". + db_path (Optional, str): the path to the chromadb. Default is "tmp/chromadb.db". The default was `/tmp/chromadb.db` for version <=0.2.24. collection_name (Optional, str): the name of the collection. Default is "all-my-documents". get_or_create (Optional, bool): Whether to get or create the collection. Default is False. If True, the collection will be returned if it already exists. Will raise ValueError if the collection already exists and get_or_create is False. @@ -420,7 +428,7 @@ def query_vector_db( query_texts: List[str], n_results: int = 10, client: API = None, - db_path: str = "/tmp/chromadb.db", + db_path: str = "tmp/chromadb.db", collection_name: str = "all-my-documents", search_string: str = "", embedding_model: str = "all-MiniLM-L6-v2", @@ -433,7 +441,7 @@ def query_vector_db( query_texts (List[str]): the list of strings which will be used to query the vector db. n_results (Optional, int): the number of results to return. Default is 10. client (Optional, API): the chromadb compatible client. Default is None, a chromadb client will be used. - db_path (Optional, str): the path to the vector db. Default is "/tmp/chromadb.db". + db_path (Optional, str): the path to the vector db. Default is "tmp/chromadb.db". The default was `/tmp/chromadb.db` for version <=0.2.24. collection_name (Optional, str): the name of the collection. Default is "all-my-documents". search_string (Optional, str): the search string. Only docs that contain an exact match of this string will be retrieved. Default is "". embedding_model (Optional, str): the embedding model to use. Default is "all-MiniLM-L6-v2". Will be ignored if diff --git a/autogen/token_count_utils.py b/autogen/token_count_utils.py index 9bda6c50fb2..d68e4ee8152 100644 --- a/autogen/token_count_utils.py +++ b/autogen/token_count_utils.py @@ -66,7 +66,7 @@ def count_token(input: Union[str, List, Dict], model: str = "gpt-3.5-turbo-0613" elif isinstance(input, list) or isinstance(input, dict): return _num_token_from_messages(input, model=model) else: - raise ValueError("input must be str, list or dict") + raise ValueError(f"input must be str, list or dict, but we got {type(input)}") def _num_token_from_text(text: str, model: str = "gpt-3.5-turbo-0613"): @@ -111,6 +111,9 @@ def _num_token_from_messages(messages: Union[List, Dict], model="gpt-3.5-turbo-0 elif "gpt-4" in model: logger.info("gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.") return _num_token_from_messages(messages, model="gpt-4-0613") + elif "gemini" in model: + logger.info("Gemini is not supported in tiktoken. Returning num tokens assuming gpt-4-0613.") + return _num_token_from_messages(messages, model="gpt-4-0613") else: raise NotImplementedError( f"""_num_token_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""" diff --git a/autogen/version.py b/autogen/version.py index b243d3db22b..3b9e925d165 100644 --- a/autogen/version.py +++ b/autogen/version.py @@ -1 +1 @@ -__version__ = "0.2.23" +__version__ = "0.2.26" diff --git a/notebook/agentchat_RetrieveChat.ipynb b/notebook/agentchat_RetrieveChat.ipynb index 0ff689a8ece..c0c681350f2 100644 --- a/notebook/agentchat_RetrieveChat.ipynb +++ b/notebook/agentchat_RetrieveChat.ipynb @@ -48,14 +48,14 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "models to use: ['gpt-35-turbo']\n" + "models to use: ['gpt-35-turbo', 'gpt-35-turbo-0613']\n" ] } ], @@ -97,7 +97,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -105,7 +105,7 @@ "output_type": "stream", "text": [ "Accepted file formats for `docs_path`:\n", - "['xml', 'htm', 'msg', 'docx', 'org', 'pptx', 'jsonl', 'txt', 'tsv', 'yml', 'json', 'md', 'pdf', 'xlsx', 'csv', 'html', 'log', 'yaml', 'doc', 'odt', 'rtf', 'ppt', 'epub', 'rst']\n" + "['ppt', 'jsonl', 'csv', 'yaml', 'rst', 'htm', 'pdf', 'tsv', 'doc', 'docx', 'pptx', 'msg', 'yml', 'xml', 'md', 'json', 'txt', 'epub', 'org', 'xlsx', 'log', 'html', 'odt', 'rtf']\n" ] } ], @@ -116,9 +116,18 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", + " torch.utils._pytree._register_pytree_node(\n" + ] + } + ], "source": [ "# 1. create an RetrieveAssistantAgent instance named \"assistant\"\n", "assistant = RetrieveAssistantAgent(\n", @@ -139,7 +148,7 @@ "# `chunk_token_size` is the chunk token size for the retrieve chat. By default, it is set to `max_tokens * 0.6`, here we set it to 2000.\n", "# `custom_text_types` is a list of file types to be processed. Default is `autogen.retrieve_utils.TEXT_FORMATS`.\n", "# This only applies to files under the directories in `docs_path`. Explicitly included files and urls will be chunked regardless of their types.\n", - "# In this example, we set it to [\"mdx\"] to only process markdown files. Since no mdx files are included in the `websit/docs`,\n", + "# In this example, we set it to [\"non-existent-type\"] to only process markdown files. Since no \"non-existent-type\" files are included in the `websit/docs`,\n", "# no files there will be processed. However, the explicitly included urls will still be processed.\n", "ragproxyagent = RetrieveUserProxyAgent(\n", " name=\"ragproxyagent\",\n", @@ -152,12 +161,12 @@ " \"https://raw.githubusercontent.com/microsoft/FLAML/main/website/docs/Research.md\",\n", " os.path.join(os.path.abspath(\"\"), \"..\", \"website\", \"docs\"),\n", " ],\n", - " \"custom_text_types\": [\"mdx\"],\n", + " \"custom_text_types\": [\"non-existent-type\"],\n", " \"chunk_token_size\": 2000,\n", " \"model\": config_list[0][\"model\"],\n", - " \"client\": chromadb.PersistentClient(path=\"/tmp/chromadb\"),\n", - " \"embedding_model\": \"all-mpnet-base-v2\",\n", - " \"get_or_create\": True, # set to False if you don't want to reuse an existing collection, but you'll need to remove the collection manually\n", + " # \"client\": chromadb.PersistentClient(path=\"/tmp/chromadb\"), # deprecated, use \"vector_db\" instead\n", + " \"vector_db\": \"chroma\", # to use the deprecated `client` parameter, set to None and uncomment the line above\n", + " \"overwrite\": False, # set to True if you want to overwrite an existing collection\n", " },\n", " code_execution_config=False, # set to False if you don't want to execute the code\n", ")" @@ -179,14 +188,14 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:autogen.retrieve_utils:Found 2 chunks.\n" + "2024-04-07 17:30:56,955 - autogen.agentchat.contrib.retrieve_user_proxy_agent - INFO - \u001b[32mUse the existing collection `autogen-docs`.\u001b[0m\n" ] }, { @@ -200,15 +209,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "WARNING:chromadb.segment.impl.vector.local_persistent_hnsw:Number of requested results 20 is greater than number of elements in index 2, updating n_results = 2\n" + "2024-04-07 17:30:59,609 - autogen.agentchat.contrib.retrieve_user_proxy_agent - INFO - Found 2 chunks.\u001b[0m\n", + "Number of requested results 20 is greater than number of elements in index 2, updating n_results = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "doc_ids: [['doc_0']]\n", - "\u001b[32mAdding doc_id doc_0 to context.\u001b[0m\n", + "VectorDB returns doc_ids: [['bdfbc921']]\n", + "\u001b[32mAdding content of doc bdfbc921 to context.\u001b[0m\n", "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", "\n", "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", @@ -226,6 +236,7 @@ "Context is: # Integrate - Spark\n", "\n", "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", + "\n", "- Use Spark ML estimators for AutoML.\n", "- Use Spark to run training in parallel spark jobs.\n", "\n", @@ -240,6 +251,7 @@ "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", "\n", "This function also accepts optional arguments `index_col` and `default_index_type`.\n", + "\n", "- `index_col` is the column name to use as the index, default is None.\n", "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", "\n", @@ -248,10 +260,13 @@ "```python\n", "import pandas as pd\n", "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "\n", "# Creating a dictionary\n", - "data = {\"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", - " \"Age_Years\": [20, 15, 10, 7, 25],\n", - " \"Price\": [100000, 200000, 300000, 240000, 120000]}\n", + "data = {\n", + " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", + " \"Age_Years\": [20, 15, 10, 7, 25],\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000],\n", + "}\n", "\n", "# Creating a pandas DataFrame\n", "dataframe = pd.DataFrame(data)\n", @@ -264,8 +279,10 @@ "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", "\n", "Here is an example of how to use it:\n", + "\n", "```python\n", "from pyspark.ml.feature import VectorAssembler\n", + "\n", "columns = psdf.columns\n", "feature_cols = [col for col in columns if col != label]\n", "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", @@ -275,10 +292,13 @@ "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", "\n", "### Estimators\n", + "\n", "#### Model List\n", + "\n", "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", "\n", "#### Usage\n", + "\n", "First, prepare your data in the required format as described in the previous section.\n", "\n", "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", @@ -287,6 +307,7 @@ "\n", "```python\n", "import flaml\n", + "\n", "# prepare your data in pandas-on-spark format as we previously mentioned\n", "\n", "automl = flaml.AutoML()\n", @@ -304,24 +325,25 @@ ")\n", "```\n", "\n", - "\n", "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", "\n", "## Parallel Spark Jobs\n", + "\n", "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", "\n", "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", "\n", "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", "\n", - "\n", "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", - "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performs parallel tuning.\n", + "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performes parallel tuning.\n", "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", "\n", "An example code snippet for using parallel Spark jobs:\n", + "\n", "```python\n", "import flaml\n", + "\n", "automl_experiment = flaml.AutoML()\n", "automl_settings = {\n", " \"time_budget\": 30,\n", @@ -329,7 +351,7 @@ " \"task\": \"regression\",\n", " \"n_concurrent_trials\": 2,\n", " \"use_spark\": True,\n", - " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", "}\n", "\n", "automl.fit(\n", @@ -339,51 +361,72 @@ ")\n", "```\n", "\n", - "\n", "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", "\n", "\n", "\n", - "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", "\n", - "You can use FLAML's `lgbm_spark` estimator for classification tasks and activate Spark as the parallel backend during training by setting `use_spark` to `True`. Here is an example code snippet:\n", + "To perform a classification task using FLAML and use Spark to do parallel training for 30 seconds and force cancel jobs if the time limit is reached, you can follow these steps:\n", + "\n", + "1. First, convert your data into Spark dataframe format using `to_pandas_on_spark` function from `flaml.automl.spark.utils` module.\n", + "2. Then, format your data for use SparkML models by using `VectorAssembler`.\n", + "3. Define your AutoML settings, including the `metric`, `time_budget`, and `task`.\n", + "4. Use `AutoML` from `flaml` to run AutoML with SparkML models by setting `use_spark` to `true`, and `estimator_list` to a list of spark-based estimators, like `[\"lgbm_spark\"]`.\n", + "5. Set `n_concurrent_trials` to the desired number of parallel jobs and `force_cancel` to `True` to cancel the jobs if the time limit is reached.\n", + "\n", + "Here's an example code snippet for performing classification using FLAML and Spark:\n", "\n", "```python\n", - "import flaml\n", + "import pandas as pd\n", "from flaml.automl.spark.utils import to_pandas_on_spark\n", "from pyspark.ml.feature import VectorAssembler\n", + "import flaml\n", + "\n", + "# Creating a dictionary\n", + "data = {\n", + " \"sepal_length\": [5.1, 4.9, 4.7, 4.6, 5.0],\n", + " \"sepal_width\": [3.5, 3.0, 3.2, 3.1, 3.6],\n", + " \"petal_length\": [1.4, 1.4, 1.3, 1.5, 1.4],\n", + " \"petal_width\": [0.2, 0.2, 0.2, 0.2, 0.2],\n", + " \"species\": [\"setosa\", \"setosa\", \"setosa\", \"setosa\", \"setosa\"]\n", + "}\n", "\n", - "# Assuming you have a Spark DataFrame named 'df' that contains your data\n", - "dataframe = df.toPandas()\n", - "label = \"target\"\n", + "# Creating a pandas DataFrame\n", + "dataframe = pd.DataFrame(data)\n", + "label = \"species\"\n", + "\n", + "# Convert to pandas-on-spark dataframe\n", "psdf = to_pandas_on_spark(dataframe)\n", "\n", + "# Format data for SparkML models\n", "columns = psdf.columns\n", "feature_cols = [col for col in columns if col != label]\n", "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", "\n", - "# configure and run AutoML\n", - "automl = flaml.AutoML()\n", + "# Define AutoML settings\n", "settings = {\n", " \"time_budget\": 30,\n", " \"metric\": \"accuracy\",\n", - " \"estimator_list\": [\"lgbm_spark\"],\n", " \"task\": \"classification\",\n", - " \"n_jobs\": -1, # Use all available CPUs\n", - " \"use_spark\": True, # Use Spark as the parallel backend\n", - " \"force_cancel\": True # Halt Spark jobs that run for longer than the time budget\n", "}\n", + "\n", + "# Use AutoML with SparkML models and parallel jobs\n", + "automl = flaml.AutoML()\n", "automl.fit(\n", " dataframe=psdf,\n", " label=label,\n", + " estimator_list=[\"lgbm_spark\"],\n", + " use_spark=True,\n", + " n_concurrent_trials=2,\n", + " force_cancel=True,\n", " **settings,\n", ")\n", "```\n", "\n", - "Note that you should not use `use_spark` if you are working with Spark data, because SparkML models already run in parallel.\n", + "Note that the above code assumes the data is small enough to train within 30 seconds. If you have a larger dataset, you may need to increase the `time_budget` and adjust the number of parallel jobs accordingly.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", @@ -403,56 +446,49 @@ "name": "stderr", "output_type": "stream", "text": [ - "WARNING:chromadb.segment.impl.vector.local_persistent_hnsw:Number of requested results 60 is greater than number of elements in index 2, updating n_results = 2\n", - "WARNING:chromadb.segment.impl.vector.local_persistent_hnsw:Number of requested results 100 is greater than number of elements in index 2, updating n_results = 2\n" + "Number of requested results 60 is greater than number of elements in index 2, updating n_results = 2\n", + "Number of requested results 100 is greater than number of elements in index 2, updating n_results = 2\n", + "Number of requested results 140 is greater than number of elements in index 2, updating n_results = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "doc_ids: [['doc_0']]\n", - "doc_ids: [['doc_0']]\n" + "VectorDB returns doc_ids: [['bdfbc921']]\n", + "VectorDB returns doc_ids: [['bdfbc921']]\n", + "VectorDB returns doc_ids: [['bdfbc921']]\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "WARNING:chromadb.segment.impl.vector.local_persistent_hnsw:Number of requested results 140 is greater than number of elements in index 2, updating n_results = 2\n" + "Number of requested results 180 is greater than number of elements in index 2, updating n_results = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "doc_ids: [['doc_0']]\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:chromadb.segment.impl.vector.local_persistent_hnsw:Number of requested results 180 is greater than number of elements in index 2, updating n_results = 2\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "doc_ids: [['doc_0']]\n", + "VectorDB returns doc_ids: [['bdfbc921']]\n", "\u001b[32mNo more context, will terminate.\u001b[0m\n", "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", "\n", "TERMINATE\n", "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", - "\n", - "TERMINATE\n", - "\n", "--------------------------------------------------------------------------------\n" ] + }, + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': 'TERMINATE', 'role': 'assistant'}], summary='', cost=({'total_cost': 0.007691, 'gpt-35-turbo': {'cost': 0.007691, 'prompt_tokens': 4242, 'completion_tokens': 664, 'total_tokens': 4906}}, {'total_cost': 0}), human_input=[])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -485,23 +521,23 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "WARNING:chromadb.segment.impl.vector.local_persistent_hnsw:Number of requested results 20 is greater than number of elements in index 2, updating n_results = 2\n" + "Number of requested results 20 is greater than number of elements in index 2, updating n_results = 2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "doc_ids: [['doc_0', 'doc_1']]\n", - "\u001b[32mAdding doc_id doc_0 to context.\u001b[0m\n", - "\u001b[32mAdding doc_id doc_1 to context.\u001b[0m\n", + "VectorDB returns doc_ids: [['7968cf3c', 'bdfbc921']]\n", + "\u001b[32mAdding content of doc 7968cf3c to context.\u001b[0m\n", + "\u001b[32mAdding content of doc bdfbc921 to context.\u001b[0m\n", "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", "\n", "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", @@ -516,130 +552,11 @@ "\n", "User's question is: Who is the author of FLAML?\n", "\n", - "Context is: # Integrate - Spark\n", - "\n", - "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", - "- Use Spark ML estimators for AutoML.\n", - "- Use Spark to run training in parallel spark jobs.\n", - "\n", - "## Spark ML Estimators\n", - "\n", - "FLAML integrates estimators based on Spark ML models. These models are trained in parallel using Spark, so we called them Spark estimators. To use these models, you first need to organize your data in the required format.\n", - "\n", - "### Data\n", - "\n", - "For Spark estimators, AutoML only consumes Spark data. FLAML provides a convenient function `to_pandas_on_spark` in the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark (`pyspark.pandas`) dataframe/series, which Spark estimators require.\n", - "\n", - "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", - "\n", - "This function also accepts optional arguments `index_col` and `default_index_type`.\n", - "- `index_col` is the column name to use as the index, default is None.\n", - "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", - "\n", - "Here is an example code snippet for Spark Data:\n", - "\n", - "```python\n", - "import pandas as pd\n", - "from flaml.automl.spark.utils import to_pandas_on_spark\n", - "# Creating a dictionary\n", - "data = {\"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", - " \"Age_Years\": [20, 15, 10, 7, 25],\n", - " \"Price\": [100000, 200000, 300000, 240000, 120000]}\n", - "\n", - "# Creating a pandas DataFrame\n", - "dataframe = pd.DataFrame(data)\n", - "label = \"Price\"\n", - "\n", - "# Convert to pandas-on-spark dataframe\n", - "psdf = to_pandas_on_spark(dataframe)\n", - "```\n", - "\n", - "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", - "\n", - "Here is an example of how to use it:\n", - "```python\n", - "from pyspark.ml.feature import VectorAssembler\n", - "columns = psdf.columns\n", - "feature_cols = [col for col in columns if col != label]\n", - "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", - "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", - "```\n", - "\n", - "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", - "\n", - "### Estimators\n", - "#### Model List\n", - "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", - "\n", - "#### Usage\n", - "First, prepare your data in the required format as described in the previous section.\n", - "\n", - "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", - "\n", - "Here is an example code snippet using SparkML models in AutoML:\n", - "\n", - "```python\n", - "import flaml\n", - "# prepare your data in pandas-on-spark format as we previously mentioned\n", - "\n", - "automl = flaml.AutoML()\n", - "settings = {\n", - " \"time_budget\": 30,\n", - " \"metric\": \"r2\",\n", - " \"estimator_list\": [\"lgbm_spark\"], # this setting is optional\n", - " \"task\": \"regression\",\n", - "}\n", - "\n", - "automl.fit(\n", - " dataframe=psdf,\n", - " label=label,\n", - " **settings,\n", - ")\n", - "```\n", - "\n", - "\n", - "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", - "\n", - "## Parallel Spark Jobs\n", - "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", - "\n", - "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", - "\n", - "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", - "\n", - "\n", - "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", - "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performs parallel tuning.\n", - "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", - "\n", - "An example code snippet for using parallel Spark jobs:\n", - "```python\n", - "import flaml\n", - "automl_experiment = flaml.AutoML()\n", - "automl_settings = {\n", - " \"time_budget\": 30,\n", - " \"metric\": \"r2\",\n", - " \"task\": \"regression\",\n", - " \"n_concurrent_trials\": 2,\n", - " \"use_spark\": True,\n", - " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", - "}\n", - "\n", - "automl.fit(\n", - " dataframe=dataframe,\n", - " label=label,\n", - " **automl_settings,\n", - ")\n", - "```\n", - "\n", - "\n", - "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", - "\n", - "# Research\n", + "Context is: # Research\n", "\n", "For technical details, please check our research publications.\n", "\n", - "* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", + "- [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", "\n", "```bibtex\n", "@inproceedings{wang2021flaml,\n", @@ -650,7 +567,7 @@ "}\n", "```\n", "\n", - "* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", + "- [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", "\n", "```bibtex\n", "@inproceedings{wu2021cfo,\n", @@ -661,7 +578,7 @@ "}\n", "```\n", "\n", - "* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", + "- [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", "\n", "```bibtex\n", "@inproceedings{wang2021blendsearch,\n", @@ -672,7 +589,7 @@ "}\n", "```\n", "\n", - "* [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", + "- [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", "\n", "```bibtex\n", "@inproceedings{liuwang2021hpolm,\n", @@ -683,7 +600,7 @@ "}\n", "```\n", "\n", - "* [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", + "- [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", "\n", "```bibtex\n", "@inproceedings{wu2021chacha,\n", @@ -694,7 +611,7 @@ "}\n", "```\n", "\n", - "* [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", + "- [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", "\n", "```bibtex\n", "@inproceedings{wuwang2021fairautoml,\n", @@ -705,7 +622,7 @@ "}\n", "```\n", "\n", - "* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", + "- [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", "\n", "```bibtex\n", "@inproceedings{kayaliwang2022default,\n", @@ -716,7 +633,7 @@ "}\n", "```\n", "\n", - "* [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", + "- [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", "\n", "```bibtex\n", "@inproceedings{zhang2023targeted,\n", @@ -728,7 +645,7 @@ "}\n", "```\n", "\n", - "* [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", + "- [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", "\n", "```bibtex\n", "@inproceedings{wang2023EcoOptiGen,\n", @@ -739,7 +656,7 @@ "}\n", "```\n", "\n", - "* [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", + "- [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", "\n", "```bibtex\n", "@inproceedings{wu2023empirical,\n", @@ -749,29 +666,10 @@ " booktitle={ArXiv preprint arXiv:2306.01337},\n", "}\n", "```\n", - "\n", - "\n", - "\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[32mAdding doc_id doc_1 to context.\u001b[0m\n", - "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", - "\n", - "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", - "context provided by the user.\n", - "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", - "For code generation, you must obey the following rules:\n", - "Rule 1. You MUST NOT install any packages because all the packages needed are already installed.\n", - "Rule 2. You must follow the formats below to write your code:\n", - "```language\n", - "# your code\n", - "```\n", - "\n", - "User's question is: Who is the author of FLAML?\n", - "\n", - "Context is: # Integrate - Spark\n", + "# Integrate - Spark\n", "\n", "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", + "\n", "- Use Spark ML estimators for AutoML.\n", "- Use Spark to run training in parallel spark jobs.\n", "\n", @@ -786,6 +684,7 @@ "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", "\n", "This function also accepts optional arguments `index_col` and `default_index_type`.\n", + "\n", "- `index_col` is the column name to use as the index, default is None.\n", "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", "\n", @@ -794,10 +693,13 @@ "```python\n", "import pandas as pd\n", "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "\n", "# Creating a dictionary\n", - "data = {\"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", - " \"Age_Years\": [20, 15, 10, 7, 25],\n", - " \"Price\": [100000, 200000, 300000, 240000, 120000]}\n", + "data = {\n", + " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", + " \"Age_Years\": [20, 15, 10, 7, 25],\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000],\n", + "}\n", "\n", "# Creating a pandas DataFrame\n", "dataframe = pd.DataFrame(data)\n", @@ -810,8 +712,10 @@ "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", "\n", "Here is an example of how to use it:\n", + "\n", "```python\n", "from pyspark.ml.feature import VectorAssembler\n", + "\n", "columns = psdf.columns\n", "feature_cols = [col for col in columns if col != label]\n", "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", @@ -821,10 +725,13 @@ "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", "\n", "### Estimators\n", + "\n", "#### Model List\n", + "\n", "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", "\n", "#### Usage\n", + "\n", "First, prepare your data in the required format as described in the previous section.\n", "\n", "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", @@ -833,6 +740,7 @@ "\n", "```python\n", "import flaml\n", + "\n", "# prepare your data in pandas-on-spark format as we previously mentioned\n", "\n", "automl = flaml.AutoML()\n", @@ -850,24 +758,25 @@ ")\n", "```\n", "\n", - "\n", "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", "\n", "## Parallel Spark Jobs\n", + "\n", "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", "\n", "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", "\n", "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", "\n", - "\n", "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", - "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performs parallel tuning.\n", + "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performes parallel tuning.\n", "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", "\n", "An example code snippet for using parallel Spark jobs:\n", + "\n", "```python\n", "import flaml\n", + "\n", "automl_experiment = flaml.AutoML()\n", "automl_settings = {\n", " \"time_budget\": 30,\n", @@ -875,7 +784,7 @@ " \"task\": \"regression\",\n", " \"n_concurrent_trials\": 2,\n", " \"use_spark\": True,\n", - " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", "}\n", "\n", "automl.fit(\n", @@ -885,134 +794,27 @@ ")\n", "```\n", "\n", - "\n", "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", "\n", - "# Research\n", - "\n", - "For technical details, please check our research publications.\n", - "\n", - "* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", - "\n", - "```bibtex\n", - "@inproceedings{wang2021flaml,\n", - " title={FLAML: A Fast and Lightweight AutoML Library},\n", - " author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},\n", - " year={2021},\n", - " booktitle={MLSys},\n", - "}\n", - "```\n", - "\n", - "* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", - "\n", - "```bibtex\n", - "@inproceedings{wu2021cfo,\n", - " title={Frugal Optimization for Cost-related Hyperparameters},\n", - " author={Qingyun Wu and Chi Wang and Silu Huang},\n", - " year={2021},\n", - " booktitle={AAAI},\n", - "}\n", - "```\n", - "\n", - "* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", - "\n", - "```bibtex\n", - "@inproceedings{wang2021blendsearch,\n", - " title={Economical Hyperparameter Optimization With Blended Search Strategy},\n", - " author={Chi Wang and Qingyun Wu and Silu Huang and Amin Saied},\n", - " year={2021},\n", - " booktitle={ICLR},\n", - "}\n", - "```\n", - "\n", - "* [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", - "\n", - "```bibtex\n", - "@inproceedings{liuwang2021hpolm,\n", - " title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},\n", - " author={Susan Xueqing Liu and Chi Wang},\n", - " year={2021},\n", - " booktitle={ACL},\n", - "}\n", - "```\n", - "\n", - "* [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", - "\n", - "```bibtex\n", - "@inproceedings{wu2021chacha,\n", - " title={ChaCha for Online AutoML},\n", - " author={Qingyun Wu and Chi Wang and John Langford and Paul Mineiro and Marco Rossi},\n", - " year={2021},\n", - " booktitle={ICML},\n", - "}\n", - "```\n", - "\n", - "* [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", - "\n", - "```bibtex\n", - "@inproceedings{wuwang2021fairautoml,\n", - " title={Fair AutoML},\n", - " author={Qingyun Wu and Chi Wang},\n", - " year={2021},\n", - " booktitle={ArXiv preprint arXiv:2111.06495},\n", - "}\n", - "```\n", - "\n", - "* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", - "\n", - "```bibtex\n", - "@inproceedings{kayaliwang2022default,\n", - " title={Mining Robust Default Configurations for Resource-constrained AutoML},\n", - " author={Moe Kayali and Chi Wang},\n", - " year={2022},\n", - " booktitle={ArXiv preprint arXiv:2202.09927},\n", - "}\n", - "```\n", - "\n", - "* [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", - "\n", - "```bibtex\n", - "@inproceedings{zhang2023targeted,\n", - " title={Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives},\n", - " author={Shaokun Zhang and Feiran Jia and Chi Wang and Qingyun Wu},\n", - " booktitle={International Conference on Learning Representations},\n", - " year={2023},\n", - " url={https://openreview.net/forum?id=0Ij9_q567Ma},\n", - "}\n", - "```\n", - "\n", - "* [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", - "\n", - "```bibtex\n", - "@inproceedings{wang2023EcoOptiGen,\n", - " title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},\n", - " author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},\n", - " year={2023},\n", - " booktitle={ArXiv preprint arXiv:2303.04673},\n", - "}\n", - "```\n", - "\n", - "* [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", - "\n", - "```bibtex\n", - "@inproceedings{wu2023empirical,\n", - " title={An Empirical Study on Challenging Math Problem Solving with GPT-4},\n", - " author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},\n", - " year={2023},\n", - " booktitle={ArXiv preprint arXiv:2306.01337},\n", - "}\n", - "```\n", - "\n", - "\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", "\n", - "The authors of FLAML are Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu.\n", + "The author of FLAML is Chi Wang, along with several co-authors for various publications related to FLAML.\n", "\n", "--------------------------------------------------------------------------------\n" ] + }, + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': 'You\\'re a retrieve augmented coding assistant. You answer user\\'s questions based on your own knowledge and the\\ncontext provided by the user.\\nIf you can\\'t answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\\nFor code generation, you must obey the following rules:\\nRule 1. You MUST NOT install any packages because all the packages needed are already installed.\\nRule 2. You must follow the formats below to write your code:\\n```language\\n# your code\\n```\\n\\nUser\\'s question is: Who is the author of FLAML?\\n\\nContext is: # Research\\n\\nFor technical details, please check our research publications.\\n\\n- [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\\n\\n```bibtex\\n@inproceedings{wang2021flaml,\\n title={FLAML: A Fast and Lightweight AutoML Library},\\n author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},\\n year={2021},\\n booktitle={MLSys},\\n}\\n```\\n\\n- [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\\n\\n```bibtex\\n@inproceedings{wu2021cfo,\\n title={Frugal Optimization for Cost-related Hyperparameters},\\n author={Qingyun Wu and Chi Wang and Silu Huang},\\n year={2021},\\n booktitle={AAAI},\\n}\\n```\\n\\n- [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\\n\\n```bibtex\\n@inproceedings{wang2021blendsearch,\\n title={Economical Hyperparameter Optimization With Blended Search Strategy},\\n author={Chi Wang and Qingyun Wu and Silu Huang and Amin Saied},\\n year={2021},\\n booktitle={ICLR},\\n}\\n```\\n\\n- [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\\n\\n```bibtex\\n@inproceedings{liuwang2021hpolm,\\n title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},\\n author={Susan Xueqing Liu and Chi Wang},\\n year={2021},\\n booktitle={ACL},\\n}\\n```\\n\\n- [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\\n\\n```bibtex\\n@inproceedings{wu2021chacha,\\n title={ChaCha for Online AutoML},\\n author={Qingyun Wu and Chi Wang and John Langford and Paul Mineiro and Marco Rossi},\\n year={2021},\\n booktitle={ICML},\\n}\\n```\\n\\n- [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\\n\\n```bibtex\\n@inproceedings{wuwang2021fairautoml,\\n title={Fair AutoML},\\n author={Qingyun Wu and Chi Wang},\\n year={2021},\\n booktitle={ArXiv preprint arXiv:2111.06495},\\n}\\n```\\n\\n- [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\\n\\n```bibtex\\n@inproceedings{kayaliwang2022default,\\n title={Mining Robust Default Configurations for Resource-constrained AutoML},\\n author={Moe Kayali and Chi Wang},\\n year={2022},\\n booktitle={ArXiv preprint arXiv:2202.09927},\\n}\\n```\\n\\n- [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\\n\\n```bibtex\\n@inproceedings{zhang2023targeted,\\n title={Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives},\\n author={Shaokun Zhang and Feiran Jia and Chi Wang and Qingyun Wu},\\n booktitle={International Conference on Learning Representations},\\n year={2023},\\n url={https://openreview.net/forum?id=0Ij9_q567Ma},\\n}\\n```\\n\\n- [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\\n\\n```bibtex\\n@inproceedings{wang2023EcoOptiGen,\\n title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},\\n author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},\\n year={2023},\\n booktitle={ArXiv preprint arXiv:2303.04673},\\n}\\n```\\n\\n- [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\\n\\n```bibtex\\n@inproceedings{wu2023empirical,\\n title={An Empirical Study on Challenging Math Problem Solving with GPT-4},\\n author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},\\n year={2023},\\n booktitle={ArXiv preprint arXiv:2306.01337},\\n}\\n```\\n# Integrate - Spark\\n\\nFLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\\n\\n- Use Spark ML estimators for AutoML.\\n- Use Spark to run training in parallel spark jobs.\\n\\n## Spark ML Estimators\\n\\nFLAML integrates estimators based on Spark ML models. These models are trained in parallel using Spark, so we called them Spark estimators. To use these models, you first need to organize your data in the required format.\\n\\n### Data\\n\\nFor Spark estimators, AutoML only consumes Spark data. FLAML provides a convenient function `to_pandas_on_spark` in the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark (`pyspark.pandas`) dataframe/series, which Spark estimators require.\\n\\nThis utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\\n\\nThis function also accepts optional arguments `index_col` and `default_index_type`.\\n\\n- `index_col` is the column name to use as the index, default is None.\\n- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\\n\\nHere is an example code snippet for Spark Data:\\n\\n```python\\nimport pandas as pd\\nfrom flaml.automl.spark.utils import to_pandas_on_spark\\n\\n# Creating a dictionary\\ndata = {\\n \"Square_Feet\": [800, 1200, 1800, 1500, 850],\\n \"Age_Years\": [20, 15, 10, 7, 25],\\n \"Price\": [100000, 200000, 300000, 240000, 120000],\\n}\\n\\n# Creating a pandas DataFrame\\ndataframe = pd.DataFrame(data)\\nlabel = \"Price\"\\n\\n# Convert to pandas-on-spark dataframe\\npsdf = to_pandas_on_spark(dataframe)\\n```\\n\\nTo use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\\n\\nHere is an example of how to use it:\\n\\n```python\\nfrom pyspark.ml.feature import VectorAssembler\\n\\ncolumns = psdf.columns\\nfeature_cols = [col for col in columns if col != label]\\nfeaturizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\\npsdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\\n```\\n\\nLater in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\\n\\n### Estimators\\n\\n#### Model List\\n\\n- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\\n\\n#### Usage\\n\\nFirst, prepare your data in the required format as described in the previous section.\\n\\nBy including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven\\'t specified them.\\n\\nHere is an example code snippet using SparkML models in AutoML:\\n\\n```python\\nimport flaml\\n\\n# prepare your data in pandas-on-spark format as we previously mentioned\\n\\nautoml = flaml.AutoML()\\nsettings = {\\n \"time_budget\": 30,\\n \"metric\": \"r2\",\\n \"estimator_list\": [\"lgbm_spark\"], # this setting is optional\\n \"task\": \"regression\",\\n}\\n\\nautoml.fit(\\n dataframe=psdf,\\n label=label,\\n **settings,\\n)\\n```\\n\\n[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\\n\\n## Parallel Spark Jobs\\n\\nYou can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\\n\\nPlease note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\\n\\nAll the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\\n\\n- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\\n- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performes parallel tuning.\\n- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\\n\\nAn example code snippet for using parallel Spark jobs:\\n\\n```python\\nimport flaml\\n\\nautoml_experiment = flaml.AutoML()\\nautoml_settings = {\\n \"time_budget\": 30,\\n \"metric\": \"r2\",\\n \"task\": \"regression\",\\n \"n_concurrent_trials\": 2,\\n \"use_spark\": True,\\n \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\\n}\\n\\nautoml.fit(\\n dataframe=dataframe,\\n label=label,\\n **automl_settings,\\n)\\n```\\n\\n[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\\n\\n', 'role': 'assistant'}, {'content': 'The author of FLAML is Chi Wang, along with several co-authors for various publications related to FLAML.', 'role': 'user'}], summary='The author of FLAML is Chi Wang, along with several co-authors for various publications related to FLAML.', cost=({'total_cost': 0.004711, 'gpt-35-turbo': {'cost': 0.004711, 'prompt_tokens': 3110, 'completion_tokens': 23, 'total_tokens': 3133}}, {'total_cost': 0}), human_input=[])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ diff --git a/notebook/agentchat_agentoptimizer.ipynb b/notebook/agentchat_agentoptimizer.ipynb index dd56244588a..13df0a0d77a 100644 --- a/notebook/agentchat_agentoptimizer.ipynb +++ b/notebook/agentchat_agentoptimizer.ipynb @@ -1,467 +1,466 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "front_matter": { - "description": "AgentOptimizer is able to prompt LLMs to iteratively optimize function/skills of AutoGen agents according to the historical conversation and performance.", - "tags": [ - "optimization", - "tool/function" - ] - } - }, - "source": [ - "# AgentOptimizer: An Agentic Way to Train Your LLM Agent\n", - "\n", - "AutoGen offers conversable agents powered by LLM, tool, or human, which can be used to perform tasks collectively via automated chat. This framework allows tool use and human participation through multi-agent conversation.\n", - "Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n", - "\n", - "In traditional ML pipeline, we train a model by updating its parameter according to the loss on the training set, while in the era of LLM agents, how should we train an agent? Here, we take an initial step towards the agent training. Inspired by the [function calling](https://platform.openai.com/docs/guides/function-calling) capabilities provided by OpenAI, we draw an analogy between model parameters and agent functions/skills, and update agent’s functions/skills based on its historical performance on the training set. As an agentic way of training an agent, our approach help enhance the agents’ abilities without requiring access to the LLMs parameters.\n", - "\n", - "In this notebook, we introduce a new class, ‘AgentOptimizer’, which is able to improve the function list of one Assistant-UserProxy pair according to the historical conversation histories.\n", - "This feature would support agents in improving their ability to solve problems of the same type as previous tasks.\n", - "Specifically, given a set of training data, AgentOptimizer would iteratively prompt the LLM to optimize the existing function list of the AssistantAgent and UserProxyAgent with code implementation if necessary. It also includes two strategies, roll-back, and early-stop, to streamline the training process.\n", - "In the example scenario, we test the proposed AgentOptimizer in solving problems from the [MATH dataset](https://github.com/hendrycks/math). \n", - "\n", - "![AgentEval](../website/blog/2023-12-23-AgentOptimizer/img/agentoptimizer.png)\n", - "\n", - "More information could be found in the [paper](https://arxiv.org/abs/2402.11359).\n", - "\n", - "Authors:\n", - "- [Shaokun Zhang](https://github.com/skzhang1), Ph.D. student at the The Pennsylvania State University\n", - "- [Jieyu Zhang](https://jieyuz2.github.io), Ph.D. student at the University of Washington" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "import copy\n", - "import json\n", - "import os\n", - "from typing import Any, Callable, Dict, List, Optional, Tuple, Union\n", - "\n", - "from openai import BadRequestError\n", - "\n", - "import autogen\n", - "from autogen import config_list_from_json\n", - "from autogen.agentchat import Agent\n", - "from autogen.agentchat.contrib.agent_optimizer import AgentOptimizer\n", - "from autogen.agentchat.contrib.math_user_proxy_agent import MathUserProxyAgent\n", - "from autogen.code_utils import extract_code\n", - "from autogen.math_utils import get_answer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# MathUserProxy with function_call\n", - "\n", - "This agent is a customized MathUserProxy inherits from its [partent class](https://github.com/microsoft/autogen/blob/main/autogen/agentchat/contrib/math_user_proxy_agent.py).\n", - "\n", - "It supports using both function_call and python to solve math problems.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "def is_termination_msg_mathchat(message):\n", - " \"\"\"Check if a message is a termination message.\"\"\"\n", - " if isinstance(message, dict):\n", - " message = message.get(\"content\")\n", - " if message is None:\n", - " return False\n", - " cb = extract_code(message)\n", - " contain_code = False\n", - " for c in cb:\n", - " if c[0] == \"python\":\n", - " contain_code = True\n", - " break\n", - " if message.rstrip().find(\"TERMINATE\") >= 0:\n", - " return True\n", - " return not contain_code and get_answer(message) is not None and get_answer(message) != \"\"\n", - "\n", - "\n", - "class MathUserProxyAgent(MathUserProxyAgent):\n", - " MAX_CONSECUTIVE_AUTO_REPLY = 15\n", - " DEFAULT_REPLY = \"Continue. Please keep solving the problem until you need to query. (If you get to the answer, put it in \\\\boxed{}.)\"\n", - " PROMPTS = \"\"\"Let's solve a math problem.\n", - "Query requirements:\n", - "You should always use the 'print' function for the output and use fractions/radical forms instead of decimals.\n", - "You can use packages like sympy to help you.\n", - "You must follow the formats below to write your code:\n", - "```python\n", - "# your code\n", - "```\n", - "If some packages are missing, you could also suggest a code to install the corresponding package.\n", - "\n", - "Please follow this process:\n", - "1. Solve the problem step by step (do not over-divide the steps).\n", - "2. Take out any queries that can be asked through Python code (for example, any calculations or equations that can be calculated) and functions you know in the context of this conversation.\n", - "\n", - "Please\n", - "(1) do not mix suggested Python codes and function calls in one step.\n", - "(2) You MUST remember that you don’t have a function named \"python\" available.\n", - "\n", - "You must follow the formats below to write your Python code:\n", - "```python\n", - "# your code\n", - "```\n", - "\n", - "3. Wait for me to give the results or wait for the executed results of the function call.\n", - "4. Continue if you think the result is correct. If the result is invalid or unexpected, please correct your query or reasoning.\n", - "\n", - "After all the queries are run and you get the answer, put the answer in \\\\boxed{}.\n", - "\n", - "Problem:\n", - "\"\"\"\n", - "\n", - " def __init__(\n", - " self,\n", - " name: Optional[str] = \"MathChatAgent\",\n", - " is_termination_msg: Optional[Callable[[Dict], bool]] = is_termination_msg_mathchat,\n", - " human_input_mode: Optional[str] = \"NEVER\",\n", - " default_auto_reply: Optional[Union[str, Dict, None]] = DEFAULT_REPLY,\n", - " max_invalid_q_per_step=3,\n", - " **kwargs,\n", - " ):\n", - " super().__init__(\n", - " name=name,\n", - " is_termination_msg=is_termination_msg,\n", - " human_input_mode=human_input_mode,\n", - " default_auto_reply=default_auto_reply,\n", - " max_invalid_q_per_step=max_invalid_q_per_step,\n", - " **kwargs,\n", - " )\n", - " del self._reply_func_list[2]\n", - " self.register_reply([Agent, None], MathUserProxyAgent._generate_math_reply, position=4)\n", - " del self._reply_func_list[3]\n", - " self.register_reply(\n", - " trigger=autogen.ConversableAgent, reply_func=MathUserProxyAgent.generate_function_call_reply, position=3\n", - " )\n", - " self.register_reply(\n", - " trigger=autogen.ConversableAgent, reply_func=MathUserProxyAgent._check_final_result, position=0\n", - " )\n", - "\n", - " self.max_function_call_trial = 3\n", - " self.query = None\n", - " self.answer = None\n", - " self.is_correct = None\n", - "\n", - " def generate_function_call_reply(\n", - " self,\n", - " messages: Optional[List[Dict]] = None,\n", - " sender: Optional[autogen.ConversableAgent] = None,\n", - " config: Optional[Any] = None,\n", - " ) -> Tuple[bool, Union[Dict, None]]:\n", - " \"\"\"Generate a reply using function call.\"\"\"\n", - " if messages is None:\n", - " messages = self._oai_messages[sender]\n", - " message = messages[-1]\n", - " if \"function_call\" in message:\n", - " is_exec_success, func_return = self.execute_function(message[\"function_call\"])\n", - " if is_exec_success:\n", - " self.max_function_call_trial = 3\n", - " return True, func_return\n", - " else:\n", - " if self.max_function_call_trial == 0:\n", - " error_message = func_return[\"content\"]\n", - " self.max_function_call_trial = 3\n", - " return (\n", - " True,\n", - " \"The func is executed failed many times. \"\n", - " + error_message\n", - " + \". Please directly reply me with TERMINATE. We need to terminate the conversation.\",\n", - " )\n", - " else:\n", - " revise_prompt = \"You may make a wrong function call (It may due the arguments you provided doesn't fit the function arguments like missing required positional argument). \\\n", - " If you think this error occurs due to you make a wrong function arguments input and you could make it success, please try to call this function again using the correct arguments. \\\n", - " Otherwise, the error may be caused by the function itself. Please directly reply me with TERMINATE. We need to terminate the conversation. \"\n", - " error_message = func_return[\"content\"]\n", - " return True, \"The func is executed failed.\" + error_message + revise_prompt\n", - " return False, None\n", - "\n", - " def initiate_chat(\n", - " self,\n", - " recipient,\n", - " answer: None,\n", - " silent: Optional[bool] = False,\n", - " **context,\n", - " ):\n", - " self.query = context[\"problem\"]\n", - " if not isinstance(answer, str):\n", - " answer = str(answer)\n", - " if answer.endswith(\".0\"):\n", - " answer = answer[:-2]\n", - " self._answer = answer\n", - " else:\n", - " self._answer = answer\n", - "\n", - " self.is_correct = None\n", - "\n", - " self._prepare_chat(recipient, True)\n", - " error_message = None\n", - " try:\n", - " prompt = self.PROMPTS + context[\"problem\"]\n", - " self.send(prompt, recipient, silent=silent)\n", - " except BadRequestError as e:\n", - " error_message = str(e)\n", - " self.is_correct = 0\n", - " print(\"error information: {}\".format(error_message))\n", - "\n", - " recipient.reset()\n", - " is_correct = copy.deepcopy(self.is_correct)\n", - " self._reset()\n", - " return is_correct\n", - "\n", - " def _check_final_result(\n", - " self,\n", - " messages: Optional[List[Dict]] = None,\n", - " sender: Optional[autogen.Agent] = None,\n", - " config: Optional[Any] = None,\n", - " ):\n", - "\n", - " messages = messages[-1]\n", - " if isinstance(messages, dict):\n", - " messages = messages.get(\"content\")\n", - " if messages is None:\n", - " return False, None\n", - "\n", - " cb = extract_code(messages)\n", - " contain_code = False\n", - " for c in cb:\n", - " if c[0] == \"python\":\n", - " contain_code = True\n", - " break\n", - " if not contain_code and get_answer(messages) is not None and get_answer(messages) != \"\":\n", - " if get_answer(messages) == self._answer:\n", - " self.is_correct = 1\n", - " return True, \"The result is Correct. Please reply me with TERMINATE.\"\n", - " else:\n", - " self.is_correct = 0\n", - " return False, None\n", - " else:\n", - " return False, None\n", - "\n", - " def _reset(self):\n", - " super()._reset()\n", - " self.max_function_call_trial = 3\n", - " self.is_correct = None\n", - " self.query = None\n", - " self.answer = None" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Load dataset\n", - "\n", - "MATAH dataset contains 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations. \n", - "\n", - "We strictly follow the [train](https://github.com/lifan-yuan/CRAFT/blob/main/tab_and_math/MATH/dataset/train/algebra.jsonl)/[test](https://github.com/lifan-yuan/CRAFT/blob/main/tab_and_math/MATH/dataset/algebra.jsonl) splits of [Craft](https://github.com/lifan-yuan/CRAFT). Please specific your own path to the dataset. Here we sample the first 10 algebra problems as examples. " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "test_data, train_data = [], []\n", - "with open(\"MATH/dataset/algebra.jsonl\", \"r\", encoding=\"utf-8\") as f:\n", - " for line in f:\n", - " test_data.append(json.loads(line))\n", - "with open(\"MATH/dataset/train/algebra.jsonl\", \"r\", encoding=\"utf-8\") as f:\n", - " for line in f:\n", - " train_data.append(json.loads(line))\n", - "test_data, train_data = test_data[0:10], train_data[0:10]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Agents construction\n", - "\n", - "Constructing MathUserProxyAgent and AssistantAgent used in solving these problems. Here, we use gpt-4-1106-preview to construct the AssistantAgent. " - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "llm_config = {\n", - " \"config_list\": [\n", - " {\n", - " \"model\": \"gpt-4-1106-preview\",\n", - " \"api_type\": \"azure\",\n", - " \"api_key\": os.environ[\"AZURE_OPENAI_API_KEY\"],\n", - " \"base_url\": \"https://ENDPOINT.openai.azure.com/\",\n", - " \"api_version\": \"2023-07-01-preview\",\n", - " }\n", - " ]\n", - "}\n", - "\n", - "assistant = autogen.AssistantAgent(\n", - " name=\"assistant\",\n", - " system_message=\"You are a helpful assistant.\",\n", - " llm_config=llm_config,\n", - ")\n", - "user_proxy = MathUserProxyAgent(\n", - " name=\"mathproxyagent\",\n", - " human_input_mode=\"NEVER\",\n", - " code_execution_config={\"work_dir\": \"_output\", \"use_docker\": False},\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Test without agent optimizations \n", - "\n", - "Below is the code to get the performance without the agents optimization process. \n", - "\n", - "In this case, the AssistantAgent and MathUserProxyAgent don't have any function calls but solely solve problems with Python." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sum = 0\n", - "for index, query in enumerate(test_data):\n", - " is_correct = user_proxy.initiate_chat(recipient=assistant, answer=query[\"answer\"], problem=query[\"question\"])\n", - " print(is_correct)\n", - " sum += is_correct\n", - "success_rate_without_agent_training = sum / 10" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Agent Training \n", - "\n", - "Then, we use the AgentOptimizer to iteratively optimize the agents by optimizing the function calls according to the historical conversations and performance.\n", - "The AgentOptimizer yields register_for_llm and register_for_executor at each iteration, which are subsequently utilized to update the assistant and user_proxy agents, respectively. \n", - "Here we optimize these two agents for ten epochs. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "EPOCH = 10\n", - "optimizer_model = \"gpt-4-1106-preview\"\n", - "optimizer = AgentOptimizer(max_actions_per_step=3, llm_config=llm_config, optimizer_model=optimizer_model)\n", - "for i in range(EPOCH):\n", - " for index, query in enumerate(train_data):\n", - " is_correct = user_proxy.initiate_chat(assistant, answer=query[\"answer\"], problem=query[\"question\"])\n", - " history = assistant.chat_messages_for_summary(user_proxy)\n", - " optimizer.record_one_conversation(history, is_satisfied=is_correct)\n", - " register_for_llm, register_for_exector = optimizer.step()\n", - " for item in register_for_llm:\n", - " assistant.update_function_signature(**item)\n", - " if len(register_for_exector.keys()) > 0:\n", - " user_proxy.register_function(function_map=register_for_exector)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Test with agent optimizations \n", - "\n", - "After agent optimization, the agents obtained a list of functions from the AgentOptimizers after 10 optimization iterations as shown below.\n", - "\n", - "We then show the final performances with/without the agent optimization process. We observe the agents after optimization are obviously better.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sum = 0\n", - "for index, query in enumerate(test_data):\n", - " is_correct = user_proxy.initiate_chat(recipient=assistant, answer=query[\"answer\"], problem=query[\"question\"])\n", - " sum += is_correct\n", - "success_rate_with_agent_training = sum / 10" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "------------------------------------------------Functions learned------------------------------------------------\n", - "evaluate_expression: Evaluate arithmetic or mathematical expressions provided as strings.\n", - "\n", - "calculate_compound_interest_principal: Calculate the principal amount needed to achieve a certain future value with quarterly compound interest.\n", - "\n", - "solve_linear_system: Solve a system of linear equations represented as coefficients and variables.\n", - "\n", - "------------------------------------------------Summary------------------------------------------------\n", - "\n", - "success_rate_without_agent_training: 60.0%\n", - "\n", - "success_rate_with_agent_training: 90.0%\n", - "\n" - ] + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AgentOptimizer: An Agentic Way to Train Your LLM Agent\n", + "\n", + "AutoGen offers conversable agents powered by LLM, tool, or human, which can be used to perform tasks collectively via automated chat. This framework allows tool use and human participation through multi-agent conversation.\n", + "Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n", + "\n", + "In traditional ML pipeline, we train a model by updating its parameter according to the loss on the training set, while in the era of LLM agents, how should we train an agent? Here, we take an initial step towards the agent training. Inspired by the [function calling](https://platform.openai.com/docs/guides/function-calling) capabilities provided by OpenAI, we draw an analogy between model parameters and agent functions/skills, and update agent’s functions/skills based on its historical performance on the training set. As an agentic way of training an agent, our approach help enhance the agents’ abilities without requiring access to the LLMs parameters.\n", + "\n", + "In this notebook, we introduce a new class, ‘AgentOptimizer’, which is able to improve the function list of one Assistant-UserProxy pair according to the historical conversation histories.\n", + "This feature would support agents in improving their ability to solve problems of the same type as previous tasks.\n", + "Specifically, given a set of training data, AgentOptimizer would iteratively prompt the LLM to optimize the existing function list of the AssistantAgent and UserProxyAgent with code implementation if necessary. It also includes two strategies, roll-back, and early-stop, to streamline the training process.\n", + "In the example scenario, we test the proposed AgentOptimizer in solving problems from the [MATH dataset](https://github.com/hendrycks/math). \n", + "\n", + "![AgentOptimizer](../website/blog/2023-12-23-AgentOptimizer/img/agentoptimizer.png)\n", + "\n", + "More information could be found in the [paper](https://arxiv.org/abs/2402.11359).\n", + "\n", + "Authors:\n", + "- [Shaokun Zhang](https://github.com/skzhang1), Ph.D. student at the The Pennsylvania State University\n", + "- [Jieyu Zhang](https://jieyuz2.github.io), Ph.D. student at the University of Washington" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "import copy\n", + "import json\n", + "import os\n", + "from typing import Any, Callable, Dict, List, Optional, Tuple, Union\n", + "\n", + "from openai import BadRequestError\n", + "\n", + "import autogen\n", + "from autogen import config_list_from_json\n", + "from autogen.agentchat import Agent\n", + "from autogen.agentchat.contrib.agent_optimizer import AgentOptimizer\n", + "from autogen.agentchat.contrib.math_user_proxy_agent import MathUserProxyAgent\n", + "from autogen.code_utils import extract_code\n", + "from autogen.math_utils import get_answer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MathUserProxy with function_call\n", + "\n", + "This agent is a customized MathUserProxy inherits from its [partent class](https://github.com/microsoft/autogen/blob/main/autogen/agentchat/contrib/math_user_proxy_agent.py).\n", + "\n", + "It supports using both function_call and python to solve math problems.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "def is_termination_msg_mathchat(message):\n", + " \"\"\"Check if a message is a termination message.\"\"\"\n", + " if isinstance(message, dict):\n", + " message = message.get(\"content\")\n", + " if message is None:\n", + " return False\n", + " cb = extract_code(message)\n", + " contain_code = False\n", + " for c in cb:\n", + " if c[0] == \"python\":\n", + " contain_code = True\n", + " break\n", + " if message.rstrip().find(\"TERMINATE\") >= 0:\n", + " return True\n", + " return not contain_code and get_answer(message) is not None and get_answer(message) != \"\"\n", + "\n", + "\n", + "class MathUserProxyAgent(MathUserProxyAgent):\n", + " MAX_CONSECUTIVE_AUTO_REPLY = 15\n", + " DEFAULT_REPLY = \"Continue. Please keep solving the problem until you need to query. (If you get to the answer, put it in \\\\boxed{}.)\"\n", + " PROMPTS = \"\"\"Let's solve a math problem.\n", + "Query requirements:\n", + "You should always use the 'print' function for the output and use fractions/radical forms instead of decimals.\n", + "You can use packages like sympy to help you.\n", + "You must follow the formats below to write your code:\n", + "```python\n", + "# your code\n", + "```\n", + "If some packages are missing, you could also suggest a code to install the corresponding package.\n", + "\n", + "Please follow this process:\n", + "1. Solve the problem step by step (do not over-divide the steps).\n", + "2. Take out any queries that can be asked through Python code (for example, any calculations or equations that can be calculated) and functions you know in the context of this conversation.\n", + "\n", + "Please\n", + "(1) do not mix suggested Python codes and function calls in one step.\n", + "(2) You MUST remember that you don’t have a function named \"python\" available.\n", + "\n", + "You must follow the formats below to write your Python code:\n", + "```python\n", + "# your code\n", + "```\n", + "\n", + "3. Wait for me to give the results or wait for the executed results of the function call.\n", + "4. Continue if you think the result is correct. If the result is invalid or unexpected, please correct your query or reasoning.\n", + "\n", + "After all the queries are run and you get the answer, put the answer in \\\\boxed{}.\n", + "\n", + "Problem:\n", + "\"\"\"\n", + "\n", + " def __init__(\n", + " self,\n", + " name: Optional[str] = \"MathChatAgent\",\n", + " is_termination_msg: Optional[Callable[[Dict], bool]] = is_termination_msg_mathchat,\n", + " human_input_mode: Optional[str] = \"NEVER\",\n", + " default_auto_reply: Optional[Union[str, Dict, None]] = DEFAULT_REPLY,\n", + " max_invalid_q_per_step=3,\n", + " **kwargs,\n", + " ):\n", + " super().__init__(\n", + " name=name,\n", + " is_termination_msg=is_termination_msg,\n", + " human_input_mode=human_input_mode,\n", + " default_auto_reply=default_auto_reply,\n", + " max_invalid_q_per_step=max_invalid_q_per_step,\n", + " **kwargs,\n", + " )\n", + " del self._reply_func_list[2]\n", + " self.register_reply([Agent, None], MathUserProxyAgent._generate_math_reply, position=4)\n", + " del self._reply_func_list[3]\n", + " self.register_reply(\n", + " trigger=autogen.ConversableAgent, reply_func=MathUserProxyAgent.generate_function_call_reply, position=3\n", + " )\n", + " self.register_reply(\n", + " trigger=autogen.ConversableAgent, reply_func=MathUserProxyAgent._check_final_result, position=0\n", + " )\n", + "\n", + " self.max_function_call_trial = 3\n", + " self.query = None\n", + " self.answer = None\n", + " self.is_correct = None\n", + "\n", + " def generate_function_call_reply(\n", + " self,\n", + " messages: Optional[List[Dict]] = None,\n", + " sender: Optional[autogen.ConversableAgent] = None,\n", + " config: Optional[Any] = None,\n", + " ) -> Tuple[bool, Union[Dict, None]]:\n", + " \"\"\"Generate a reply using function call.\"\"\"\n", + " if messages is None:\n", + " messages = self._oai_messages[sender]\n", + " message = messages[-1]\n", + " if \"function_call\" in message:\n", + " is_exec_success, func_return = self.execute_function(message[\"function_call\"])\n", + " if is_exec_success:\n", + " self.max_function_call_trial = 3\n", + " return True, func_return\n", + " else:\n", + " if self.max_function_call_trial == 0:\n", + " error_message = func_return[\"content\"]\n", + " self.max_function_call_trial = 3\n", + " return (\n", + " True,\n", + " \"The func is executed failed many times. \"\n", + " + error_message\n", + " + \". Please directly reply me with TERMINATE. We need to terminate the conversation.\",\n", + " )\n", + " else:\n", + " revise_prompt = \"You may make a wrong function call (It may due the arguments you provided doesn't fit the function arguments like missing required positional argument). \\\n", + " If you think this error occurs due to you make a wrong function arguments input and you could make it success, please try to call this function again using the correct arguments. \\\n", + " Otherwise, the error may be caused by the function itself. Please directly reply me with TERMINATE. We need to terminate the conversation. \"\n", + " error_message = func_return[\"content\"]\n", + " return True, \"The func is executed failed.\" + error_message + revise_prompt\n", + " return False, None\n", + "\n", + " def initiate_chat(\n", + " self,\n", + " recipient,\n", + " answer: None,\n", + " silent: Optional[bool] = False,\n", + " **context,\n", + " ):\n", + " self.query = context[\"problem\"]\n", + " if not isinstance(answer, str):\n", + " answer = str(answer)\n", + " if answer.endswith(\".0\"):\n", + " answer = answer[:-2]\n", + " self._answer = answer\n", + " else:\n", + " self._answer = answer\n", + "\n", + " self.is_correct = None\n", + "\n", + " self._prepare_chat(recipient, True)\n", + " error_message = None\n", + " try:\n", + " prompt = self.PROMPTS + context[\"problem\"]\n", + " self.send(prompt, recipient, silent=silent)\n", + " except BadRequestError as e:\n", + " error_message = str(e)\n", + " self.is_correct = 0\n", + " print(\"error information: {}\".format(error_message))\n", + "\n", + " recipient.reset()\n", + " is_correct = copy.deepcopy(self.is_correct)\n", + " self._reset()\n", + " return is_correct\n", + "\n", + " def _check_final_result(\n", + " self,\n", + " messages: Optional[List[Dict]] = None,\n", + " sender: Optional[autogen.Agent] = None,\n", + " config: Optional[Any] = None,\n", + " ):\n", + "\n", + " messages = messages[-1]\n", + " if isinstance(messages, dict):\n", + " messages = messages.get(\"content\")\n", + " if messages is None:\n", + " return False, None\n", + "\n", + " cb = extract_code(messages)\n", + " contain_code = False\n", + " for c in cb:\n", + " if c[0] == \"python\":\n", + " contain_code = True\n", + " break\n", + " if not contain_code and get_answer(messages) is not None and get_answer(messages) != \"\":\n", + " if get_answer(messages) == self._answer:\n", + " self.is_correct = 1\n", + " return True, \"The result is Correct. Please reply me with TERMINATE.\"\n", + " else:\n", + " self.is_correct = 0\n", + " return False, None\n", + " else:\n", + " return False, None\n", + "\n", + " def _reset(self):\n", + " super()._reset()\n", + " self.max_function_call_trial = 3\n", + " self.is_correct = None\n", + " self.query = None\n", + " self.answer = None" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load dataset\n", + "\n", + "MATAH dataset contains 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations. \n", + "\n", + "We strictly follow the [train](https://github.com/lifan-yuan/CRAFT/blob/main/tab_and_math/MATH/dataset/train/algebra.jsonl)/[test](https://github.com/lifan-yuan/CRAFT/blob/main/tab_and_math/MATH/dataset/algebra.jsonl) splits of [Craft](https://github.com/lifan-yuan/CRAFT). Please specific your own path to the dataset. Here we sample the first 10 algebra problems as examples. " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "test_data, train_data = [], []\n", + "with open(\"MATH/dataset/algebra.jsonl\", \"r\", encoding=\"utf-8\") as f:\n", + " for line in f:\n", + " test_data.append(json.loads(line))\n", + "with open(\"MATH/dataset/train/algebra.jsonl\", \"r\", encoding=\"utf-8\") as f:\n", + " for line in f:\n", + " train_data.append(json.loads(line))\n", + "test_data, train_data = test_data[0:10], train_data[0:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Agents construction\n", + "\n", + "Constructing MathUserProxyAgent and AssistantAgent used in solving these problems. Here, we use gpt-4-1106-preview to construct the AssistantAgent. " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "llm_config = {\n", + " \"config_list\": [\n", + " {\n", + " \"model\": \"gpt-4-1106-preview\",\n", + " \"api_type\": \"azure\",\n", + " \"api_key\": os.environ[\"AZURE_OPENAI_API_KEY\"],\n", + " \"base_url\": \"https://ENDPOINT.openai.azure.com/\",\n", + " \"api_version\": \"2023-07-01-preview\",\n", + " }\n", + " ]\n", + "}\n", + "\n", + "assistant = autogen.AssistantAgent(\n", + " name=\"assistant\",\n", + " system_message=\"You are a helpful assistant.\",\n", + " llm_config=llm_config,\n", + ")\n", + "user_proxy = MathUserProxyAgent(\n", + " name=\"mathproxyagent\",\n", + " human_input_mode=\"NEVER\",\n", + " code_execution_config={\"work_dir\": \"_output\", \"use_docker\": False},\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test without agent optimizations \n", + "\n", + "Below is the code to get the performance without the agents optimization process. \n", + "\n", + "In this case, the AssistantAgent and MathUserProxyAgent don't have any function calls but solely solve problems with Python." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sum = 0\n", + "for index, query in enumerate(test_data):\n", + " is_correct = user_proxy.initiate_chat(recipient=assistant, answer=query[\"answer\"], problem=query[\"question\"])\n", + " print(is_correct)\n", + " sum += is_correct\n", + "success_rate_without_agent_training = sum / 10" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Agent Training \n", + "\n", + "Then, we use the AgentOptimizer to iteratively optimize the agents by optimizing the function calls according to the historical conversations and performance.\n", + "The AgentOptimizer yields register_for_llm and register_for_executor at each iteration, which are subsequently utilized to update the assistant and user_proxy agents, respectively. \n", + "Here we optimize these two agents for ten epochs. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "EPOCH = 10\n", + "optimizer_model = \"gpt-4-1106-preview\"\n", + "optimizer = AgentOptimizer(max_actions_per_step=3, llm_config=llm_config, optimizer_model=optimizer_model)\n", + "for i in range(EPOCH):\n", + " for index, query in enumerate(train_data):\n", + " is_correct = user_proxy.initiate_chat(assistant, answer=query[\"answer\"], problem=query[\"question\"])\n", + " history = assistant.chat_messages_for_summary(user_proxy)\n", + " optimizer.record_one_conversation(history, is_satisfied=is_correct)\n", + " register_for_llm, register_for_exector = optimizer.step()\n", + " for item in register_for_llm:\n", + " assistant.update_function_signature(**item)\n", + " if len(register_for_exector.keys()) > 0:\n", + " user_proxy.register_function(function_map=register_for_exector)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test with agent optimizations \n", + "\n", + "After agent optimization, the agents obtained a list of functions from the AgentOptimizers after 10 optimization iterations as shown below.\n", + "\n", + "We then show the final performances with/without the agent optimization process. We observe the agents after optimization are obviously better.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sum = 0\n", + "for index, query in enumerate(test_data):\n", + " is_correct = user_proxy.initiate_chat(recipient=assistant, answer=query[\"answer\"], problem=query[\"question\"])\n", + " sum += is_correct\n", + "success_rate_with_agent_training = sum / 10" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------------------------------------------------Functions learned------------------------------------------------\n", + "evaluate_expression: Evaluate arithmetic or mathematical expressions provided as strings.\n", + "\n", + "calculate_compound_interest_principal: Calculate the principal amount needed to achieve a certain future value with quarterly compound interest.\n", + "\n", + "solve_linear_system: Solve a system of linear equations represented as coefficients and variables.\n", + "\n", + "------------------------------------------------Summary------------------------------------------------\n", + "\n", + "success_rate_without_agent_training: 60.0%\n", + "\n", + "success_rate_with_agent_training: 90.0%\n", + "\n" + ] + } + ], + "source": [ + "print(\n", + " \"------------------------------------------------Functions learned------------------------------------------------\"\n", + ")\n", + "for func in assistant.llm_config[\"functions\"]:\n", + " print(func[\"name\"] + \": \" + func[\"description\"] + \"\\n\")\n", + "print(\"------------------------------------------------Summary------------------------------------------------\\n\")\n", + "print(\"success_rate_without_agent_training: {average}%\\n\".format(average=success_rate_without_agent_training * 100))\n", + "print(\"success_rate_with_agent_training: {average}%\\n\".format(average=success_rate_with_agent_training * 100))" + ] + } + ], + "metadata": { + "front_matter": { + "description": "AgentOptimizer is able to prompt LLMs to iteratively optimize function/skills of AutoGen agents according to the historical conversation and performance.", + "tags": [ + "optimization", + "tool/function" + ] + }, + "kernelspec": { + "display_name": "py3.9", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" } - ], - "source": [ - "print(\n", - " \"------------------------------------------------Functions learned------------------------------------------------\"\n", - ")\n", - "for func in assistant.llm_config[\"functions\"]:\n", - " print(func[\"name\"] + \": \" + func[\"description\"] + \"\\n\")\n", - "print(\"------------------------------------------------Summary------------------------------------------------\\n\")\n", - "print(\"success_rate_without_agent_training: {average}%\\n\".format(average=success_rate_without_agent_training * 100))\n", - "print(\"success_rate_with_agent_training: {average}%\\n\".format(average=success_rate_with_agent_training * 100))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "py3.9", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - } - }, - "nbformat": 4, - "nbformat_minor": 2 + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/notebook/agentchat_auto_feedback_from_code_execution.ipynb b/notebook/agentchat_auto_feedback_from_code_execution.ipynb index 834e1e7df1d..b81b58472c7 100644 --- a/notebook/agentchat_auto_feedback_from_code_execution.ipynb +++ b/notebook/agentchat_auto_feedback_from_code_execution.ipynb @@ -10,16 +10,13 @@ "source": [ "# Task Solving with Code Generation, Execution and Debugging\n", "\n", - "AutoGen offers conversable LLM agents, which can be used to solve various tasks with human or automatic feedback, including tasks that require using tools via code.\n", - "Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n", - "\n", "In this notebook, we demonstrate how to use `AssistantAgent` and `UserProxyAgent` to write code and execute the code. Here `AssistantAgent` is an LLM-based agent that can write Python code (in a Python coding block) for a user to execute for a given task. `UserProxyAgent` is an agent which serves as a proxy for the human user to execute the code written by `AssistantAgent`, or automatically execute the code. Depending on the setting of `human_input_mode` and `max_consecutive_auto_reply`, the `UserProxyAgent` either solicits feedback from the human user or returns auto-feedback based on the result of code execution (success or failure and corresponding outputs) to `AssistantAgent`. `AssistantAgent` will debug the code and suggest new code if the result contains error. The two agents keep communicating to each other until the task is done.\n", "\n", "````{=mdx}\n", ":::info Requirements\n", - "Install `pyautogen`:\n", + "Install the following packages before running the code below:\n", "```bash\n", - "pip install pyautogen\n", + "pip install pyautogen matplotlib yfinance\n", "```\n", "\n", "For more information, please refer to the [installation guide](/docs/installation/).\n", @@ -29,36 +26,18 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "import csv\n", - "from typing import Dict, Union\n", + "import os\n", "\n", - "from IPython import get_ipython\n", "from IPython.display import Image, display\n", "\n", "import autogen\n", + "from autogen.coding import LocalCommandLineCodeExecutor\n", "\n", - "config_list = autogen.config_list_from_json(\n", - " \"OAI_CONFIG_LIST\",\n", - " # filter_dict={\n", - " # \"model\": [\"gpt-4\", \"gpt-4-0314\", \"gpt4\", \"gpt-4-32k\", \"gpt-4-32k-0314\", \"gpt-4-32k-v0314\"],\n", - " # },\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "````{=mdx}\n", - ":::tip\n", - "Learn more about configuring LLMs for agents [here](/docs/topics/llm_configuration).\n", - ":::\n", - "````" + "config_list = [{\"model\": \"gpt-4\", \"api_key\": os.getenv(\"OPENAI_API_KEY\")}]" ] }, { @@ -73,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -87,108 +66,175 @@ "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "To get the current date, we can use Python's `datetime` module. After that, we will need to retrieve the year-to-date (YTD) gain for both META (Meta Platforms, Inc.) and TESLA (Tesla, Inc.). We can do this by fetching the stock prices from the beginning of the year and the current stock prices, then calculating the percentage change.\n", - "\n", - "First, let's write a Python script to get the current date:\n", + "First, let's get the current date using Python. \n", "\n", "```python\n", - "# filename: get_current_date.py\n", + "# Python code\n", + "from datetime import date\n", + "\n", + "# Get today's date\n", + "today = date.today()\n", "\n", + "# Print today's date\n", + "print(\"Today's date:\", today)\n", + "```\n", + "\n", + "Next, we need to fetch the stock prices for META (Facebook) and TESLA for the current year. We can use the `yfinance` library in Python to fetch this data. If `yfinance` is not installed, it can be installed using pip: `pip install yfinance`.\n", + "\n", + "Here is the Python code to fetch the stock prices and calculate the year-to-date gain:\n", + "\n", + "```python\n", + "# Python code\n", + "import yfinance as yf\n", "from datetime import datetime\n", "\n", - "# Get the current date\n", - "current_date = datetime.now()\n", + "# Get the current year\n", + "current_year = datetime.now().year\n", + "\n", + "# Download stock data for the current year\n", + "meta_data = yf.download('FB', start=f'{current_year}-01-01', end=today)\n", + "tesla_data = yf.download('TSLA', start=f'{current_year}-01-01', end=today)\n", "\n", - "# Print the current date in YYYY-MM-DD format\n", - "print(current_date.strftime('%Y-%m-%d'))\n", + "# Calculate the year-to-date gain for each stock\n", + "meta_ytd_gain = ((meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]) * 100\n", + "tesla_ytd_gain = ((tesla_data['Close'][-1] - tesla_data['Close'][0]) / tesla_data['Close'][0]) * 100\n", + "\n", + "# Print the year-to-date gain for each stock\n", + "print(f'META year-to-date gain: {meta_ytd_gain}%')\n", + "print(f'TESLA year-to-date gain: {tesla_ytd_gain}%')\n", "```\n", "\n", - "Please save the above code in a file named `get_current_date.py` and execute it to get today's date. After that, we will proceed to the next step of fetching the stock data.\n", + "This code fetches the closing prices for META and TESLA for the current year, calculates the year-to-date gain for each stock, and prints the results. The year-to-date gain is calculated as the percentage change in the closing price from the first trading day of the year to the most recent trading day.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + ">>>>>>>> EXECUTING 2 CODE BLOCKS (inferred languages are [python, python])...\u001b[0m\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", - "exitcode: 0 (execution succeeded)\n", - "Code output: \n", - "2024-03-03\n", + "exitcode: 1 (execution failed)\n", + "Code output: Today's date: 2024-04-12\n", + "Traceback (most recent call last):\n", + " File \"/Users/ekzhu/autogen/notebook/coding/tmp_code_cb9ef30baa23cf28e127198c0ebeb7e6.py\", line 9, in \n", + " meta_data = yf.download('FB', start=f'{current_year}-01-01', end=today)\n", + " ^^^^^\n", + "NameError: name 'today' is not defined\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "Great, today's date is March 3, 2024. Now, let's proceed to the next step, which is to fetch the stock prices for META and TESLA.\n", + "I apologize for the oversight. The variable `today` was defined in the first code block but not in the second one. Let's correct this by defining `today` in the second code block as well. Here's the corrected code:\n", + "\n", + "```python\n", + "# Python code\n", + "import yfinance as yf\n", + "from datetime import datetime, date\n", "\n", - "We will use Python to retrieve the stock data. For this purpose, we can use the `yfinance` library, which allows us to fetch historical market data from Yahoo Finance. If `yfinance` is not installed on your system, you will need to install it using `pip install yfinance`.\n", + "# Get the current year and today's date\n", + "current_year = datetime.now().year\n", + "today = date.today()\n", "\n", - "Here's the Python script to fetch the YTD gain for META and TESLA:\n", + "# Download stock data for the current year\n", + "meta_data = yf.download('FB', start=f'{current_year}-01-01', end=today)\n", + "tesla_data = yf.download('TSLA', start=f'{current_year}-01-01', end=today)\n", "\n", - "```python\n", - "# filename: ytd_gain_comparison.py\n", + "# Calculate the year-to-date gain for each stock\n", + "meta_ytd_gain = ((meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]) * 100\n", + "tesla_ytd_gain = ((tesla_data['Close'][-1] - tesla_data['Close'][0]) / tesla_data['Close'][0]) * 100\n", + "\n", + "# Print the year-to-date gain for each stock\n", + "print(f'META year-to-date gain: {meta_ytd_gain}%')\n", + "print(f'TESLA year-to-date gain: {tesla_ytd_gain}%')\n", + "```\n", + "\n", + "This code should now correctly fetch the stock prices for META and TESLA, calculate the year-to-date gain for each, and print the results.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n", + "\u001b[33muser_proxy\u001b[0m (to assistant):\n", + "\n", + "exitcode: 1 (execution failed)\n", + "Code output: \n", + "[*********************100%%**********************] 1 of 1 completed\n", + "\n", + "1 Failed download:\n", + "['FB']: Exception('%ticker%: No timezone found, symbol may be delisted')\n", + "/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "/Users/ekzhu/autogen/notebook/coding/tmp_code_9ca584c3d8b484c70ee49c1ce5e4b975.py:14: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " meta_ytd_gain = ((meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]) * 100\n", + "Traceback (most recent call last):\n", + " File \"/Users/ekzhu/autogen/notebook/coding/tmp_code_9ca584c3d8b484c70ee49c1ce5e4b975.py\", line 14, in \n", + " meta_ytd_gain = ((meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]) * 100\n", + " ~~~~~~~~~~~~~~~~~~^^^^\n", + " File \"/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/pandas/core/series.py\", line 1109, in __getitem__\n", + " return self._values[key]\n", + " ~~~~~~~~~~~~^^^^^\n", + "IndexError: index -1 is out of bounds for axis 0 with size 0\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to user_proxy):\n", + "\n", + "I apologize for the confusion. It seems like the ticker symbol for Meta Platforms Inc. (formerly Facebook) has changed from 'FB' to 'META'. Let's correct this in the code. Also, it seems like the data for the current day might not be available yet, so let's fetch the data until the previous day. Here's the corrected code:\n", "\n", + "```python\n", + "# Python code\n", "import yfinance as yf\n", - "from datetime import datetime\n", + "from datetime import datetime, timedelta\n", + "\n", + "# Get the current year and yesterday's date\n", + "current_year = datetime.now().year\n", + "yesterday = datetime.now() - timedelta(1)\n", "\n", - "# Define the tickers for Meta Platforms, Inc. and Tesla, Inc.\n", - "tickers = [\"META\", \"TSLA\"]\n", - "\n", - "# Define the start of the year\n", - "start_of_year = datetime(datetime.now().year, 1, 1)\n", - "\n", - "# Get the current date\n", - "current_date = datetime.now()\n", - "\n", - "# Function to calculate YTD gain\n", - "def calculate_ytd_gain(ticker):\n", - " # Fetch historical data for the ticker\n", - " data = yf.download(ticker, start=start_of_year, end=current_date)\n", - " \n", - " # Get the first available closing price of the year (approximation of the price at the start of the year)\n", - " start_price = data['Close'].iloc[0]\n", - " \n", - " # Get the most recent closing price\n", - " end_price = data['Close'].iloc[-1]\n", - " \n", - " # Calculate the YTD gain\n", - " ytd_gain = ((end_price - start_price) / start_price) * 100\n", - " \n", - " return ytd_gain\n", - "\n", - "# Calculate and print the YTD gain for each ticker\n", - "for ticker in tickers:\n", - " ytd_gain = calculate_ytd_gain(ticker)\n", - " print(f\"{ticker} YTD Gain: {ytd_gain:.2f}%\")\n", + "# Download stock data for the current year\n", + "meta_data = yf.download('META', start=f'{current_year}-01-01', end=yesterday)\n", + "tesla_data = yf.download('TSLA', start=f'{current_year}-01-01', end=yesterday)\n", "\n", + "# Calculate the year-to-date gain for each stock\n", + "meta_ytd_gain = ((meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]) * 100\n", + "tesla_ytd_gain = ((tesla_data['Close'][-1] - tesla_data['Close'][0]) / tesla_data['Close'][0]) * 100\n", + "\n", + "# Print the year-to-date gain for each stock\n", + "print(f'META year-to-date gain: {meta_ytd_gain}%')\n", + "print(f'TESLA year-to-date gain: {tesla_ytd_gain}%')\n", "```\n", "\n", - "Please save the above code in a file named `ytd_gain_comparison.py` and execute it. The script will output the YTD gain for both META and TESLA. If `yfinance` is not installed, you will need to install it first by running `pip install yfinance`.\n", + "This code should now correctly fetch the stock prices for META and TESLA, calculate the year-to-date gain for each, and print the results.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", "exitcode: 0 (execution succeeded)\n", - "Code output: \n", - "META YTD Gain: 45.05%\n", - "TSLA YTD Gain: -18.43%\n", + "Code output: /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "/Users/ekzhu/autogen/notebook/coding/tmp_code_0b52d7fcfe06d76c8b1e0ce9333cb5cf.py:14: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " meta_ytd_gain = ((meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]) * 100\n", + "/Users/ekzhu/autogen/notebook/coding/tmp_code_0b52d7fcfe06d76c8b1e0ce9333cb5cf.py:15: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " tesla_ytd_gain = ((tesla_data['Close'][-1] - tesla_data['Close'][0]) / tesla_data['Close'][0]) * 100\n", + "META year-to-date gain: 50.11406747602124%\n", + "TESLA year-to-date gain: -30.85903076529873%\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "The year-to-date (YTD) gain for META (Meta Platforms, Inc.) is 45.05%, indicating that the stock price has increased by this percentage since the beginning of the year.\n", + "The code has successfully fetched the stock prices for META and TESLA and calculated the year-to-date gain for each. \n", "\n", - "On the other hand, TESLA (Tesla, Inc.) has a YTD loss of -18.43%, which means that the stock price has decreased by this percentage since the start of the year.\n", + "As of yesterday, the year-to-date gain for META (Meta Platforms Inc.) is approximately 50.11%, and for TESLA (Tesla Inc.) it is approximately -30.86%. This means that so far this year, META's stock price has increased by about 50.11% while TESLA's stock price has decreased by about 30.86%.\n", "\n", - "In summary, as of today, March 3, 2024, META has had a significant gain since the beginning of the year, while TESLA has experienced a decline.\n", + "Please note that stock prices can fluctuate and the exact gain may vary depending on the time of checking.\n", "\n", "TERMINATE\n", "\n", @@ -206,6 +252,7 @@ " \"temperature\": 0, # temperature for sampling\n", " }, # configuration for autogen's enhanced inference API which is compatible with OpenAI API\n", ")\n", + "\n", "# create a UserProxyAgent instance named \"user_proxy\"\n", "user_proxy = autogen.UserProxyAgent(\n", " name=\"user_proxy\",\n", @@ -213,8 +260,8 @@ " max_consecutive_auto_reply=10,\n", " is_termination_msg=lambda x: x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\"),\n", " code_execution_config={\n", - " \"work_dir\": \"coding\",\n", - " \"use_docker\": False, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.\n", + " # the executor to run the generated code\n", + " \"executor\": LocalCommandLineCodeExecutor(work_dir=\"coding\"),\n", " },\n", ")\n", "# the assistant receives a message from the user_proxy, which contains the task description\n", @@ -230,9 +277,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The example above involves code execution. In AutoGen, code execution is triggered automatically by the `UserProxyAgent` when it detects an executable code block in a received message and no human user input is provided. This process occurs in a designated working directory, using a Docker container by default. Unless a specific directory is specified, AutoGen defaults to the `autogen/extensions` directory. Users have the option to specify a different working directory by setting the `work_dir` argument when constructing a new instance of the `UserProxyAgent`.\n", - "\n", - "The whole chat is auto-generated." + "The example above involves code execution. In AutoGen, code execution is triggered automatically by the `UserProxyAgent` when it detects an executable code block in a received message and no human user input is provided. \n", + "Users have the option to specify a different working directory by setting the `work_dir` argument when constructing a new instance of the `LocalCommandLineCodeExecutor`.\n", + "For Docker-based or Jupyter kernel-based code execution, please refer to \n", + "[Code Executors Tutorial](/docs/tutorial/code-executors) for more information." ] }, { @@ -250,16 +298,16 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Chat history: [{'content': 'What date is today? Compare the year-to-date gain for META and TESLA.', 'role': 'assistant'}, {'content': \"To get the current date, we can use Python's `datetime` module. After that, we will need to retrieve the year-to-date (YTD) gain for both META (Meta Platforms, Inc.) and TESLA (Tesla, Inc.). We can do this by fetching the stock prices from the beginning of the year and the current stock prices, then calculating the percentage change.\\n\\nFirst, let's write a Python script to get the current date:\\n\\n```python\\n# filename: get_current_date.py\\n\\nfrom datetime import datetime\\n\\n# Get the current date\\ncurrent_date = datetime.now()\\n\\n# Print the current date in YYYY-MM-DD format\\nprint(current_date.strftime('%Y-%m-%d'))\\n```\\n\\nPlease save the above code in a file named `get_current_date.py` and execute it to get today's date. After that, we will proceed to the next step of fetching the stock data.\", 'role': 'user'}, {'content': 'exitcode: 0 (execution succeeded)\\nCode output: \\n2024-03-03\\n', 'role': 'assistant'}, {'content': 'Great, today\\'s date is March 3, 2024. Now, let\\'s proceed to the next step, which is to fetch the stock prices for META and TESLA.\\n\\nWe will use Python to retrieve the stock data. For this purpose, we can use the `yfinance` library, which allows us to fetch historical market data from Yahoo Finance. If `yfinance` is not installed on your system, you will need to install it using `pip install yfinance`.\\n\\nHere\\'s the Python script to fetch the YTD gain for META and TESLA:\\n\\n```python\\n# filename: ytd_gain_comparison.py\\n\\nimport yfinance as yf\\nfrom datetime import datetime\\n\\n# Define the tickers for Meta Platforms, Inc. and Tesla, Inc.\\ntickers = [\"META\", \"TSLA\"]\\n\\n# Define the start of the year\\nstart_of_year = datetime(datetime.now().year, 1, 1)\\n\\n# Get the current date\\ncurrent_date = datetime.now()\\n\\n# Function to calculate YTD gain\\ndef calculate_ytd_gain(ticker):\\n # Fetch historical data for the ticker\\n data = yf.download(ticker, start=start_of_year, end=current_date)\\n \\n # Get the first available closing price of the year (approximation of the price at the start of the year)\\n start_price = data[\\'Close\\'].iloc[0]\\n \\n # Get the most recent closing price\\n end_price = data[\\'Close\\'].iloc[-1]\\n \\n # Calculate the YTD gain\\n ytd_gain = ((end_price - start_price) / start_price) * 100\\n \\n return ytd_gain\\n\\n# Calculate and print the YTD gain for each ticker\\nfor ticker in tickers:\\n ytd_gain = calculate_ytd_gain(ticker)\\n print(f\"{ticker} YTD Gain: {ytd_gain:.2f}%\")\\n\\n```\\n\\nPlease save the above code in a file named `ytd_gain_comparison.py` and execute it. The script will output the YTD gain for both META and TESLA. If `yfinance` is not installed, you will need to install it first by running `pip install yfinance`.', 'role': 'user'}, {'content': 'exitcode: 0 (execution succeeded)\\nCode output: \\nMETA YTD Gain: 45.05%\\nTSLA YTD Gain: -18.43%\\n', 'role': 'assistant'}, {'content': 'The year-to-date (YTD) gain for META (Meta Platforms, Inc.) is 45.05%, indicating that the stock price has increased by this percentage since the beginning of the year.\\n\\nOn the other hand, TESLA (Tesla, Inc.) has a YTD loss of -18.43%, which means that the stock price has decreased by this percentage since the start of the year.\\n\\nIn summary, as of today, March 3, 2024, META has had a significant gain since the beginning of the year, while TESLA has experienced a decline.\\n\\nTERMINATE', 'role': 'user'}]\n", - "Summary: Today's date is March 3, 2024. The year-to-date (YTD) gain for META (Meta Platforms, Inc.) is 45.05%, indicating an increase in stock price since the beginning of the year. In contrast, TESLA (Tesla, Inc.) has a YTD loss of -18.43%, showing a decrease in stock price over the same period.\n", - "Cost info: ({'total_cost': 0.14834999999999998, 'gpt-4': {'cost': 0.14834999999999998, 'prompt_tokens': 3267, 'completion_tokens': 839, 'total_tokens': 4106}}, {'total_cost': 0})\n" + "Chat history: [{'content': 'What date is today? Compare the year-to-date gain for META and TESLA.', 'role': 'assistant'}, {'content': 'First, let\\'s get the current date using Python. \\n\\n```python\\n# Python code\\nfrom datetime import date\\n\\n# Get today\\'s date\\ntoday = date.today()\\n\\n# Print today\\'s date\\nprint(\"Today\\'s date:\", today)\\n```\\n\\nNext, we need to fetch the stock prices for META (Facebook) and TESLA for the current year. We can use the `yfinance` library in Python to fetch this data. If `yfinance` is not installed, it can be installed using pip: `pip install yfinance`.\\n\\nHere is the Python code to fetch the stock prices and calculate the year-to-date gain:\\n\\n```python\\n# Python code\\nimport yfinance as yf\\nfrom datetime import datetime\\n\\n# Get the current year\\ncurrent_year = datetime.now().year\\n\\n# Download stock data for the current year\\nmeta_data = yf.download(\\'FB\\', start=f\\'{current_year}-01-01\\', end=today)\\ntesla_data = yf.download(\\'TSLA\\', start=f\\'{current_year}-01-01\\', end=today)\\n\\n# Calculate the year-to-date gain for each stock\\nmeta_ytd_gain = ((meta_data[\\'Close\\'][-1] - meta_data[\\'Close\\'][0]) / meta_data[\\'Close\\'][0]) * 100\\ntesla_ytd_gain = ((tesla_data[\\'Close\\'][-1] - tesla_data[\\'Close\\'][0]) / tesla_data[\\'Close\\'][0]) * 100\\n\\n# Print the year-to-date gain for each stock\\nprint(f\\'META year-to-date gain: {meta_ytd_gain}%\\')\\nprint(f\\'TESLA year-to-date gain: {tesla_ytd_gain}%\\')\\n```\\n\\nThis code fetches the closing prices for META and TESLA for the current year, calculates the year-to-date gain for each stock, and prints the results. The year-to-date gain is calculated as the percentage change in the closing price from the first trading day of the year to the most recent trading day.', 'role': 'user'}, {'content': 'exitcode: 1 (execution failed)\\nCode output: Today\\'s date: 2024-04-12\\nTraceback (most recent call last):\\n File \"/Users/ekzhu/autogen/notebook/coding/tmp_code_cb9ef30baa23cf28e127198c0ebeb7e6.py\", line 9, in \\n meta_data = yf.download(\\'FB\\', start=f\\'{current_year}-01-01\\', end=today)\\n ^^^^^\\nNameError: name \\'today\\' is not defined\\n', 'role': 'assistant'}, {'content': \"I apologize for the oversight. The variable `today` was defined in the first code block but not in the second one. Let's correct this by defining `today` in the second code block as well. Here's the corrected code:\\n\\n```python\\n# Python code\\nimport yfinance as yf\\nfrom datetime import datetime, date\\n\\n# Get the current year and today's date\\ncurrent_year = datetime.now().year\\ntoday = date.today()\\n\\n# Download stock data for the current year\\nmeta_data = yf.download('FB', start=f'{current_year}-01-01', end=today)\\ntesla_data = yf.download('TSLA', start=f'{current_year}-01-01', end=today)\\n\\n# Calculate the year-to-date gain for each stock\\nmeta_ytd_gain = ((meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]) * 100\\ntesla_ytd_gain = ((tesla_data['Close'][-1] - tesla_data['Close'][0]) / tesla_data['Close'][0]) * 100\\n\\n# Print the year-to-date gain for each stock\\nprint(f'META year-to-date gain: {meta_ytd_gain}%')\\nprint(f'TESLA year-to-date gain: {tesla_ytd_gain}%')\\n```\\n\\nThis code should now correctly fetch the stock prices for META and TESLA, calculate the year-to-date gain for each, and print the results.\", 'role': 'user'}, {'content': 'exitcode: 1 (execution failed)\\nCode output: \\n[*********************100%%**********************] 1 of 1 completed\\n\\n1 Failed download:\\n[\\'FB\\']: Exception(\\'%ticker%: No timezone found, symbol may be delisted\\')\\n/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The \\'unit\\' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\\n df.index += _pd.TimedeltaIndex(dst_error_hours, \\'h\\')\\n\\n[*********************100%%**********************] 1 of 1 completed\\n/Users/ekzhu/autogen/notebook/coding/tmp_code_9ca584c3d8b484c70ee49c1ce5e4b975.py:14: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\\n meta_ytd_gain = ((meta_data[\\'Close\\'][-1] - meta_data[\\'Close\\'][0]) / meta_data[\\'Close\\'][0]) * 100\\nTraceback (most recent call last):\\n File \"/Users/ekzhu/autogen/notebook/coding/tmp_code_9ca584c3d8b484c70ee49c1ce5e4b975.py\", line 14, in \\n meta_ytd_gain = ((meta_data[\\'Close\\'][-1] - meta_data[\\'Close\\'][0]) / meta_data[\\'Close\\'][0]) * 100\\n ~~~~~~~~~~~~~~~~~~^^^^\\n File \"/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/pandas/core/series.py\", line 1109, in __getitem__\\n return self._values[key]\\n ~~~~~~~~~~~~^^^^^\\nIndexError: index -1 is out of bounds for axis 0 with size 0\\n', 'role': 'assistant'}, {'content': \"I apologize for the confusion. It seems like the ticker symbol for Meta Platforms Inc. (formerly Facebook) has changed from 'FB' to 'META'. Let's correct this in the code. Also, it seems like the data for the current day might not be available yet, so let's fetch the data until the previous day. Here's the corrected code:\\n\\n```python\\n# Python code\\nimport yfinance as yf\\nfrom datetime import datetime, timedelta\\n\\n# Get the current year and yesterday's date\\ncurrent_year = datetime.now().year\\nyesterday = datetime.now() - timedelta(1)\\n\\n# Download stock data for the current year\\nmeta_data = yf.download('META', start=f'{current_year}-01-01', end=yesterday)\\ntesla_data = yf.download('TSLA', start=f'{current_year}-01-01', end=yesterday)\\n\\n# Calculate the year-to-date gain for each stock\\nmeta_ytd_gain = ((meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]) * 100\\ntesla_ytd_gain = ((tesla_data['Close'][-1] - tesla_data['Close'][0]) / tesla_data['Close'][0]) * 100\\n\\n# Print the year-to-date gain for each stock\\nprint(f'META year-to-date gain: {meta_ytd_gain}%')\\nprint(f'TESLA year-to-date gain: {tesla_ytd_gain}%')\\n```\\n\\nThis code should now correctly fetch the stock prices for META and TESLA, calculate the year-to-date gain for each, and print the results.\", 'role': 'user'}, {'content': \"exitcode: 0 (execution succeeded)\\nCode output: /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\\n df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\\n\\n[*********************100%%**********************] 1 of 1 completed\\n/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\\n df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\\n\\n[*********************100%%**********************] 1 of 1 completed\\n/Users/ekzhu/autogen/notebook/coding/tmp_code_0b52d7fcfe06d76c8b1e0ce9333cb5cf.py:14: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\\n meta_ytd_gain = ((meta_data['Close'][-1] - meta_data['Close'][0]) / meta_data['Close'][0]) * 100\\n/Users/ekzhu/autogen/notebook/coding/tmp_code_0b52d7fcfe06d76c8b1e0ce9333cb5cf.py:15: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\\n tesla_ytd_gain = ((tesla_data['Close'][-1] - tesla_data['Close'][0]) / tesla_data['Close'][0]) * 100\\nMETA year-to-date gain: 50.11406747602124%\\nTESLA year-to-date gain: -30.85903076529873%\\n\", 'role': 'assistant'}, {'content': \"The code has successfully fetched the stock prices for META and TESLA and calculated the year-to-date gain for each. \\n\\nAs of yesterday, the year-to-date gain for META (Meta Platforms Inc.) is approximately 50.11%, and for TESLA (Tesla Inc.) it is approximately -30.86%. This means that so far this year, META's stock price has increased by about 50.11% while TESLA's stock price has decreased by about 30.86%.\\n\\nPlease note that stock prices can fluctuate and the exact gain may vary depending on the time of checking.\\n\\nTERMINATE\", 'role': 'user'}]\n", + "Summary: The year-to-date gain for META (Meta Platforms Inc.) is approximately 50.11%, and for TESLA (Tesla Inc.) it is approximately -30.86%. This means that so far this year, META's stock price has increased by about 50.11% while TESLA's stock price has decreased by about 30.86%.\n", + "Cost info: ({'total_cost': 0.32256, 'gpt-4-0613': {'cost': 0.32256, 'prompt_tokens': 8224, 'completion_tokens': 1264, 'total_tokens': 9488}}, {'total_cost': 0.32256, 'gpt-4-0613': {'cost': 0.32256, 'prompt_tokens': 8224, 'completion_tokens': 1264, 'total_tokens': 9488}})\n" ] } ], @@ -280,7 +328,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -294,77 +342,66 @@ "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "To plot a chart of the stock price change YTD for META and TESLA, and to save the data to `stock_price_ytd.csv` and the plot to `stock_price_ytd.png`, we will use Python with the `yfinance`, `pandas`, and `matplotlib` libraries. If `matplotlib` is not installed on your system, you will need to install it using `pip install matplotlib`.\n", + "To plot a chart of the stock price change year-to-date (YTD) for META and TESLA, and to save the data and the plot, we can use the `matplotlib` and `pandas` libraries in Python. If these libraries are not installed, they can be installed using pip: `pip install matplotlib pandas`.\n", "\n", - "Here's the Python script to fetch the stock data, save it to a CSV file, plot the chart, and save the plot to a PNG file:\n", + "Here is the Python code to fetch the stock prices, plot the chart, and save the data and the plot:\n", "\n", "```python\n", - "# filename: plot_stock_price_ytd.py\n", - "\n", + "# Python code\n", "import yfinance as yf\n", - "import pandas as pd\n", "import matplotlib.pyplot as plt\n", - "from datetime import datetime\n", - "\n", - "# Define the tickers for Meta Platforms, Inc. and Tesla, Inc.\n", - "tickers = [\"META\", \"TSLA\"]\n", - "\n", - "# Define the start of the year\n", - "start_of_year = datetime(datetime.now().year, 1, 1)\n", - "\n", - "# Get the current date\n", - "current_date = datetime.now()\n", - "\n", - "# Initialize a dictionary to store data\n", - "stock_data = {}\n", - "\n", - "# Fetch historical data for each ticker\n", - "for ticker in tickers:\n", - " stock_data[ticker] = yf.download(ticker, start=start_of_year, end=current_date)\n", - "\n", - "# Combine the closing prices of each stock into a single DataFrame\n", - "combined_data = pd.DataFrame({\n", - " ticker: data['Close']\n", - " for ticker, data in stock_data.items()\n", - "})\n", + "import pandas as pd\n", + "from datetime import datetime, timedelta\n", "\n", - "# Save the combined data to CSV\n", - "combined_data.to_csv('stock_price_ytd.csv')\n", + "# Get the current year and yesterday's date\n", + "current_year = datetime.now().year\n", + "yesterday = datetime.now() - timedelta(1)\n", "\n", - "# Plot the normalized stock price change YTD\n", - "normalized_data = (combined_data / combined_data.iloc[0]) * 100\n", - "normalized_data.plot(figsize=(10, 5))\n", + "# Download stock data for the current year\n", + "meta_data = yf.download('META', start=f'{current_year}-01-01', end=yesterday)\n", + "tesla_data = yf.download('TSLA', start=f'{current_year}-01-01', end=yesterday)\n", "\n", - "# Set plot title and labels\n", - "plt.title('Stock Price Change YTD')\n", + "# Plot the closing prices\n", + "plt.figure(figsize=(14, 7))\n", + "plt.plot(meta_data['Close'], label='META')\n", + "plt.plot(tesla_data['Close'], label='TESLA')\n", + "plt.title('META vs TESLA Stock Price YTD')\n", "plt.xlabel('Date')\n", - "plt.ylabel('Normalized Price (Base 100)')\n", - "\n", - "# Save the plot to a PNG file\n", + "plt.ylabel('Closing Price')\n", + "plt.legend()\n", + "plt.grid(True)\n", "plt.savefig('stock_price_ytd.png')\n", "\n", - "# Show the plot\n", - "plt.show()\n", + "# Save the data to a CSV file\n", + "data = pd.concat([meta_data['Close'], tesla_data['Close']], axis=1)\n", + "data.columns = ['META', 'TESLA']\n", + "data.to_csv('stock_price_ytd.csv')\n", "```\n", "\n", - "Please save the above code in a file named `plot_stock_price_ytd.py` and execute it. The script will fetch the stock data, save it to `stock_price_ytd.csv`, plot the chart, and save the plot to `stock_price_ytd.png`. If `matplotlib` is not installed, you will need to install it first by running `pip install matplotlib`.\n", + "This code fetches the closing prices for META and TESLA for the current year, plots the closing prices, saves the plot to 'stock_price_ytd.png', and saves the closing prices to 'stock_price_ytd.csv'.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", "exitcode: 0 (execution succeeded)\n", - "Code output: \n", - "Figure(1000x500)\n", + "Code output: /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "\n", + "[*********************100%%**********************] 1 of 1 completed\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "The script has successfully executed and created a chart showing the stock price change YTD for META and TESLA. It has also saved the data to `stock_price_ytd.csv` and the plot to `stock_price_ytd.png`.\n", + "The code has successfully fetched the stock prices for META and TESLA, plotted the chart of their stock price change year-to-date (YTD), and saved the data to 'stock_price_ytd.csv' and the plot to 'stock_price_ytd.png'.\n", "\n", - "You should now have a CSV file with the stock price data and a PNG image with the plotted chart. The chart is normalized to show the percentage change in stock prices from the beginning of the year, with the starting price indexed to 100 for comparison purposes.\n", + "You can now view the chart in the 'stock_price_ytd.png' file and the data in the 'stock_price_ytd.csv' file in your current working directory.\n", "\n", "TERMINATE\n", "\n", @@ -390,12 +427,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAH0CAYAAACuKActAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsdUlEQVR4nOzdd3hTdf/G8Xe6d9oCXexdNsgSZIhUlgsFEQUF3PqgPxyo6OMeKG4coI8oLhwMFyqKDEFBNsiUVTZtKd175Pz+OG2gtqUF2iZt79d15Upyzsk5nxQCvfNdFsMwDERERERERETEoVwcXYCIiIiIiIiIKKCLiIiIiIiIOAUFdBEREREREREnoIAuIiIiIiIi4gQU0EVEREREREScgAK6iIiIiIiIiBNQQBcRERERERFxAgroIiIiIiIiIk5AAV1ERERERETECSigi4iIiIiIiDgBBXQRERERERERJ6CALiIiIiIiIuIEFNBFREREREREnIACuoiIiIiIiIgTUEAXERERERERcQIK6CIiIiIiIiJOQAFdRERERERExAkooIuIiIiIiIg4AQV0ERERERERESeggC4iIiIiIiLiBBTQRURERERERJyAArqIiIiIiIiIE1BAFxEREREREXECCugiIiIiIiIiTkABXURERERERMQJKKCLiIiIiIiIOAEFdBEREREREREnoIAuIiIiIiIi4gQU0EVEREREREScgAK6iIiIiIiIiBNQQBcRERERERFxAgroIiIiIiIiIk5AAV1ERERERETECSigi4iIiIiIiDgBBXQRERERERERJ6CALiIiIiIiIuIEFNBFREREREREnIACuoiI1GrLly/HYrEwb948h1x/9uzZWCwWDhw44JDrl8fFF19M+/btHV2GiIhIjaeALiIiVW7r1q2MHDmSxo0b4+XlRf369bn00kt56623ihz3wgsv8O233zqmyHI4cOAAFovFfnN1daVRo0ZcffXVbN682dHllSklJYWnn36aTp064efnh7e3N+3bt+fhhx/m2LFjji6vSuTm5tKhQweaN29OZmZmsf0HDhzAx8eHa6+9tsif9Zluy5cvL/Z3w93dnbp169K7d28effRRDh065IB3KyIizs5iGIbh6CJERKT2WLVqFQMGDKBRo0aMGzeOsLAwDh8+zF9//cW+ffvYu3ev/Vg/Pz9GjhzJ7NmzK62e5cuXM2DAAObOncvIkSPP6rUHDhygadOmXH/99QwbNoz8/Hx27tzJjBkzyM7O5q+//qJz585nPEd+fj65ubl4enpisVjO452cnf379xMVFcWhQ4e49tpr6dOnDx4eHvz999988cUXBAcHs3v3bsBsQY+Pj2fbtm1VVl9VWr16NRdddBGPPPIIL7zwQpF9l19+OX/88Qc7d+5kyZIlRfZ98sknLF68mE8//bTI9ksvvZTMzMwifzdsNhuJiYmsW7eOBQsWYLFYmDVrFqNHj6709yciItWHm6MLEBGR2uX555/HarWybt06AgMDi+yLi4tzTFHn6YILLmDs2LH25xdddBFXXnklM2bM4L333ivxNenp6fj6+uLq6oqrq2tVlQpAXl4e11xzDbGxsSxfvpw+ffoU2f/888/z0ksvVWlNjtSrVy/uvPNOXnnlFcaMGUO7du0AmD9/Pj/++CPvvvsu4eHhRf6MAf766y8WL15cbDtgH7Lw778bAAcPHmTQoEGMGzeONm3a0KlTp8p5YyIiUu2oi7uIiFSpffv20a5du2LhHCAkJMT+2GKxkJ6ezscff2zvJjx+/Hj7/k2bNjF06FACAgLw8/Nj4MCB/PXXX8XOmZSUxH333UeTJk3w9PSkQYMG3HTTTcTHx5daY3Z2NpdffjlWq5VVq1ad9Xu85JJLAIiOjgZOjTP//fffufvuuwkJCaFBgwZF9v17DPrPP/9M//798ff3JyAggO7duzNnzpwix6xZs4YhQ4ZgtVrx8fGhf//+/Pnnn2XWN3/+fLZs2cJjjz1WLJwDBAQE8PzzzxfbvmPHDgYMGICPjw/169dn2rRpRfbn5OTwxBNP0LVrV6xWK76+vvTt25dly5YVOa6w+/crr7zC+++/T/PmzfH09KR79+6sW7eu2HXnzp1L27Zt8fLyon379nzzzTeMHz+eJk2aFDnOZrPxxhtv0K5dO7y8vAgNDeWOO+4gMTGxzJ/J1KlTqVu3LnfeeSeGYZCWlsakSZPs4b0iNW7cmNmzZ5OTk1PsZygiIrWbWtBFRKRKNW7cmNWrV7Nt27YzTjz26aefcuutt9KjRw9uv/12AJo3bw7A9u3b6du3LwEBATz00EO4u7vz3nvvcfHFF/P777/Ts2dPANLS0ujbty87d+7k5ptv5oILLiA+Pp7vv/+eI0eOULdu3WLXzczM5KqrrmL9+vX89ttvdO/e/azf4759+wCoU6dOke1333039erV44knniA9Pb3U18+ePZubb76Zdu3aMWXKFAIDA9m0aROLFi3ihhtuAGDp0qUMHTqUrl278uSTT+Li4sJHH33EJZdcwsqVK+nRo0ep5//+++8BuPHGG8v9nhITExkyZAjXXHMNo0aNYt68eTz88MN06NCBoUOHAuaY9g8++IDrr7+e2267jdTUVGbNmsXgwYNZu3Ztse7+c+bMITU1lTvuuAOLxcK0adO45ppr2L9/P+7u7gD8+OOPXHfddXTo0IGpU6eSmJjILbfcQv369YvVeMcddzB79mwmTJjAvffeS3R0NG+//TabNm3izz//tJ+zJFarlenTp3PttdfywQcfsGPHDmJjY/n5558rZehBr169aN68OYsXL67wc4uISDVmiIiIVKFff/3VcHV1NVxdXY1evXoZDz30kPHLL78YOTk5xY719fU1xo0bV2z78OHDDQ8PD2Pfvn32bceOHTP8/f2Nfv362bc98cQTBmAsWLCg2DlsNpthGIaxbNkyAzDmzp1rpKamGv379zfq1q1rbNq0qcz3Eh0dbQDG008/bZw4ccKIiYkxli9fbnTp0sUAjPnz5xuGYRgfffSRARh9+vQx8vLyipyjcF90dLRhGIaRlJRk+Pv7Gz179jQyMzNLrNlmsxktW7Y0Bg8ebN9mGIaRkZFhNG3a1Lj00kvPWHeXLl0Mq9Va5vsr1L9/fwMwPvnkE/u27OxsIywszBgxYoR9W15enpGdnV3ktYmJiUZoaKhx880327cV/tzq1KljJCQk2Ld/9913BmD88MMP9m0dOnQwGjRoYKSmptq3LV++3ACMxo0b27etXLnSAIzPP/+8yPUXLVpU4vbSXH755YbVajVcXV2NKVOmnPHY//znP0Zpv0oVvseXX3651NdfddVVBmAkJyeXqzYREan51MVdRESq1KWXXsrq1au58sor2bJlC9OmTWPw4MHUr1/f3rJ7Jvn5+fz6668MHz6cZs2a2beHh4dzww038Mcff5CSkgKYXbk7derE1VdfXew8/24VTU5OZtCgQezatYvly5eXObnb6Z588knq1atHWFgYF198Mfv27eOll17immuuKXLcbbfdVuZ488WLF5OamsojjzyCl5dXiTVv3ryZPXv2cMMNN3Dy5Eni4+OJj48nPT2dgQMHsmLFCmw2W6nXSElJwd/fv9zvD8wJ+04fS+3h4UGPHj3Yv3+/fZurqyseHh6A2d08ISGBvLw8unXrxsaNG4ud87rrriMoKMj+vG/fvgD2cx47doytW7dy00034efnZz+uf//+dOjQoci55s6di9Vq5dJLL7X/POLj4+natSt+fn7FutmX5p133iEnJ4eGDRvy+OOPl+s156rwPaWmplbqdUREpPpQF3cREaly3bt3Z8GCBeTk5LBlyxa++eYbXn/9dUaOHMnmzZtp27Ztqa89ceIEGRkZtG7duti+Nm3aYLPZOHz4MO3atWPfvn2MGDGiXDVNmjSJrKwsNm3aZJ8krLxuv/12rr32WlxcXAgMDKRdu3Z4enoWO65p06Zlnquwe/yZuv/v2bMHgHHjxpV6THJycpHwe7qAgIAiwbo8GjRoUOxLjaCgIP7+++8i2z7++GNeffVVdu3aRW5urn17Se+9UaNGxc4H2MeMHzx4EIAWLVoUe22LFi2KhP49e/aQnJxcZB6D05V3AsJGjRoREhJCu3bt8Pb2LtdrzlVaWhrAWX9ZIiIiNZcCuoiIOIyHhwfdu3ene/futGrVigkTJjB37lyefPLJKq/lqquu4ssvv+TFF1/kk08+wcWl/J3MWrZsSVRUVJnHVVTgK2wdf/nll0tt6T+9xfnfIiMj2bRpE4cPH6Zhw4blumZpLf/Gaau1fvbZZ4wfP57hw4czefJkQkJCcHV1ZerUqfYvHs72nOVls9kICQnh888/L3F/vXr1zvqclW3btm2EhIQQEBDg6FJERMRJKKCLiIhT6NatGwDHjx+3bytpcq569erh4+PDP//8U2zfrl27cHFxsYfO5s2bl3vt7uHDhzNo0CDGjx+Pv78/M2bMOJe3cd4KJ8Lbtm1biS3Hpx8TEBBQri8G/u2KK67giy++4LPPPmPKlCnnXuy/zJs3j2bNmtnX+S50rl+4NG7cGIC9e/cW2/fvbc2bN+e3337joosuqvSW74qwevVq9u3bV+ISbSIiUntpDLqIiFSpZcuWldhC+tNPPwEU6bru6+tLUlJSkeNcXV0ZNGgQ3333XZGlyWJjY5kzZw59+vSxt0iOGDHC3oX+30qq4aabbmL69OnMnDmThx9++Fze3nkbNGgQ/v7+TJ06laysrCL7Cmvu2rUrzZs355VXXrF3kz7diRMnzniNkSNH0qFDB55//nlWr15dbH9qaiqPPfbYWdde2CJ++s92zZo1JV6jPCIiImjfvj2ffPJJkff5+++/s3Xr1iLHjho1ivz8fJ599tli58nLyyv298iRDh48yPjx4/Hw8GDy5MmOLkdERJyIWtBFRKRK3XPPPWRkZHD11VcTGRlJTk4Oq1at4quvvqJJkyZMmDDBfmzXrl357bffeO2114iIiKBp06b07NmT5557jsWLF9OnTx/uvvtu3NzceO+998jOzi6yrvTkyZOZN28e1157LTfffDNdu3YlISGB77//npkzZ9KpU6di9U2cOJGUlBQee+wxrFYrjz76aJX8XAoFBATw+uuvc+utt9K9e3duuOEGgoKC2LJlCxkZGXz88ce4uLjwwQcfMHToUNq1a8eECROoX78+R48eZdmyZQQEBPDDDz+Ueg13d3cWLFhAVFQU/fr1Y9SoUVx00UW4u7uzfft25syZQ1BQUIlroZ/J5ZdfzoIFC7j66qu57LLLiI6OZubMmbRt27bELxLK44UXXuCqq67ioosuYsKECSQmJvL222/Tvn37Iufs378/d9xxB1OnTmXz5s0MGjQId3d39uzZw9y5c3nzzTcZOXLkOdVwPjZu3Mhnn32GzWYjKSmJdevWMX/+fCwWC59++ikdO3as8ppERMSJOXIKeRERqX1+/vln4+abbzYiIyMNPz8/w8PDw2jRooVxzz33GLGxsUWO3bVrl9GvXz/D29vbAIosubZx40Zj8ODBhp+fn+Hj42MMGDDAWLVqVbHrnTx50pg4caJRv359w8PDw2jQoIExbtw4Iz4+3jCMosusne6hhx4yAOPtt98u9b2UZyktwzi1lNq6detK3Ve4zFqh77//3ujdu7fh7e1tBAQEGD169DC++OKLIsds2rTJuOaaa4w6deoYnp6eRuPGjY1Ro0YZS5YsOWM9hRITE40nnnjC6NChg+Hj42N4eXkZ7du3N6ZMmWIcP37cflz//v2Ndu3aFXv9uHHjiix1ZrPZjBdeeMFo3Lix4enpaXTp0sVYuHBhsePO9HMDjCeffLLIti+//NKIjIw0PD09jfbt2xvff/+9MWLECCMyMrLY699//32ja9euhre3t+Hv72906NDBeOihh4xjx46V62diGIbRuHFj47LLLivzuPIss1Z4c3NzM4KDg42ePXsaU6ZMMQ4ePFjuekREpPawGMY5zMQiIiIi4kCdO3emXr16LF682NGliIiIVBiNQRcRERGnlZubS15eXpFty5cvZ8uWLVx88cWOKUpERKSSqAVdREREnNaBAweIiopi7NixREREsGvXLmbOnInVamXbtm3UqVPH0SWKiIhUGE0SJyIiIk4rKCiIrl278sEHH3DixAl8fX257LLLePHFFxXORUSkxlELuoiIiIiIiIgT0Bh0ERERERERESeggC4iIiIiIiLiBDQGvZax2WwcO3YMf39/LBaLo8sREREREREHMQyD1NRUIiIicHFR260zUECvZY4dO0bDhg0dXYaIiIiIiDiJw4cP06BBA0eXISig1zr+/v6A+SEMCAhwcDUiIiIiIuIoKSkpNGzY0J4RxPEU0GuZwm7tAQEBCugiIiIiIqKhr05EAw1EREREREREnIACuoiIiIiIiIgTUEAXERERERERcQIagy4lys/PJzc319Fl1Bju7u64uro6ugwREREREXFiCuhShGEYxMTEkJSU5OhSapzAwEDCwsI0CYeIiIiIiJRIAV2KKAznISEh+Pj4KExWAMMwyMjIIC4uDoDw8HAHVyQiIiIiIs5IAV3s8vPz7eG8Tp06ji6nRvH29gYgLi6OkJAQdXcXEREREZFiNEmc2BWOOffx8XFwJTVT4c9VY/tFRERERKQkCuhSjLq1Vw79XEVERERE5EwU0EVEREREREScgAK6iIiIiIhIFTEMw9EliBNTQJcaYfz48VgsFu68885i+/7zn/9gsVgYP358kWP/fRsyZAjLly8vcd/pt+XLlwNw5MgRPDw8aN++fRW+UxERERGprrLz8hn30ToW74h1dCnipBTQpcZo2LAhX375JZmZmfZtWVlZzJkzh0aNGhU5dsiQIRw/frzI7YsvvqB3795Fto0aNarYsb179wZg9uzZjBo1ipSUFNasWVOl71VEREREqp+nf9jBit0nmDxvCylZmjhYitMya1JjXHDBBezbt48FCxYwZswYABYsWECjRo1o2rRpkWM9PT0JCwsr8Tynb/f29iY7O7vYsYZh8NFHH/Huu+/SoEEDZs2aRc+ePSv4HYmIiIhITfHVukPMWXMIiwXeuK4zAV7uji5JnJACupyRYRhk5uZX+XW93V3Padbzm2++mY8++sge0D/88EMmTJhg75ZeUZYtW0ZGRgZRUVHUr1+f3r178/rrr+Pr61uh1xERERGR6m/z4SQe/3Y7AA8Oas3FrUMcXJE4KwV0OaPM3HzaPvFLlV93xzOD8fE4+7+eY8eOZcqUKRw8eBCAP//8ky+//LJYQF+4cCF+fn5Ftj366KM8+uij5brOrFmzGD16NK6urrRv355mzZoxd+5c+zh3ERERERGAE6nZ3PnpBnLybQxuF8rdFzd3dEnixBTQpUapV68el112GbNnz8YwDC677DLq1q1b7LgBAwYwY8aMItuCg4PLdY2kpCQWLFjAH3/8Yd82duxYZs2apYAuIiIiIna5+Tb+M2cjMSlZNK/nyyvXdjqnXqJSeyigyxl5u7uy45nBDrnuubr55puZOHEiAO+8806Jx/j6+tKiRYtzOv+cOXPIysoqMubcMAxsNhu7d++mVatW53ReEREREalZXvhpJ2ujE/DzdOP9m7rhr3HnUgYFdDkji8VyTl3NHWnIkCHk5ORgsVgYPLjiv1yYNWsWDzzwQLHW8rvvvpsPP/yQF198scKvKSIiIiLVyzebjvDRnwcAeG1UJ5rX8zvzC0RQQJcayNXVlZ07d9oflyQ7O5uYmJgi29zc3ErsDn+6zZs3s3HjRj7//HMiIyOL7Lv++ut55plneO6553Bz00dLREREpLbafiyZKQu2AnDPJS0Y1K7k1YNE/k3roEuNFBAQQEBAQKn7Fy1aRHh4eJFbnz59yjzvrFmzaNu2bbFwDnD11VcTFxfHTz/9dF61i4iIiEj1lZiewx2fbiAr18bFresxKUrDH6X8LIZhGI4uQqpOSkoKVquV5OTkYgE2KyuL6OhomjZtipeXl4MqrLn08xURERGp2fJtBuM/WsvKPfE0ruPD9//pg9XHecednykbiGOoBV1ERERERKQCvPLrP6zcE4+3uyvv3djVqcO5OCcFdBERERERkfP009bjzFi+D4CXRnYkMkwt0nL2FNBFRERERETOw+7YVB6cuwWA2/o25cpOEQ6uSKorBXQREREREZFzlJyZyx2fbiAjJ5/ezevw8JDikwmLlJcCuoiIiIiIyDnIys3n/q82Ex2fTv1Ab966vgturopYcu60WLOIiIiIiMhZWrU3nke/2cqBkxl4uLkwc2xX6vh5OrosqeYU0EVERERERMopMT2H53/aybwNRwAIDfBk2shOdGhgdXBlUhMooIuIiIiIiJTBMAy+23yMZxbuICE9B4sFbrywMZMHt8bfS8upScXQAIkqsmLFCq644goiIiKwWCx8++23pR575513YrFYeOONN4psT0hIYMyYMQQEBBAYGMgtt9xCWlpa5RYuIiIiIlJNHU3K5OkftvPoN1tZuiuWrNz8czrPoZMZ3PThWiZ9tZmE9Bxahfox787ePHNVe4VzqVAK6FUkPT2dTp068c4775zxuG+++Ya//vqLiIjiSzOMGTOG7du3s3jxYhYuXMiKFSu4/fbbK6vkasFisZzx9tRTTwHmz/XCCy/EarXi7+9Pu3btmDRpkv08s2fPJjAwsFzXjIyMxNPTk5iYmIp/QyIiIiKVbMPBBKYt2sUPW45xJDEDwzAcXVKFS8nK5cWfdzHgleV89OcB5qw5xM2z19P12cX85/ONfLf5KMmZuWWeJy/fxnu/72PQG7+zck88Hm4uTB7cmoX39KVr46AqeCdS26iLexUZOnQoQ4cOPeMxR48e5Z577uGXX37hsssuK7Jv586dLFq0iHXr1tGtWzcA3nrrLYYNG8Yrr7xSYqCvDY4fP25//NVXX/HEE0/wzz//2Lf5+fmxZMkSrrvuOp5//nmuvPJKLBYLO3bsYPHixWd9vT/++IPMzExGjhzJxx9/zMMPP1wh70NERESkKqRm5XLbJxtISM+xb6vn70nnhoF0aRRIl4ZBdGxgxdezesaEnDwbn/11kLeW7iExwwzgPZsG0yrUn8U7YolJyeLHrcf5cetx3F0tXNisDoPahTGobSihAV5FzvX3kSQemb+VHcdTAOjVrA4vXNOBpnV9q/x9Se1RPT95NZDNZuPGG29k8uTJtGvXrtj+1atXExgYaA/nAFFRUbi4uLBmzRquvvrqEs+bnZ1Ndna2/XlKSkrFF+9AYWFh9sdWqxWLxVJkG8APP/zARRddxOTJk+3bWrVqxfDhw8/6erNmzeKGG26gf//+/N///Z8CuoiIiFQrH6yMJiE9h9AAT0IDvNhxLIUTqdks3hHL4h2xALhYoFWoP10aBdGlILg3r+eHi4vFwdWXzjAMftoaw7RfdnHwZAYALUL8eGRIJAPbhGCxWHjmqnb8fSSZX3fE8Mv2WPbGpbFyTzwr98Tz+Lfb6NwwkEHtQrm4VQjzNhxh9qpobAYE+rjz2LA2jOzaAIvFeX8GUjMooDuJl156CTc3N+69994S98fExBASElJkm5ubG8HBwWfsaj116lSefvrpCq21ugkLC2POnDls27aN9u3bn/N5UlNTmTt3LmvWrCEyMpLk5GRWrlxJ3759K7BaERER+bcVu0/w6DdbueaCBtwX1VIh6RzFp2Xzwcr9ADx5RTuGdQgnKzefbUeT2Xw4iU2Hkth0KJFjyVnsikllV0wqX6w9BICHqwvBvh4E+XoQ7OtOsK8nwT7uBc8Lbj4e9udBPh54uFXNaNr1BxJ4/qedbDqUBEBdP0/uv7QVo7o1KLImucVioVPDQDo1DGTy4Ej2nUhj8Y5Yftkew6ZDSWw+bN6mLTrVG3N45wj+e3lb6mr5NKkiCuhOYMOGDbz55pts3Lixwv/DmTJlCvfff7/9eUpKCg0bNiz/CQwDcjMqtKZycfeBCvpZ3HPPPaxcuZIOHTrQuHFjLrzwQgYNGsSYMWPw9Cz/P7ZffvklLVu2tPdwGD16NLNmzVJAFxERqURbDidx52cbyMjJZ/qSPfh6uHJH/+aOLqtaenvpXtJz8unYwMrQ9maPQy93V7o1CaZbk2D7cbEpWWZYP5zI5kNJ/H0kmczcfGJSsohJySr39fw93QgqDPU+BaHetyDU+5wK9oXPrd7uZ9VKv+9EGtMW7eKX7WbLv7e7K7f3a8bt/ZqVq4t+83p+NO/vx539mxOXksWvO2L5dUcsq/fFE2715pmr2nFx65AyzyNSkRTQncDKlSuJi4ujUaNG9m35+fk88MADvPHGGxw4cICwsDDi4uKKvC4vL4+EhIRiXbpP5+npeVYhtJjcDHjBAePbHz0GHhUzvsfX15cff/yRffv2sWzZMv766y8eeOAB3nzzTVavXo2Pj0+5zvPhhx8yduxY+/OxY8fSv39/3nrrLfz9/SukVhERETnlQHw6N89eR0ZOPo2CfTiUkMHUn3dRz9+Tay5o4OjyqpXDCRl8vuYgAA8PiTxjo1BogBdD2ocxpCDE5+XbiEnJIjE9l4SMHBLTcziZbt7/+3liRg4J6TnYDEjNziM1O49DCeVr7HGxQJDPqcAe5HtaqD8t0Ad4u/PNxqPMWXuIfJuBiwWu696Q+6JaEfKvceTlFRLgxdgLGzP2wsbk5ttwd9Vc2uIYCuhO4MYbbyQqKqrItsGDB3PjjTcyYcIEAHr16kVSUhIbNmyga9euACxduhSbzUbPnj2rvObqqHnz5jRv3pxbb72Vxx57jFatWvHVV1/Zf8ZnsmPHDv766y/Wrl1bZNx5fn4+X375Jbfddltlli4iIlLrnEjN5qYP13IyPYf29QP48vZevPnbbv63MpqH5v1NsK+HWjfPwmuLd5Obb9CnRV0ualH3rF7r5upCgyAfGpRz0nKbzSAlK5cEe2DPJSE9m4T0XHuAt4f6guepWXnYDDhZsL28BkaG8MjQSFqGVlxjicK5OJICehVJS0tj79699ufR0dFs3ryZ4OBgGjVqRJ06dYoc7+7uTlhYGK1btwagTZs2DBkyhNtuu42ZM2eSm5vLxIkTGT16dOXO4O7uY7ZmVzX38rVqn6smTZrg4+NDenp6uY6fNWsW/fr1K7ZM3kcffcSsWbMU0EVERCpQWnYeE2av5VBCBo2CffhofA/8PN2YMrQNJ1Kz+XbzMe76bCNf3H4hnRsGOrpcp7fzeArfbj4KwENDWlf69VxcLAT6eBDo41Hu1+Tk2UjKMFvkzQBfPNSffmsU7MN9l7aiV/M6ZZ9cpBpRQK8i69evZ8CAAfbnhePCx40bx+zZs8t1js8//5yJEycycOBAXFxcGDFiBNOnT6+Mck+xWCqsq7mjPPXUU2RkZDBs2DAaN25MUlIS06dPJzc3l0svvdR+XH5+Pps3by7yWk9PT1q0aMGnn37KM888U2ySuVtvvZXXXnuN7du3lzj7voiIiJydnDwbd322gW1HU6jj68HHN/egnr85XM/FxcK0kZ04mZ7Dyj3x3Dx7HfPu7EWzen4Ortq5vfzLPxgGXNYhnI4NAh1dTok83FwICfA65y7qIjWFAnoVufjiizEMo9zHHzhwoNi24OBg5syZU4FV1Q79+/fnnXfe4aabbiI2NpagoCC6dOnCr7/+au+hAGYvhy5duhR5bfPmzXnppZc4efJkiUvZtWnThjZt2jBr1ixee+21Sn8vIiIiNZnNZvDQvC2s3BOPj4crH47vXmzNaQ83F2aM7cr17//F1qPJ3PThWhbc1VvBrhRroxNYuisOVxcLDwxq5ehyRKQMFuNsUqNUeykpKVitVpKTkwkICCiyLysri+joaJo2bYqXl/6Tq2j6+YqIiJzZCz/t5P0V+3FzsfDBuG5nHGMen5bNyBmrOHAygzbhAXx1x4UEeLlXYbXOzzAMRs5czYaDiVzfoxFTr+ng6JLEyZwpG4hjaAYEEREREXG4D1bu5/0V5hrd00Z2LHMCuLp+nnxyc0/q+nmy83gKt3+ynuy8/Kootdr4bWccGw4m4uXuwqSolo4uR0TKQQFdRERERBzqu81Hee7HnQA8MjSy3EuoNarjw+wJ3fHzdOOv/Qnc/9UW8m3qHAqQbzN4+ZddAEy4qCmhGgIgUi0ooIuIiIiIw/yxJ54H524BYMJFTbijX7Ozen37+lZmju2Ku6uFH7ce55kftp/VvD811TebjrI7No0ALzfu7Nfc0eWISDkpoIuIiMg5WbUvnjEf/MX8DUfUainnZNvRZO74dD25+QaXdQzn8cvaYrFYzvo8fVrW5dVRnQH4ePVB3l2+r4IrrV6y8/J5ffFuAO4e0AKrj8bmi1QXCugiIiJyTj776yB/7j3JA3O3cNn0lSzbFaeWSym3QyczGP/ROtJz8unVrA6vjeqEi8vZh/NCV3aK4InL2wLmsmJfrz9cUaVWO5/9dYijSZmEBngyrlcTR5cjImdBy6xJMfrlqnLo5yoiNc2RxEwAXF0s7IpJZcLsdfRoGswjQyO5oFGQg6sTZ5aYnsNNH64hPi2bNuEBvHdTVzzdXM/7vDf3aUpcajYzf9/HlAVb+fHv4/h4uOLt4Yq3u3nz8XDFy8MVH3dzu5e7Kz4ebuZ+j1PHnNrnirtr9WnTSs3K5Z1lewGYFNUKb4/z/7mKSNVRQBc7d3ez+1NGRgbe3t4OrqbmycjIAE79nEVEqrujBQH905t78PueE8z+8wBroxO45t1VDGkXxoODW9MixM/BVYqzMQyDyfO2cOBkBvUDvfl4QvcKXR7t4SGtOZGazfyNR/h994kKOaebi+VUyD/t3sf+2A1vd5fTHp/6IsAe+P/1BYDXaefwcnM9r94Dp/vfymgS0nNoVteXa7uWb7I9EXEeCuhi5+rqSmBgIHFxcQD4+Pic0zgwKcowDDIyMoiLiyMwMBBXV32TLSLVX1ZuPifTcwBoGxFA7xZ1Gd+7CW8s3sPcDYdZtD2GxTtjGdWtAf83sBVhVs0gLabZqw7w2844PNxceP+mroRU8OziFouFl0d25KrOEcSkZJGVm09mTj4ZOflk5Zr3mbkFt5yCfbn5ZBVsP3VcHoVTK+TZDFKz8kjNyqvQWk/nVRjwC4J7kI8HQ9qHcXWX+tTx8yzXOU6kZvPBSnOpugcHt8atGrX8i4hJAV2KCAsLA7CHdKk4gYGB9p+viEh1dzTJbD339XDF6m22foZbvXlpZEdu7duUab/8w+IdsXyx9jDfbDrKhIuacmf/5vZjpXbadjSZqT+ZS389NqwN7SKslXIdFxcL/VrVO69zGIZBTr6NrBwbGbl5RUJ+0SBfEPRzT93bjzst/BeeIyvXRkZOHpm55uNCWbk2snJtJJJbsCWd9QcTeWnRLqLahDKqe0P6tayH6xla2t9ZtpeMnHw6NrAytL1+5xCpjhTQpQiLxUJ4eDghISHk5uaW/QIpF3d3d7Wci0iNUti9vX6Qd7HeVi1D/fnfTd1YfyCBF3/exfqDicxYvo85aw4xcUALbuzVGC/36vdvYk6ejSOJGfYWWDOY5ZGRcyqkZRQEsayCx76ebrSNCKBDfSstQvyq1VjmipaWncc9X2wiJ9/GpW1DualXY0eXdEYWiwVPN1c83VyxUjlfLNlsBll5Jbfw74lN5ev1R9h6NJmft8Xw87YYwgK8GNm1AaO6NaRRHZ8i5zp0MoPP1xwE4OEhkeoFKVJNWQzNXFWrpKSkYLVaSU5OJiAgwNHliIhINfXF2kNMWbCVAa3r8dGEHqUeZxgGS3bG8dKiXeyJSwMgwurFfZe24poLGpyxNdCZZOflc/U7q9hxPOWcz+Hh5kKbMH/a1bfSPsJK+/oBtAr1r/IvKwpbhnPyCm6nPc4+7XlevkHHhtYKGx9+/9ebWbDxKBFWL376v74E+nhUyHlruh3HUvh6/WG+3XyUpIxTjScXNgvmuu4NGdo+HC93V+77ajPfbDpK35Z1+fSWng6sWKoTZQPno4Bey+hDKCIiFeGVX/7h7WV7GXthI54b3qHM4/NtBgs2HuG1xbs5npwFQKtQPx4eEsklkSFO39r32q//MH3pXtxdLQT7ehSZ9dunyMzfbvh4nJoFPCEth23Hktl+NIXU7OLjl91cLLQM9ad9RADt61sJDfA0Q/K/gvPpz7NL2Jebb27LLuH4kh6XVz1/Tz6e0IO2Eef3O8P8DUd4YO4WXCzw1R296N4k+LzOVxtl5+WzeEcsX607zB974yn8Dd7fy41L24byzaajGAb8MLEPHRpUztABqXmUDZyPAnotow+hiIhUhMLWuoeGtObui1uU+3VZufl8svoA7yzbR3Km2RrYvUkQjwyNpGtj5wxtO4+ncMVbf5BnM3h3zAUM6xB+1uew2QwOJ2aw7WgKW48ms/1YMtuOJpOY4fjhZO6uFjxcXfBwM2/uBY9TMvOIT8vG39ON/43rxoXN6pzT+fefSOPyt/4gIyefBy5txT0DW1bwO6h9jiZlMm/9EeZuOGxf7hDgso7hvHPDBQ6sTKobZQPno4Bey+hDKCIiFWHUe6tZG53Am6M7c1Xn+mf9+uTMXGb+vo8P/4gmO89s0R3UNpSHhrSmRYh/RZd7zvLybVwzYxV/H0lmcLtQZo7tWmGt/YZhcCw5i21Hk9l+NJltx1JIzswtEpY93FzwPP35v/Z5uLrgWeS5a7FjPc/wWg9Xl1KX90rOzOW2T9azNjoBDzcXpo/uzJD2Z/flxOlDAy5sFsznt15YbYY1VAc2m8Hq/Sf5at1hjiVl8vp1nWkY7FP2C0UKKBs4HwX0WkYfQhERqQgXvbiUo0mZzL+r13m1fMckZ/HGb7v5ev1hbAa4WODarg2ZdGlLwq3eFVjxuXl/xT5e+GkXAV5u/HZ//wpfEszZZeXmc+8Xm/h1RywuFnhueAdu6Nmo3K9/6vvtzF51gGBfD37+v76E1rKfn4izUzZwPrV3KlERERE5J3n5NmJSzHHk9QPPr7UuzOrFiyM68ut9/RjcLhSbAV+tP8zFLy/nxZ93kezALuDR8em8+utuAP57edtaF84BvNxdeXfMBYzu3hCbAY9+s5XpS/ZQnvadxTtimb3qAACvXNtR4VxEpBwU0EVEROSsxKZmk28zcHe1EOLvWSHnbBHiz3s3dmP+Xb3p0SSY7DwbM3/fR7+Xl/He7/vIys2vkOuUl81m8Mj8v8nOs9GnRV2u7dqgSq/vTNxcXZh6TQfuucSca+C1xbt58vvt5NtKD+nHkzOZPG8LALf2acolkaFVUquISHWngC4iIiJnpXAN9HCrd6njl89V18ZBfHXHhXw4vhutQ/1Jzsxl6s+7GPDKcr5ef/iMobAifbHuEGuiE/B2d2XqNR2cfpb5ymaxWHhgUGueuqItFgt8svog9365iey84l+c5OXb+L8vNpOUkUuH+lYeGhLpgIpFRKonBXQRERE5K8eSzIAeEVg5XZYtFguXRIby0//15ZVrOxFh9eJ4chYPzfubIW+sYPGO2HJ1sT5Xx5MzmfrTLgAmD26tSbdOM/6iprw5ugvurhZ+/Ps4N89eR9q/lo97a+le1h5IwM/Tjbeu74KHm37dFBEpL/2LKSIiImflaEFAP9/x52VxdbEwsmsDlj54Mf+9rA2BPu7siUvjtk/Wc+3M1aw/kFDh1zQMg8e+2UZadh4XNApkXO8mFX6N6u7KThF8OL47Ph6u/Ln3JKPfX018WjYAq/ed5K2lewB4/ur2NKnr68hSRUSqHQV0EREROSuF6y7XD6qaWda93F25tW8zfp88gLsvbo6XuwvrDyYycuZqbv14PbtjUyvsWt9vOcbSXXF4uLrw0oiOWhKsFH1b1uPL2y8k2NeDbUdTGDljFVsOJzHpq03YDLi2a4NzWn5PRKS2U0AXERGRs1LYgt4gsGqXQbN6u/PQkEh+nzyA63s0wtXFwm87Yxnyxgomz91i73p/rk6mZfPU99sBuOeSFrQMdZ712J1RxwaBzLuzF/UDvTlwMoOr3vmT2JRsmtXz5emr2jm6PBGRakkBXURERM7K0cQMoOpa0P8tNMCLqdd04JdJ/RjSLgybAXM3HOHiV5bzwk877d2tz9bTP+wgMSOXyDB/7ujfvIKrrpma1fNjwd29iQwzv8zwcHPh7esvwMfDzcGViYhUTwroIiIiUm6GYdhb0COquAX931qE+DHzxq4suLs3PZoGk5Nn4/0V++nz0lKe+WEHMclZ5T7Xbzti+X7LMVwsMG1kR01sdhZCA7z46o5e3Nm/OR/c1I22EQGOLklEpNrS/z4iIiJSbokZuWTl2gAIt1bOLO5n64JGQXx1+4V8NL47nRpYycq18eGf0fSbtoz/fruVIwUt/qVJycrlv99uA+C2fs3o2CCwCqquWaze7jwyNJJ+reo5uhQRkWpN/Y9ERESk3ArXQK/n74mXu6uDqznFYrEwIDKEi1vXY+WeeN5auod1BxL57K9DfLn2MFd3qc9/BrQocVbxqT/tIiYliyZ1fLgvqpUDqhcRETEpoIuIiEi5HU0qGH/u4O7tpbFYLPRrVY9+rerx1/6TvL10L3/sjWfuhiPM33iEKztF8J8BpyaAW7Uvni/WHgLgxREdnepLBxERqX0U0EVERKTcqnqJtfNxYbM6XNisDhsPJfLO0r0s2RXHt5uP8d2WYwxpF8atfZsxZcFWAMb0bMSFzeo4uGIREantFNBFRESk3By1xNr5uKBRELPGd2fb0WTeWbaXn7fF2G9gjqV/ZGikg6sUERFRQD+jnTt38uWXX7Jy5UoOHjxIRkYG9erVo0uXLgwePJgRI0bg6enp6DJFRESqzDEnmcH9XLSvb2XG2K7sjk3lnWV7+WHLMWwGPH91e/y93B1dnoiIiGZxL8nGjRuJioqiS5cu/PHHH/Ts2ZNJkybx7LPPMnbsWAzD4LHHHiMiIoKXXnqJ7Oyy11tdsWIFV1xxBREREVgsFr799tsi+5966ikiIyPx9fUlKCiIqKgo1qxZU+SYhIQExowZQ0BAAIGBgdxyyy2kpaVV5FsXERE5o8IWdGcdg14erUL9eXN0F36fPICF9/ThkshQR5ckIiICqAW9RCNGjGDy5MnMmzePwMDAUo9bvXo1b775Jq+++iqPPvroGc+Znp5Op06duPnmm7nmmmuK7W/VqhVvv/02zZo1IzMzk9dff51Bgwaxd+9e6tUzlywZM2YMx48fZ/HixeTm5jJhwgRuv/125syZc17vV0REpLyOVqMx6GVpGOxDQ0cXISIichqLYRiGo4twNrm5ubi7l7+r29keb7FY+Oabbxg+fHipx6SkpGC1Wvntt98YOHAgO3fupG3btqxbt45u3boBsGjRIoYNG8aRI0eIiIgo17ULz5ucnExAQEC5axYREcnIyaPtE78A8PdTgwhQt3ARkWpN2cD5qIt7Cc4mbJ/L8WXJycnh/fffx2q10qlTJ8BsrQ8MDLSHc4CoqChcXFyKdYUXERGpDIWt5/5ebgrnIiIilUBd3M8gPj6eDz/8kNWrVxMTY870GhYWRu/evRk/fry963lFWbhwIaNHjyYjI4Pw8HAWL15M3bp1AYiJiSEkJKTI8W5ubgQHB9trK0l2dnaRMfIpKSkVWrOIiNQeR2rA+HMRERFnphb0Uqxbt45WrVoxffp0rFYr/fr1o1+/flitVqZPn05kZCTr16+v0GsOGDCAzZs3s2rVKoYMGcKoUaOIi4s7r3NOnToVq9VqvzVsqNF2IiJybo4poIuIiFQqtaCX4p577uHaa69l5syZWCyWIvsMw+DOO+/knnvuYfXq1RV2TV9fX1q0aEGLFi248MILadmyJbNmzWLKlCmEhYUVC+t5eXkkJCQQFhZW6jmnTJnC/fffb3+ekpKikC4iIuekJk0QJyIi4owU0EuxZcsWZs+eXSycgznJ23333UeXLl0qtQabzWbvnt6rVy+SkpLYsGEDXbt2BWDp0qXYbDZ69uxZ6jk8PT21VruIiFSImrDEmoiIiDNTQC9FWFgYa9euJTIyssT9a9euJTS0/OumpqWlsXfvXvvz6OhoNm/eTHBwMHXq1OH555/nyiuvJDw8nPj4eN555x2OHj3KtddeC0CbNm0YMmQIt912GzNnziQ3N5eJEycyevTocs/gLiIicj7Ugi4iIlK5FNBL8eCDD3L77bezYcMGBg4caA/jsbGxLFmyhP/973+88sor5T7f+vXrGTBggP15YbfzcePGMXPmTHbt2sXHH39MfHw8derUoXv37qxcuZJ27drZX/P5558zceJEBg4ciIuLCyNGjGD69OkV9I5FRETOTC3oIiIilUvroJ/BV199xeuvv86GDRvIz88HwNXVla5du3L//fczatQoB1d49rTWoYiInIvcfBut//szNgPWPjqQkAAvR5ckIiLnSdnA+agF/Qyuu+46rrvuOnJzc4mPjwegbt26Fb7uuYiIiLOLSc7CZoCHqwt1/TS3iYiISGVQQC8Hd3d3goOD7Y9FRERqm8Lu7RGBXri4FJ9AVURERM6f1kE/g8WLFzNs2DCCgoLw8fHBx8eHoKAghg0bxm+//ebo8kRERKqMJogTERGpfAropfj4448ZNmwYVquV119/nYULF7Jw4UJef/11AgMDGTZsGJ9++qmjyxQREakSmiBORESk8qmLeymef/553njjDf7zn/8U2zd+/Hj69OnDM888w4033uiA6kRERKqWvQU90MfBlYiIiNRcakEvxaFDh4iKiip1/8CBAzly5EgVViQiIuI4x5JPjUEXERGRyqGAXop27doxa9asUvd/+OGHtG3btgorEhERcRyNQRcREal86uJeildffZXLL7+cRYsWERUVRWhoKACxsbEsWbKE/fv38+OPPzq4ShERkcpnGIZ9DHoDdXEXERGpNAropbj44ovZtm0bM2bM4K+//iImJgaAsLAwhg4dyp133kmTJk0cW6SIiEgViE/LITvPhsUCYVZ1cRcREaksCuhn0KRJE1566SVHlyEiIuJQha3nof5eeLhpdJyIiEhl0f+yIiIickbHkjRBnIiISFVQQD9HW7ZswdXV1dFliIiIVLpTE8Rp/LmIiEhlUkA/D4ZhOLoEERGRSlfYxb1+oGZwFxERqUwag16Ka6655oz7k5OTsVgsVVSNiIiI4xzREmsiIiJVQgG9FD/88AOXXnqpfXm1f8vPz6/iikRERBzj1BJrCugiIiKVSQG9FG3atGHEiBHccsstJe7fvHkzCxcurOKqREREqt7RxAxALegiIiKVTWPQS9G1a1c2btxY6n5PT08aNWpUhRWJiIhUvdSsXFKy8gCIUAu6iIhIpVILeilmzpx5xm7sbdq0ITo6ugorEhERqXrHkrIAsHq74+epXxtEREQqk/6nLYWnp6ejSxAREXG4o0kF3dvVei4iIlLp1MVdRERESnVUM7iLiIhUGQV0ERERKdURrYEuIiJSZRTQRUREpFT2FnQFdBERkUqngC4iIiKlOpakLu4iIiJVRQG9nPbu3csvv/xCZqb5i4phGA6uSEREpPIdVRd3ERGRKqOAXoaTJ08SFRVFq1atGDZsGMePHwfglltu4YEHHnBwdSIiIpUnJ89GXGo2oBZ0ERGRqqCAXob77rsPNzc3Dh06hI+Pj337ddddx6JFixxYmYiISOU6npyJYYCXuwt1fD0cXY6IiEiNp3XQy/Drr7/yyy+/0KBBgyLbW7ZsycGDBx1UlYiISOUrnCAuItAbi8Xi4GpERERqPrWglyE9Pb1Iy3mhhIQEPD09HVCRiIhI1dD4cxERkaqlgF6Gvn378sknn9ifWywWbDYb06ZNY8CAAQ6sTEREpHIpoIuIiFQtdXEvw7Rp0xg4cCDr168nJyeHhx56iO3bt5OQkMCff/7p6PJEREQqjdZAFxERqVpqQS9D+/bt2b17N3369OGqq64iPT2da665hk2bNtG8eXNHlyciIlJpjmoNdBERkSqlFvRysFqtPPbYY44uQ0REpEqpi7uIiEjVUgt6GRYtWsQff/xhf/7OO+/QuXNnbrjhBhITE8t9nhUrVnDFFVcQERGBxWLh22+/te/Lzc3l4YcfpkOHDvj6+hIREcFNN93EsWPHipwjISGBMWPGEBAQQGBgILfccgtpaWnn/R5FRET+zWYzOJ6UBagFXUREpKoooJdh8uTJpKSkALB161buv/9+hg0bRnR0NPfff3+5z5Oenk6nTp145513iu3LyMhg48aNPP7442zcuJEFCxbwzz//cOWVVxY5bsyYMWzfvp3FixezcOFCVqxYwe23335+b1BERKQE8WnZ5OTbcLFAaICXo8sRERGpFdTFvQzR0dG0bdsWgPnz53PFFVfwwgsvsHHjRoYNG1bu8wwdOpShQ4eWuM9qtbJ48eIi295++2169OjBoUOHaNSoETt37mTRokWsW7eObt26AfDWW28xbNgwXnnlFSIiIs7xHYqIiBR3pKB7e1iAF+6u+j5fRESkKuh/3DJ4eHiQkZEBwG+//cagQYMACA4OtresV4bk5GQsFguBgYEArF69msDAQHs4B4iKisLFxYU1a9ZUWh0iIlI72WdwV/d2ERGRKqMW9DL06dOH+++/n4suuoi1a9fy1VdfAbB7924aNGhQKdfMysri4Ycf5vrrrycgIACAmJgYQkJCihzn5uZGcHAwMTExpZ4rOzub7Oxs+/PK/FJBRERqDk0QJyIiUvXUgl6Gt99+Gzc3N+bNm8eMGTOoX78+AD///DNDhgyp8Ovl5uYyatQoDMNgxowZ532+qVOnYrVa7beGDRtWQJUiIlLTqQVdRESk6qkFvQyNGjVi4cKFxba//vrrFX6twnB+8OBBli5dam89BwgLCyMuLq7I8Xl5eSQkJBAWFlbqOadMmVJkMruUlBSFdBERKdOxghb0CLWgi4iIVBkF9LOQlZVFTk5OkW2nh+jzURjO9+zZw7Jly6hTp06R/b169SIpKYkNGzbQtWtXAJYuXYrNZqNnz56lntfT0xNPT88KqVFERGoPdXEXERGpegroZUhPT+fhhx/m66+/5uTJk8X25+fnl+s8aWlp7N271/48OjqazZs3ExwcTHh4OCNHjmTjxo0sXLiQ/Px8+7jy4OBgPDw8aNOmDUOGDOG2225j5syZ5ObmMnHiREaPHq0Z3EVEpMIVdnFvoC7uIiIiVUZj0Mvw0EMPsXTpUmbMmIGnpycffPABTz/9NBEREXzyySflPs/69evp0qULXbp0AeD++++nS5cuPPHEExw9epTvv/+eI0eO0LlzZ8LDw+23VatW2c/x+eefExkZycCBAxk2bBh9+vTh/fffr/D3LCIitVtyZi6p2XmAuriLiIhUJbWgl+GHH37gk08+4eKLL2bChAn07duXFi1a0LhxYz7//HPGjBlTrvNcfPHFGIZR6v4z7SsUHBzMnDlzyl27iIjIuShsPQ/29cDHQ78qiIiIVBW1oJchISGBZs2aAeZ484SEBMBcfm3FihWOLE1ERKRSaPy5iIiIYyigl6FZs2ZER0cDEBkZyddffw2YLeuBgYEOrExERKRynJrB3cvBlYiIiNQuCuhlmDBhAlu2bAHgkUce4Z133sHLy4v77ruPyZMnO7g6ERGRineqBd3HwZWIiIjULhpYVob77rvP/jgqKopdu3axYcMGWrRoQceOHR1YmYiISOUoHINeXzO4i4iIVCkF9LPUuHFjGjdu7OgyREREKs0RjUEXERFxCHVxP4PU1FQ2bNhAWloaABs3buSmm27i2muv5fPPP3dwdSIiIpVDa6CLiIg4hlrQS7FixQouv/xy0tLSCAoK4osvvmDkyJHUr18fV1dXFixYQEZGBrfddpujSxUREakwWbn5xKdlA1oDXUREpKqpBb0U//3vf7n22ms5fPgwkyZN4rrrrmPixIns3LmTbdu28fTTT/POO+84ukwREZEKdTw5CwBvd1eCfNwdXI2IiEjtooBeir///pvJkydTv359Hn74YVJSUrjuuuvs+0ePHs2+ffscWKGIiEjFO32COIvF4uBqREREahcF9FKkpKQQHBwMgIeHBz4+Pvj7+9v3+/v7k5GR4ajyREREKsXRJPP/Nk0QJyIiUvU0Br0UFoulSMvBv5+LiIicr/i0bLYdTcbL3ZXQAC9C/D3x9XTsf81aYk1ERMRxFNBLYRgGAwcOxM3N/BFlZGRwxRVX4OHhAUBeXp4jyxMRkWrGMAwOJ2Sy7kAC6w4ksPZAAvtPpBc7zs/TjRB/T0ICPAnx9yK04L7wef1AbxrV8am0OrXEmoiIiOMooJfiySefLPL8qquuKnbMiBEjqqocERGpZmw2g39iU80wHm2G8tiU7GLHNa/ni82A2JQsMnLyScvOIy07j/3xxcN7oZFdG/DSiI64ulR8z65jCugiIiIOo4Bein8HdBERkTPJzstn65Fk1h5IYF10AusPJpKaVbS3lburhQ71rXRvGkz3xsF0axJEoI+HfX9adh5xKVnEpmQTl5rFidRsYlOyiDvt/kB8OvM2HMECvDSiIy4VHNKPJqmLu4iIiKMooIuIiJyD1KxcNhxMNLusRyey+UgSOXm2Isf4erhyQeMgujcJpnuTYDo3DMTbw7XUc/p5uuFXz49m9fxKPebHv49zzxcbmbvhCB5uLjw3vH2FzZGSbzM4nmQus6YWdBERkaqngF6CIUOG8NRTT3HhhRee8bjU1FTeffdd/Pz8+M9//lNF1YmIiCPEpWaxLjrR3mV9V0wKNqPoMXV8Pcww3jSYHk2CaRPuj5trxS6YclnHcHLzO3Pf15v5fM0h3F1dePKKthUS0uNSs8izGbi5WAgN8KqAakVERORsKKCX4Nprr2XEiBFYrVauuOIKunXrRkREBF5eXiQmJrJjxw7++OMPfvrpJy677DJefvllR5csIiIVyDAMDpzMYF20OZnb+gMJHDhZfGnNRsE+dG8STI+mZit507q+VbLix/Au9cnJs/HQ/L+ZveoAnm4uPDI08ryvXTiDe5jVq1LGt4uIiMiZKaCX4JZbbmHs2LHMnTuXr776ivfff5/k5GTAXG6tbdu2DB48mHXr1tGmTRsHVysiIucr32aw83gKa6MTWH8wgbXRicSnFZ3QzWKByLAAejQJMseQNwl2aCvzqO4NybXZeOybbby3Yj8ebi48MKj1eZ3zqCaIExERcSgF9FJ4enoyduxYxo4dC0BycjKZmZnUqVMHd3d3B1cnIiLnIys3n82Hk1h/IIG1BxLZeDCRtOyiE7p5uLrQqaHVPn78gsZBWL2d69//MT0bk5tn46kfdvDW0r14uLpwz8CW53QuwzDYcTwFUEAXERFxFAX0crJarVitVkeXISIiZci3GZxMzyauYCb0uJRs+6zosSnmbOj/xKSSk190Qjd/Tze6Njk1oVvHBla83Euf0M1ZjL+oKTn5Nl74aRevLt6Nu5sLd/ZvXu7XG4bBsn/ieGvpXjYdSgKgSV3fSqpWREREzkQBXUREqqXkzFzW7D/JX/sTOJSQbg/h8Wk55P979rYS1PP3pEeTYLoXdFmPDAuotuOub+/XnJw8G6/8upsXf96Fu6sLt/RpesbX5NsMft52nHeW7WNnQcu5h5sLo7s3ZPxFTaqgahEREfk3BXQREakW0rPzWHcggdX7T7J630m2HU0uNot6IYsF6vp5EuLvSWiAFyH+5uOQgsetw/xpFOxTJRO6VZWJl7QkJ8/G9KV7eXbhDjzcXLjxwsbFjsvNt/Hd5mO8u3wv+0+kA+ZycGMvbMwtfZsS4q/Z20VERBxFAV1ERJxSVm4+mw4lsXpfPKv2nWTz4STy/pXIm9XzpVezOrSNCCDU34uQADOQ1/H1qPDlzaqD+y5tRXa+jfd+38/j327Dw9XCdd0bAebPc+6GI7z3+z6OFMzWbvV2Z3zvJky4qAmBPh6OLF1ERERQQBcRESeSlZvPnDWH+G1nLBsOJpKdV3SceP1Aby5qUYdezevQq1ldwqxq7T2dxWLhkSGR5OYZfPhnNI8s2IrNgLSsPP63cj9xqebM9HX9PLm1b1PGXtgYP0/9KiAiIuIs9L9yOSQlJTFv3jz27dvH5MmTCQ4OZuPGjYSGhlK/fn1HlyciUu0ZhsHP22J44aed9tZdgBB/T3o3r0Pv5nXp1bwODYN9HFhl9WCxWHj88jbk5tv49K+DTFmw1b4vwurFHf2bc133htViAjwREZHaRgG9DH///TdRUVFYrVYOHDjAbbfdRnBwMAsWLODQoUN88sknji5RRKRa23okmWcX7mDtgQQAwgK8uL1fM/q1qkfzer41apx4VbFYLDx9ZTvybDa+WHuYpnV9uat/c4Z3qY+HW+3r+i8iIlJdWAzDKHuq21osKiqKCy64gGnTpuHv78+WLVto1qwZq1at4oYbbuDAgQOOLvGspKSkYLVaSU5OJiAgwNHliEgtFpuSxcu//MP8jUcwDPByd+GOfs25o38zfDz0/XFFMAyDgyczaBjsU21nqBcRkcqjbOB89BtQGdatW8d7771XbHv9+vWJiYlxQEUiItVbVm4+H6zcz7vL95GRkw/A1V3q89CQ1oRbvR1cXc1isVi0prmIiEg1ooBeBk9PT1JSUopt3717N/Xq1XNARSIi1ZNhGCz8+zgv/ryLo0nmOPMujQJ54vK2dGkU5ODqRERERBxPAb0MV155Jc888wxff/01YLZGHDp0iIcffpgRI0Y4uDoRkeph8+Eknl24gw0HEwFzsrKHh0ZyZacIjTEXERERKaAx6GVITk5m5MiRrF+/ntTUVCIiIoiJiaFXr1789NNP+PpWr66DGmciIlUlN9/GH3vimbfhCD9uPQ6At7srd1/cnFv7NsPbQ7OIi4iIOJKygfNRC3oZrFYrixcv5s8//2TLli2kpaVxwQUXEBUV5ejSREScjmEYbDiYyHebj/Hj1uMkpOfY9424oAGTB7fW2uUiIiIipVALehVZsWIFL7/8Mhs2bOD48eN88803DB8+3L5/wYIFzJw5kw0bNpCQkMCmTZvo3LlzkXNkZWXxwAMP8OWXX5Kdnc3gwYN59913CQ0NLXcd+pZMpPpZsfsES3fF4ePhir+XO35ebgR4ueHv5Ya/lzv+Xm74eZqP/TzdHDJb9+7YVL7bfJTvNh8rso55XT8PLu8YwbXdGtAuwlrldYmIiEjplA2cj1rQy3DvvffSokUL7r333iLb3377bfbu3csbb7xRrvOkp6fTqVMnbr75Zq655poS9/fp04dRo0Zx2223lXiO++67jx9//JG5c+ditVqZOHEi11xzDX/++edZvy8RcX65+TamLdrF/1ZGn9Xr/DwLA3vREG9/XLDP77TtAQXhvvCY8qyVfSwpkx+2HOPbzcfYefzUZJq+Hq4Mbh/G8M716d28Dm6uWndbREREpDzUgl6G+vXr8/3339O1a9ci2zdu3MiVV17JkSNHzvqcFoulWAt6oQMHDtC0adNiLejJycnUq1ePOXPmMHLkSAB27dpFmzZtWL16NRdeeGG5rq1vyUSqh2NJmUycs5GNh5IAcxkyq7c7qVl5pGXnkpqVV3DLJS07j5SsPHLybBV2fU83l38Fezf8Pc3We38vN3YcS2HtgQQK/wdxd7XQv1UIw7tEMDAyVOPLRUREqgFlA+ejFvQynDx5Equ1eLfMgIAA4uPjq6yODRs2kJubW2Tse2RkJI0aNTqrgC4izm/5P3Hc99VmEjNy8fdy4+WRnRjSPqzM12Xn5ZsB/rTwnpKVR1q2+fjfgb7w+anX5JJesC55dp6N7LRs4tOyz3jNnk2DuapzfYZ1CCPQx6NC3r+IiIhIbaWAXoYWLVqwaNEiJk6cWGT7zz//TLNmzaqsjpiYGDw8PAgMDCyyPTQ0lJiYmFJfl52dTXb2qV+wS1rTXUScQ16+jTd+28M7y/diGNC+fgDv3tCVRnV8yvV6TzdXPP1cqevnec415NsMM6yX0kpfGOjr+HowrEM4EYHe53wtERERESlKAb0M999/PxMnTuTEiRNccsklACxZsoRXX3213OPPHWnq1Kk8/fTTji5DRMoQl5LFvV9u4q/9CQDceGFjHrusDV7uVdtV3NXFgtXHHauPe5VeV0REREQU0Mt08803k52dzfPPP8+zzz4LQJMmTZgxYwY33XRTldURFhZGTk4OSUlJRVrRY2NjCQsrvevrlClTuP/+++3PU1JSaNiwYWWWKiJnadW+eO79YjPxadn4ergydURHruwU4eiyRERERKSKKaCXw1133cVdd93FiRMn8Pb2xs/Pr8pr6Nq1K+7u7ixZsoQRI0YA8M8//3Do0CF69epV6us8PT3x9Dz37q4iUnlsNoN3l+/ltcW7sRkQGebPO2MuoHm9qv83RkREREQcTwH9LNSrV++cX5uWlsbevXvtz6Ojo9m8eTPBwcE0atSIhIQEDh06xLFjxwAzfIPZch4WFobVauWWW27h/vvvJzg4mICAAO655x569eqlCeJEqqGE9BwmfbWZFbtPADCqWwOevrK9Zj8XERERqcW0zFoJLrjgApYsWUJQUBBdunTBYrGUeuzGjRvLdc7ly5czYMCAYtvHjRvH7NmzmT17NhMmTCi2/8knn+Spp54CICsriwceeIAvvviC7OxsBg8ezLvvvnvGLu7/pqUURBxvw8FE/vP5RmJSsvByd+HZq9pzbTcNPREREZGqpWzgfBTQS/D0008zefJkfHx8ypxg7cknn6yiqiqGPoQijjVnzSGe/H4bufkGzer58u6YC4gM02dRREREqp6ygfNRQD+D/Px8/vzzTzp27FhsebPqSh9CqQpxKVn88PdxrN7uRIb50zLUD0+32t11OyfPxlM/bGfOmkMADOsQxrSRnfDz1EgjERERcQxlA+ej3wzPwNXVlUGDBrFz584aE9BFKlNcShYzft/HnDWHyM6z2be7ulhoXs+XNuEBtAkPIDLMn7bhAdTz9zzjEJKaIi41i7s/28j6g4lYLDB5cGvu6t+8Vrx3ERERESk/BfQytG/fnv3799O0aVNHlyLitGJTspixfB9z1h4ipyCYd2oYiJebCzuPp5CSlcfu2DR2x6bx3eZj9tcF+3rQJtyfNmEBRIYH0CbcnxYhNau1ffPhJO74dD2xKdn4e7kx/fouDGgd4uiyRERERMQJqYt7GRYtWsSUKVN49tln6dq1K76+vkX2V7euIOrGIhWppGDerXEQk6JacVGLOlgsFgzD4HhyFrtiUth5PJUdx1PYdTyF6Ph0bCX86+PmYqF5PT/ahPsXhPYA2oT5V8vW9q/XH+a/32wjJ99GixA//ndTN5rW9S37hSIiIiJVQNnA+Sigl8HFxcX++PRwYBgGFouF/Px8R5R1zvQhlIoQk5zFzN+LB/P7Lm1F7+Z1yhWkM3Py2ROXys7jZnA3783W9pLU8fWwd49vEx5ApBO3tufm23hu4Q4+Xn0QgEFtQ3ntus4aby4iIiJORdnA+ei3xTIsW7bM0SWIVLjcfBsfrzpAZk4+wX4e1PH1pI6fB8G+HtT19STA263EkF1SMO/exGwxL28wL+Tt4UrHBoF0bBBo31bY2l4Y1nfGmMH9QHw6J9Nz+GNvPH/sjbcff3pruxnazW7y9fwc19oen5bN3Z9vZG10AgD3X9qKiQNa4OJSvVr/RURERKTqqQX9DAzDYO/eveTk5NC6dWvc3Kr/9xn6lkwApv60k/dW7C91v5uLhSBfD+r4ehQEd09cLPDztpgiwfy+qFb0Ostgfi4yc/LZHWuG9V0xp7rJl9Xa3ibcn8gws5t8ixA/PNxcSjy+omw9kswdn67nWHIWfp5uvH5dZy5tG1qp1xQRERE5V8oGzkcBvRTR0dFceeWV7NixA4AGDRowf/58unXr5uDKzo8+hLLsnzgmfLQOgMs7hpOVa+NkejYJ6TkkpOWQml1y6C3Uo0kwk6JaVkkwPxPDMDiWnMXOYyn28e07Y8yx7SX9q+bmYqFFiF+xbvIh/l4VUs+CjUeYsmAr2Xk2mtX15f2butEixK9Czi0iIiJSGZQNnI8CeilGjhzJ9u3beeKJJ/Dy8uKVV14hKyuLDRs2OLq086IPYe0Wk5zFsOkrSUjPYVyvxjx9Vftix2Tn5ZOYnkt8WkFoT8/hZHoOyZm5XNgsmF7NHBvMy5KZk88/sans+lc3+dRSWtvr+nkUtLIXhPawoq3tOXk24tOyOZFacCt4HJeaZd8Wl5rNkcRMAC6JDOGN0Z0J8HKvsvcsIiIici6UDZyPAnopwsLCmDdvHn369AHg+PHjNGjQgJSUlGIzuVcn+hDWXvk2gxv+9xdrohNoGx7Agrt74+XufBOsVQbDMDialMmu46e6ye88nkL0ydJb2+sHeZOcmUtSRm65rmGxwMQBLbgvqpXGm4uIiEi1oGzgfKr/oOpKEhcXR8uWLe3Pw8PD8fb2Ji4uTmuiS7U0fcke1kQn4Ovhyts3dKk14RzMFRgaBPnQIMiHqNPGhGfkmOuz7ywY017YTT41K4+DJzPsx7m5WKjn72ne/DxPPfb3JKTgvmGQDyEBFdNdXkRERERqJwX0UlgsFtLS0vD29rZvc3FxITU1lZSUFPs2fdMk1cGqffFMX7oHgOev7kCzehobDeDj4UbnhoF0bhho31bY2n4kMZMgHw9C/D2xerurVVxEREREKp0CeikMw6BVq1bFtnXp0sX+uDqugy61T3xaNpO+3IxhwKhuDRjepb6jS3Jqp7e2i4iIiIhUJQX0Umj9c6kJbDaDB77eQlxqNi1C/HjqynaOLklEREREREqhgF6K/v37O7oEkfP2/sr9/L77BJ5uLrxzwwX4eOgjLyIiIiLirFwcXYCIVI4NBxN55Zd/AHjqyna0DvN3cEUiIiIiInImCugiNVByRi73frGJPJvBFZ0iGN29oaNLEhERERGRMiigi9QwhmHw0PwtHE3KpHEdH164uj0Wi2YgFxERERFxdgroIjXMJ6sP8sv2WNxdLbx1fRf8vdwdXZKIiIiIiJSDArpIDbLtaDLP/7gTgClD29CxQaBjCxIRERERkXLTlM4luOaaa8p97IIFCyqxEqlN8m0Gu2NTWX8wkQ0HEth4KAmAhsHeNAzyoUGQNw2DC+6DfKjn71mk63padh4T52wkJ99GVJtQJlzUxDFvREREREREzokCegmsVqv9sWEYfPPNN1itVrp16wbAhg0bSEpKOqsgL/JvGTl5bD6cxIYDiaw/mMjGQ4mkZuUVO+5QQgZwsth2TzcX6heE9YbB3hyIz+DAyQwirF68cm1HjTsXEREREalmFNBL8NFHH9kfP/zww4waNYqZM2fi6uoKQH5+PnfffTcBAQGOKlGqobiULNYfTGT9gUQ2HExg+7EU8mxGkWN8PVzp0iiIro2D6NYkCE83Vw4nZHA4MYMjiZkcTjDvjydnkp1nY/+JdPafSLe/3tXFwvTruxDo41HVb09ERERERM6TxTAMo+zDaq969erxxx9/0Lp16yLb//nnH3r37s3Jk8VbNp1ZSkoKVquV5ORkfcFQiWw2g70n0lh/IJH1BxJYfzCxoCW8qLAAL7o1CaJb4yC6NQkmMswfN9eyp4bIzbcRk5xVJLwfTcrk4tYhXNkpojLekoiIiIjUMMoGzkct6GXIy8tj165dxQL6rl27sNlsDqpKnE1Wbj5bDieZ48cLbsmZuUWOsVigdag/3ZsE062J2UpeP9D7nLqiu7u60DDYh4bBPhX1FkRERERExMEU0MswYcIEbrnlFvbt20ePHj0AWLNmDS+++CITJkxwcHXiKPFp2fau6usPJrLtaDK5+UU7o3i7u9K5YaDZQt4kmC6NAgnQkmciIiIiIlIKBfQyvPLKK4SFhfHqq69y/PhxAMLDw5k8eTIPPPCAg6uTqmAYBvtOpNu7qm84mEh0fHqx40L8PQtaxoPp3iSINuEBuJeju7qIiIiIiAhoDPpZSUlJAajW4zM0zqRs2Xn5bD2SXDChWwIbDiaSmJFb7LhWoX50axJsjh9vHEzD4HPrri4iIiIi4gjKBs5HLejlkJeXx/Lly9m3bx833HADAMeOHSMgIAA/Pz8HVycVITUrl8/+OsSSnbH8fSSZnPyi8wt4urnQqWEg3RoH0b1JMBc0CsLqo+7qIiIiIiJScRTQy3Dw4EGGDBnCoUOHyM7O5tJLL8Xf35+XXnqJ7OxsZs6c6egS5TykZuXyyeqD/G/lfpJOayWv4+tRMLt6MF2bBNE+woqHm7qri4iIiIhI5VFAL8P//d//0a1bN7Zs2UKdOnXs26+++mpuu+02B1Ym56OkYN6sni+39mlGr+Z1aFLHR93VRURERESkSimgl2HlypWsWrUKDw+PItubNGnC0aNHHVSVnKvSgvn/DWzJ5R0jcHVRKBcREREREcdQn90y2Gw28vPzi20/cuQI/v7+5T7PihUruOKKK4iIiMBisfDtt98W2W8YBk888QTh4eF4e3sTFRXFnj17ihyTkJDAmDFjCAgIIDAwkFtuuYW0tLRzel+1TWpWLu8s20vfact4+Zd/SMrIpVk9X94c3ZnF9/Xnqs71Fc5FRERERMShFNDLMGjQIN544w37c4vFQlpaGk8++STDhg0r93nS09Pp1KkT77zzTon7p02bxvTp05k5cyZr1qzB19eXwYMHk5WVZT9mzJgxbN++ncWLF7Nw4UJWrFjB7bfffs7vrTZQMBcRERERkepCy6yV4ciRIwwePBjDMNizZw/dunVjz5491K1blxUrVhASEnLW57RYLHzzzTcMHz4cMFvPIyIieOCBB3jwwQcBSE5OJjQ0lNmzZzN69Gh27txJ27ZtWbduHd26dQNg0aJFDBs2jCNHjhAREVGuazvdUgqGARU81js7L58NBxL5ffcJvlp/WF3ZRURERERK4HTZQDQGvSwNGjRgy5YtfPXVV2zZsoW0tDRuueUWxowZg7e3d4VcIzo6mpiYGKKiouzbrFYrPXv2ZPXq1YwePZrVq1cTGBhoD+cAUVFRuLi4sGbNGq6++uoSz52dnU12drb9eeFa7g5nGPw0503aHp3Hnxd9SGSDekSG+ePrefZ/JQ3DYN+JNFbsjmflnhP8tT+BzNxTwxIUzEVEREREpDpQQC8HNzc3xowZw5gxYyrl/DExMQCEhoYW2R4aGmrfFxMTU6y13s3NjeDgYPsxJZk6dSpPP/10BVdcAbJTuXDv6wQbSfz28xOMyLsRiwWa1vWlbXgAbSMCaBseQLsIK/X8PYu9PDE9hz/3xbOyIJQfS84qsr+unyf9WtYlqm0og9uFKZiLiIiIiIjTU0Avg6urK/369WP+/PkEBwfbt8fGxhIREVHiBHLOZMqUKdx///325ykpKTRs2NCBFRXwCmBfr5cIXnUHt7r9zCbPHvyY3pr9J9LZfyKdhX8ftx9az9/THtpdLRZW7o3n7yNJnD44w8PNhR5Ngunbsi79Wpmt8VomTUREREREqhMF9DIYhkF2djbdunXjhx9+oF27dkX2VYSwsDDADP3h4eH27bGxsXTu3Nl+TFxcXJHX5eXlkZCQYH99STw9PfH0LN4C7Qy6DxoNOWtg/Ye84/sBT9+5nB2JFnYcT2H7sRR2HEtmf3w6J1Kz+T31BL/vPlHk9a1C/ejbsh79WtWjR5NgvD1cHfROREREREREzp8CehksFgvz58/nxRdfpFevXnz66adcddVV9n0VoWnTpoSFhbFkyRJ7IE9JSWHNmjXcddddAPTq1YukpCQ2bNhA165dAVi6dCk2m42ePXtWSB0OMeg52L8cEvZTd8Vj9BvxP/q1qmffnZGTxz8xqfbQnpWbz4XN6tCvZT3CrF6Oq1tERERERKSCKaCXwTAMXF1defPNN2nXrh3XXXcd//3vf7n11lvP6jxpaWns3bvX/jw6OprNmzcTHBxMo0aNmDRpEs899xwtW7akadOmPP7440RERNhnem/Tpg1DhgzhtttuY+bMmeTm5jJx4kRGjx5d7hncnZKHL1z9Pnw4CLZ+Da2HQPsR9t0+Hm50aRREl0ZBDixSRERERESk8imgn4Xbb7+dli1bcu2117JixYqzeu369esZMGCA/XnhuPBx48Yxe/ZsHnroIdLT07n99ttJSkqiT58+LFq0CC+vU63En3/+ORMnTmTgwIG4uLgwYsQIpk+fXjFvzpEadoe+D8KKabDwfmjUCwKq8ZcOIiIiIiIi50DroJehadOmrF+/njp16ti37d27lyuuuILdu3c7/SRx/+a0ax3m58IHUXB8MzS/BMYuqPD10UVERERE5BSnzQa1mIujC3B20dHRRcI5QIsWLdi0aRP79+93UFU1kKs7XPM/cPOCfUth3QeOrkhERERERKRKKaCfIy8vLxo3buzoMmqWeq3g0mfMx78+Did2O7YeERERERGRKqSAXoLg4GDi4+MBCAoKIjg4uNSbVLDut0GzAZCXCd/cbnZ9FxERERERqQU0SVwJXn/9dfz9/QF44403HFtMbePiAsPfhXd7wbFNsOJlGPCoo6sSERERERGpdJokrpapNhNBbJsP824Giyvc/Is507uIiIiIiFSYapMNahG1oJcgJSWl3MfqL3IlaT8C/vkZts41u7rf+Ye5ZrqIiIiIiEgNpYBegsDAQCxlLPFlGAYWi6XaLbNWrQx7GQ6ugoT98Ot/4fLXHV1R5cjPg+RDcHK/+V4T9kPCPkg8aPYcGDwVvPRFkIiIiIhITaeAXoJly5Y5ugQB8A4yx6N/chWs/xBaD4OWlzq6qnOTnwtJhyAh2gzfCfvhZMF90kGw5ZX8uvh/4PBauO5zc5Z7ERERERGpsTQGvZapluNMfn4E1swAv1C4azX41in7NY5gD+Gnhe/CMJ50qPQQDub678HNit68AuCX/0LqMfDwh6tnQpvLq+79iIiIiEiNVi2zQQ2ngF5OGRkZHDp0iJycnCLbO3bs6KCKzk21/BDmZsJ7/c3W5OaXQOcxZuu6TzB4B4NPHXN8ehnDEipEfq7Z9fz0ruiFgTzpEBhnGPLw7xBep3nB4+bgH27OYP9vaXEwdzwc/NN83vdBc1Z7F9dKeXsiIiIiUntUy2xQwymgl+HEiRNMmDCBn3/+ucT91W0MerX9EB7bDB8MLL0V2tWjIKwXBHZ7gA8Cr0Dwsp66eQcW3ebqXvRceTkFLeH7ireGJx0uI4R7F4TvZqfCd2EgLy2ElyU/F3593OxFANAiCkZ8YL43EREREZFzVG2zQQ2mMehlmDRpEklJSaxZs4aLL76Yb775htjYWJ577jleffVVR5dXe0R0huu/hI2fQGYiZCRAZgJknIT8HPOWFmPezpa776mwnpsByYfBsJ3heJ+C0N30VAAvbA33D6/4lnxXdxj6IkR0gR/+D/b+Bu9fbI5LD2tfsdcSERERERGHUQt6GcLDw/nuu+/o0aMHAQEBrF+/nlatWvH9998zbdo0/vjjD0eXeFZq3LdkhgE56QVhPeG0+0QzvGcmQlYKZCVBVvKpW2YS5KSWfl5331Mh/PSu6MHNwD+sarrTl+T43/DVGLOF390HrnwLOox0TC0iIiIiUq3VuGxQA6gFvQzp6emEhIQAEBQUxIkTJ2jVqhUdOnRg48aNDq5OsFjA08+8BTY6u9fm50F2SkFoTzJDu6uHGcj9Qh0Xws8kvCPc/jvMvwX2LTXvj22CqKfBVR9nEREREZHq7BwGxNYurVu35p9//gGgU6dOvPfeexw9epSZM2cSHh7u4OrkvLi6mePUg5ua3cebD4AmFzm2hbw8fIJhzDzoc5/5fPXb8OlwSI93aFkiIiIiInJ+1MW9DJ999hl5eXmMHz+eDRs2MGTIEBISEvDw8GD27Nlcd911ji7xrKgbSw2z4zv49m7ISYOABhD1JNSLNLvie/o5ujoRERERcWLKBs5HAf0sZWRksGvXLho1akTdunUdXc5Z04ewBorbZY5LP7m36Hb/cHPcfJ3mUKfFqfugJuDm6ZBSRURERMR5KBs4HwX0WkYfwhoqKxmWvwhHN5hBPeNk6cdaXMDa0Azr3W6GNpdXXZ0iIiIi4jSUDZyPAnoZDMNg3rx5LFu2jLi4OGy2ostvLViwwEGVnRt9CGuJzEQ4ud8M6wn7zPuTe81tRWavt8AVb0LXcQ4rVUREREQcQ9nA+Wja5zJMmjSJ9957jwEDBhAaGorFmScPEynkHQQNupq30xkGpMWZYf3vgnXlf7jXXEe+x22OqVVERERERAAF9DJ9+umnLFiwgGHDhjm6FJHzZ7GAf6h5a9wbPAPMWeB/ehDysqH3REdXKCIiIiJSa2mZtTJYrVaaNWvm6DJEKp7FAoOeg74PmM9/fQxWvOLYmkREREREajEF9DI89dRTPP3002RmZjq6FJGKZ7HAwCdgwGPm86XPwtLnza7wIiIiIiJSpdTFvQyjRo3iiy++ICQkhCZNmuDu7l5k/8aNGx1UmUgF6v8QuHrAb0/CimmQnw1RT5sBXkREREREqoQCehnGjRvHhg0bGDt2rCaJk5qtzyRzffRFj8Cfb0JeDgyZqpAuIiIiIlJFFNDL8OOPP/LLL7/Qp08fR5ciUvkuvMtsSf/xflgzw2xJH/YquGg0jIiIiIhIZdNv3WVo2LCh1gSU2qX7LXDVO4AF1n8I398DtnxHVyUiIiIiUuMpoJfh1Vdf5aGHHuLAgQOOLkWk6nQZC9f8DyyusPkz+OYOyM9zdFUiIiIiIjWauriXYezYsWRkZNC8eXN8fHyKTRKXkJDgoMpEKlnHa8HVHebfAlvnmuukj5gFbh6OrkxEREREpEZSQC/DG2+84egSRByn3XBzTPrccbDze/jmdhjxocaki4iIiIhUAgX0M8jNzeX333/n8ccfp2nTpo4uR8QxIofB6C/gi9Gw/Ruo2xoGTHF0VSIiIiIiNY6awc7A3d2d+fPnO7oMEcdrGQWXv24+/v1F2LbAsfWIiIiIiNRACuhlGD58ON9++22VXS81NZVJkybRuHFjvL296d27N+vWrbPvNwyDJ554gvDwcLy9vYmKimLPnj1VVp/UYhfcCL0mmo+/vQuObnRsPSIiIiIiNYy6uJehZcuWPPPMM/z555907doVX1/fIvvvvffeCr3erbfeyrZt2/j000+JiIjgs88+Iyoqih07dlC/fn2mTZvG9OnT+fjjj2natCmPP/44gwcPZseOHXh5eVVoLSLFXPoMxO+GPb/ClzfAbUshIMLRVYmIiIiI1AgWwzAMRxfhzM409txisbB///4Ku1ZmZib+/v589913XHbZZfbtXbt2ZejQoTz77LNERETwwAMP8OCDDwKQnJxMaGgos2fPZvTo0WVeIyUlBavVSnJystZ3l3OTlQKzLoUTuyCiC4z/CTx8HF2ViIiIiJwlZQPnoxb0MkRHR1fZtfLy8sjPzy/WEu7t7c0ff/xBdHQ0MTExREVF2fdZrVZ69uzJ6tWrSwzo2dnZZGdn25+npKRU3huQ2sErAK7/Ev53CRzbBN/9B0Z+CBaLoysTEREREanWNAb9LBiGQWV2OPD396dXr148++yzHDt2jPz8fD777DNWr17N8ePHiYmJASA0NLTI60JDQ+37/m3q1KlYrVb7rWHDhpVWv9QiwU3huk/BxQ22L4Dfpzm6IhERERGRak8BvRw++eQTOnTogLe3N97e3nTs2JFPP/20Uq716aefYhgG9evXx9PTk+nTp3P99dfjco7rTk+ZMoXk5GT77fDhwxVcsdRaTfrAZa+Zj5e/YC7BJiIiIiIi50wBvQyvvfYad911F8OGDePrr7/m66+/ZsiQIdx55528/vrrFX695s2b8/vvv5OWlsbhw4dZu3Ytubm5NGvWjLCwMABiY2OLvCY2Nta+7988PT0JCAgochOpMF3HwYV3m4+/ucvs8i4iIiIiIudEAb0Mb731FjNmzOCll17iyiuv5Morr2TatGm8++67TJ8+vdKu6+vrS3h4OImJifzyyy9cddVVNG3alLCwMJYsWWI/LiUlhTVr1tCrV69Kq0XkjC59FlpEQV4mfHEDpJY83EJERERERM5MAb0Mx48fp3fv3sW29+7dm+PHj1f49X755RcWLVpEdHQ0ixcvZsCAAURGRjJhwgQsFguTJk3iueee4/vvv2fr1q3cdNNNREREMHz48AqvRaRcXN3MSeLqtoLUY/DF9ZCb6eiqRERERESqHc3iXoYWLVrw9ddf8+ijjxbZ/tVXX9GyZcsKv15ycjJTpkzhyJEjBAcHM2LECJ5//nnc3d0BeOihh0hPT+f2228nKSmJPn36sGjRIq2BLo7lZTVndv9gIBzbaM7sPmKW88zsbrOZLfy5WZCbAXkF90WeZ5q3vIJ7V0/oMBJ8gh1dvYiIiIjUEloHvQzz58/nuuuuIyoqiosuugiAP//8kyVLlvD1119z9dVXO7jCs6O1DqVSRa+AT68GWx4M+C/0n1z6sfl5JYTmf4Vk+/NS9hUJ2mfYl59deh1n4lsPBk81g7qzfNkgIiIiUkGUDZyPAno5bNiwgddff52dO3cC0KZNGx544AG6dOni4MrOnj6EUunWfwgL7zMfN7zQDMdFQnjBY1uuY+pz9QR3L3DzBvfTbm7e5vbCx8c3Q/xu8zXNB8Jlr5rLy4mIiIjUEMoGzkcBvZbRh1CqxE8Pwdr3yn+8m9e/QrLPqW3FAnThPp+CoH3a42L7/h3CvcDFtXw15eXAn2/CipfNLxncvOHiR6DXf8DV/dx+LiIiIiJORNnA+Sig1zL6EEqVsNngwErITDhDS3VBmHbzAhcnnq8yfi8snGS+H4DQ9nDFdGjQ1aFliYiIiJwvZQPno4BeChcXFyxljDm1WCzk5eVVUUUVQx9CkXNgGLDlC/jlMfNLByzQ4za45HHw0udIREREqidlA+ejgF6K7777rtR9q1evZvr06dhsNrKysqqwqvOnD6HIeUiPN0P631+az/0jYNg0aHOFY+sSEREROQfKBs5HAf0s/PPPPzzyyCP88MMPjBkzhmeeeYbGjRs7uqyzog+hSAXYt8ycCC8x2nweeTkMnQbW+o6tS0REROQsKBs4Hyce+Ok8jh07xm233UaHDh3Iy8tj8+bNfPzxx9UunItIBWk+AO5eDX0fABc32LUQ3ukBv0+D7DRHVyciIiIi1ZQC+hkkJyfz8MMP06JFC7Zv386SJUv44YcfaN++vaNLExFHc/eGgU/AHSuhQQ/ISYNlz8ObneCvmZB3jmuvi4iIiEitpYBeimnTptGsWTMWLlzIF198wapVq+jbt6+jyxIRZxPaFm7+BUZ+CMHNICMeFj0Mb3WDzV+ALd/RFYqIiIhINaEx6KVwcXHB29ubqKgoXF1LXzd5wYIFVVjV+dM4E5FKlJ8Lmz6D31+C1OPmtnptYODj0HoYlLEyhIiIiEhVUjZwPm6OLsBZ3XTTTWUusyYiUoSrO3SbAJ1Gw9r3YeVrcGInfHkDNOgOA5+EpuqJIyIiIiIlUwt6LaNvyUSqUGYSrJoOf82A3AxzW/NLzLHrEV3O/FqbDXLTISfDHN/u4grWhua9iIiISAVQNnA+Cui1jD6EIg6QGgsrXoYNs8GWa25rNsCcaC4n3bzlFgTxnAzzeV5m8fO4eUGdllCvNdSLhHqtzPvgZmbrvYiIiMhZUDZwPgrotYw+hCIOlBANy6fC318D5f2n1wIevub49vxSZoZ3cYM6LaBuQWAvDPB1WoC7V0VVLyIiIjWMsoHzUUCvZfQhFHECsTvgwEpw9QAPP/DwMUO4u6957+Fz6rG7tzm5nC0fkg7CiX/gxC44sbvg/h+zK3xJLC4Q1ORUaK/buuC+FXj6VelbFhEREeejbOB8FNBrGX0IRWoYw4DkIxD/z2nhveA+K7n011kbneoiX9jiXrcVeAdWWekiIiLiWMoGzkcBvZbRh1CkljAMSIs7FdhPD/DpJ0p/nV9Y8THu9SLBt27V1S4iIiJVQtnA+WiZNRGRmshiAf9Q89asf9F9GQnFW9vjd0PKUUiLMW/Rvxd9jU+dU13k60Waz3PSCm7pkJ1aMOFdKc89/SGsQ8Gto3nzrVN1Pw8RERGRakAt6LWMviUTkVJlJUP8ntOCe0F4TzpE+Se1Owv+ERDe8bTQ3sEcM2+xVPy1REREpBhlA+ejgF7L6EMoImctJwNO7ina6p6dAh7+5kR2nn4Fk9ud/rzwVjDZXXo8xPwNMVvN+4T9JV/LM8AM6p1GwwU3Ve37FBERqWWUDZyPAnotow+hiDiF7FSI2XYqsMf8DXE7IT/H3G9xhYf2gXeQY+sUERGpwZQNnI/GoIuISNXz9IfGvcxbofxccyz8l2MgMRqiV0DbqxxXo4iIiEgVc3F0ASIiIgC4ukNoO2g12Hy+b6lj6xERERGpYgroIiLiXJoPNO/3LjWXixMRERGpJRTQRUTEuTS5CFzcIfkQnNzn6GpEREREqowCuoiIOBcPX2h0oflY3dxFRESkFlFAFxER59OioJv7viWOrUNERESkCimgi4iI82l+iXkfvRLychxbi4iIiEgV0TJrIiLifEI7gE9dyIiHw2ugaV9HVyQiInJ28rIh5dhpt6On7gMiYNjLjq5QnJACuoiIOB8XF7MVfevX5jh0BXQREals+Xlw8A/YuRAyToKrh7kEqP2+8LFH0ccubpCZWDyIZ8SXfq26ravufUm1ooAuIiLO6fSAHvWko6sREZGaqDCUb/8Gdv5gBvOK5OZltpYH1C96H9SkYq8jNYYCuoiIOKfmA8z741sgPR586zq2HhERqRnOFMq9g6HNFRDSFmy5kJ8D+YX3pT3OBS9rQQD/Vxj3DgKLxXHvVaodBXQnkp+fz1NPPcVnn31GTEwMERERjB8/nv/+979YCj7YhmHw5JNP8r///Y+kpCQuuugiZsyYQcuWLR1cvYhIBfMPg9D2ELsN9i+HDiMdXZGIOErMVvj6JrDlm4HHOwh8ggseB//recE2n4KbCJwWyr8tCOWndT8vDOXtroYmfcFVEUkcR3/7nMhLL73EjBkz+Pjjj2nXrh3r169nwoQJWK1W7r33XgCmTZvG9OnT+fjjj2natCmPP/44gwcPZseOHXh5eTn4HYiIVLDmA8yAvm+pArpIbWWzwQ//Bwn7zedJB8v/Wv8IaNgdGvaEBj0gvCO4eVZOnVJ1cjPNMd456ZCT9q/7dMhOPfU4Jx2yk+HgaoVyqRYshmEYji5CTJdffjmhoaHMmjXLvm3EiBF4e3vz2WefYRgGERERPPDAAzz44IMAJCcnExoayuzZsxk9enSZ10hJScFqtZKcnExAQEClvRcRkQqxbxl8Ohz8w+H+neomKFIbbfoMvvsPePjD6M/MmbEzEyEjwbzPTCjheRJkpxQ/l6sHhHeGhj2gQUFwDwiv6nck5yI/D/Yvg7+/gl0/Qm7G2Z/DHsqHQ5N+CuUoGzgj/a10Ir179+b9999n9+7dtGrVii1btvDHH3/w2muvARAdHU1MTAxRUVH211itVnr27Mnq1atLDOjZ2dlkZ2fbn6eklPCflYiIs2rUy5xgJ/U4xO2E0LaOrkhEqlJWMvz2lPm4/0PQ7OLyvzYnHY5tMpdqPLwOjqw1xxofWWveClkbFoT1HmYre1gHcPOoyHch58ow4OgG+Ptr2Da/aAu4hx94+oOHb8HNr+B2+vPTHtdtqZZyqRb0N9SJPPLII6SkpBAZGYmrqyv5+fk8//zzjBkzBoCYmBgAQkNDi7wuNDTUvu/fpk6dytNPP125hYuIVBZ3L2h8EexbYnZzV0AXqV2WvwjpJ6BOS+h559m91sMXmvQxb2CGvYT9cLggoB9eB3HbIfmwedu+wDzOzQsiuhQN7f6hpV9HKt7JfWYo3/r1qaENAD51zeFOHUZB/QvUq0pqJAV0J/L111/z+eefM2fOHNq1a8fmzZuZNGkSERERjBs37pzOOWXKFO6//37785SUFBo2bFhRJYuIVL4WAwsC+hLoPdHR1YhIVYnbCWveMx8Pfen8W7UtFqjT3Lx1vt7clp0KRzeeCu1H1pnd5A+tNm+FAhudGsfesLs5gaWr+/nV4yjJR2HLF+YY7osfAb8QR1dkSjthfkny91dmq3khdx+IvBw6Xmf2oFALuNRw+hvuRCZPnswjjzxi76reoUMHDh48yNSpUxk3bhxhYWEAxMbGEh5+arxUbGwsnTt3LvGcnp6eeHpqMhQRqcaaX2LeH1xlTgzk7u3YekSk8hkG/PwQGPlmOGsxsHKu4+kPzfqbt8LrntxrBvbDa8zAHrcTkg6Zt61zzePcvM0W3MIW9oY9nHspyLxsc9z2ps/McdyGzdz+z88w6hPzSwdHyEmHXT+ZoXzfUvPPG8Diav7b33EUtB4Gnn6OqU/EARTQnUhGRgYuLi5Ftrm6umKzmf+INm3alLCwMJYsWWIP5CkpKaxZs4a77rqrqssVEaka9SLNmZhTj5khvbJ+URcR57HjO4heYXY3H/x81V3XYjHHKtdtCV3MIYZkJZstuofXFYT29QWzgv9p3goFNTWDemFoD2nr+Nbe41vMUL51rtkzoFDji8yhA/G74aOhMPRF6HZL1XQZz88zl87c+jXsXAi56af21e9qdl9vf43ztOyLVDEFdCdyxRVX8Pzzz9OoUSPatWvHpk2beO2117j55psBsFgsTJo0ieeee46WLVval1mLiIhg+PDhji1eRKSyWCxmS8rmz8wWFgV0kZotJwN+/a/5+KL/g6AmDi0HL6v5b1Bhbx6bzQy2R9YWtLSvhfh/IDHavP39lXmcu2/xVvaqWJc9I8Ecv73pM4jdemp7QH3odD10vsHs5p+das6Ov+M7+PEBOLIBLn+tcnopGQYc23hqsrf0E6f2BTU1u693HGXWJVLLaZk1J5Kamsrjjz/ON998Q1xcHBEREVx//fU88cQTeHiY464Mw+DJJ5/k/fffJykpiT59+vDuu+/SqlWrcl1DSymISLW0dR7MvwVC2sHdqxxdjYhUpqXPw4pp5uzq/1kLHj6OrqhsmYlmwC0M7UfWQ05q8ePqtDg1jr1BDwhpAy6u53/93Ew48Ads+tTstp6fY2539YDIy6DLWGg2oPi1DANWvQW/PWl2ew/rCNd9WnFfiiTsh7/nml9aJOw7td2nrtlK3vE6s9Vck705jLKB81FAr2X0IRSRain9JLzcHDDg/l1at1ikpkqIhnd6Qn42jPoU2l7p6IrOjS0fTuwqCOvrzPuTe4of5+EPDbqeamFv0A28g0o+Z14OJB4wg+7JveZM5wn7zPuUo0WPDe8EnceaM56Xp9V+/+8wb4K5DJ13EIz4AFpElf26kqTHw/ZvzFB+ZN2p7W7e0OZyswt78wHVd5K9GkbZwPkooNcy+hCKSLX1/sXmmsbDZ5hdNEVqIpsN/jUfTa3yxfXwz0/mbN03fluzWlYzEk6F9SNrzRb308dfF6rb2mxhr9sKko+YAfzkXnMpuMLJ3UriWw/aj4DOYyC849nXl3wEvr6pYAZ1C1zyGPR5oHx/H3MyzD+3v782V9yw5ZnbLS5my33HUWZLvqf/2dcllUrZwPkooNcy+hCKSLW15BlY+Sp0uNZs3RGpKWw2cxKvpc+aIa5xb3NW8ab9zeW8aktg3/MbfD4CXNzgrlVQr7WjK6pc+XkQt+PUmuxH1hZd87skHn4Q3KxgubgWENz81OOKGN+el23Onr9htvm89TC4eqY5Dr+k+qN/N0P5roWQk3ZqX0QXs/t6u2u0hryTUzZwPgrotYw+hCJSbR34E2YPA5868ODe2hNapGY7sgEWPVy0K/DpfOpAk76nAntws5rVqlwoLwdm9DJbintNrNqZ251J2gnz78KRtZB4EAIbFg3ifqFV8+e/8VNz4rj8bPPa130GoW0LJnvbZH6htHUepMedek1QE7P7esdR5iz4Ui0oGzgfBfRaRh9CEam28nJgWlOzleb23yGis6MrEjl3qTHw29OwZY753N0X+j1ozhR+4A+zZfLAn8W7QFsbmkG9WX9o2g/8w6q+9srwxxvmRGW+IXDPBvDS7ygOd3Sj2eU9+TC4+8AFN8HeJUXH0nsHm93qO46CBt1r5pdHNZyygfNRQK9l9CEUkWptzmjY/TMMfAL6PuDoaiqPYZhdndNiIS0G0uLMx6mx5szQ7a4+teSTVC952fDXu7DilVNdgjtdDwOfLD75YX6uOR54/3JzEq8j68CWW/SYepGnAnuTPiV3RXZ2Kcfh7W7mz0NzTDiX9JMw/2bz72AhN2+IHGa2lrcYqMneqjllA+ejgF7L6EMoItXa2v/BTw+aXX7HL3R0Necvbhfs+gGSDheE8MIwHlc8iP1b+xEweKrGd1YXhmEuf/XLo+Za2WAuLzV0mjlzd3nkpMPB1RC93AzsMVuB036Ns7iYY38LA3vDC8Hdq6LfScWbfxts/dpsgb35Vw1fcTa2fHP+j2OboM2V5kzsmuytxlA2cD4K6LWMPoQiUq2d3AdvXQAu7vDwAfD0c3RFZy/9JGybB1u+MH/hPRPvYLMLs1+IOfbULxSykmDTZ+Zszp5WiHoCut6sUOPM4nbBokdg/zLzuV8YXPq02QJ5Pn9uGQkQvcLsDr//96LrTAO4ekKjngWB/WII7wyubud+vcpwcDV8NASwwO3LzC8YRKTKKBs4HwX0WkYfQhGp1gwD3uwISYfg+q+g9RBHV1Q+eTmw5xfY8iXs/uVU67iLm7nWcESXUwHcv+DeNwTcPEo+37FN8MMkOL7ZfF6/G1zxBoR1qII3I+WWkQC/v2T2/DDywdUDet8Dfe6vnC+Xko+YQb0wsKfFFN3vaYUmF51qYa8X6dgxw7Z8eL+/2RPggnFw5XTH1SJSSykbOB8F9FpGH0IRqfZ+mAQbPoIed8CwaY6upnSGAcc2mqF86zzITDi1L7yTOe64/Ujwq3du57flw7oPYMmz5rh0iytceBdcPKV69iyoCQzDXDZrz6/mkmGH/zq1HnTk5TDoOQhuWnW1xO8+FdijV0J2ctFj/ELNieYKA3tgo6qprdC6D8yZwr2scM9G8K1btdcXEWUDJ6SAXsvoQygi1d6O7+HrG6FOS7hnvaOrKS75qDmedvMXEP/Pqe1+oeZMx51uMJcrqigpx8zu0zu+M58HNIBhL5uTOJVH+klz8rHDa+DwWjixy+xWH9TEDJNBTc2lvYKbmud2ti7SjpaVYk6gtXexGcpTjxXdH9YRBj1rdjF3JFu+2eOiMLAf+gvysooeE9T01HJuTfuDb53KqydhP/zvEshMhKEvQ8/bK+9aIlIqZQPno4Bey+hDKCLVXmYSTGtmdhmetLXqW/1KkpMOu36EzXMKZjsu+K/VzctsOe10vRnQKjPc7v4VfnrA7P4P5nWHvgTWBqeOsdnMVtXCMH54TdElk8ri4mb+vIOangrvdVuas4d7+Fbs+3FWZ2olB3OG66b9oOWl5vCFqmoxP1u5WeZa24WB/ehG8zN1utAO0Gk09Li99OEWZ8swYP0s+PUJcwm50Pbmson64kfEIZQNnI8Cei2jD6GI1AizBpnh8oo3oet4x9Rgs8HBP80u7Du+PbVkFkCj3mawaTe8ape9ysmAFdNg1VtmaPTwgz73maHo8BozkGUlF39d3dbQsAc07Amh7SA93mzhTIyGhGjzPvEg5GeXfF03b2gZBW2HQ6vBNW+GZ8Mwv9DY+jXs+ql4K3mdFtDiUvNn0LhP9Zg5/d+ykuHgqlOBPW7HqX11WprDSc53ab+kw/D9xFNLdjXuA1fPhMCG53deETlnygbORwG9ltGHUERqhOUvwvKp0PYqGPVJ1V775D4zlP/95anWajC7hHe6Hjpe5/hW09gdsPA+s3X339x9zOW9GvY0bw26gU9w2ee02cxgWhjYC++PbYLEA6eOc/U0W47bDTfDenVcl7vQid1mKN86t+h7dPOGpn2h5SDnbiU/H2lxsPMH83OWfsLc1uYKGPzC2fdaMQzY/DksmgLZKebPL+ops2Veqw+IOJSygfNRQK9l9CEUkRrh8DqYFWWGv8n7K797bGYSbP/GXBrt8JpT2z0DzCDa6Xpo1MuxM2L/m80Gmz41u91bGxQE8h5ml+KK/HkZBsT8bY6B3/5t0aW+XD3MVte2w6H1UPAOrLjrVpbUWNg23wzmpy+D5+5rBtQOI80u/e7ejquxKmUmmV+IrX3f7ALv5g1974fe95avp0BqDPzwf7B7kfm8QXcYPhPqtqjUskWkfJQNnI8Cei2jD6GI1Aj5efByM7Nb7i2/QcPulXONfUthyxyzW3Nh926Lixk6O10PkZfVnqBWHoYBsdvNsL7jW3O8eyEXd2g+wOz10HpY+Vrtq0p2GuxaCH9/ba5VbtjM7RZXs4W84yjzC4baMs6+JLE74KfJcPAP83lQExjyIrQaUvIXU4ZhftHx4wOQlWR+WTPgMXOZORfXqqxcRM5A2cD5KKDXMvoQikiN8dWNsPN7c1mxix+puPPGbC3owv41pMed2h7S1gzlHa6FgPCKu15NFrfzVMv6iZ2ntru4mbOEt73KnMyuMmcLP5NDa2Dd/8wJ/nIzTm1v0B06jIJ2V5/7Mng1kWHA9gXwy39PjcNvOcgM6nWanzouPZ7/b+/Ow6oq1/6BfzezI+aAKEIYar6CIEmoaGlqamilkmk5lqWWGGG+VsfT4JAePTlWp+QclCK1nMcjFSq9TiEOmQVOP0UIGVQCZJBp378/tnvpzkrQJWux9/dzXVzJZrG713exH7j3etazsGPqjTsLtAgwnTVX8+4FRKQK9gb6wwbdxvBFSERW40iMaeqsZxdg/Ld391yFOabrjH9cA2SfuPF43aamhrzTc6bbZelpCnttc+nU9TPrW4Dsn288brA3Xc/dYbCpWa+Jhjj/V+C7d01neM0a+5jOlHccZtls0q1KC4G9HwIHPgaM5aaz4yFTgEfeMM062fY6UHzZ9EbMo9NNU+LtHbWumoj+AHsD/WGDbmP4IiQiq/HbBWCpv6nBm36u+tc3l18DTu80NeVn42/cYsreyTRtt9PzpunNbCzUd/msaQp88hbT9etmBjvg/u6m6/rbPwk0aK7u/7e8xNRU7lt0/Yy5AQgcCXR+EfB4iG/AVNfls8DO6cD/22X63MX1xl0C3DoAgz8FWnbSrDwiuj32BvrDBt3G8EVIRFblo87AlbPAs7FAh6f+fDsRoOQ302rU+b+aVqf+ZaPlLcc8gkxnyn2H6uv6aGt35f+ZLlVI3mK5KBsMpma9w9Omxdnu5rICEdM15t/87cbK+17dTPeJbxFwV+XbPBHg1H+BuLdM2RrsgO4RpktPHJy1ro6IboO9gf6wQbcxfBESkVX573Tg0HLgwYGms66FOabrxgsvXf9vjul62KJLpqm4v9ewFRAw3HRtedO2NV4+/c5vqUDyVtPZ9YwjN33BAHh1vd6sPwW4elT9OXNSgJ1vmu7tDQANWgL9ZgN+YTxjrqbyEtNlIu4dgZaBWldDRFXE3kB/2KDbGL4IiciqnIoD1gyv+vYurkA9N9O9vwOeA7wf4X2Y9Sov7XqzvgX49ZDl11oFm5r1Dk8DjTz/+PtLfrt+e7B/my5fsHcGur8G9Ii07dXYiYhuwt5Af9ig2xi+CInIqlSUAl+PAvLSTYuL1XMD6rsB9ZqZPsz/Nv+XU25rp/yMG9Pg034AcNOfLh6dbzTr93kDxkrg6OfArtlASa5pm/aDgH5zgMattaieiEi32BvoDxt0G8MXIRER1WoFmaY1BJK3ABf2w6JZb9HJ1KCbV+Jv1t50CzCfx7SolIhI99gb6A8bdBvDFyEREVmNq9nAyevNeuo+QIymx11cgV5/Ax4ez1X4iYj+AnsD/XHQugAiIiKiO9KgOfDwS6aPwkumldqv5QOBo4B6TbWujoiIqNrYoBMREVHtV78ZEPSC1lUQERHdFS5dS0RERERERKQDbNCJiIiIiIiIdIANOhEREREREZEOsEEnIiIiIiIi0gE26EREREREREQ6wAZdR7y9vWEwGG75mDx5MgDg2rVrmDx5Mpo0aYL69esjLCwM2dnZGldNREREREREamCDriNJSUnIzMxUPr777jsAwLBhwwAAkZGR2LZtG9atW4fvv/8eFy9exNChQ7UsmYiIiIiIiFRiEBHRugj6Y6+//jq2b9+OM2fOoKCgAM2aNcPq1avxzDPPAABOnjyJ//mf/8HBgwfRtWvXKj1nQUEBXF1dkZ+fj4YNG97L8omIiIiISMfYG+gPz6DrVFlZGb788ku8+OKLMBgMOHLkCMrLy9G3b19lm/bt28PLywsHDx7UsFIiIiIiIiJSg4PWBdAf27x5M/Ly8jBu3DgAQFZWFpycnNCoUSOL7Zo3b46srKw/fZ7S0lKUlpYqnxcUFNyLcomIiIiIiOgu8Qy6TkVHR+OJJ55Ay5Yt7+p55s2bB1dXV+XD09NTpQqJiIiIiIhITWzQdejChQuIj4/HSy+9pDzm7u6OsrIy5OXlWWybnZ0Nd3f3P32ut99+G/n5+cpHenr6vSqbiIiIiIiI7gKnuOvQypUr4ebmhoEDByqPde7cGY6Ojti1axfCwsIAAKdOnUJaWhq6dev2p8/l7OwMZ2dn5XPzmoCc6k5EREREZNvMPQHXDdcPNug6YzQasXLlSowdOxYODjcOj6urK8aPH4+pU6eicePGaNiwIaZMmYJu3bpVeQV3ALh69SoAcKo7EREREREBMPUIrq6uWpdBYIOuO/Hx8UhLS8OLL754y9cWL14MOzs7hIWFobS0FP3798e//vWvaj1/y5YtkZ6ejgYNGsBgMKhVNgDTO3Cenp5IT0/nbRpUwDzVwyzVxTytF4+tupinupinepiltvSUv4jg6tWrd73uFamH90En1fA+iupinuphlupintaLx1ZdzFNdzFM9zFJbzJ/+CheJIyIiIiIiItIBNuhEREREREREOsAGnVTj7OyM9957z2LVeLpzzFM9zFJdzNN68diqi3mqi3mqh1lqi/nTX+E16EREREREREQ6wDPoRERERERERDrABp2IiIiIiIhIB9igExEREREREekAG3QiIiIiIiIiHWCDTkRWoaKiQusSiIiIiIjuCht0qpLCwkLk5+cDALjw/93Jzs7GkiVLsHHjRpw+fRoAM70bFy9eRHBwMN59912tS6n1cnNzceLECWRnZ2tdCt0DJSUlKC0t1boMq5CdnY3o6Gjs3r0bly5d0rqcWu/ixYvo0qULFi5cqHUpViEvLw/nzp1DQUEBAP6NUZM4zpIa2KDTbb3//vvw8/PDpk2bAAAGg0Hjimqvd999Fz4+Pti+fTvCw8MxduxYJCcnw2Aw8BfoHYiMjIS3tzfc3d0RHh6udTm12ltvvQU/Pz+MGTMGfn5+WLduHUpKSrQui1TyzjvvICgoCImJiVqXUuvNmDEDbdq0QWxsLAYPHozw8HCkpqZqXVat9frrr8Pb2xvNmzfHyJEjtS6n1nvrrbcQGBiIsLAwdO7cGXv37uXfbTWE4yyphQ06/anc3Fy89NJL2LZtGwDgv//9L86cOQOA78beidjYWOzYsQNbtmxBfHw8YmNjYTQacfDgQQB846M60tLS4OHhga1bt2Lfvn3YunUrWrZsqXVZtVJqaiqefPJJxMfH46uvvkJMTAzCwsIwffp0nD17Vuvy6C5lZWVhzJgx2LFjB1JTUxETE6PMhqLqW7JkCb755hts374de/bswaeffoqUlBS+Vu7AyZMn4eHhgbi4OBw4cABbt26Fu7u71mXVWqdPn8bjjz+O7777DitWrMCCBQvg7++P8ePHK2fS6d7gOEtqc9C6ANIXEVEaxYqKCrRo0QJDhgxBnTp1MHr0aHzzzTfw9vaGo6OjxpXqnzlL83/j4uLQrFkz9OnTBwCU/wYHB9/yPfTXHBwc4OHhAR8fHwQHB+Po0aP46quv4O7uDn9/f/To0QMuLi5al1krHD58GAaDATExMfDz8wMAfPbZZ3B1dcW5c+fQsWNH/lzWYvn5+WjWrBmWLl2K/Px8PP300xg6dCgGDRqkdWm1ivk1EB8fDz8/P/Ts2RMAMHToUMyfPx8PPPCAxhXWPvn5+WjYsCEGDBiAoKAgHD16FNu2bYOXlxc6deqEwMBArUusVRISEmAwGLBhwwZ4e3sDALp3744mTZrgxIkT6N69u7YFWjGOs6Q2NuikKCsrg4jA2dkZANC4cWNMmTIFbm5uAIB+/fphzZo16NKlCx5++GEtS9W9m7M0GAy4du0amjVrhtTUVBw7dgxeXl6YMGEC0tPT8d5776FLly6YNm0a7O3ttS5dl8x/HFdUVMDBwQEtW7bErFmzEBoaitzcXJw8eRIBAQGIi4tDdnY2hg4din/9619sKv9ARUUF7O3tlWy6d++Ohg0bKs05YLp+0dPTE3Z2pklWzLH2qKiogJ2dnXLs7r//fkRERMDLywsA0Lt3b8yfPx8PPfQQZ53cxs1ZGgwGFBQUwMHBAdeuXcOFCxfQuHFjjBw5EmVlZZg9ezYGDBiAZ599lq+X26isrIS9vT0CAwMRGRmJqVOn4ty5czh+/Djatm2LM2fOoKioCNOnT8f//u//al2ubhmNRuV1DgChoaFo0aKF0pwDpmv7W7ZsyZMqKuM4S/cap7gTANN15j169MDTTz+NqKgo5ObmwsHBAW5ubjAajQCAOXPmICMjA5s3b0ZeXh4ATnX/I7/P8sqVK3BxccFTTz2F++67D2+++Sbc3NyQl5eH5cuX44EHHsDy5csxadIkAFDyJpOPPvoI77//PgDTmXPzz9wjjzyCiRMnIjc3F+vXr8fXX3+Nn376CTNmzMDBgwfx2WefaVi1Ps2bNw9DhgzB888/j61bt6KwsBAtWrRAv379ANz42cvOzkZ6ejratWunZblUTbNmzUK/fv3w3HPPYefOnSgsLISLiwu8vLyUYxsVFYX9+/djy5YtKC8v17hi/fp9lgUFBWjYsCHCwsKQkZGBl156Ca6urigqKsLMmTNRUlKCWbNm4e9//7vWpetSVFQU/v3vfwMA7O3tISJwcnJC3759MWDAAFy5cgUbNmzAxo0bkZqaitGjR2PTpk3K2jdk6Z///CdGjRqF8PBwHD58GGVlZWjVqhWefPJJAKY3QQDTWH716lV4enpqWa5V4ThLNULIppWXl8vo0aOlTZs28vnnn8tzzz0nvr6+MnDgQIvtKioqRERk9uzZ0r59e9m5c6fyNaPRWKM169WfZRkaGqpsU1lZKcuXL5eBAwdKcXGx8vjKlSulefPmkpOTo0XpuvTjjz9K//79xWAwSMeOHWXXrl0icuNnUUTk9OnTcvDgQamsrJTKykoREbly5Yr0799fwsPDLba1ZYmJidKpUyfx8/OTxYsXS8+ePSUwMFAWL15ssZ35tfyf//xHAgMDLR4j/SouLpbBgwdL27ZtZdmyZfLYY4+Jr6+vTJw40WI78+shPDxc7r//fklJSdGiXF37syxffvllETG9HkpLS2XOnDkydOhQKSsrExHT2D5r1iwJCgqSvLw8LXdBV44ePSq9evUSg8Egffr0kWPHjomI5Ti+b98+SUpKEqPRqDyenp4uvr6+8s9//lOLsnVr//794ufnJ/7+/vLOO++Ir6+vBAYGysaNGy22M/8+/OCDD6R3794iwrH8bnGcpZrEM+g2Lj09HUlJSVi0aBHGjBmD1atXY/Hixdi9ezcWL16sbGeesjdjxgw4Oztj/fr1OH/+PLZs2YJPPvlEq/J15c+y3LNnj5KlnZ0dTp48CTc3N9SpU8fie5s3b86z5zfZtWsXnJ2dERMTA09PT8TExCjTs805tWnTBl27dlWmmhmNRjRu3BipqakoKyvjJQMALl++jOjoaDz88MM4ePAgXn/9dSQkJKBdu3ZISUmxeHff/DpPSkpSrrE1GAw4dOgQ9u7dq0n9dHsnT57EL7/8gi+++AJTpkzB7t27MWXKFHz55ZdYu3YtANMZNfPxXbZsGfLy8hATE4O8vDxs375d2c7W/VmWq1evxtq1a2EwGGBnZ4dTp07B19dXmTpsZ2eHixcvwtnZ2WKmjy2rrKzE9u3b0bx5c3z66acoKCjApk2bYDQaLcbxLl26ICgoCAaDQTm73qpVK1y+fFmZrUemxVE//vhj9O7dGz/88ANmzZqFn3/+GQaDAcePHwdwY1ajeer1gQMH0LdvXwCmsfzYsWM4efKkNjtQy3GcpZrEBt3GlZeX49SpUwgICFAee/zxx/HOO+9g1qxZSEtLA2Aa7M0Dz4wZM7B161b06tULzzzzDP8Qua6qWWZlZSE3NxcHDhwAYFp5NSEhAb1790bz5s01qV2Pnn/+ebzxxhsYM2YM+vXrh9OnT2PVqlUAbjSSv7/W087ODrt27ULDhg0xduzYGq9Zr1q2bIlJkyahfv36SkPu6emJH3/88ZZrE4uKirB//3707dsXaWlpCA0NRbdu3ZCbm6tF6VQFxcXFSEtLQ5s2bZTHRowYgbFjx+K1114DAGXdAfM4vmDBAixevBghISEYMmQI79t7XVWydHBwwJkzZ3DhwgVl9faUlBSkpKSgf//+qFevHq9Dh+lnbujQoXjttdcwceJEdO/eHQkJCYiPjwdwY/x2cLBcDslgMCh35nj++edrvG69sre3R9OmTTFx4kTUqVNHec36+vriyJEjACx/J2ZlZSE5ORl9+/bF+fPnERoaiqCgIGRnZ2tSf23HcZZqEht0G1dZWYmAgAB8/fXXFo9PnjwZjRs3xtKlS5Xt7O3tceHCBezevRuXL19Gnz59kJ2djSlTpmhRuu7cLsuFCxcqn2dlZeHJJ5/E4MGDERQUhBYtWmD27NlalK1b7u7uePTRRwEAYWFh8PLywrp165CdnQ2DwWAx2yAlJQXff/89IiIiMGzYMPTo0YMLGV7XtGlTzJgxAw899BCAG38MX7p06Q9X9T158iQyMjKwatUqtG3bFs7OzsjOzsbTTz9do3VT1V27dg3t27dXGh8AcHV1xauvvgoAWLBgAQDT2TXzOH78+HGUl5eja9euyMrKwujRozWpXW9ul+UHH3wAwLTWSHx8PAYMGIDhw4cjODgYXl5emDp1qiZ165Wvry9CQkIAAK+++irKysqUdWzMdzkx+/nnn5GUlITIyEi8+OKLGDBgANfBuImHhwcWLlyIDh06AICyoG9WVpbyu/JmycnJKCkpQXR0NB588EG4uLggOztbmR1F1cNxlmoSG3Qb5+XlhQcffBCJiYlITU0FYFooqmHDhnjllVewfv16XLt2TZkqvHTpUmzevBmJiYlYsWIFGjdurGH1+nK7LDdt2oTi4mJ0794d0dHRWLJkCYKDg5GQkIAvv/wS9evX13YHdMpoNKJVq1YYMmQIcnNzER0dDQAWq9ceP34cH3zwAY4ePYqdO3di0aJFXLX2OhGxmHJrPsNy9uxZ5TZGN/+R/OOPPyIvLw+//vorEhISsGnTJjRt2rTmCyfF7WYpBQUFwcXFBQcOHMDly5eVx++//36MGDEC27ZtQ2lpKezs7FBcXIz3338fW7ZsUcbxJk2a3Otd0I27zXLnzp0oKSlB//79sWrVKkRERKB169ZISEjAF198gXr16t3rXdCVqs6gMxqNaNu2LcLCwnD48GFs374dgOUZ33379mHy5MlITEzEjh07MHfu3FvOrlu7v8pTRODo6GixTWlpKS5duoROnTrdsv3//d//ITs7G8nJyUhISMDGjRs5lt8FjrNUo2r+sneqKeZFQv5ooazy8nLl32vWrBF/f3+ZP3++xTZRUVHi5+cnFy5cUB67evXqPapW39TKMjU19d4WWktUNc+bPy8uLpaJEydKz5495fjx4yIicujQIRERKSwslNOnT9/LknWrOlmatzl//rw0aNBAfvrpJ+VrGRkZIiKSmZkpmzdvvlflUjUVFBRIaWmp8rn5eItYHt8lS5aIj4+PfP311xbf//e//126d+8uhYWFymOZmZn3sGL9UivLgoKCe19sLVDVPG/+/OrVq9KvXz8ZPny4nD9/XkREGYfy8/OVsd0WVSdP81ielJQkrq6uFn+nZWdni4hpob3Vq1ffy5KtxpUrVyQrK0vJ/+bfpxxnSQs8g26lpk6dilGjRgGAxUJZcv2dVwcHB1RWVmLVqlUYMWIEQkJCsGnTJuVdbcC0uFSjRo3g4eGhPGaLZ3nVzLJVq1Y1W7wOVSVPEcHnn3+ufG40GlGnTh0MHz4cDg4OmDt3Lp544gl06dIFFy9eRL169dC2bdua3xmNVTdL8zY7d+6Ej48POnbsiIyMDAwfPhyDBw/GlStX4O7uzunsOiAiiIyMRP/+/REaGop3330XJSUlsLOzU9YRMI89cXFxiIiIgI+PD2JiYvDDDz8oz1NcXAxXV1eLRSnd3d1rfH+0pHaWtnaW/PeqmqeIYOvWrcrnlZWVqF+/PsaPH49z585h2bJlCA0NRZ8+fZCTk4OGDRvC399fy13TxJ3kaR7Lt23bhsDAQHh5eSEjIwMjRozA5MmTkZ+fj1atWuG5557TbL9qAxHBa6+9hm7duuGpp57CE088gby8PNjb23OcJW1p8rYA3TNHjx6Vvn37SrNmzcTOzk7i4uJE5NZ3X6OiosTNzU369esnZWVlkpKSIi+++KI4ODjIK6+8IuHh4eLq6iofffSRiNjm7TmYpbqqm2doaKhyJsAsOztbfH19xWAwyJAhQ2x2RsKdZHnzLfwiIyMlIiJC5s6dK3Xq1JHevXvLr7/+WqP7QH/u+++/lw4dOkjXrl1lw4YN8vLLL0uHDh0kIiLCYrvly5dL06ZNZcSIESIicuDAARk0aJA0bdpUZs6cKVOnTpVGjRpJbGysBnuhD8xSXdXNc/To0fLbb79ZfC0nJ0c8PDzEYDDIoEGDJC0treZ2QGfuNs/Ro0fLggULlLG8Z8+ecvHixZrdiVpq+/bt0r59e+nWrZt8++238p///Ec6dOggo0aNstiOYwNpgQ26lVm+fLmMHTtWduzYIaNGjRI/P79btomNjRVPT0+Jjo6+5Q/6Dz/8UCZMmCD9+/dX7jttq5iluqqb5++nbB88eFAaN24s7du3l3379tVU2bp0N1kWFRWJt7e3GAwGadeunXz77bc1WTrdRlFRkYSHh8v48eOluLhYREzTLefPny+9evVS7rG9bNkycXFxkRUrVliMPVeuXJHp06fL8OHD5ZFHHrHpsYdZqutO8vz9OL5r1y4xGAzSsWNH2b9/f43vg57cbZ6ZmZlSv359MRgM4uPjw7G8mqZNmybTpk2zuKxg8uTJMmHCBOXzxYsXc2wgTbBBtzJZWVnK9Vx79uyRFi1ayKJFi0REpKysTNnu99fQ2epZ3b/CLNV1p3maFRYW8h3q6+4myytXrsjo0aNl1apVNVMsVUteXp7ExsYq6yuYr0OdM2eOdO7cWfkD3Wg03nJm8mY3/xzYKmapLjXyzM/Pl08++aRG6tW7u80zIyNDevXqJV9++WWN1WxNcnJylHUQREy/Vx9++GGZM2eO7N27V0RM2ZvfKPkjHBvoXjGI8CbWtdW8efOQk5OD9u3b44UXXoCTk5PF1/Py8jB//nysWLECZ8+eRYMGDZTbpZElZqkutfMUEZu9r7CaWdpyjnp1u+NrPpZvvvkmzp07h3Xr1vE4/glmqS618zQajRZ337A1auZpfpw/v1Vzu+yjo6MxadIkZaX2EydOYNy4cZg1axbq1q2rUdVky2x3pKzFTp06BV9fX6xZswaZmZl4++230b9/fyQmJgK4sUBUo0aNMHz4cLi5uWHatGkAwIH8d5iluu5VnraY9b3I0hZz1Ks/O77mhYeMRiOAG8fs0KFDyv2kyRKzVNe9ytNWm/N7kad5W47pf+12v0fNnJ2d8c033+DAgQPYs2cPVq5ciaVLlyItLQ1A1W8nSKQaDc7a011auHChdOvWTbkeJjMzUwICAuTZZ5+Vs2fPisiNxaKuXbsmH3/8sTRo0EB++eUXETFNif2r6Xy2hFmqi3mqh1lat6ocX/OU16ysLGnWrJkcPnxY+X7zNn90ez1bwyzVxTzVxTy1U5XsRW69NDE1NVWcnJxkw4YNNVovkZltvp1Zi1VUVOCXX36Bm5ubMoXV3d0dM2bMQFpaGqKjowHcuCWHs7MzQkND0aNHD4wcORI9evTAwIEDkZ2dreVu6AKzVBfzVA+ztG5VPb7mM47x8fFo2rQpOnfujOTkZPTq1Qv+/v4oKSmx+ctsmKW6mKe6mKd2qpo9cOtMhM2bN6Nbt27o06dPjdZMZMYGvZZxcHBAaWkpSkpKYDQaUVlZCQAYNmwYOnfujMTERBw7dgzAjSk5FRUVyM3NxfHjx9G+fXtkZWXhwQcf1Gwf9IJZqot5qodZWrfqHF8ASE5ORtu2bfH222/D398frVq1QmZmpsU9d20Vs1QX81QX89ROdbNPT0/H+fPnMWXKFPzjH//AiBEj4OrqyuntpA3Nzt1TtZmnN+3Zs0fs7Ozk2LFjInJjmmtCQoK0adNG1q5dq3xPUlKStGvXTjp16qRMfSVmqTbmqR5mad3u5Pj6+fmJwWCQkJAQOXLkSI3XrFfMUl3MU13MUzvVzf7MmTPy9ttvi5eXl4SEhMjx48c1qZvIjA26zqSmpkp6erqI3Hq9kXlgKSkpkZ49e0rfvn1FxPLaGR8fH5k1a5by+eXLl232ntHMUl3MUz3M0rqpcXxnzpwpIqZb5X344Yeybdu2mihdd5ilupinupindtTMvqSkRPbv3y/ff/99TZROdFts0HVk8+bNYjAYZPDgwRaP3zzwVFRUSFZWliQkJIijo6N8+umnyuIiubm54u/vLx9//LGI2Pb9uJmlupinepildVP7+NoyZqku5qku5qkdZk/Wjteg68ihQ4fQpUsXpKWlYcOGDQBgcT/jZcuWoW7duoiLi0PPnj3x3nvv4b333sPEiROxd+9ezJ49G1evXlUWtbDl228wS3UxT/UwS+um9vG1ZcxSXcxTXcxTO8yerJ1BhKsfaM1oNMLOzg7h4eGws7NDcXExTp8+jV27dsHR0RH5+fmYPHky9uzZg3nz5mH06NHKH+UfffQR1q1bh7y8PNjZ2SEqKgrBwcEa75F2mKW6mKd6mKV14/FVD7NUF/NUF/PUDrMnm6H1KXwyMRqN0r9/f/nhhx9k+/bt0qFDB1m6dKmIiOTl5UlSUpIUFBQo25un6Zj/fe7cuRqvWa+YpbqYp3qYpXXj8VUPs1QX81QX89QOsydb4KD1GwS2Zv369WjUqBF8fX3RokULADem5djb26OsrAxdu3bF0KFDER0djcTERHTs2BFTp06Fk5OT8jzme2aa/926desa3xetMUt1MU/1MEvrxuOrHmapLuapLuapHWZPNk3rdwhsxRdffCFubm4SHBwszZo1k+7du8umTZuUr+fm5oq7u7uUlpaKiEhkZKS4uLhInTp15PDhwxpVrU/MUl3MUz3M0rrx+KqHWaqLeaqLeWqH2RNxkbh7rqKiAkuXLsW8efMwd+5c7N27F5s3b4aPjw+ioqJQWloKACgpKUHPnj2xceNG+Pv7IzY2Fn379sX9998Pub5MQGVlpZa7ojlmqS7mqR5mad14fNXDLNXFPNXFPLXD7IluYIN+jxUVFeHSpUsYO3YsXnjhBTg5OSEkJAQdOnRAQUEBysvLAZgGk7Vr12LMmDF49NFHcebMGcyfPx/e3t6IjIwEAGV1SlvFLNXFPNXDLK0bj696mKW6mKe6mKd2mD3RDbwG/R44c+YM2rRpA4PBAFdXVzzzzDPo2LEj7OzslBUoPT09UVRUpFwn4+npiTVr1qB169bKqpKNGjXC4MGDcfXqVeVdQVu7pRKzVBfzVA+ztG48vuphlupinupintph9kR/jLdZU9HatWvx5ptvwtnZGa6urpgwYQLGjx+vfN082ADAyJEj4eTkhJUrV6K8vByOjo4WzyUiMBgMFvd1tCXMUl3MUz3M0rrx+KqHWaqLeaqLeWqH2RPdRo1c6W4Dvv32W/H29pZPPvlE4uLiZOrUqeLo6ChRUVFSUlIiIqZbQxiNRikpKRF/f3+JjY295XkqKipqunTdYZbqYp7qYZbWjcdXPcxSXcxTXcxTO8ye6PbYoN8lo9EoIiIzZ86Uzp07S1lZmfK1V199VYKCgmTjxo0W35ORkSHe3t5y+vRpERE5ffq0REZG1lzROsUs1cU81cMsrRuPr3qYpbqYp7qYp3aYPVHVcZG4u2S+xiU5ORk+Pj5wdHRUFrKYM2cOXFxcsGXLFmRlZSnfEx8fD09PT7Ro0QIRERHo0KEDLly4gPLycuXaGVvELNXFPNXDLK0bj696mKW6mKe6mKd2mD1RNWj21kAt9e2338qUKVNk8eLFkpiYqDweFRUlDRo0UKbcmN8ZjIqKknbt2smePXtExPQO4rBhw+S+++6TJk2aiK+vryQlJdX4fugBs1QX81QPs7RuPL7qYZbqYp7qYp7aYfZEd44NehVdvHhRBg0aJG5ubjJy5Ejp2LGjuLq6KoPOqVOnxMPDQ9555x0RESktLVW+193dXRYvXiwiIkVFRTJo0CBp1aqVfPXVVzW+H3rALNXFPNXDLK0bj696mKW6mKe6mKd2mD3R3WODXgVFRUUyduxYGT58uJw7d055PDg4WMaNGyciIgUFBTJnzhypU6eOpKWliciN62169uwpL730kvJ9hw8frsHq9YVZqot5qodZWjceX/UwS3UxT3UxT+0weyJ18Br0Kqhbty6cnZ0xbtw4tG7dGhUVFQCA0NBQpKSkQETQoEEDPP/883jooYfw7LPP4sKFCzAYDEhLS0NOTg4GDx6sPF/nzp012hPtMUt1MU/1MEvrxuOrHmapLuapLuapHWZPpA7eB72Kbr73ovn+jCNHjkS9evUQFRWlbJeRkYFevXqhoqICQUFBOHDgANq3b4/Vq1ejefPmWpWvK8xSXcxTPczSuvH4qodZqot5qot5aofZE909Nuh3oUePHnj55ZcxduxYGI1GAICdnR3Onj2LI0eOIDExEQEBARg7dqzGleofs1QX81QPs7RuPL7qYZbqYp7qYp7aYfZE1cMG/Q6dO3cOISEh2LFjhzIFp6ysDE5OThpXVvswS3UxT/UwS+vG46seZqku5qku5qkdZk9UfbwGvZrM72fs27cP9evXVwabmTNnIiIiAjk5OVqWV6swS3UxT/UwS+vG46seZqku5qku5qkdZk905xy0LqC2MRgMAIBDhw4hLCwM3333HSZMmIDi4mLExsbCzc1N4wprD2apLuapHmZp3Xh81cMs1cU81cU8tcPsie5CzS0Ybz1KSkqkTZs2YjAYxNnZWf7xj39oXVKtxSzVxTzVwyytG4+vepilupinupindpg90Z3hNeh36PHHH0fbtm2xaNEiuLi4aF1OrcYs1cU81cMsrRuPr3qYpbqYp7qYp3aYPVH1sUG/Q5WVlbC3t9e6DKvALNXFPNXDLK0bj696mKW6mKe6mKd2mD1R9bFBJyIiIiIiItIBruJOREREREREpANs0ImIiIiIiIh0gA06ERERERERkQ6wQSciIiIiIiLSATboRERERERERDrABp2IiIiIiIhIB9igExEREREREekAG3QiIqJaaty4cTAYDDAYDHB0dETz5s3x+OOPY8WKFTAajVV+npiYGDRq1OjeFUpERERVwgadiIioFhswYAAyMzORmpqKnTt34rHHHkNERAQGDRqEiooKrcsjIiKiamCDTkREVIs5OzvD3d0dHh4eeOihh/C3v/0NW7Zswc6dOxETEwMAWLRoETp27Ih69erB09MTr776KgoLCwEACQkJeOGFF5Cfn6+cjX///fcBAKWlpZg2bRo8PDxQr149dOnSBQkJCdrsKBERkQ1gg05ERGRlevfujYCAAGzcuBEAYGdnh2XLluGXX37B559/jt27d2P69OkAgJCQECxZsgQNGzZEZmYmMjMzMW3aNABAeHg4Dh48iK+++go//fQThg0bhgEDBuDMmTOa7RsREZE1M4iIaF0EERERVd+4ceOQl5eHzZs33/K1ESNG4KeffkJycvItX1u/fj0mTZqEy5cvAzBdg/76668jLy9P2SYtLQ0PPPAA0tLS0LJlS+Xxvn37Ijg4GHPnzlV9f4iIiGydg9YFEBERkfpEBAaDAQAQHx+PefPm4eTJkygoKEBFRQWuXbuG4uJi1K1b9w+//8SJE6isrES7du0sHi8tLUWTJk3uef1ERES2iA06ERGRFUpJSUHr1q2RmpqKQYMG4ZVXXsEHH3yAxo0bY9++fRg/fjzKysr+tEEvLCyEvb09jhw5Ant7e4uv1a9fvyZ2gYiIyOawQSciIrIyu3fvxokTJxAZGYkjR47AaDRi4cKFsLMzLT2zdu1ai+2dnJxQWVlp8VhgYCAqKyuRk5ODRx55pMZqJyIismVs0ImIiGqx0tJSZGVlobKyEtnZ2YiLi8O8efMwaNAgjBkzBj///DPKy8vx0Ucf4cknn8T+/fvx2WefWTyHt7c3CgsLsWvXLgQEBKBu3bpo164dRo4ciTFjxmDhwoUIDAzEpUuXsGvXLvj7+2PgwIEa7TEREZH14iruREREtVhcXBxatGgBb29vDBgwAHv27MGyZcuwZcsW2NvbIyAgAIsWLcL8+fPh5+eHVatWYd68eRbPERISgkmTJmH48OFo1qwZFixYAABYuXIlxowZgzfeeAMPPvggBg8ejKSkJHh5eWmxq0RERFaPq7gTERERERER6QDPoBMRERERERHpABt0IiIiIiIiIh1gg05ERERERESkA2zQiYiIiIiIiHSADToRERERERGRDrBBJyIiIiIiItIBNuhEREREREREOsAGnYiIiIiIiEgH2KATERERERER6QAbdCIiIiIiIiIdYINOREREREREpANs0ImIiIiIiIh0gA06ERERERERkQ6wQSciIiIiIiLSATboRERERERERDrABp2IiIiIiIhIB9igExEREREREekAG3QiIiIiIiIiHWCDTkRERERERKQDbNCJiIiIiIiIdIANOhEREREREZEO/H8SLfcXJN0ADwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAK8CAYAAABV1dcbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADYJ0lEQVR4nOzdd3hUBdrG4WdmMumNdEoIJNRQBAEhIEhHQERFRSyIulasuOqHriuKbV27WFBRLBRF0VVEpUiR3mvoPZCekF4mM+f7IxCJoSQhZBLyu68rV5JT3zMcIzx55z0mwzAMAQAAAAAAAABqHbOzCwAAAAAAAAAAVA4BLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAAAAAADUUgS8AAAAAAAAAFBLEfACAAAAAAAAQC1FwAsAAAAAAAAAtRQBLwAAAFBLjRkzRt7e3k47f+/evdW7d2+nnR8AAAAEvAAAAGc1depUmUwmmUwmLVu2rMx6wzAUHh4uk8mkq666qtS6k/ud7uO+++7T4sWLz7rNqR+nuvHGG2UymfTUU09d0Gsvr969e5frGiZMmCBJatKkyRm3ufLKK0sde9myZRo8eLAaNmwod3d3NW7cWMOGDdP06dNLbWcymfTggw+Wu+YPPvhAJpNJXbt2rdC1OhwOffnll+ratasCAgLk4+OjFi1aaPTo0Vq1alXJdrGxsZowYYIOHjxYoeNXpwkTJpR67T09PRUdHa1//etfyszMdHZ5ZdhsNrVr105RUVHKy8srs/7gwYPy9PTUDTfcUO7/rhYvXqyDBw+WWma1WhUUFKTu3bvr6aef1uHDh51wtQAAAOXn4uwCAAAAagN3d3dNnz5dl19+eanlS5YsUVxcnNzc3E6734ABAzR69Ogyy1u0aKGIiAh99dVXpZaPHz9e3t7eeuaZZ057vMzMTP38889q0qSJZsyYoVdffbVMAFzdnnnmGf3jH/8o+X7t2rV699139fTTT6t169Yly9u3b1/ydYcOHfT444+XOVaDBg1Kvp41a5ZGjhypDh066JFHHlG9evV04MABLV26VJ988oluvvnmStc8bdo0NWnSRGvWrNHevXvVrFmzcu338MMP6/3339fw4cN1yy23yMXFRbt27dKvv/6qyMhIdevWTVJxwPv888+rd+/eatKkSaXrrA4ffvihvL29lZ2drXnz5umll17SH3/8oeXLl5/z3po3b141VSlZrVZ9/PHH6tGjhyZOnKiXX3651PoHH3xQrq6uevfddzV8+PBS67788kvNnz+/zH9vrVu3LgmLR40apSFDhsjhcCg9PV1r167V22+/rXfeeUdTpkzRTTfddGEvEAAAoLIMAAAAnNHnn39uSDKuu+46IygoyLDZbKXW33333UanTp2MiIgIY+jQoaXWSTLGjh1bofO1adPGuOKKK864/rPPPjOsVqvxxx9/GJKMxYsXV+j41WHWrFmGJGPRokWnXX+61+p0oqOjjTZt2hgFBQVl1iUmJpb6viKv9f79+w1JxuzZs43g4GBjwoQJ5dovISHBMJlMxt13311mncPhKFXTuV6DqnL77bcbXl5eldr3ueeeMyQZycnJpZZfd911hiRjxYoVZ9w3JyenUuesCvfff79htVqNbdu2lSz77rvvDEnGBx98cNp9xo4da5zpnz4HDhwwJBn//e9/y6w7ePCg0aJFC8PV1dXYtGlT1VwAAABAFWNEAwAAQDmMGjVKqampmj9/fsmywsJCfffdd+fVSVpR06ZN04ABA9SnTx+1bt1a06ZNO+c+NptNAQEBuuOOO8qsy8zMlLu7u/75z3+WLHvvvffUpk0beXp6ql69eurcuXOZkQjVYd++ferSpYtcXV3LrAsJCan0cadNm6Z69epp6NChuv7668v1GkrSgQMHZBiGevToUWadyWQqqWnq1Km64YYbJEl9+vQpNQ7gpA8++EBt2rSRm5ubGjRooLFjx+r48eNljrt69WoNGTJE9erVk5eXl9q3b6933nnnrHVu2rRJwcHB6t27t7Kzs8t1bafq27dvyfVKxSM42rZtq/Xr16tXr17y9PTU008/XbLu7zN48/PzNWHCBLVo0ULu7u6qX7++rrvuOu3bt69kG4fDobfffltt2rSRu7u7QkNDde+99yo9Pf2c9b3yyisKCgrSfffdJ8MwlJ2drUcffVQxMTG67777Kny9ZxMREaGpU6eqsLBQr732WpUeGwAAoKoQ8AIAAJRDkyZNFBMToxkzZpQs+/XXX5WRkXHWt27n5+crJSWlzEdhYWGFazh27JgWLVqkUaNGSSoOnb/77rtzHstqteraa6/Vjz/+WGbbH3/8UQUFBSXX8Mknn+jhhx9WdHS03n77bT3//PPq0KGDVq9eXeF6z8Zms532dTl1tmpERIQWLlyouLi4Kj33tGnTdN1118nV1VWjRo3Snj17tHbt2nPuFxERIal4dERubu4Zt+vVq5cefvhhSdLTTz+tr776Sl999VXJuIoJEyZo7NixatCggd544w2NGDFCkydP1sCBA2Wz2UqOM3/+fPXq1UuxsbF65JFH9MYbb6hPnz6aM2fOGc+9du1a9e3bVx07dtSvv/5aqQewnQxiAwMDS5alpqZq8ODB6tChg95++2316dPntPva7XZdddVVev7559WpUye98cYbeuSRR5SRkaFt27aVbHfvvffqiSeeUI8ePfTOO+/ojjvu0LRp0zRo0KBSr8Hp+Pn56d1339WyZcv06aef6tlnn1ViYqI+/vjjCzKuJCYmRlFRUaV+uQMAAFCjOLuFGAAAoCY7OaJh7dq1xqRJkwwfHx8jNzfXMAzDuOGGG4w+ffoYhnH6sQOSzvgxY8aM057vbCMaXn/9dcPDw8PIzMw0DMMwdu/ebUgyfvjhh3Nex++//25IMn7++edSy4cMGWJERkaWfD98+HCjTZs25zze2ZRnRMOZXpdXXnmlZLspU6YYkgxXV1ejT58+xrPPPmv8+eefht1uL3NMlXNEw7p16wxJxvz58w3DKB6t0KhRI+ORRx4p17WNHj3akGTUq1fPuPbaa43XX3/d2LFjR7lfg6SkJMPV1dUYOHBgqeuYNGmSIcn47LPPDMMwjKKiIqNp06ZGRESEkZ6eXuoYDoej5OtTRzQsW7bM8PX1NYYOHWrk5+ef81pOjmjYtWuXkZycbBw4cMCYPHmy4ebmZoSGhpaMYbjiiisMScZHH31U5hhXXHFFqfv1s88+MyQZb775ZpltT9b9559/GpKMadOmlVr/22+/nXb5mVx11VWGn5+fYbFYjPHjx59128qOaDhp+PDhhiQjIyOjXLUBAABUJzp4AQAAyunGG29UXl6e5syZo6ysLM2ZM+ec4xmGDx+u+fPnl/k4Uwfk2UybNk1Dhw6Vj4+PJKl58+bq1KlTuUYM9O3bV0FBQfrmm29KlqWnp2v+/PkaOXJkyTJ/f3/FxcWVq6P1fHTt2vW0r8vJ7mRJuvPOO/Xbb7+pd+/eWrZsmSZOnKiePXuqefPmWrFiRaXOO23aNIWGhpa8/iaTSSNHjtTMmTNlt9vPuf/nn3+uSZMmqWnTpvrhhx/0z3/+U61bt1a/fv109OjRc+6/YMECFRYW6tFHH5XZ/Ndfxe+++275+vrql19+kSRt3LhRBw4c0KOPPip/f/9Sxzhdl+qiRYs0aNAg9evXT7Nnzz7jQ/9Op2XLlgoODlbTpk117733qlmzZvrll1/k6elZso2bm9tpR3z83ffff6+goCA99NBDZdadrHvWrFny8/PTgAEDSnVvd+rUSd7e3lq0aFG56n7//fdVWFio8PBwPfvss+W82so52QmdlZV1Qc8DAABQGS7OLgAAAKC2CA4OVv/+/TV9+nTl5ubKbrfr+uuvP+s+jRo1Uv/+/c/73Dt27NDGjRs1evRo7d27t2R579699f777yszM1O+vr5n3N/FxUUjRozQ9OnTVVBQIDc3N82ePVs2m61UwPvUU09pwYIFuuyyy9SsWTMNHDhQN99882nnzp6PoKCgcr0ugwYN0qBBg5Sbm6v169frm2++0UcffaSrrrpKO3furNAsXrvdrpkzZ6pPnz4l82Wl4rD5jTfe0MKFCzVw4MCzHsNsNmvs2LEaO3asUlNTtXz5cn300Uf69ddfddNNN+nPP/886/6HDh2SVByqnsrV1VWRkZEl60+OSWjbtu05rys/P19Dhw5Vp06d9O2338rFpWJ/xf/+++/l6+srq9WqRo0aKSoqqsw2DRs2PO0s5L/bt2+fWrZsedYa9uzZo4yMjDP+2SUlJZWr7saNGyskJERt2rSRh4dHufaprJOzjE/+cgUAAKAmIeAFAACogJtvvll33323EhISNHjw4DLdlRfK119/LUl67LHH9Nhjj5VZ//3335+zw/Kmm27S5MmT9euvv+qaa67Rt99+q1atWumSSy4p2aZ169batWuX5syZo99++03ff/+9PvjgA/373//W888/X7UXVQGenp7q2bOnevbsqaCgID3//PP69ddfdfvtt5f7GH/88Yfi4+M1c+ZMzZw5s8z6adOmnTPgPVVgYKCuvvpqXX311erdu7eWLFmiQ4cOlczqrS5ubm4aMmSI/ve//+m3337TVVddVaH9e/XqpaCgoLNuU5UBqsPhUEhIyBk7z4ODg6vsXFVl27ZtCgkJOesvUQAAAJyFgBcAAKACrr32Wt17771atWpVqXEHF5JhGJo+fbr69OmjBx54oMz6iRMnatq0aecMeHv16qX69evrm2++0eWXX64//vhDzzzzTJntvLy8NHLkSI0cOVKFhYW67rrr9NJLL2n8+PFyd3evsuuqrM6dO0uS4uPjK7TftGnTFBISovfff7/MutmzZ+uHH37QRx99VKkws3PnzlqyZIni4+MVERFxxod9nQx/d+3apcjIyJLlhYWFOnDgQElX88ku2m3btp2z09lkMmnatGkaPny4brjhBv3666/q3bt3ha+hKkRFRWn16tWy2WyyWq1n3GbBggXq0aPHBe+8rQorV67Uvn37dOuttzq7FAAAgNNiBi8AAEAFeHt768MPP9SECRM0bNiwajnn8uXLdfDgQd1xxx26/vrry3yMHDlSixYt0rFjx856HLPZrOuvv14///yzvvrqKxUVFZUazyBJqamppb53dXVVdHS0DMOQzWar8ms7m4ULF552+dy5cyWVHXNwNnl5eZo9e7auuuqq076GDz74oLKysvTTTz+d8RgJCQmKjY0ts7ywsFALFy6U2WxWs2bNJBWH5JJ0/PjxUtv2799frq6uevfdd2UYRsnyKVOmKCMjQ0OHDpUkXXrppWratKnefvvtMsc4db+TXF1dNXv2bHXp0kXDhg3TmjVryvW6VLURI0YoJSVFkyZNKrPuZN033nij7Ha7Jk6cWGaboqKiMtfrTIcOHdKYMWPk6uqqJ554wtnlAAAAnBYdvAAAABVUkbEAu3fvLhmvcKrQ0FANGDCgXMeYNm2aLBZLSfj3d1dffbWeeeYZzZw5U+PGjTvrsUaOHKn33ntPzz33nNq1a6fWrVuXWj9w4ECFhYWpR48eCg0N1Y4dOzRp0qRSD3erCkePHj3t6+Lt7a1rrrlGUvED6po2baphw4YpKipKOTk5WrBggX7++eeSIPNU69at04svvljmmL1799bRo0eVlZWlq6+++rT1dOvWTcHBwZo2bVqZ0PukuLg4XXbZZerbt6/69eunsLAwJSUlacaMGdq8ebMeffTRklEHHTp0kMVi0X/+8x9lZGTIzc1Nffv2VUhIiMaPH6/nn39eV155pa6++mrt2rVLH3zwgbp06VLSJWo2m/Xhhx9q2LBh6tChg+644w7Vr19fO3fu1Pbt2/X777+Xqc/Dw0Nz5sxR3759NXjwYC1ZsqRcM3yr0ujRo/Xll19q3LhxWrNmjXr27Fny5/bAAw9o+PDhuuKKK3TvvffqlVde0aZNmzRw4EBZrVbt2bNHs2bN0jvvvHPO2dYXwoYNG/T111/L4XDo+PHjWrt2rb7//nuZTCZ99dVXat++fbXXBAAAUC4GAAAAzujzzz83JBlr164963YRERHG0KFDSy2TdMaPK6644rTHadOmTal1hYWFRmBgoNGzZ8+znr9p06ZGx44dz3k9DofDCA8PNyQZL774Ypn1kydPNnr16mUEBgYabm5uRlRUlPHEE08YGRkZ5zz2SbNmzTIkGYsWLTrt+oiIiDO+LhERESXbzZgxw7jpppuMqKgow8PDw3B3dzeio6ONZ555xsjMzCx1zLO91hMnTjSGDRtmuLu7Gzk5OWese8yYMYbVajVSUlJOuz4zM9N45513jEGDBhmNGjUyrFar4ePjY8TExBiffPKJ4XA4Sm3/ySefGJGRkYbFYinzekyaNMlo1aqVYbVajdDQUOP+++830tPTy5xz2bJlxoABAwwfHx/Dy8vLaN++vfHee++VrL/99tsNLy+vUvukpKQY0dHRRlhYmLFnz54zXu9zzz1nSDKSk5PPuI1hGMYVV1xhtGnT5ozr/n4v5+bmGs8884zRtGlTw2q1GmFhYcb1119v7Nu3r9R2H3/8sdGpUyfDw8PD8PHxMdq1a2c8+eSTxrFjx85az6lO99/d6YwdO9Y40z99Dhw4UOp+cXFxMQICAoyuXbsa48ePNw4dOlTuegAAAJzBZBineY8XAAAAAAAAAKDGYwYvAAAAAAAAANRSBLwAAAAAAAAAUEsR8AIAAAAAAABALUXACwAAAAAAAAC1FAEvAAAAAAAAANRSBLwAAAAAAAAAUEu5OLsAoDIcDoeOHTsmHx8fmUwmZ5cDAAAAAABQJQzDUFZWlho0aCCzmd5MnBsBL2qlY8eOKTw83NllAAAAAAAAXBBHjhxRo0aNnF0GagECXtRKPj4+kop/2Pn6+jq5mtJsNpvmzZungQMHymq1Orsc1HDcL6jpuEdREdwvqGrcU6gI7hfUdNyjKK/MzEyFh4eXZB/AuRDwolY6OZbB19e3Rga8np6e8vX15X/aOCfuF9R03KOoCO4XVDXuKVQE9wtqOu5RVBQjKVFeDPIAAAAAAAAAgFqKgBcAAAAAAAAAaikCXgAAAAAAAACopZjBi4ua3W6XzWar1nPabDa5uLgoPz9fdru9Ws/tLFarVRaLxdllAAAAAAAA1DkEvLgoGYahhIQEHT9+3CnnDgsL05EjR+rUQHR/f3+FhYXVqWsGAAAAAABwNgJeXJROhrshISHy9PSs1tDR4XAoOztb3t7eMpsv/ikohmEoNzdXSUlJkqT69es7uSIAAAAAAIC6g4AXFx273V4S7gYGBlb7+R0OhwoLC+Xu7l4nAl5J8vDwkCQlJSUpJCSEcQ0AAAAAAADVpG6kT6hTTs7c9fT0dHIldcvJ17u6Zx4DAAAAAADUZQS8uGgxC7Z68XoDAAAAAABUPwJeAAAAAAAAAKilCHgBAAAAAAAAoJYi4AVqkDFjxshkMum+++4rs27s2LEymUwaM2ZMqW3//nHllVdq8eLFp1136sfixYslSXFxcXJ1dVXbtm2r8UoBAAAAAABQFVycXQCA0sLDwzVz5ky99dZb8vDwkCTl5+dr+vTpaty4caltr7zySn3++eellrm5ucnLy0vx8fElyx555BFlZmaW2jYgIECSNHXqVN14441aunSpVq9era5du16oSwMAAAAAAEAVI+AFaphLL71U+/bt0+zZs3XLLbdIkmbPnq3GjRuradOmpbZ1c3NTWFjYaY9z6nIPDw8VFBSU2dYwDH3++ef64IMP1KhRI02ZMoWAFwAAAAAAoBZhRAPqBMMwlFtYVG0feYV25RYWyTCMStV75513luq2/eyzz3THHXdU1ctRYtGiRcrNzVX//v116623aubMmcrJyany8wAAAAAAAODCoIMXdUKeza7of/9e7eeNfWGQPF0r/p/ZrbfeqvHjx+vQoUOSpOXLl2vmzJklc3NPmjNnjry9vUste/rpp/X000+X6zxTpkzRTTfdJIvForZt2yoyMlKzZs0qmfMLAAAAAACAmo2AF6iBgoODNXToUE2dOlWGYWjo0KEKCgoqs12fPn304Ycfllp2crbuuRw/flyzZ8/WsmXLSpbdeuutmjJlCgEvAAAAAABALUHAizrBw2pR7AuDquVcDodDWZlZ8vH1kYfVUunj3HnnnXrwwQclSe+///5pt/Hy8lKzZs0qdfzp06crPz+/1MxdwzDkcDi0e/dutWjRolLHBQAAAAAAQPUh4EWdYDKZKjUqoTIcDoeKXC3ydHWRyWSq9HGuvPJKFRYWymQyadCgqg+np0yZoscff7xMt+4DDzygzz77TK+++mqVnxMAAAAAAABVi4AXqKEsFot27NhR8vXpFBQUKCEhodQyFxeX045zONWmTZu0YcMGTZs2Ta1atSq1btSoUXrhhRf04osvysWFHxEAAAAAAAA1mdnZBQA4M19fX/n6+p5x/W+//ab69euX+rj88svPedwpU6YoOjq6TLgrSddee62SkpI0d+7c86odAAAAAFA7GIah2Rvi9N36OGXl25xdDoAKoj0PqEGmTp161vU//vhjqW3Ptf2Zjvvee++dcduwsDDZ7fZyHRcAAAAAUPst3ZOicd9uliQ984NZA6JDdd2lDdWzebCsFnoDgZqOgBcAAAAAAKAO+2TpfkmSj5uLsgqKNGdLvOZsiVegl6uGXdJAIy5tpLYNfc/rOTMALhwCXgAAAAAAgDpq+7EMLdubIovZpF8f7am0nELN3nBUP28+ptScQk1dcVBTVxxUsxBvXduxoa7p2FAN/T2cXTaAUxDwAgAAAAAA1FFT/jwgSRrSrr4a1fNUo3qeat/IX88Mba0/9yRr9oajmh+bqL1J2frv77v03993qVtkgK7r2EiD24XJx93q5CsAQMALAAAAAABQB8Vn5OmnzcckSXf3bFpqndViVt9WoerbKlSZ+Tb9tjVBszfGadX+tJKPZ/+3jXm9QA1AwAsAAAAAAFAHTV1+UEUOQ12bBqh9I/8zbufrbtWNXcJ1Y5dwHT2epx83HtXsDXHal5zDvF6gBiDgBQAAAAAAqGOy8m2avvqwJOmeXpHl3q+hv4fG9mmmB3pHaevRDOb1AjUAAS8AAAAAAEAd883aI8oqKFJUsJf6tAyp8P4mk0ntG/kzrxeoAQh4AQAAAAAA6pAiu0OfLz8oSfpHz0iZzec3ToF5vYBzEfACAAAAAADUIXO3Jejo8TwFebvq2o4Nq/TYp5vX+8PGo9qblF1mXu91lzZUu4Z+VTavNzmrQN+tj1NUsJcGtgmrkmMCtQG/LgFqAJPJdNaPCRMm6ODBg2dcv2rVKkmS3W7Xq6++qlatWsnDw0MBAQHq2rWrPv3005JzjRkzRtdcc805a4qLi5Orq6vatm17oS4bAAAAAFDNDMPQx0v3SZJGxzSRu9Vywc51cl7v/Md66ecHL9cdPZooyNu1ZF7v1ZOWq/+bS/T2gt3amZApwzAqfA67w9DiXUm676v1inllof7z205NXrr/AlwNUHPRwQvUAPHx8SVff/PNN/r3v/+tXbt2lSzz9vZWSkqKJGnBggVq06ZNqf0DAwMlSc8//7wmT56sSZMmqXPnzsrMzNS6deuUnp5e4ZqmTp2qG2+8UUuXLtXq1avVtWvXylwaAAAAAKAGWbU/TduOZsrdatat3SKq5Zwmk0ntGvmpXSM/PT2k9Lzefck5envBHr29YI8iAj01qE2YBrUJVcfwemcdHRGfkadv18bp23VHdPR4Xsnyjo39NbJzuAzDqLLOYKCmI+AFaoCwsL/eOuLnV/z2lFOXSSoJeAMDA8usO+mnn37SAw88oBtuuKFk2SWXXFLhegzD0Oeff64PPvhAjRo10pQpUwh4AQAAAOAi8Omfxd2t13dqpAAv12o//9/n9f6+LUG/b0/Q0j0pOpSaq4+X7tfHS/cr2MdNA6JDNahNmGIiA+XqYlaR3aFFu5I1c81hLdqVJMeJhl8/D6uu7dhQN10WrlZhvtV+TYCzEfACF5GwsDD98ccfeuCBBxQcHFzp4yxatEi5ubnq37+/GjZsqO7du+utt96Sl5dXFVYLAAAAAKhOe5OytHBnkkwm6a7LI51djnzdrbqhc7hu6ByunIIiLdmdrN+3J+iPHUlKzirQ9NWHNX31Yfm4u6h7VKA2HTmuxMyCkv0vaxqgUZeFa3Db+hd01ARQ0xHwom4wDMmWWz3ncjiKz1Vokdy8pSp+S0j37t1lNpcen52dnS1JevPNN3X99dcrLCxMbdq0Uffu3TV8+HANHjy4QueYMmWKbrrpJlksFrVt21aRkZGaNWuWxowZU1WXAQAAAACoZp/+eUCSNKB1qJoG1awGHi83Fw1pV19D2tVXYZFDK/al6PftiZofm6iU7AL9vj1RkhTg5arrOzXSyC7higr2dnLVQM1AwIu6wZYrvdygWk5lluR/8punj0muVfs/zW+++UatW7c+7bro6Ght27ZN69ev1/Lly7V06VINGzZMY8aMKfWgtbM5fvy4Zs+erWXLlpUsu/XWWzVlyhQCXgAAAACopZKzCjR741FJ0j29nN+9ezauLmb1bhmi3i1D9OI1bbXxcLpW7ktVZLC3BkSHytXFfO6DAHUIAS9Qy4SHh6tZs2ZnXG82m9WlSxd16dJFjz76qL7++mvddttteuaZZ9S0adNzHn/69OnKz88vNXPXMAw5HA7t3r1bLVq0qJLrAAAAAABUn69WHlRhkUMdG/urU0Q9Z5dTbhazSZ2bBKhzkwBnlwLUWAS8qBusnsXdtNXA4XAoMytLvj4+Mls9q+WcZxMdHS1JysnJKdf2U6ZM0eOPP16mW/eBBx7QZ599pldffbWqSwQAAAAAXEB5hXZ9teqQJOnunpEyVfEoQQDORcCLusFkqvJRCWfkcEhWe/H5LsD/NFNTU5WQkFBqmb+/v9zd3XX99derR48e6t69u8LCwnTgwAGNHz9eLVq0UKtWrUq2z8jI0KZNm0odIzAwUKmpqdqwYYOmTZtWantJGjVqlF544QW9+OKLcnHhRwcAAAAA1BbfbYhTeq5N4QEeGtQmzNnlAKhipDRALdO/f/8yy2bMmKGbbrpJgwYN0owZM/TKK68oIyNDYWFh6tu3ryZMmFAqlF28eLE6duxY6hh33XWXPDw8FB0dXSbclaRrr71WDz74oObOnaurr7666i8MAACgjsvMt8nDapHVwmxJAFXH7jA05c/9kqR/XB4pi5nuXeBiQ8AL1DBjxow57cPMmjRpIsMwzrrv3Xffrbvvvvus20ydOlVTp06tcF1hYWGy2+0V3g8AAADnlpSVryHvLJNkaPJtndQpglmTAKrG/NhEHUzNlZ+HVTd0buTscgBcAPxqGAAAAACc7IsVB5WSXaCU7EKN+ni1fjzxpHsAOB82u0OTl+6TJN3arbE8XenzAy5GBLwAAAAA4ETZBUX6amXxw49a1/dVod2hR7/ZpDfm7ZLDcfZ3cAHA6RiGoT92JurKt5dq4+HjcrWYdXtME2eXBeAC4Vc3AAAAAOBEM9ccVmZ+kSKDvPTzgz30xvzd+nDxPr33x17tS87WGzd0kIerxdllohbJLSzSxsPHtXp/qo6k56lzk3rq2ypE9f08nF0aqsGO+Ey99MsOLdubIkkK8HLVC8PbKMTX3cmVAbhQCHgBAAAAwElsdoemLDsgSbqnV6RcLGY9dWUrRQZ56ekftmru1gTFpa/UJ6M7K5RwBmeQXVCkdQfTtPpAmlbvT9WWuAwVndL9/cOJkR+t6/uqb6tg9W0Vog7h9XjY1kUmKStfb87brW/XHZHDkFwtZt1xeRON7dNMvu5WZ5cH4AIi4AUAAAAAJ/l58zHFZ+Qr2MdN13RsWLL8hs7hahzgqfu+Xq8tcRkaPmm5Pr29s9o29HNitagpcgqKtGp/akmgu+1Ypux/G+dR389dXZsGqHGAp1bsS9WGw+naEZ+pHfGZen/RPtXztKp3yxD1bRWiXi2C5edBAFhb5dvsmrLsgD5YtFc5hcUPxh7arr6eurKVGgd6Ork6ANWBgBcXLcNgXll14vUGAACoGMMwNHnJfknSmO5N5G4tPYaha2SgfhzbQ3d9sU57k7J1w0cr9dbIDrqybZgzyoWTHTuep4U7ErVgR5JW7ktVod1Ran14gIe6Ng1U16YB6hYZqEb1PGQyFXfojpOUnlOoJbuTtXBnkpbsSlJ6rk0/bDyqHzYelcVsUueI4jEO/VqHKCrYu2Rf1FyGYeinzcf0n1936lhGviTpkkZ+evaqaHVuEuDk6gBUJwJeXHSs1uLfPOfm5srDgxlT1SU3N1fSX68/AAAAzm7x7mTtSsySl6tFt3aNOO02EYFemv1Ad42dtkF/7knRfV+v15NXttT9V0QRwF3kHA5DW49mlIS6sfGZpdY3DvBUj2aB6to0UJc1DVAD/7P/26eel6uu6dhQ13RsqCK7Q+sPpeuPXUn6Y0eS9iRlF3cDH0jTK7/uVHiAh/q2DFHf1qHq2jSgzC8f4Hw5BUW6Y+parTmQJklq4Oeupwa30rD2DWRm9AZQ5xDw4qJjsVjk7++vpKQkSZKnp2e1/uXX4XCosLBQ+fn5MpvN1XZeZzEMQ7m5uUpKSpK/v78sFv7yBwAAUB6Tl+yTJI26rLH8PM/8S3Jfd6s+H9NFL8yJ1ZcrD+m133bpYEqOXrmuPTNULzIOh6HFu5M0PzZRC3ckKSmroGSd2SRd2rie+keHqv95dtm6WMzqGhmorpGBGj+4tY6k5eqPnUn6Y2eSVu5P1ZG0PH2x8pC+WHlIHlaLLm8epL6tisc5MAva+QzD0FPfb9GaA2nydLXogd5RuuvySB7GCNRhBLy4KIWFFb9t7WTIW50Mw1BeXp48PDzqVFeFv79/yesOAACAs9t05LhW7U+Ti9mkOy9ves7tXSxmvTC8rZqFeOv5n2P17bo4FTkM/ff6Swh5LxKGYeif323W7A1HS5Z5uVrUq0Ww+rcOVZ9WIQrwcr0g5w4P8NTt3Zvo9u5NlFtYpOV7U08EvolKzCzQ/NhEzY9NlCS1aeCrfq1C1KdViC5p5E+3qBN8+ucBzdkSLxezSV/ceZm6MI4BqPMIeHFRMplMql+/vkJCQmSz2ar13DabTUuXLlWvXr3qzLgCq9VK5y4AAEAFfLy0uHv36g4NzvnW+lONjmmiQC83PTxzo2ZvOCqTTHrtejp5LwafLT+o2RuK5+HefFlj9Y8OVbfIALm5VO/fsz1dXTQgOlQDokNlGG0VG5+pP3Yk6Y9dSdp05Li2H8vU9mOZevePvQr0ci15UFvPFkHyda8b//5xphV7U/TKrzskSf8eFk24C0ASAS8uchaLpdqDR4vFoqKiIrm7u9eZgBcAAADldzAlR79uS5Ak3dMrssL7D21fX4YMPTJzk77fECezSfrPiPZ0UtZiK/al6OW5xaHdM0Nal6uruzqYTCa1aeCnNg389FC/5krJLtCSXcn6Y2eSlu5OVmpOob7fEKfvN8TJxWxSlyYB6te6uLs3MsirTr2jsTocPZ6nB2dslMOQrru0oW7rdvrZ3QDqHgJeAAAAAKhGn/y5X4Yh9WkZrFZhvpU6xlXtG8gwpEe/2aRZ6+MkEfLWVnHpuXpw+kbZHYau7dhQd/Ro4uySzijI200jOjXSiE6NZLM7tPZgmhbtTNLCnUnan5yjlftTtXJ/ql78ZYdahHrr3VEdK32Po7R8m133f71eaTmFatvQVy9f244AHUCJi/8JUKhSEyZMkMlkKvXRqlWrkvX5+fkaO3asAgMD5e3trREjRigxMbHUMQ4fPqyhQ4fK09NTISEheuKJJ1RUVFTdlwIAAIAa7oVfdurFjRY9MH2T3pq/W79vT9CRtFwZhuHs0iotJbugJJC994qo8zrWsEsa6O2RHWQ2SbPWx+n/Zm+Rw1F7X5u6KN9m132nhHavXFd7QjurxazuUUF6Zmi0/ni8txb/s7f+fVW0ejYPktVi0u7EbN308Sptjctwdqm1nmEYevbHbdoSl6F6nlZ9dGsnuVsZkQfgL3TwosLatGmjBQsWlHzv4vLXbfTYY4/pl19+0axZs+Tn56cHH3xQ1113nZYvXy5JstvtGjp0qMLCwrRixQrFx8dr9OjRslqtevnll6v9WgAAAFAzLYhN1FerDksyaf6OJM3f8dfDc33cXNSqvo+i6/uq9YmPlmE+tSLw+HLFQRUWOXRJuL+6Nj3/2ZnDLmkgQ9KjMzfq23VxMsmkV65rRydvLWAYhsbP3qptRzMV4OWqybd1rhX38Jk0CfLSnZc31Z2XN1V6TqHumLpWm44c182frNLUO7uoUwSzYitr2urDmrW+eBzLe6MuVaN6ns4uCUANQ8CLCnNxcVFYWFiZ5RkZGZoyZYqmT5+uvn37SpI+//xztW7dWqtWrVK3bt00b948xcbGasGCBQoNDVWHDh00ceJEPfXUU5owYYJcXS/MU2EBAABQe+QV2jXh5+2SpK7BDvXr3Fq7EnO0Iz5Te5KylFVQpLUH07X2YHrJPmaTFBnsfSLwLQ5/o+v7KtjHrcZ0ROYUFOmLlYckSff1iqyyuq6+pIEMw9Bj32zSN+uOyGSSXr6WkLem+3z5Qf2wsfihapNu7qiGFXjYXk1Xz8tVX/+jq+6culZrDqTptilr9OntndU9KsjZpdU66w+l6/kTPw+fvLKVLm/OawigLAJeVNiePXvUoEEDubu7KyYmRq+88ooaN26s9evXy2azqX///iXbtmrVSo0bN9bKlSvVrVs3rVy5Uu3atVNoaGjJNoMGDdL999+v7du3q2PHjqc9Z0FBgQoKCkq+z8zMlCTZbDbZbLYLdKWVc7KemlYXaibuF9R03KOoCO4XVJV3F+5RXHqewnzdNKJpjq7q0qDk4bU2u0P7k3O0IyFLOxOytCMhSzvis5Sea9PepGztTcrWz5v/OlaAl1WtwnzU+sRHqzAfRQZ7yWqp/ml1M1YfUkaeTREBnurTIrBK/1sZ0iZEthHt9OT3WzVz7REZhqEXhrWu9pDXMAz9sjVBjQM81b6RX7Weuzb9DFq1P00vnXio2lODWqhLY79aUXdFuJmlT2/tqPunb9Lyfam64/O1+uDmDupVhwPKit6jyVkFuv/r9bLZDV3ZJlR3xoRfdPcJTo8/Z1SUyajNA6xQ7X799VdlZ2erZcuWio+P1/PPP6+jR49q27Zt+vnnn3XHHXeUCmIl6bLLLlOfPn30n//8R/fcc48OHTqk33//vWR9bm6uvLy8NHfuXA0ePPi0550wYYKef/75MsunT58uT0/engIAAHCxSMyT/rPZIrth0p0t7Lok8Nz/XDEMKdMmHc0x6Whu8edjuSYl5UmGygacFpOh+p5SA09DDb0MNfSUGnoZ8ryA7S92hzRxo0XphSbdGGlXj9AL88+wtckmTdtrliGTuoc6dENTh6oz412TZNK0fcVjBi4NdOiqxg4Fulff+WuDtALp9S0W5RSZ1DnIoVubOVRDmswvCJtDmrrbrG3pZllMhsa0cKh9ADHEuRQ5pPdjLdqfZVKYh6HH2tnlXnsneKCCcnNzdfPNNysjI0O+vjyoEOdGBy8q5NQAtn379uratasiIiL07bffysPjwr2laPz48Ro3blzJ95mZmQoPD9fAgQNr3A87m82m+fPna8CAASWdJsCZcL+gpuMeRUVwv+B8GYahMVPXy26k6YoWQXp8ZFstWLCg0vdUXqFdu5OytfNEt+/Jjt+cArvicqS4HJOU/Nf29f3c1SrMW63DfNW7ZZA6hvtX2bX9tDle6au3KtDLVc/e2vOCzVodIqnDpmN6YvY2rUg0K6JxY024qno6eR0OQ+9NWiEpR5K0IdWsbRkuuiMmQvf2aiof9wv7z8/a8DMo32bXTZ+uUU5RlqLr++jzuy+r1XN3y2uI3aHHZ23Vr9sTNXWPi14f0VZXta/v7LKqXUXu0Rfm7ND+rCPydnPRl/d0VdMgr2qqEjXByXctA+VFwIvz4u/vrxYtWmjv3r0aMGCACgsLdfz4cfn7+5dsk5iYWDKzNywsTGvWrCl1jMTExJJ1Z+Lm5iY3N7cyy61Wa439y1tNrg01D/cLajruUVQE9wsq66fNx7Rif5rcXMyaOLydXF2L76PK3lNWq1Wdm7qrc9O/3hLucBiKS89TbHymYuMztePER1x6nuIz8hWfka9Fu1L04dL9em9UR13VvsF5X5dhGPp0efHs3Tt6NJGP54Vtab2+S4TMFosen7VZM9bGyWIxa+Lwthd8FvEfOxO1NzlH3m4u+vT2znpnwR6t3J+qyX8e0Pcbj2rcgJa6sXMjuVzg8Rg19WeQYRh6bvZ2bT+WpQAvV308uvMFvxdqCqtVeu/mS/Xk91s0e8NRjftuq2yGSTd2Dnd2aU5xrnv0+/Vx+mr1EUnSWyM7qEV9/2qqDDVFTfwZhpqNgBfnJTs7W/v27dNtt92mTp06yWq1auHChRoxYoQkadeuXTp8+LBiYmIkSTExMXrppZeUlJSkkJAQSdL8+fPl6+ur6Ohop10HAAAAnCsz36aJc2IlSWP7NFPjQM8LMoPQbDapcaCnGgd66sq2fzUYZOTZtPNE2Lt4d7IW70rWY99skrebi3q3DDmvc/65J0U74jPl6WrRrd0izvcSyuW6SxvJMKR/frdZX686LJNMemF4mwsa8n60ZL8k6eaujdUtMlBd7w7Qwh1JennuDu1PydHTP2zVFysO6pmhrdWrRfAFq6O6FM8bjtesdXHysFoU4uumUF93BfsUfw458bmep1Umk0mfLz+o2ac8VK1Rvbo1as7FYtbr118id6tF01cf1pPfbVGBza7bYpo4u7QaZcaaw/r3/7ZJkh7u11wDokPPsQcAEPCigv75z39q2LBhioiI0LFjx/Tcc8/JYrFo1KhR8vPz01133aVx48YpICBAvr6+euihhxQTE6Nu3bpJkgYOHKjo6Gjddttteu2115SQkKB//etfGjt27Gk7dAEAAFA3vDV/t5KzCtQ0yEv39Iqs9vP7eVjVNTJQXSMDdVtMEz0yc6PmbInXfV+v19d3dVXnJgGVOq7DYeiDxXslSTd1aSx/T9eqLPusRnRqJEPSE99t1lerDslkkp6/+sKEvBsPp2vNgTRZLSbd0aOJJMlkMql/dKh6tQjWtNWH9PaCPdqVmKXRn61R75bBemZIazUP9anyWqrDtqMZeuHnWK05mHbOba0Wk0J83JWQmS9JenpIa3WPqpsPGjObTXrpmrZyd7Hos+UH9Oz/tiuroEh39mhaJ0ZVnE1hkUMvzNmur1cdliQN79BAj/Zr7uSqANQWBLyokLi4OI0aNUqpqakKDg7W5ZdfrlWrVik4uPg38G+99ZbMZrNGjBihgoICDRo0SB988EHJ/haLRXPmzNH999+vmJgYeXl56fbbb9cLL7zgrEsCAACAk20/lqEvVhyUJL0wvI3Tgx6L2aQ3b+ygrPwiLdmdrDumrtU398QoukHFnv2QmW/TuG82adX+NLmYTbrz8iYXpuCzuL5TIzkMQ099v0Vfrjwkk6QJFyDk/Xhpcffu1Zc0VH2/0s/mcHUx644eTXVtx4Z6d+FefbnyoBbvStafe1J0Y+dGGtunWa3pZk3JLtAb83Zp5tojMgzJ3WrWPy6PVIivm5IyC5SYma+krOLPyVkFSs0plM1u6OjxPEnStR0b6s4TAXhdZTKZ9OxVreXhatb7i/bptd926Z0Fe3RZ0wD1ah6sni2C1DLU54KPFKlJUrIL9MC0DVpzIE0mk/TPgS31QO+oOvUaADg/BLyokJkzZ551vbu7u95//329//77Z9wmIiJCc+fOrerSAAAAUAs5HIb+9eM2OQzpqvb11bN5zXjrvquLWR/d2km3TVmtdYfSNfqzNZp1X0y5H3S0OzFL9361XgdScuTqYtZ/RrRzWoh5Y+dwyZCemr1FX6w8JJPJpOeGRVdZeHQwJUe/bU+QpLN2X/t7uurfw6J1a7fGevXXnZoXm6gZa47ou/VxuqFzuMb2aaaG/hfuwc3no7DIoS9XHtQ7C/Yoq6BIknT1JQ30f4NbqcFZai4scig5u0BJmfnKLihSTGQgoZ2KQ94nBrVSoJebPl66XwmZ+fpzT4r+3JMizZVCfNx0efMgXdEiWD2aBSnI++J9t+e2oxm696v1Ono8T95uLnrnpg7q15qxDAAqhoAXAAAAgNN8u+6INh4+Lm83Fz17Vc16JoOHq0VTxnTRTR+v0o74TN366Wp9f393hfmd/cFYv2yJ1xPfbVZuoV0N/Nz10W2d1L6Rf/UUfQY3dil+mNWT32/R1BPd0lUV8n7y534ZhtS3VYhahp175EJksLc+Ht1Z6w6m6a0Fu7V8b6qmrz6sWeuOaGSX4qD3713AzrRoV5ImzonV/uQcSVLbhr56blgbdSnH2A5XF7Ma+nvU2ODa2e68vKnu6NFEe5OytXRPiv7ck6xV+1OVlFWg2RuOavaGo5Kk6Pq+urJtmO7vHSXrBX5IX3X6afMxPfndZuXbHGoa5KVPRndSs5DaObYEgHMR8AIAAABwirScQr36205J0mMDWijU9+zBqTP4eVj15Z2X6cbJK3UgJUe3Tlmtb++NUYBX2Vm6RXaH/jtvlyafeNhY96hAvTeqowJrSPfhjV3CZcjQU99v1dQVB2UySf++6vxC3pTsAn23Pk7S2bt3T6dzkwBN+0c3rd6fqrcX7NHK/an6etVhfbs2TjddFq4Hejc7Z5h+Ie1LztaLc2K1aFeyJCnI21VPDGqp6zuFy2KmC7eqmEwmNQ/1UfNQH911eVPl2+zacChdS/Yk68/dKYqNzyz5OJSaq9dvaF/ru6DtDkNv/rZTHy7eJ0m6okWw3h3VUX4eVidXBqC2IuAFAAAA4BT/+XWnjufa1CrMR7fHRDi7nDMK9nHTV3ddpus/XKm9Sdka8/kaTb+7m7zd/vrnVFpOoR6esVHL9qZIKg47nxzUUi41rNtwZJfGMgzp/2Zv1efLD8psMulfQ1tXOjD7csVBFRQ5dEm4v7o2rdyD6LpGBmrGPYFauS9Vby3YrTUH0vTlykOaufaIbr6sse7vHVWt4X9mvk3vLtijqSsOqshhnHhwXFM92LeZfN0J4C40d6tF3ZsFqXuzII0fLCVnFejXbfF6/udYfb8hTqG+bnryylbOLrPS8oqke6dt1JLdxT8r7rsiSk8MaskvDQCcFwJeAAAAANVu/aE0fbPuiCTppWvb1rgg9O8a1fPU1/+4TDd8tFJb4jJ09xfr9PkdXeRutZSaoelhtei169tr2CUNnF3yGd10WWM5DOnpH7ZqyrIDMkl6phIhb25hkb5cdUiSdG+vyPPuqoyJClS3yG4lQe/ag+mauuKgZqw5rPGDW2lMj6bndfxzsTsMzVp3RP/9fZdScwolSf1aheiZoa0VGex9Qc+NMwv2cdPomCZyczHrqe+36oPF+xTq667buzdxdmkVYhiGYuMz9eZWi5LyU+TmYtZr17fX8A4NnV0agIsAAS8AAACAalVkd+iZH7ZJkkZ2DleniMp1fla3ZiE++uLOy3TzJ6u1cn+qHpqxUQOiQ/Xsj9tUUORQk0BPTb6tc7nm0DrbzV0by5ChZ37Ypk+XHZDJJD09pGIh77drj+h4rk0RgZ4a1CasSuoymUzq3ixIMVGBWr63OOhdfyhdE36Oldls0uiYJlVynr9bcyBNz/+8XduPZUqSooK99OxV0erdMuSCnA8VN7JLYyVmFujN+bs14eftCvZx05B29Z1d1mnZHYYOpORo+7EMbT+WqW1HM7TtaIYy84skmVTfz12fjO6stg39nF0qgIsEAS8AAACAajVl2QHtTMiSv6dVTw2uXW+1bt/IX5+M7qzbP1+j+bGJmh+bKKn4AWNvjexQq2Zo3tI1QoYh/evHbfrkzwMymUwaP7hVuULeIrtDny47IEn6R8/IKn97uclk0uXNg9SjWaDemLdbkxbt1b//t13uLpaSB8ZVhaPH8/TK3B2asyVekuTj7qJH+7fQ6JiIi+phXheLh/o2U0JmvqavPqxHv9mkQC9XdY0MdGpNNrtDexKzte1YhrYfLQ50Y+MzlVtoL7Ot1WJSC1+7ptzTVWH16AoHUHUIeAEAAABUC8Mw9N4fe/Xm/N2SpP+7stVpH1ZW08VEBeqDmy/VvV+vl91h6JF+zfVIv+Yy18IZmrd2i5Ah6dkft+njpftlkvR/5Qh5525LUFx6ngK9XHVDp0YXrD6TyaTHB7ZQbqFdny0/oKdmb5Gb1Xzeb2vPK7TroyX7NHnpPuXbHDKZpFGXNdbjA1rUmIfioSyTyaSJw9sqJatA82IT9Y8v1+m7+7pXW9d8vs2unQlZ2nY0Q9uPZWjb0UztSshSod1RZlt3q1nR9X3VtqGf2jbwU3QDXzUNcNeCeb9xjwGocgS8AAAAAC64vEK7/jlrs37ZWtwpeUePJrqxc9V1Yla3/tGh+unBHnI4pHaNavfbrG/rFiEZhp7933ZNXrpfJpNJT13Z8owhr2EY+njpPknS6JgmcrdaLmh9JpNJz17VWvlFdk1ffVjjvt0sNxeLrmxb8bEQhmHo5y3xenXuDh3LyJckXdY0QM8Ni1abBrX7z7GusJhNendUR9366WqtO5Su2z9bo9kPdFcDf48qPU9Wvk074ovD3OLu3EztTc6W3WGU2dbHzUVtGvqqbQM/tW3opzYNfBUZ7F2ms91ms1VpjQBwEgEvAAAAgAvq2PE83f3lOm0/limrpbgD76bLGju7rPN2MQWCt8U0kSHp3//bro+W7JPJJD056PQh74p9qdp2NFMeVotGx0RUS30mk0kvDm+r/EK7Zm88qodmbNAnoztXaEbutqMZev7n7Vp7MF2S1NDfQ08Paa0h7cLO+wFxqF7uVos+vb2zrv9opfYmZev2z9Zo1n0x8ves3DsC0nMKi2flHss40Z2bqQMpOafdNtDLVW0a+qltA9+SMDe8nmet7OAHcPEg4AUAAABwVgdScrT5yHH1ax0iH/eKzZhdfyhd9361XinZBQr0ctWHt3bSZU1rx0PV6prRMU1kGNJzP23Xh4v3ySTpidOEvJOX7pck3di5kepV44gNs9mk165vr4Iih37ZGq97v1qvqXdcppios89gTcku0Ou/79I3647IMIrfOv9A72a6p1fkBe8+xoXj7+mqL+68TCM+WKE9Sdm6+8t1+uqurmf9MzUMQ0lZBSUh7snPR4/nnXb7+n7uatPAT21P6c4N9XXjFwIAahwCXgAAAOACcTgMHT2epwb+HlX+EKrqYBiGvl59WC/OiVVBkUOerhYN79BAt3SNKNfT32etO6JnftimQrtDrcJ89OntndWonmc1VI7Kur17ExmGoQk/x+qDxcWdvP8c+FfIG3ssU0t3J8tsKn64WnVzsZj11sgOyrfZtXBnku76Yq2+uqurOkXUK7NtYZFDX6w4qHcX7lFWQZEkaXiHBnrqylZV/nZ+OEdDfw9NvbOLbvhopdYeTNcjMzfqg1s6yWI2yTAMxaXn/TVi4Vimth3NVEp2wWmP1STQU20a+JWMWmjTwJdZuQBqDQJeAAAA4AKZtKj4gWJ+Hlb1bB6kK1oE64qWwQrxcXd2aeeUml2gp77fqgU7EiVJAV6uSssp1Iw1RzRjzRFdEu6vW7s21lXtG8jDtXTHnN1h6NVfd+iTPw9Ikga1CdWbN3aQlxv//KgNxvRoKkPS8z/H6v1F+2Q2mTRuQAuZTCZ98mdx9+7Q9g0UHuCcsN7Vxaz3b7lU//hinZbtTdGYz9Zo+t3d1Cr0r3oW7UzSxDmx2n/ibfZtG/pqwrA26tyE7vGLTaswX30yurNGT1mj37cnaszna2R3GNp2NEOZ+UVltjebpGYh3sVh7okxC9ENfOVbwXcnAEBNwt+wAAAAgAsg32bX58uLA86MPJvmbInXnC3FDxiLru+r3i2DdUWLYF0aUU9Wi9mZpZbx555kjft2s5KzCuRqMev/BrfSmO5NtPZgmr5efVi/bYvX5iPHtfnIcU2cE6vrO4Xr5q6N1SzEW5n5Nj00faOW7E6WJD3ct5ke7d+C+ZS1zB09msowpBfmxOq9P/bKJGnkZY310+ZjkqR7e1V/9+6p3K0WfTy6k27/bI3WHkzXbZ+t1rQ7OysxT/rHlxu0ZE+KJCnI21VPDmql6zs14h68iHWLDNTbN3XQ2Okb9OeJP3tJslpMahnmozb1i8cstGnop9ZhvmV+KQUAtR0BLwAAAM6bYRj6c2+KsnlAeIm5W+OVnmtTQ38PvX1TBy3dnawlu5O1JS5DsfGZio3P1AeL98nHzUU9mgXp8uZBigj0VKivu0J93eXr7lLtcx4Liux6/fddJZ23zUO89c5NHRXdwFeS1DUyUF0jA5WSHa1v1x3R9NWHFZeep8+WH9Bnyw8oJjJQiVn52p+cI3erWa/fcImuat+gWq8BVefOy4s7eSfOidW7f+zVnC3xsjsM9WgWWK4RHReap6uLPhvTRbd+ulqb4zI06tO1yi6wyGGkyGox6Y4eTfVQ32YVnhuN2mlIu/p6/+ZLteZAmlrX91GbBn5qEeojV5ea9Qs0ALgQCHgBAABw3j7984BemrtD9T0sGj7ELquVQOXrVYckSaMuC1eXJgHq0iRAjw9sqZTsAv25J1mLdyVr6e5kpefa9Nv2BP22PaHU/u5Wc0nYG+rrrlAfN4X5uSvklK9Dfd2r7CFRe5Oy9fCMjYqNz5Qk3dYtQs8MbX3a4wd5u+mB3s10X68oLdmTrGmrDuuPnYlauT9VUvGDiT4Z3blGhIA4P3dd3lSGYejFX3aUjDu4p1eUk6v6i4+7VV/ceZlGfbJaO+IzJZnUp2WQnr2qjSKDvZ1dHqrZkHb1NaRdfWeXAQDVjoAXAAAA52VnQqb++/suSVJ8nklvLdyrZ4e1dXJVzhV7LFMbDh+Xi9mkG7uEl1oX5O2mazs20rUdG8nuMLT1aIaW7ErW+sPpSszIV0JmvjLybMq3OXQoNVeHUnPPei4/D6tCfd1OCYPdSgfDvm4K9naTyxnGQBiGoelrDmvinFjl2xwK8HLVayPaq3906Dmv02w2qU/LEPVpGaKjx/P0zZrDis/I1xNXtqwVc4ZRPicfpvbiLzvUvpGfejUPcnJFpfl7uurruy7Tp0v3yUjeq8dvvpRfMgEA6hQCXgAAAFRaYZFDj32zWYV2h5oFe2lvco4+W3FIA9rUV7fIQGeX5zTTVhd37w5qG3bWoNNiNqlDuL86hPuXWp5vsysps0AJmflKLPVRvCwpszgIzrc5lJFnU0aeTbsTs894HpOpOFgO9XVTmG9xF3DYifB34Y4kzYstfpBaz+ZBeuOGSxTiW/FwtqG/h8YNbFnh/VA7/KNnpHo0C1J9P/dqHx1SHoHebho3oLnmzt3j7FIAAKh2BLwAAACotLcX7NaO+EzV87Tqyzs66/Gpi7QyyazHv92sXx/tWSefSp5dUKQfNx6VJN3StXGljuFutahxoKcaB3qecRvDMJSZX6SkU4Lfv4fBiZn5SsoqkN1hKDmrQMlZBdp2NLPMsVwtZj15ZUvd2aMpD6LCGbWu7+vsEgAAwGkQ8AIAAKBS1h9K00dL9kmSXr62nYJ93HRNE4eO2LwUl56n53+K1Rs3XuLkKqvfDxuPKqfQrqhgL8VcwC5mk8kkPw+r/Dysah7qc8btHA5DqTmFp+0CTszMl8Vs1qP9mzMvFwAAoJYi4AUAAECF5RQUady3m+UwpOs6NtTgdvVls9nkbpH+O6Ktbp6yVt9viNOA6FBd2TbM2eVWG8MwNO3Ew9Vu6RpRI97KbjabFOzjpmAfN0JcAACAi9Dpn7QAAAAAnMXLc3foUGquGvi5a8LwNqXWdY6op/uuiJIkPf3DViVl5TujRKdYfyhdOxOy5G41a0SnRs4uBwAAAHUAAS8AAAAqZNGuJE1bfViS9PoNl5x2zu5j/VuodX1fpeUUavz3W2UYRnWX6RRfn+jevfqSBvLzqHvzhwEAAFD9CHgBAABQbuk5hXryuy2SpDt6NFH3ZkGn3c7Vxay3R3aQq8WshTuTNHPtkeos0ylSsws0d2uCJOnWbhFOrgYAAAB1BQEvAAAAysUwDP3rx21KzipQsxBvPXVlq7Nu3zLMR08MailJmjgnVodSc6qjTKeZtT5OhXaH2jfyU/tG/s4uBwAAAHUEAS8AAADK5afNx/TL1ni5mE1668YOcrdazrnPXZc3VdemAcottGvct5tld1ycoxocDkPTT4ytuLUr3bsAAACoPgS8AADgvOUV2nX0eJ6zy8AFFJ+Rp2d/3CZJeqhvc7Vr5Feu/cxmk9648RJ5u7lo/aF0fbRk34Us02n+3Juiw2m58nV30bBLGji7HAAAANQhBLwAAOC83Tl1rS7/zx96Ze4OFRTZnV0OqpjDYejJ77YoM79Il4T7a2yfqArt36iepyZc3UaS9PaC3dp+LONClOlUJx+uNqJTI3m4nruzGQAAAKgqBLwAAOC8bT+WIcOQJi/dr2veX6FdCVnOLglV6OvVh/TnnhS5W81688ZL5GKp+F8hR1zaUIPahMpmN/TYN5uUb7t4fhFw7HieFu5IlCTdwngGAAAAVDMXZxcAAABqt3ybXZn5RZIkPw+rdsRnatikZXrqyla6o3sTmc0mJ1eI83EoNUcvz90hSRo/uLWigr0rdRyTyaSXr22n9YeOa3ditjq+MF8+7i7ydneRj5uLvNxc5H3yw/1v359YdvJrLzcX+ZzYxtNqcfo9NnPNYTkMqVtkgJqFVO71AQAAACqLgBcAAJyXlOwCSZKrxaz543rpqe+2aNGuZE2cE6s/dibq9RsuUX0/DydXicp6ee4O5dsc6tEsULd1O7/u1EBvN71+Q3s9OH2jsguKlGezKymr4LyOaTJJXq4ng1+LvN2tJwJji7zdrPJ2s5QExqcLkk/92sNqkclUsbDYZndo5tojkqRbz/P1AQAAACqDgBcAAJyXlOxCSVKQt6tCfNz12Zgumrb6sF78JVbL96Zq0FtL9dK17XjwVC20cl+qft+eKIvZpAnD2lRJp2zvliFa9XQ/pWQVKLugSNkFRco58Tm7oEjZ+cXfZ538urBIWfl/bZNTYFdWvk05hXbZHYYMQyX7ni+zSfJyc5G/p1XXdGiouy5vKn9P17PuMz82UUlZBQrydtPA6LDzrgEAAACoKAJeAABwXpJPdGAG+7hJKn4r/q3dIhQTFajHvtmkLXEZemjGRv2xM0nPD28jX3erM8tFOTkchl78JVaSdPNljdU81KfKjn2ya/Z8GIahfJujVEh8ahB8ruWnBsk5BUVyGJLDkLLyi7d/74+9mrr8oO7o0UR3XR4pP8/T37cnH652U5dwubrweAsAAABUPwJeAABwXk4GvEHebqWWRwV76/v7u+u9hXs0adFe/bDxqNYcSNMbN16ibpGBzii1XIrsxaFhVn7pMDCroEhZ+TZln1ge6OWqblGBahHi4/QZsBfC7I1Htf1YpnzcXPRo/+bOLqcMk8kkD1eLPFwtJb9cqCzDMJRns5f8We9MyNJ7f+zVjvhMvfvHXn1+hqB3X3K2VuxLldkkjera+HwvCQAAAKgUAl4AAHBeTs7gPV3IZrWYNW5gS13RMkTjvt2kQ6m5GvXJKt3TM1LjBraQm4uluss9o8Iih275dJXWHkyv0H4BXq6KiQxUt6hAxUQGKirYq8JzXKuS3WHIZnfI3Vr51za3sEj//X2nJOnBvs0U6H1+AWpNZzKZ5OnqIk9XF4X4SJHB3rqyTZjmxSbq7QW7tTMh66+g9/KmuqtHU/l5WjVt1WFJUt9WIWroz5xpAAAAOAcBLwAAOC9/H9FwOp0i6mnuwz01cU6sZq49oslL92vpnhS9PbKDWoZV3Vv/z8fsDXGlwl13q1neblb5/O1BXCcf1HUwNUfrDqYrLadQv2yN1y9b4yVJIT5uijkR9sZEBaqhv4fyixzKt9mVV2hXQZFd+bbi70s+l1pmP8s6hwqKio9TZvmJbW12Q5I0qE2o3ht1aaXGBkxesl+JmQUKD/DQmB5NquT1rW3MZpOubBumgdGhmheboLcX7CkOehfu0efLD+iO7k303frih6vdwsPVAAAA4EQEvAAA4LyUJ+CVih9e9eqI9urbKkT/N3urdsRnatikZXrqyla6o3sTp445sNkdmrRoryRp/OBWuqNH03IFo4VFDm2OO66V+1K1cl+q1h9OV1JWgf636Zj+t+nYhS77rH7fnqhnf9ymV0e0q1BHcUJGviYv3SdJGj+4dY3qsnaG4qC3vgZGh+n37Ql6Z+Geko5eSQoP8NAVzYOdXCUAAADqMgJeAABwXk6OaPj7DN4zGdgmTB0a++up77Zo0a5kTZwTqz92Jur1Gy5RfT/nvM199oY4xaXnKcjbTbd3b1LurldXF7O6NAlQlyYBerhfc+Xb7NpwOF2r9qVq5f5UbTpyvKSjVpLcXMxyt1rkbi3+7GG1yM1qkfvflru7/PW124nlHlbLX9u4WE6sK7u9u9Wi9YfSde9X6/TNuiOKCvHSPb2iyv1a/Pf3Xcq3OdQ5op4Gtw2r8Gt5sTKbTRrcrr4GtSkOet9esEe7ErN03xVRF+UMZgAAANQeBLwAAOC8JJ9lBu+ZhPi467MxXTRt9WG9+Euslu9N1aC3luqla9tp2CUNLlSpp2WzO/TeiW7M+66IPK/Zte5Wi7pHBal7VJAklYxbcLda5OZirrbZvAOiQ/XsVdF6/udYvfLrTjUJ9NLANucOa7fGZej7DXGSpGevinbqLOGa6tSgNzm7QKG+7s4uCQAAAHVcxYeyAQAAnKJkREMFH8RlMpl0a7cI/fJwT7Vv5KfM/CI9NGOjHvtmkzLzbRei1NM6tXv3lq5VO0vV3WqRv6er3K2Wag9Lx3Rvolu7NZZhSI/M3KRtRzPOur1hGJr4S6wk6dqODXVJuH81VFl7mc0mwl0AAADUCAS8AACg0nIKipRbaJckBVWgg/dUUcHe+v7+7nq4bzOZTdIPG49q8Nt/atX+1Kos9bT+3r3r4XrxzJs1mUx6blgb9WwepDybXf/4Yp0SM/PPuP3v2xO15kCa3FzMemJQy2qsFAAAAMD5IOAFAACVdnL+rofVIq/zCEetFrPGDWypWfd1V0Sgp44ez9OoT1bplbk7VFBkr6pyy/hhw9ET3buuVd69WxNYLWZNuvlSNQvxVkJmvv7xxTrlFZZ9PQuLHHrl1x2SpHt6RaqBv3NmIQMAAACoOAJeAABQaSXjGXzcqmQEQaeIepr7cE/d1CVchiFNXrpf17y/QrsSss772H9nszv03qI9kqT7roi6qLp3T+XnYdVnt3dRPU+rth7N0LhvN8nhMEpt8+XKgzqUmqtgHzfdd0X5H8gGAAAAwPkIeAEAQKWd7OAN8natsmN6ubno1RHtNfm2TgrwctWO+EwNm7RMU5YdKBNMno8fNhzVkbSLt3v3VI0DPfXx6M5ytZj167YEvT5vV8m6tJxCvbOwOOh+YmBLebnxDF4AAACgNiHgBQAAlXZqB29VG9QmTL892lN9WgarsMihiXNiddtnqxWfkXfexz61e/feXhdv9+6pujQJ0CvXtZMkfbB4n75bHydJenfhHmXlF6l1fV+N6NTImSUCAAAAqAQCXgAAUGkXMuCVpBAfd302potevKat3K1mLd+bqkFvLdXPm4+d13F/2HhK9263xlVUbc03olMjPdinmSRp/OwtmrHmsL5adUiS9OzQ1rKYz3/MBgAAAIDqRcALAAAqLTm7UJIU5H1hAl5JMplMurVbhH55uKfaN/JTZn6RHpqxUY99s0mZ+bYKH89md2jSH3slFXfverrWrZEE4wa00JB2YbLZDY2fvVV2h6H+rUPVvVmQs0sDAAAAUAkEvAAAoNIudAfvqaKCvfX9/d31cN9mMpuKu3AHv/2nVu5LrdBxfth4VIfTchXoVbe6d08ym01644YOat/IT5LkYjZp/JBWTq4KAAAAQGUR8AIAgEpLPvGQteAL2MF7KqvFrHEDW2rWfd0VEeipo8fzNOqTVXr6h63KyDt3N2+R3aH3F53o3r0iss51757k4WrRp6M7q1+rED17VbSigr2dXRIAAACASiLgBQAAlZZyooM3qBo6eE/VKaKe5j7cU6MuK+7Anb76sPq/uUS/bImXYRhn3O+HjUd1KLW4e/fWbhHVVW6NFOLrriljuuj27k2cXQoAAACA80DACwAAKsUwjGrv4D2Vl5uLXrmunWbe002RwV5KzirQ2Okb9I8v1uno8bwy2xfZHZp0onv3nl51t3sXAAAAwMWFgBcAAFRKZn6RCosckqpnBu+ZdIsM1NyHe+rhfs1ltZi0cGeSBry5RJ8tOyC7469u3pPduwFerrotpm537wIAAAC4eBDwAgCASkk50b3r4+Yid6vFqbW4Wy0aN6CF5j7cU12a1FNuoV0vzInVtR8s1/ZjGaW6d++lexcAAADARYR/3QAAgEpJPjF/15ndu3/XPNRH39wTo5lrj+iVX3doS1yGrp60XN2jAuneBQAAAHBRooMXAABUSrKTHrB2LmazSTd3bayF467Q0Hb1ZXcY+nNPiiRm7wIAAAC4+BDwAgCASklx4gPWyiPE113v33KpPh3dWY0DPNUi1Fu3daN7FwAAAMDFhRYWAABQKTVxRMPp9I8OVf/oUDkchsxmk7PLAQAAAIAqRQcvzsurr74qk8mkRx99tGRZ7969ZTKZSn3cd999pfY7fPiwhg4dKk9PT4WEhOiJJ55QUVFRNVcPADgftSXgPYlwFwAAAMDFiA5eVNratWs1efJktW/fvsy6u+++Wy+88ELJ956eniVf2+12DR06VGFhYVqxYoXi4+M1evRoWa1Wvfzyy9VSOwDg/J0c0RDk7erkSgAAAACg7qKDF5WSnZ2tW265RZ988onq1atXZr2np6fCwsJKPnx9fUvWzZs3T7Gxsfr666/VoUMHDR48WBMnTtT777+vwsLC6rwMAMB5SM6uXR28AAAAAHAxooMXlTJ27FgNHTpU/fv314svvlhm/bRp0/T1118rLCxMw4YN07PPPlvSxbty5Uq1a9dOoaGhJdsPGjRI999/v7Zv366OHTuWOV5BQYEKCgpKvs/MzJQk2Ww22Wy2qr6883KynppWF2om7hfUdGe7R5Mzi38u13N34R6GJH6moepxT6EiuF9Q03GPory4R1BRBLyosJkzZ2rDhg1au3btadfffPPNioiIUIMGDbRlyxY99dRT2rVrl2bPni1JSkhIKBXuSir5PiEh4bTHfOWVV/T888+XWT5v3rxS4x9qkvnz5zu7BNQi3C+o6f5+jzoMKTnbIsmkLWuW6TBNvDgFP9NQ1binUBHcL6jpuEdxLrm5uc4uAbUMAS8q5MiRI3rkkUc0f/58ubu7n3abe+65p+Trdu3aqX79+urXr5/27dunqKioSp13/PjxGjduXMn3mZmZCg8P18CBA0uNf6gJbDab5s+frwEDBshqtTq7HNRw3C+o6c50j6blFMqxarEk6fphV8rVhalP4Gcaqh73FCqC+wU1Hfcoyuvku5aB8iLgRYWsX79eSUlJuvTSS0uW2e12LV26VJMmTVJBQYEsFkupfbp27SpJ2rt3r6KiohQWFqY1a9aU2iYxMVGSFBYWdtrzurm5yc2tbHuY1Wqtsf9jrMm1oebhfkFN9/d79Hh+viSpnqdVXh6076I0fqahqnFPoSK4X1DTcY/iXLg/UFG026BC+vXrp61bt2rTpk0lH507d9Ytt9yiTZs2lQl3JWnTpk2SpPr160uSYmJitHXrViUlJZVsM3/+fPn6+io6OrpargMAcH5STjxgLcibcBcAAAAAnIkOXlSIj4+P2rZtW2qZl5eXAgMD1bZtW+3bt0/Tp0/XkCFDFBgYqC1btuixxx5Tr1691L59e0nSwIEDFR0drdtuu02vvfaaEhIS9K9//Utjx449bZcuAKDmSc4qDniDffi5DQAAAADORMCLKuXq6qoFCxbo7bffVk5OjsLDwzVixAj961//KtnGYrFozpw5uv/++xUTEyMvLy/dfvvteuGFF5xYOQCgIgh4AQAAAKBmIODFeVu8eHHJ1+Hh4VqyZMk594mIiNDcuXMvYFUAgAuJEQ0AAAAAUDMwgxcAAFQYHbwAAAAAUDMQ8AIAgApLPtHBG0wHLwAAAAA4FQEvAACosJMdvEF08AIAAACAUxHwAgCACkuhgxcAAAAAagQCXgAAUCFFdodScwolMYMXAAAAAJyNgBcAAFRIWk6hDEMym6QAL1dnlwMAAAAAdRoBLwAAqJCTD1gL8HKTxWxycjUAAAAAULcR8AIAgAo5+YA1xjMAAAAAgPMR8AIAgAo5GfAGeTOeAQAAAACcjYAXAABUSEo2D1gDAAAAgJqCgBcAAFQIIxoAAAAAoOYg4AUAABVy8iFrwd4EvAAAAADgbAS8AACgQlLo4AUAAACAGoOAFwAAVAgdvAAAAABQcxDwAgCACjk5gzeIDl4AAAAAcDoCXgAAUG4FRXZl5Nkk0cELAAAAADUBAS8AACi31OxCSZLVYpKfh9XJ1QAAAAAACHgBAEC5lYxn8HaT2WxycjUAAAAAAAJeAABQbinZfwW8AAAAAADnI+AFAADldrKDN5gHrAEAAABAjUDACwAAyq0k4KWDFwAAAABqBAJeAABQbiUjGnxcnVwJAAAAAEAi4AUAABWQnE0HLwAAAADUJAS8AACg3P6awevu5EoAAAAAABIBLwAAqICU7EJJUpA3IxoAAAAAoCYg4AUAAOX2VwcvIxoAAAAAoCYg4AUAAOWSV2hXdkGRJAJeAAAAAKgpCHgBAEC5pJx4wJqbi1nebi5OrgYAAAAAIBHwAgCAcko6ZTyDyWRycjUAAAAAAImAFwAAlBPzdwEAAACg5iHgBQAA5XJyREOQNwEvAAAAANQUBLwAAKBc6OAFAAAAgJqHgBcAAJRL8okO3mA6eAEAAACgxiDgBQAA5ZJyooM3iA5eAAAAAKgxCHgBAEC50MELAAAAADUPAS8AACgXZvACAAAAQM1DwAsAAM7JMAyl0MELAAAAADUOAS8AADin7AK78m0OSVKQj6uTqwEAAAAAnETACwAAzulk9663m4s8XV2cXA0AAAAA4CQCXgAAcE4p2YWSpCBvuncBAAAAoCYh4AUAAOdUMn+XB6wBAAAAQI1CwAsAAM4p+UQHLwEvAAAAANQsBLwAAOCcTnbwBnkT8AIAAABATULACwAAzunkDN5gAl4AAAAAqFEIeAEAwDklZzGDFwAAAABqIgJeAABwTqk5xR28jGgAAAAAgJqFgBcAAJwTHbwAAAAAUDMR8AIAgLMyjL86eAl4AQAAAKBmIeAFAABnlVsk2eyGJCnQ29XJ1QAAAAAATkXACwAAzirLVvzZz8MqNxeLc4sBAAAAAJRCwAsAAM4q02aSxHgGAAAAAKiJCHgBAMBZnezgDWI8AwAAAADUOAS8AADgrDKLn6+mYB935xYCAAAAACiDgBcAAJxV1skRDd6MaAAAAACAmoaAFwAAnFXmyRENPoxoAAAAAICahoAXAACcVdbJEQ108AIAAABAjUPAi/Py6quvymQy6dFHHy1Zlp+fr7FjxyowMFDe3t4aMWKEEhMTS+13+PBhDR06VJ6engoJCdETTzyhoqKiaq4eAFAeJSMafAh4AQAAAKCmIeBFpa1du1aTJ09W+/btSy1/7LHH9PPPP2vWrFlasmSJjh07puuuu65kvd1u19ChQ1VYWKgVK1boiy++0NSpU/Xvf/+7ui8BAFAOJSMa6OAFAAAAgBrHxdkFoHbKzs7WLbfcok8++UQvvvhiyfKMjAxNmTJF06dPV9++fSVJn3/+uVq3bq1Vq1apW7dumjdvnmJjY7VgwQKFhoaqQ4cOmjhxop566ilNmDBBrq7MeASAk9JyCrVwR6LmxyZqd2KWwvzcFV7PU+EBngoP8Cj5OtjbTWazqcrPb3cYyj4R8IbQwQsAAAAANQ4BLypl7NixGjp0qPr3718q4F2/fr1sNpv69+9fsqxVq1Zq3LixVq5cqW7dumnlypVq166dQkNDS7YZNGiQ7r//fm3fvl0dO3as1msBgJrmUGqO5scmat72RK07lCaH8de6g6m5WqW0Mvu4uZjVsJ6HGgd4qn1DP93fu5k8XC3nXUt6bqEMmWQySQFe/AIOAAAAAGoaAl5U2MyZM7VhwwatXbu2zLqEhAS5urrK39+/1PLQ0FAlJCSUbHNquHty/cl1p1NQUKCCgoKS7zMzMyVJNptNNput0tdyIZysp6bVhZqJ+wWS5HAY2nosUwt3JGnBziTtScoptb5VmI/6twpWp4h6Ss0u0JH0PMUdz1NcevFHfEa+Cooc2p+co/3JOVq8K1mHU3P02oi2MpnOr6s3Pj1XklTPwyrDYZfNYT+v4+Hixs80VDXuKVQE9wtqOu5RlBf3CCqKgBcVcuTIET3yyCOaP3++3N3dq+28r7zyip5//vkyy+fNmydPT89qq6Mi5s+f7+wSUItwv9Q9RQ5pT4ZJW9NN2pZmUobtryDWLENRvobaBRhqW89QoHu6VJCuzN2SVVKkpEg3SWHFH3aHlF4opeabdCxX+t8hs37cHC+P7Dh1CzHOUEH57DxukmSRmwo1d+7c8zoW6g5+pqGqcU+hIrhfUNNxj+JccnNznV0CahkCXlTI+vXrlZSUpEsvvbRkmd1u19KlSzVp0iT9/vvvKiws1PHjx0t18SYmJiosLEySFBYWpjVr1pQ6bmJiYsm60xk/frzGjRtX8n1mZqbCw8M1cOBA+fr6VtXlVQmbzab58+drwIABslqtzi4HNRz3S92SkWfT4t0pWrgjSUv3piin4K9uWC9Xi3o1D1K/1iHq3SJIfh6Vvx8il+zXmwv26ofDVt02uJuah3pX+li5645IO3aoaViAhgzpUunjoG7gZxqqGvcUKoL7BTUd9yjK6+S7loHyIuBFhfTr109bt24tteyOO+5Qq1at9NRTTyk8PFxWq1ULFy7UiBEjJEm7du3S4cOHFRMTI0mKiYnRSy+9pKSkJIWEhEgq/g2mr6+voqOjT3teNzc3ubmVfbiP1Wqtsf9jrMm1oebhfrl4xaXnakFsoubFJmrNgTQVnTJQN8THTf2jQzUgOlTdowLl5nL+M3Ml6cG+LbT20HH9uSdFD3+7RT892EOerpX7X35aXpEkKdjHnXsU5cbPNFQ17ilUBPcLajruUZwL9wcqioAXFeLj46O2bduWWubl5aXAwMCS5XfddZfGjRungIAA+fr66qGHHlJMTIy6desmSRo4cKCio6N122236bXXXlNCQoL+9a9/aezYsacNcQGgNjEMQ9uPZWp+bKLmxyYqNr70b99bhHprQHSoBkSHqX1DP5nN5zcj93TMZpPeGtlBQ975U3uTsvXsj9v1xo2XVOpYqdmFkqQgbx6wBgAAAAA1EQEvqtxbb70ls9msESNGqKCgQIMGDdIHH3xQst5isWjOnDm6//77FRMTIy8vL91+++164YUXnFg1AFSeze7QmgNpmrc9QQt2JOno8bySdWaT1Dki4ESoG6omQV7VUlOQt5veHdVRN3+ySt9viFNMVKCu79SowsdJzi5+wGWwD7+AAwAAAICaiIAX523x4sWlvnd3d9f777+v999//4z7RERE8LAeALVaVr5NS3Yna35sohbtTFJmflHJOnerWb2aB2tAdKj6tgpRoLdzwtFukYF6tH8LvTl/t579cZsuaeSn5qE+FTpGclZxwBvkpGsAAAAAAJwdAS8AAGdRUGTX0fQ8HUnP05G0XB1Jz9WO+Cyt2peqQrujZLtAL1f1b13cpXt58yC5W6tmnu75GtunmdYcSNOyvSkaO32D/jf2cnm4nru2tJxCvfTLDq06kC5JauTvfqFLBQAAAABUAgEvAACSEjPztXxvig6lFoe4R9JydSQtT4lZ+TKM0+8TGeRVMnqhY+N6slyAebrny3JyHu+7f2p3Yrae+2mbXrv+zPN4DcPQ9xuO6qVfYpWea5PJJPUKc+jSxv7VVzQAAAAAoNwIeAEAdVZSZr5+3ZagX7bEa+2htDMGuZ6uFoXX81R4gIca1fNURKCnejYPVrMQ7+otuJKCfdz0zk0ddOunq/Xtujh1iwzUdZeWnce7Lzlbz/ywVav2p0mSWoX56IWrWyt+6wqZTDUvvAYAAAAAEPACAOqYklB3a7zWHiwd6nYI91fr+j5qVM9T4QGeCq/nofAATwV6udb6gLN7VJAe7tdcby/Yo3/9uE3tG/mXBNQFRXZ9uHifPli0T4V2h9ytZj3av4Xuuryp5LArfquTiwcAAAAAnBEBLwDgopeUla/ftiVozpayoe6ljf01tH0DDW4bpgb+Hs4rsho81Le51hxI04p9qRo7bYN+HNtDm44c1zM/bNX+lBxJ0hUtgvXiNW0VHuApSbI57M4sGQAAAABwDgS8AICLls3u0OvzdumTpfvlOCXU7djYX0Pb1deQdvUv+lD3VBazSW/f1EFD3lmmXYlZuuq9P7UvuTjYDfZx03PDojW0Xf1a360MAAAAAHUJAS8A4KIUl56rh2Zs1MbDxyX9FeoObldfDetQqPt3IT7uxfN4p6zWvuQcmUzSLV0b64lBreTnYXV2eQAAAACACiLgBQBcdH7fnqAnZm1WZn6RfN1d9Nr17XVl2/rOLqvG6NEsSK9c207zYxP1QJ9m6hRRz9klAQAAAAAqiYAXAHDRKCiy65W5OzV1xUFJxQ9Ne29Ux5J5svjLTZc11k2XNXZ2GQAAAACA80TACwC4KBxIydFDMzZo29FMSdK9vSL1z0EtZbWYnVwZAAAAAAAXDgEvAKDW+9+mo3p69lblFNoV4OWqN268RH1ahji7LAAAAAAALjgCXgBArZVXaNfzP2/XzLVHJEmXNQ3Quzd1VJifu5MrAwAAAACgehDwAgBqHcMwtHxvql6Ys127E7NlMkkP9W2uh/s2kwsjGQAAAAAAdQgBLwCg1iiyOzR3W4ImL9mn7ceKZ+0G+7jp7ZEd1KNZkJOrAwAAAACg+hHwAgBOyzAM7UrMUlZ+kep5WlXP01V+HlandMjmFhZp1ro4ffLnfsWl50mSPKwWjewSrrF9minYx63aawIAAAAAoCYg4AUAlGEYhl79bacmL9lfZp2vu4vqebnK39NVASeCX39PV9XztMrfy1UBJ7/2dFU9r+L17lZLpepIyynUFysO6suVB5Wea5MkBXi5akz3JrqtW4Tqebme13UCAAAAAFDbEfACAEoxDEMv/bJDny47IElqHOCp47mFyswvkiRl5hcpM79Ih1Jzy31MD6ulTOhb7zRB8MmPQrtDX648qG/XHVG+zVFSx909m+r6TuHycK1cYAwAAAAAwMWGgBcAUMIwDL0wJ1afLz8oSZo4vI1ui2kiqXj+bUaeTem5hUrPtSk9p1DHc4u/T8st1PGc4q+P59qKvz+xnd1hKM9mV16GXccy8itcU7uGfrr3ikhd2SaMB6gBAAAAAPA3BLwAAEnF4e6En7bri5WHJEkvX9tON3dtXLLexWJWoLebAr3LP+/WMAxlFRTpeE5x6Jt+MvjNsen4iWA4PddWZllBkUOXNwvS/VdEKSYqUCaTqcqvFwAAAACAiwEBLwBADoehf/+0TV+vOiyTSXr1unYa2aXxuXc8B5PJJF93q3zdrWoc6Fnu/ewOQxYzoS4AAAAAAOdCwAsAdZzDYeiZH7dqxpojMpmk10a01w2dw51aE+EuAAAAAADlQ8ALAHWYw2Ho/2Zv0bfr4mQ2Sa/fcImuu7SRs8sCAAAAAADlRMALAHWU3WHoye+26PsNxeHuWyM7aHiHhs4uCwAAAAAAVAABLwDUQXaHoX/O2qwfNh6VxWzS2yM7aNglDZxdFgAAAAAAqCCzswtA9dm7d69+//135eXlSSp+uj2AuqfI7tC4bzfph41H5WI26b1RHQl3AQAAAACopQh464DU1FT1799fLVq00JAhQxQfHy9Juuuuu/T44487uToA1clxYizD/zYdk4vZpEk3X6oh7eo7uywAAAAAAFBJBLx1wGOPPSYXFxcdPnxYnp6eJctHjhyp3377zYmVATVHUla+9idnX9Sd7YZh6Nn/bdPsE2MZJt18qa5sG+bssgAAAAAAwHlgBm8dMG/ePP3+++9q1KhRqeXNmzfXoUOHnFQVUDPk2+ya9MdefbRkn4ochgK8XNU5op4uaxqgLk0CFN3AV1ZL7f9dmGEYennuDk1bfVgmk/TmjZcQ7gIAAAAAcBEg4K0DcnJySnXunpSWliY3NzcnVATUDOsPpenJ77ZoX3KOJMnVYlZaTqHmxSZqXmyiJMnT1aKOjf3VOSJAlzUNUMfG/vJ0rX0/Ot9asEef/HlAkvTqde00vENDJ1cEAAAAAACqQu1LKVBhPXv21JdffqmJEydKkkwmkxwOh1577TX16dPHydUB1S+noEj//X2Xvlh5UIYhBXm76cVr2qhPqxBtO5qptQfTtPZAmtYdSldGnk3L96Zq+d5USZLFbFLbBr7q0iRAXZoGqHNEPQV61+xflHy0ZJ/eXbhHkjRhWLRGdmns5IoAAAAAAEBVIeCtA1577TX169dP69atU2FhoZ588klt375daWlpWr58ubPLA6rV0t3JGj97q44ez5Mk3dCpkf41NFp+nlZJUqeIeuoUUU/3XRElh8PQnqTs4sD3ROh7LCNfm+MytDkuQ58uK+6IjQr20mVNA0q6fBvV85DJZHLaNZ7qixUH9eqvOyVJT17ZUmN6NHVyRQAAAAAAoCoR8NYBbdu21e7duzVp0iT5+PgoOztb1113ncaOHav69es7uzygWmTk2jTxl1h9tz5OktTQ30OvXNdOvVoEn3Efs9mklmE+ahnmo1u7RUiSjh7P09oDaVpzME3rDqZpd2K29iXnaF9yjmasOSJJCvN1V+cmf83xbRnqI7O5+gPfb9cd0XM/bZckPdinmR7o3azaawAAAAAAABcWAW8d4efnp2eeecbZZQBVwuEw9H+zt2jr0UyF+bopzM9DYb7uqu/nrlC/4s9hfu7ycXORyWTSb9vi9ez/tis5q0Amk3R7TBM9MailvNwq/iOwob+HGnZsqGs6Fs+wTc8p1LpD6Vp3sDj03RqXoYTMfM3ZEq85W+IlST7uLuocUU9dTgS+7Rv5yc3FUqWvyd/9vPmY/u/7LZKkO3s01eMDW1zQ8wEAAAAAAOcg4K0DPv/8c3l7e+uGG24otXzWrFnKzc3V7bff7qTKgMr53+aj+nZdcSfujvgzb+fpalGAl6vi0ovHMUQFe+k/I9qrc5OAKqulnperBkSHakB0qCQpr9CuTUeOl4x12HAoXVn5RVq0K1mLdiVLklxdzLqkkZ+6NAnQpeG+yiuqsnIkSfNjE/XYN5vkMKRRlzXWs1e1rjEjIwAAAAAAQNUi4K0DXnnlFU2ePLnM8pCQEN1zzz0EvKhVcguL9J9fd0mSbusWoTYNfJWQma+EjHzFZxR/TsjMV0aeTbmFduUW5sliNun+K6L0YN9mcrde2M5ZD1eLYqICFRMVKEkqsju0Iz6rZKTD2oNpSsku1NqD6Vp7MF2SZJJFU4+sVNemAercpHiOb6ive6XOv3R3ssZO26Aih6FrOjTQi9e0JdwFAAAAAOAiRsBbBxw+fFhNm5Z9sFJERIQOHz7shIqAyvt46X4lZOarob+Hnhna+oyBbW5hUUnYG17PU+EBntVcaTEXi1ntGvmpXSM/3XV5UxmGoQMpOVp3MF1rDqZpzYFUHU7L086ELO1MyNIXKw9JkhoHeBbP8W0SoC5NAxQZ5CWTyaR8m11x6Xk6ejxPcem5OpqeV+r7pKwCGYZ0ZZswvX7DJbI4YfYvAAAAAACoPgS8dUBISIi2bNmiJk2alFq+efNmBQYGOqcooBLiM/L00ZJ9kqTxQ1qdtRvX09VFkcHeigz2rq7yysVkMpXUdWOXcNlsNs34ca78m12qDUcytfZgmnbEZ+pwWq4Op+Vq9oajkqQAL1eZTVJKduE5zzG4bZjeuamjXCzmC305AAAAAADAyQh464BRo0bp4Ycflo+Pj3r16iVJWrJkiR555BHddNNNTq4OKL///rZL+TaHOkfU09B29Z1dTpXxcy0OZa/uGC5Jysy3acOh9JIu301Hjist569g19vNRQ39PdSonoca1jvx2d+z5OsgbzdnXQoAAAAAAKhmBLx1wMSJE3Xw4EH169dPLi7Ff+QOh0OjR4/Wyy+/7OTqgPLZdOS4Zm8s7mZ99qroi3qurK+7Vb1bhqh3yxBJUkGRXTvis+RiNim8nqd8PVwu6usHAAAAAADlR8BbB7i6uuqbb77RxIkTtXnzZnl4eKhdu3aKiIhwdmlAuRiGoYlzYiVJ113aUJeE+zu3oGrm5mJRhzp2zQAAAAAAoHwIeOuQFi1aqEWLFs4uA6iwOVvitf5QujysFj05qJWzywEAAAAAAKgxCHgvUuPGjdPEiRPl5eWlcePGnXXbN998s5qqAiou32bXq7/ulCTdd0WUwvzcnVwRAAAAAABAzUHAe5HauHGjbDabJGnDhg1nnNfJHE/UdFOWHdDR43mq7+eue3pFOrscAAAAAACAGoWA9yK1aNGikq8XL17svEKA85CUma/3F+2VJP3f4FbycLU4uSIAAAAAAICaxezsAnBh2Ww2ubi4aNu2bc4uBaiw1+ftUm6hXR3C/XX1JQ2cXQ4AAAAAAECNQ8B7kbNarWrcuLHsdruzSwEqZNvRDM1aHydJ+vewaMaJAAAAAAAAnAYBbx3wzDPP6Omnn1ZaWpqzSwHKxTAMvTAnVoYhDe/QQJc2rufskgAAAAAAAGokZvDWAZMmTdLevXvVoEEDRUREyMvLq9T6DRs2OKky4PR+356gNQfS5OZi1pNXtnJ2OQAAAAAAADUWAW8dMHz4cN7eDqew2R1acyBNC3Yk6o+dSUrLKVRUsLdahHqreYiPmod6q3mojxr4uZfcowVFdr08d6ck6d5ekWro7+HMSwAAAAAAAKjRCHjrgAkTJji7BNQhx3MLtXhXshbsSNSSXcnKKigqtX7TkePadOR4qWVerhY1C/VR8xBvFRQ5dDgtV6G+brr3iqhqrBwAAAAAAKD2IeC9iOXk5Oif//ynfvrpJxUWFqpfv3567733FBwc7OzScJHZl5ythTsStWBHktYfSpfdYZSsC/J2VZ+WIeofHaqIQE/tS8rR7sQs7U3K1u7ELB1IyVFOoV2bjxzX5lOC3ycGtZKXGz+iAAAAAAAAzob05CL27LPP6quvvtItt9wid3d3zZgxQ/fcc49++OEHZ5eGWq7I7tC6Q+lauCNRC3ckaX9KTqn1rcJ81K91iPq1DlWHRv4ym02nrPPVUNUv+d5md+hgSo72nAh89yRlq4Gfu67r2LDargcAAAAAAKC2IuC9iP3www/6/PPPdcMNN0iSRo8erW7duqmoqEguLvzRo2Iy821acmL0wuJdycrIs5Wss1pM6hYZqP6tQ9W3VYjCAzzLfVyrxazmoT5qHuqjIe3qn3sHAAAAAAAAlCDlu4jFxcWpR48eJd936tRJVqtVx44dU+PGjZ1YGWqLQ6k5WrAjSQt3JGrNgTQVnTJ6oZ6nVX1ahah/61D1bB4kH3erEysFAAAAAAComwh4L2IOh0NWa+nQzcXFRXa73UkVoaazOwxtPJxeEuruScoutb5ZiLf6tS4OdS9tXE+WU0YvAAAAAAAAoPoR8F7EDMNQv379So1jyM3N1bBhw+Tq6lqybMOGDc4oDzVEdkGRlu7+a/RCWk5hyToXs0ldmgSof3So+rcOUUSglxMrBQAAAAAAwN8R8F7EnnvuuTLLhg8ffl7H/PDDD/Xhhx/q4MGDkqQ2bdro3//+twYPHixJ6t27t5YsWVJqn3vvvVcfffRRyfeHDx/W/fffr0WLFsnb21u33367XnnlFeYCV6O49Fwt3JGkBTsStXp/mgrtjpJ1vu4u6tOq+AFpV7QIlp8HoxcAAAAAAABqKhK1i9jpAt7z1ahRI7366qtq3ry5DMPQF198oeHDh2vjxo1q06aNJOnuu+/WCy+8ULKPp+dfD9yy2+0aOnSowsLCtGLFCsXHx2v06NGyWq16+eWXq7xelHYkLVf/+nGbluxOLrW8aZCX+p0IdTs3qSerxeykCgEAAAAAAFARBLyokGHDhpX6/qWXXtKHH36oVatWlQS8np6eCgsLO+3+8+bNU2xsrBYsWKDQ0FB16NBBEydO1FNPPaUJEyaUGh2BquNwGPpi5UH99/ddyi20y2ySOjcJUP/WxaFuVLC3s0sEAAAAAABAJdCmh0qz2+2aOXOmcnJyFBMTU7J82rRpCgoKUtu2bTV+/Hjl5uaWrFu5cqXatWun0NDQkmWDBg1SZmamtm/fXq311xV7k7J1w+SVev7nWOUW2nVZkwAtGHeFvr03Rvf0iiLcBQAAAAAAqMXo4EWFbd26VTExMcrPz5e3t7d++OEHRUdHS5JuvvlmRUREqEGDBtqyZYueeuop7dq1S7Nnz5YkJSQklAp3JZV8n5CQcMZzFhQUqKCgoOT7zMxMSZLNZpPNZqvS6ztfJ+txdl02u0NTlh3Ue4v3q7DIIS9Xi54Y1EKjOjeS2Wxyen0oVlPuF+BMuEdREdwvqGrcU6gI7hfUdNyjKC/uEVSUyTAMw9lFoHYpLCzU4cOHlZGRoe+++06ffvqplixZUhLynuqPP/5Qv379tHfvXkVFRemee+7RoUOH9Pvvv5dsk5v7/+3dd3hUZfrG8XuSTHojQAoQeu+IqAFFakJRQbGiAruuBcEVcdVFWRVdRdliW2w/FVyVxYagSO8KKBp67z0htBBISEgy5/fHSxICAZKQZGYy3891nSvJOWfOPAdeJnrPO8+boaCgIM2YMSN/sbbzvfjiixozZswF+ydNmlSoxy+M/enS/3Z4a3+6TZLULNyhO+s7FOHn5MIAAAAAAMAlZWRkaODAgTpx4oRCQ0OdXQ7cAAEvrliPHj3UoEEDffDBBxccS09PV3BwsGbNmqWEhAQ9//zz+v7777V69er8c3bt2qX69etr5cqVateuXZHPUdQM3tjYWB05csTlXuyys7M1d+5c9ezZU3a7vUKfOys7V+MX7dSHP+9WrsNSeIBdz/Vpon5tYmSz2Sq0FhSPM8cLUByMUZQE4wVljTGFkmC8wNUxRlFcaWlpqlatGgEvio0WDR7g7bffLnK/zWaTv7+/GjZsqM6dO8vb27tU13c4HIXC13PlBbkxMTGSpLi4OL3yyitKSUlRZGSkJGnu3LkKDQ0tcgZwHj8/P/n5XTj91G63u+wvxoqsLTvXoUVbDuu1mZu043C6JKlPq2iNuaWlqocwbdcduPJYBiTGKEqG8YKyxphCSTBe4OoYo7gcxgdKioDXA7zxxhs6fPiwMjIyVKVKFUnS8ePHFRgYqODgYKWkpKh+/fpauHChYmNjL3mtUaNGqXfv3qpdu7ZOnjypSZMmadGiRZo9e7Z27NihSZMmqU+fPqpatarWrl2rJ554Qp07d1br1q0lSfHx8WrevLnuv/9+jRs3TsnJyRo9erSGDRtWZIBbmS3cnKKj6Wd0bb0I1aoSUOIZtpZlaeXe45q66qCmrz2o4xmmR0/1ED+93K+FerWMKY+yAQAAAAAA4EIIeD3Aq6++qg8//FAfffSRGjRoIEnavn27Hn74YT300EPq1KmT7r77bj3xxBP65ptvLnmtlJQUDRo0SElJSQoLC1Pr1q01e/Zs9ezZU/v27dO8efP05ptvKj09XbGxsRowYIBGjx6d/3hvb29Nnz5dQ4cOVVxcnIKCgjR48GC99NJL5fpn4IomLNutJVsPS5JqhPnr2vpVdW29CF1bv6rqVg28aOC7PeWUpq0+oGmrD2rvsYz8/dWC/XRruxoa3rWRwgJ5tw8AAAAAAMATEPB6gNGjR+vbb7/ND3clqWHDhvrnP/+pAQMGaOfOnRo3bpwGDBhw2Wt9/PHHFz0WGxurxYsXX/YaderU0YwZM4pXfCXWoU4VnczM1rr9J3TwRKa+W3VA3606IEmKDPHLD3yvqx+hUH+7vl9zUNNWH9S6AyfyrxHk662EFtHq366mOjaoKh9vL2fdDgAAAAAAAJyAgNcDJCUlKScn54L9OTk5Sk5OliTVqFFDJ0+erOjSPNpj3Rvpse6NlHEmRyv3pOrXXUf1685jWr0vVSkns/TDmoP6Yc3BCx7n42VT58bV1b9dTfVsFqUA39L1TgYAAAAAAID7I+D1AF27dtXDDz+sjz76SO3atZMkrVq1SkOHDlW3bt0kSevWrVO9evWcWabHCvT10fWNqun6RtUkSZnZuVq1tyDwXbn3uLJyHLqqdrj6t6upvq1iVDXYs/oVAwAAAAAAoGgEvB7g448/1v3336/27dvnr8SYk5Oj7t2757dcCA4O1r/+9S9nlomz/O3eimtQVXENqkqSsnJylZ6Vq4ggXydXBgAAAAAAAFdDwOsBoqOjNXfuXG3evFlbt26VJDVp0kRNmjTJP6dr167OKg+X4efjLT8f2jAAAAAAAADgQgS8HqRp06Zq2rSps8sAAAAAAAAAUEYIeD1Abm6uJk6cqPnz5yslJUUOh6PQ8QULFjipMgAAAAAAAABXgoDXAzz++OOaOHGi+vbtq5YtW8pmszm7JAAAAAAAAABlgIDXA0yePFlfffWV+vTp4+xSAAAAAAAAAJQhL2cXgPLn6+urhg0bOrsMAAAAAAAAAGWMgNcDPPnkk3rrrbdkWZazSwEAAAAAAABQhmjR4AF+/vlnLVy4UDNnzlSLFi1kt9sLHZ8yZYqTKgMAAAAAAABwJQh4PUB4eLhuvfVWZ5cBAAAAAAAAoIwR8HqACRMmOLsEAAAAAAAAAOWAHrwAAAAAAAAA4KaYwVtJXXXVVZo/f76qVKmidu3ayWazXfTclStXVmBlAAAAAAAAAMoKAW8l1a9fP/n5+UmS+vfv79xiAAAAAAAAAJQLAt5K6oUXXijyewAAAAAAAACVBz14PcC+ffu0f//+/J9XrFihESNG6MMPP3RiVQAAAAAAAACuFAGvBxg4cKAWLlwoSUpOTlaPHj20YsUKPffcc3rppZecXB0AAAAAAACA0iLg9QDr16/XNddcI0n66quv1KpVKy1btkxffPGFJk6c6NziAAAAAAAAAJQaAa8HyM7Ozl9wbd68ebrlllskSU2bNlVSUpIzSwMAAAAAAABwBQh4PUCLFi30/vvv66efftLcuXPVq1cvSdLBgwdVtWpVJ1cHAAAAAAAAoLQIeD3A66+/rg8++EBdunTRPffcozZt2kiSvv/++/zWDQAAAAAAAADcj4+zC0D569Kli44cOaK0tDRVqVIlf/9DDz2kwMBAJ1YGAAAAAAAA4EoQ8HoIb29v5eTk6Oeff5YkNWnSRHXr1nVuUQAAAAAAAACuCC0aPEB6err++Mc/KiYmRp07d1bnzp1Vo0YNPfDAA8rIyHB2eQAAAAAAAABKiYDXA4wcOVKLFy/WDz/8oNTUVKWmpmratGlavHixnnzySWeXBwAAAAAAAKCUaNHgAb799lt988036tKlS/6+Pn36KCAgQHfeeafee+895xUHAAAAAAAAoNSYwesBMjIyFBUVdcH+yMhIWjQAAAAAAAAAboyA1wPExcXphRdeUGZmZv6+06dPa8yYMYqLi3NiZQAAAAAAAACuBC0aPMBbb72lhIQE1apVS23atJEkrVmzRv7+/po9e7aTqwMAAAAAAABQWgS8HqBly5batm2bvvjiC23evFmSdM899+jee+9VQECAk6sDAAAAAAAAUFoEvB4iMDBQDz74oLPLAAAAAAAAAFCGCHgrqe+//77Y595yyy3lWAkAAAAAAACA8kLAW0n179+/WOfZbDbl5uaWbzEAAAAAAAAAygUBbyXlcDicXQIAAAAAAACAcubl7AIAAAAAAAAAAKVDwFuJLViwQM2bN1daWtoFx06cOKEWLVpoyZIlTqgMAAAAAAAAQFkg4K3E3nzzTT344IMKDQ294FhYWJgefvhhvfHGG06oDAAAAAAAAEBZIOCtxNasWaNevXpd9Hh8fLwSExMrsCIAAAAAAAAAZYmAtxI7dOiQ7Hb7RY/7+Pjo8OHDFVgRAAAAAAAAgLJEwFuJ1axZU+vXr7/o8bVr1yomJqYCKwIAAAAAAABQlgh4K7E+ffrob3/7mzIzMy84dvr0ab3wwgu66aabnFAZAAAAAAAAgLLg4+wCUH5Gjx6tKVOmqHHjxho+fLiaNGkiSdq8ebPGjx+v3NxcPffcc06uEgAAAAAAAEBpEfBWYlFRUVq2bJmGDh2qUaNGybIsSZLNZlNCQoLGjx+vqKgoJ1cJAAAAAAAAoLQIeCu5OnXqaMaMGTp+/Li2b98uy7LUqFEjValSxdmlAQAAAAAAALhCBLweokqVKurQoYOzywAAAAAAAABQhlhkDQAAAAAAAADcFAEvAAAAAAAAALgpAl4AAAAAAAAAcFMEvAAAAAAAAADgpgh4AQAAAAAAAMBNEfACAAAAAAAAgJsi4AUAAAAAAAAAN0XACwAAAAAAAABuioAXAAAAAAAAANwUAS9K5L333lPr1q0VGhqq0NBQxcXFaebMmfnHMzMzNWzYMFWtWlXBwcEaMGCADh06VOgae/fuVd++fRUYGKjIyEg99dRTysnJqehbAQAAAAAAANweAS9KpFatWnrttdeUmJio33//Xd26dVO/fv20YcMGSdITTzyhH374QV9//bUWL16sgwcP6rbbbst/fG5urvr27aszZ85o2bJl+vTTTzVx4kQ9//zzzrolAAAAAAAAwG35OLsAuJebb7650M+vvPKK3nvvPf3yyy+qVauWPv74Y02aNEndunWTJE2YMEHNmjXTL7/8ouuuu05z5szRxo0bNW/ePEVFRalt27Z6+eWX9cwzz+jFF1+Ur6+vM24LAAAAAAAAcEvM4EWp5ebmavLkyUpPT1dcXJwSExOVnZ2tHj165J/TtGlT1a5dW8uXL5ckLV++XK1atVJUVFT+OQkJCUpLS8ufBQwAAAAAAACgeJjBixJbt26d4uLilJmZqeDgYH333Xdq3ry5Vq9eLV9fX4WHhxc6PyoqSsnJyZKk5OTkQuFu3vG8YxeTlZWlrKys/J/T0tIkSdnZ2crOzi6L2yozefW4Wl1wTYwXuDrGKEqC8YKyxphCSTBe4OoYoyguxghKioAXJdakSROtXr1aJ06c0DfffKPBgwdr8eLF5fqcY8eO1ZgxYy7YP2fOHAUGBpbrc5fW3LlznV0C3AjjBa6OMYqSYLygrDGmUBKMF7g6xiguJyMjw9klwM0Q8KLEfH191bBhQ0lS+/bt9dtvv+mtt97SXXfdpTNnzig1NbXQLN5Dhw4pOjpakhQdHa0VK1YUut6hQ4fyj13MqFGjNHLkyPyf09LSFBsbq/j4eIWGhpbVrZWJ7OxszZ07Vz179pTdbnd2OXBxjBe4OsYoSoLxgrLGmEJJMF7g6hijKK68Ty0DxUXAiyvmcDiUlZWl9u3by263a/78+RowYIAkacuWLdq7d6/i4uIkSXFxcXrllVeUkpKiyMhISebdy9DQUDVv3vyiz+Hn5yc/P78L9tvtdpf9xejKtcH1MF7g6hijKAnGC8oaYwolwXiBq2OM4nIYHygpAl6UyKhRo9S7d2/Vrl1bJ0+e1KRJk7Ro0SLNnj1bYWFheuCBBzRy5EhFREQoNDRUjz32mOLi4nTddddJkuLj49W8eXPdf//9GjdunJKTkzV69GgNGzasyAAXAAAAAAAAwMUR8KJEUlJSNGjQICUlJSksLEytW7fW7Nmz1bNnT0nSG2+8IS8vLw0YMEBZWVlKSEjQu+++m/94b29vTZ8+XUOHDlVcXJyCgoI0ePBgvfTSS866JQAAAAAAAMBtEfCiRD7++ONLHvf399f48eM1fvz4i55Tp04dzZgxo6xLAwAAAAAAADyOl7MLAAAAAAAAAACUDgEvAAAAAAAAALgpAl4AAAAAAAAAcFMEvAAAAAAAAADgpgh4AQAAAAAAAMBNEfACAAAAAAAAgJsi4AUAAAAAAAAAN0XACwAAAAAAAABuioAXAAAAAAAAANwUAS8AAAAAAAAAuCkCXgAAAAAAAABwUwS8AAAAAAAAAOCmCHgBAAAAAAAAwE0R8AIAAAAAAACAmyLgBQAAAAAAAAA3RcALAAAAAAAAAG6KgBcAAAAAAAAA3BQBLwAAAAAAAAC4KQJeAAAAAAAAAHBTBLwAAAAAAAAA4KYIeAEAAAAAAADATRHwAgAAAAAAAICbIuAFAAAAAAAAADdFwAsAAAAAAAAAboqAFwAAAAAAAADcFAEvAAAAAAAAALgpAl4AAAAAAAAAcFMEvAAAAAAAAADgpgh4AQAAAAAAAMBNEfACAAAAAAAAgJsi4AUAAAAAAAAAN0XACwAAAAAAAABuioAXAAAAAAAAANwUAS8AAAAAAAAAuCkCXgAAAAAAAABwUwS8AAAAAAAAAOCmCHgBAAAAAAAAwE0R8AIAAAAAAACAmyLgBQAAAAAAAAA3RcALAAAAAAAAAG6KgBcAAAAAAAAA3BQBLwAAAAAAAAC4KQJeAAAAAAAAAHBTBLwAAAAAAAAA4KYIeAEAAAAAAADATRHwAgAAAAAAAICbIuAFAAAAAAAAADdFwAsAAAAAAAAAboqAFwAAAAAAAADcFAEvAAAAAAAAALgpAl4AAAAAAAAAcFMEvAAAAAAAAADgpgh4AQAAAAAAAMBNEfACAAAAAAAAgJsi4AUAAAAAAAAAN0XACwAAAAAAAABuioAXJTJ27Fh16NBBISEhioyMVP/+/bVly5ZC53Tp0kU2m63Q9sgjjxQ6Z+/everbt68CAwMVGRmpp556Sjk5ORV5KwAAAAAAAIDb83F2AXAvixcv1rBhw9ShQwfl5OTo2WefVXx8vDZu3KigoKD88x588EG99NJL+T8HBgbmf5+bm6u+ffsqOjpay5YtU1JSkgYNGiS73a5XX321Qu8HAAAAAAAAcGcEvCiRWbNmFfp54sSJioyMVGJiojp37py/PzAwUNHR0UVeY86cOdq4caPmzZunqKgotW3bVi+//LKeeeYZvfjii/L19S3XewAAAAAAAAAqC1o04IqcOHFCkhQREVFo/xdffKFq1aqpZcuWGjVqlDIyMvKPLV++XK1atVJUVFT+voSEBKWlpWnDhg0VUzgAAAAAAABQCTCDF6XmcDg0YsQIderUSS1btszfP3DgQNWpU0c1atTQ2rVr9cwzz2jLli2aMmWKJCk5OblQuCsp/+fk5OQinysrK0tZWVn5P6elpUmSsrOzlZ2dXab3daXy6nG1uuCaGC9wdYxRlATjBWWNMYWSYLzA1TFGUVyMEZSUzbIsy9lFwD0NHTpUM2fO1M8//6xatWpd9LwFCxaoe/fu2r59uxo0aKCHHnpIe/bs0ezZs/PPycjIUFBQkGbMmKHevXtfcI0XX3xRY8aMuWD/pEmTCvX3dTeBWSnK8It0dhkAAAAAAMBFZGRkaODAgTpx4oRCQ0OdXQ7cADN4USrDhw/X9OnTtWTJkkuGu5J07bXXSlJ+wBsdHa0VK1YUOufQoUOSdNG+vaNGjdLIkSPzf05LS1NsbKzi4+Nd7sUuOztbc+fOVc+ePWW324s+KTdbXnNGyWvLJOUMninFtKnYIuEyijVeACdijKIkGC8oa4wplATjBa6OMYriyvvUMlBcBLwoEcuy9Nhjj+m7777TokWLVK9evcs+ZvXq1ZKkmJgYSVJcXJxeeeUVpaSkKDLSzF6dO3euQkND1bx58yKv4efnJz8/vwv22+12l/3FeMnafHyk9MNS7hnZv/uT9PASyd+1gmpULFcey4DEGEXJMF5Q1hhTKAnGC1wdYxSXw/hASbHIGkpk2LBh+vzzzzVp0iSFhIQoOTlZycnJOn36tCRpx44devnll5WYmKjdu3fr+++/16BBg9S5c2e1bt1akhQfH6/mzZvr/vvv15o1azR79myNHj1aw4YNKzLErZRsNqnff6SwWOn4LumHxyW6pQAAAAAAAKCECHhRIu+9955OnDihLl26KCYmJn/78ssvJUm+vr6aN2+e4uPj1bRpUz355JMaMGCAfvjhh/xreHt7a/r06fL29lZcXJzuu+8+DRo0SC+99JKzbss5AiOk2z+RvHykDVOkxInOrggAAAAAAABuhhYNKJHLrckXGxurxYsXX/Y6derU0YwZM8qqLPcVe43U/Xlp7vPSrL9KtTpI0S2dXRUAAAAAAADcBDN4AWeLe0xq2FPKyZS+HiJlnXJ2RQAAAAAAAHATBLyAs3l5Sbd+IIXESEe3STP+4uyKAAAAAAAA4CYIeAFXEFRVGvCxZPOS1vxPWvWFsysCAAAAAACAGyDgBVxF3U5S12fN9zP+IqVsdm49AAAAAAAAcHkEvIAruX6kVL+LlJ1h+vGeyXB2RQAAAAAAAHBhBLyAK/Hylm77PykoUjq8SZr1jLMrKhvZp82M5FMpzq4EAAAAAACgUvFxdgEAzhMcKQ34P+m//aWV/5XqdpZa3+Hsqi7N4ZBOHZKO7y56O5VszvPykXq8KF03zCwuBwAAAAAAgCtCwAu4ovpdpBuflha/Lk0fIdVoJ1Vr6NyazmRIqXsKB7fHdpmvqXuknMxLP94eaFpPzBkt7Voi9X/fLC4HAAAAAACAUiPgBVzVjc9Iu5dKe36WvrxPan2nFFCl6M03SLLZruz5HA4z0/ais3APXfrxNm8prJZUpW7RW0AVKXGCNPOv0rY50vudpAEfm8XlAAAAAAAAUCoEvICr8vKWBnxkgtDDm6T5Yy5xrv1s2Bsu+YVK/qGSf1jB935h5mf/ULPPclw4G/f4Hik369I1+YVJEXXPC2/rma9htSRv+6Uff/UfpVrXSN/8QTqyVfr0JqnLKOmGJ839AgAAAAAAoEQIeAFXFhoj/WGWtPJTKeOYdPr4hZsj22zpKWa7EjZvKTz20rNwr1R0S+nBhdKMp6Q1k6SFr0i7fzKLy4VEX/n1AQAAAAAAPAgBL+DqqjeWEl4p+phlSWfSpczUgsA3M03KSjvn6wmznbvPsqQqdS4McENrSd4V8LLgFyzd+p5U/0Zp+kjTk/e9TtJtH0gNe5T/8wMAAAAAAFQSBLyAO7PZTFjqF2xaJLibNndLNdtLXw+RDq2XPh8gXf+E1PW5y7d7AAAAAAAAAAEvACer1kj603xpznPSbx9JP78hbZhqWjlE1Dc9fiPqma9htejVCwAAAAAAcA4CXgDOZ/eX+v5LqtdZmvaYdHyX2c7nZZfCa5vAN6K+VL+r1LRPxdcLAAAAAADgIgh4AbiO5v2kujdI+3+Tju2Ujp0Neo/tklL3SLlnpGM7zCZJKz6UbviL1G20aVcBAAAAAADgYQh4AbiWwAipccKF+x25UtpBE/we3yUdSJRW/lf66Z/SqUPSTW9WzAJxAAAAAAAALoQ0BIB78PKWwmPNphul9kPMAm3Tn5BWfSZlHJVu/0SyBzi7UgAAAAAAgArj5ewCAKDU2g+R7vxM8vGXtsyQPrtVOn3c2VUBAAAAAABUGAJeAO6t2U3S/d9JfmHS3uXSJ72lEwecXRUAAAAAAECFIOAF4P7qdJT+OFMKiZEOb5I+jpcOb3F2VQAAAAAAAOWOgBdA5RDVQnpgjlS1kZS2X/okQdr3m7OrAgAAAAAAKFcEvAAqj/Da0h9nm8XXTh+XPr1Z2jrH2VUBAAAAAACUGwJeAJVLUFVp8A9Swx5Szmnpf3dLqyc5uyoAAAAAAIByQcALoPLxDZLumSy1vkuycqWpj0obpzm7KgAAAAAAgDJHwAugcvK2S/3fl9oPkWRJ3z4o7Vnm7KoAAAAAAADKFAEvgMrLy0vq+2+pSV8pN8u0a0jZ7OyqAAAAAAAAygwBL4DKzctbGvCRVOsaKfOE9PkAKe2gs6sCAAAAAAAoEwS8ACo/30Bp4JdS1UZS2n7p89tN2AsAAAAAAODmCHgBeIbACOm+b6XgKCllgzT5Xikny9lVAQAAAAAAXBECXgCeo0od6d6vJd9gafdP0tShksPh7KoAAAAAAABKjYAXgGeJaSPd9Znk5SOt/1aa+zdnVwQAAAAAAFBqBLwAPE+DblK/8eb75f+Rlr/r3HoAAAAAAABKycfZBQCAU7S5WzqZJM17UZr9rBQSLbW8rWyfw7IkR46UfVrKyTz7NUvKOS1lZ0o5p2XLPKWY4ytkW3dKcpy56HnKOSPV6Si1u0/y8i7bOgEAAAAAgNsi4AXguTqNkNIOSis+lL57WMpKk/xCiwhXs84LaTPPfp95kX3nPNa6dI9fH0nXSNLuYtS7drL02/9Jvf8h1Ym74tsHAAAAAADuj4AXgOey2aRer5mZvJt+kH54vHyfzydAsvtLPmc3e4Ac3n46djJDEZE15GUPPHv8/PP8Tci84kMpeZ00oZfU6g6p50tSaI3yrRkAAAAAALg0Al4Ans3LW7rtI2n2KClpTaHwNT9cvWBfgOTjd04Qe2Fwe8F5Pn4mUD5Pbna2ls6YoT59+sjLbr90rdc+Ii14WUr8VFr3tbR5htT5L1LcMHN9AAAAAADgcQh4AcDuL930hrOruLygatLNb0nt/yDNfFra96s0f4y06jMzE7lxgrMrBAAAAAAAFczL2QUAAEqoRlvpj7OlWz+QgqOkYzulSXdKX9wpHd3h7OoAAAAAAEAFIuAFAHdks0lt7pYeS5Q6/lnyskvbZkvjr5VmPSudPOTsCgEAAAAAQAUg4AUAd+YXIsW/LD26XGrYQ3JkS7+Ml95qLc38q5SW5OwKAQAAAABAOSLgBYDKoFoj6d5vpPu+lWp1kHIypV/fk95qI814Wko76OwKAQAAAABAOSDgBYDKwmYzs3gfmCvd/50Ue52UmyWt+MAEvT8+KZ3Y7+wqAQAAAABAGfJxdgEAgDJms0kNukn1u0q7lkiLX5f2LJV++0hK/FRqd590w0gpvHbBY3LOSNnpUvZp6UyG+f5MhpkJHBwlRdSX7P7OuycAAAAAAFAkAl4AqKxsNqn+jWbb9ZMJenf/JCVOkFZ9JgVWM4FudrrkyLnMtbyksFjTCqJqI6law7NfG0khMea5AAAAAABAhSPgBQBPUO8Gs+1eaoLeXYulU8kXnmfzlnyDJHug5BsoeftJaQekrDQpdY/Zts8r/BjfYKlqg4LAt2rDgq++QRVzfwAAAAAAeCgCXgDwJHU7SXW/l45sNzN37UGSPcCEufYgycf3wsdYlnQqRTq6TTqyTTq6/ezXbdLxPdKZU1LSGrOdL7TmOYHvOTN/w2IlL9rAAwAAAABwpQh4AcATVWtY/HNtNikkymx1ry98LOeMdHxXQeB7ZHtBEHz6mJn9m3bAzBg+l4+/FNGgcKuHvADYP+zitTgcUnaG2c6cMs8fXtsE1AAAAAAAeCACXgBA6fn4StWbmO18GcfOCX7Pmfl7bKdZvC1lg9nOFxRpFnWzHAVB7pn0gsXfLmCTIupJkc2lqJZSVHMpsoXZ5+Vd5rcMAAAAAIArIeAFAJSPwAip9rVmO1dujunle26rh7yZv6cOSekpZrskm+nva/OWsk6Y0PjYTmnz9IJTfAJM8BzVQopuLbW7V/ILKfPbBAAAAADAmQh4AQAVy9vn7KJsDaTGCYWPZZ4wwe/xPZK33YS4vsHnLPyW932AaR0hSacOm5nAhzae/bpBStks5ZyWklabTV9Iaful+L9X8M0CAAAAAFC+CHgBAK7DP0yq2d5sxRVcXQruItXvUrDPkSsd323C3u3zpJWfSptnEPACAAAAACodljAHAFQ+Xt5mhnDzW6SEVyQvu3Rsh2kFAQAAAABAJULACwCo3PxCpLqdzPfbZju3FgAAAAAAyhgBLwCg8mt0ttfv1lnOrQMAAAAAgDJGwAsAqPzyFnPbs0zKTHNuLQAAAAAAlCECXgBA5Ve1gVS1oeTIkXYudHY1AICLcTikU4elpLXS1jmyrfpMMam/SZbD2ZUBAAC4LB9nFwD3MnbsWE2ZMkWbN29WQECAOnbsqNdff11NmjTJPyczM1NPPvmkJk+erKysLCUkJOjdd99VVFRU/jl79+7V0KFDtXDhQgUHB2vw4MEaO3asfHwYkgDKSaME6eh2aetsqXk/Z1cDAJWLZUlHtkqbp0uHt0hePpK33Sxy6W0/53tfydvHfM09I51Mlk4mma9pSdKpZPNm3Fk+kq6R5PjvCqn/eKlaI6fdIgAAgKsiTUOJLF68WMOGDVOHDh2Uk5OjZ599VvHx8dq4caOCgoIkSU888YR+/PFHff311woLC9Pw4cN12223aenSpZKk3Nxc9e3bV9HR0Vq2bJmSkpI0aNAg2e12vfrqq868PQCVWeN46Zfx0rY5ZoaYFx9iAYAr4nBI+38zoe6WGeZNtDJhk4KqSyHRcgRFyrHrZ/ns/1V6r5PU5Rmp459NYAwAAABJBLwooVmzCi9QNHHiREVGRioxMVGdO3fWiRMn9PHHH2vSpEnq1q2bJGnChAlq1qyZfvnlF1133XWaM2eONm7cqHnz5ikqKkpt27bVyy+/rGeeeUYvvviifH19nXFrACq72h0l3xAp/bB0cJVUq72zKwIql9xsef32oRoeWiPbqiNSUFUpIFwKqCL5h5vv/UIlm83JheKKZGdKu5acDXVnSukpBce8faV6N0p1Opq/59wcM0s394yZlZt7RsrNNpsjW7J5SyHRUkiMFBpjvoZES8FR+QFubna2Fk79r3qc/lFeO+dL81+SNkyV+o2XYlo7588AAADAxRDw4oqcOHFCkhQRESFJSkxMVHZ2tnr06JF/TtOmTVW7dm0tX75c1113nZYvX65WrVoVatmQkJCgoUOHasOGDWrXrt0Fz5OVlaWsrKz8n9PSzCJJ2dnZys7OLpd7K628elytLrgmxktFssm7fhd5bf5BuZtnyBFFMFAcjFEUl9eisfJe+i+1kKSDXxZ5jmXzlvzDpIBwWVUby6pxlawa7WTFtDMBMCqe5ZBOHpLOnJKy02U7ky5lZ0hnv9rOZEjZ6dKZDNmObpNtx3zZstMLHu4XKqthTzma9JFVv5vkF3LlNTlkAmCZ157TvtWU2ecz+W7+Tt5zn5Mtea2s/+sqR9yf5bh+pOTjf+XPiUqB31lwdYxRFBdjBCVFwItSczgcGjFihDp16qSWLVtKkpKTk+Xr66vw8PBC50ZFRSk5OTn/nHPD3bzjeceKMnbsWI0ZM+aC/XPmzFFgYOCV3kq5mDt3rrNLgBthvFSM2hlRaifpZOI3WpxOwFsSjFFcSsjp/eqy+U1JUlJYe8lyyDf3lOy5GfLNSZc9N13eVrZsVq50+ph0+phsx3ZK2wo+GXTKL0rHA+srNbCeUgPr60RgHeV6+Tnpjio5y6Eq6TtUM3WFaqSuUED28RI9/LS9ipLC2is57CodCW4qy8tH2iVp10/lU6+kufPmSQqRX8OX1Wr/f1Uz9Td5L/23Mn7/n1bV+ZOOB9GbFwX4nQVXxxjF5WRkZDi7BLgZAl6U2rBhw7R+/Xr9/PPP5f5co0aN0siRI/N/TktLU2xsrOLj4xUaGlruz18S2dnZmjt3rnr27Cm7nf5wuDTGSwU7dbX01kcKP71bfW64ynwUGJfEGMVlWQ55f9pXXspVTsMErQgeqJ7x8YXGi5mQeVrKTJUyT8iWfli2Q+tlS1ol28FVsh3fpeCsQwrOOqTY48vNZW3eUvVmsmq0kyNvlm9kM7N4F0rOcsh24HfZNk2T16YfZDt5sOCQzdvMvLUHSr5BsuyBkm+gZA+SfIMke5As30ApsJocDXvIJ7qNYm02xVZA2UW/Bt2jnM3T5T3raYWkJ+mGrX+Xo8NDcnR51tQLj8XvLLg6xiiKK+9Ty0Bx8V/IKJXhw4dr+vTpWrJkiWrVqpW/Pzo6WmfOnFFqamqhWbyHDh1SdHR0/jkrVqwodL1Dhw7lHyuKn5+f/PwunMVjt9td9hejK9cG18N4qSBVako1rpIOrpR990LpqkHOrshtMEZxUb99JB34TfINltV7nPTzmqLHi90uBZ7zpmyjbgXfZxyTDq6UDqw6+zVRtlOHpJT1sqWsl9fqz8x5PgGm72rN9ubfcs2rpIj6rt3X9/AW6cBKqdlNZdO+oCQcDunA79KG76SN06S0AwXHfEOkJr2lFrfK1qCbZC9oc3CpP03v8qv2ki4YU61ulRrcKM0ZLdvqL+T92wfy3jZTuvltqUFXJ1UJV8HvLLg6xiguh/GBkiLgRYlYlqXHHntM3333nRYtWqR69eoVOt6+fXvZ7XbNnz9fAwYMkCRt2bJFe/fuVVxcnCQpLi5Or7zyilJSUhQZGSnJfEQlNDRUzZs3r9gbAuB5GvcyAdLW2QS8wJVKS5LmnW2h1P15KbSmpDUlv05ghNSwh9kkybKktIPSgcSzge9KszhiVpq071ez5fEPl2q0M6FvzatM8Bsac6V3dmXSkqT130hrv5KS15p9S+pLt39iai1P+aHuVGnj1IuEuv2lBt0LhbpuKTBC6v+u1PI26YcRUupe6bP+Urv7pfi/09cZAAB4DAJelMiwYcM0adIkTZs2TSEhIfk9c8PCwhQQEKCwsDA98MADGjlypCIiIhQaGqrHHntMcXFxuu666yRJ8fHxat68ue6//36NGzdOycnJGj16tIYNG1bkLF0AKFON46VFr0o7Fko5WZIPrztAqc182oSuNdtLHf4k5TrK5ro2mxRW02zNbzH7HA7p2A4T+h5YaYLfpLWm7cPOhWbLE1LDhL15gW+NCljELfOEtPF7ad1XZ3vRWma/l4/kFyod2yl91FPqOUa67tGynXVsWdL+c2fq7i845hssNelTeULdojTsIT263LzZ8Nv/Sas+k7bPk/r+W2rax9nVAQAAlDsCXpTIe++9J0nq0qVLof0TJkzQkCFDJElvvPGGvLy8NGDAAGVlZSkhIUHvvvtu/rne3t6aPn26hg4dqri4OAUFBWnw4MF66aWXKuo2AHiy6DZScJR06pC0Z6nUoNvlHwPgQpt/lDZ9bwLMm9+WvLzLLuAtipeXVK2R2drcbfblnJFSNua3ddCBVdLhTdLJg9Lmg9Lm6QWPr9rwbFuHszN9o1tJ9oArqyknS9o214S6W2ZJuVkFx2Kvk1rfITW/1YS53z9m6pn9rLRzsZl5GlSt9M+dF+punGpm614Q6pr2C5U21D2fX4jU959mNu+04ebNgMn3SC1uk/r848r+rAEAAFwcAS9KxLKsy57j7++v8ePHa/z48Rc9p06dOpoxY0ZZlgYAxePlJTWKNzO8ts4m4AVKI+ukNOMp833ccCm6pXPq8PGVarQ129V/PFvbKdMW4cDKghYPx3dLR7ebbd1X5jwvHymy+dmZvmd7+lZvKnmf95/HliVlHJWO7ZKO7zLXyvv+0EYp60TBudWamFC31R1SlbqFr3PX56Zf8eznpG2zpfevl277P6neDcW/33ND3Y3TpBP7Co7lhbrN+0sNu195eO2u6nSUhi6VFr0mLXtH2jBF2rlI6j1OanW7a/drBgAAKCUCXgCA52mcUBDw9nqN/+FH+Tm+x8zyrNaoco2zBX83vV2r1JVufMbZ1RTmF2xCvjodC/alHzU9fPNn+q6U0lNMEJy8VkqcaM6zB0oxbUzwm37YhLjHdktnTl78+UJipJYDpNZ3StGtL/73bLNJ1zwo1b5O+voP0tFt0qc3S52fMn+G5wfLeSzL1JzXfuH8ULdxLzNT15ND3fPZA0wrjBb9zWzeQ+ulKX8yfZH7/tu0/gAAAKhECHgBAJ6nfhfJy27Cm6PbTfgGlKVju0wIuv4b83Ng1bOh4/VS3U5SZAszm9wd7U+Ufv3AfH/TG5JvoHPrKY6gqlKjHmaTTGh6Yn/BAm4HEqWDq02Qu3e52c4XWlOqUs+E2hF1zfdVG5hQ18u7+LVEt5IeXmz6F6/6XFoyTtr9kzTgIymsVkF9Fwt17UEFC6U17EGoeyk12kkPLpSWvmX+nLfOkvYsk3q+JLUfUrnedAEAAB6NgBcA4Hn8QqS615tFmbbOIuBF2Uk/Ii35h/Tbx5Ij2+zz8Tcf8d/0g9kkyT9Mqn12lmndTqY39MVmcLqS3Gzphz9LsqTWd7tvixObTQqPNVvzfmafw2He8DmQKB3ZKgVHmhA3op4UXqds+9j6Bkn9xkv1ukjTnzCB8nudpB4vmho2fi+d2Ftwvj1IapI3U5dQt0R8fKUbn5Ka3SxNGyYd+F2aPkJa/610y9tSRH1nVwgAAHDF3OD/JAAAKAeNE84GvLOljo85u5qSy802YWJ6inTqsPk4eXqKdCpF8rZLHf5UMBsQ5e9MurT8XTNTMO/j/A26mcCuejMzU3TPUmn3Umnfr1LmCWnrTLNJ5qP2sdeasLdOJ9MP1sfXabdzUcv/Yz7uHhAhJbzi7GrKlpeXVL2x2SpK6zukWu2lb/5oWkhMH1FwLC/Ubd5fatSTUPdKRTaVHpgj/fq+NP9lM2v63Y5S979J1z5SslnYAAAALoaAFwDgmRrFS7P+ambOZZ4wMypd1eGt5qP+e5aZADc9RTp9/NKP+eV96fonpE5/JhgqT7nZ0sr/Sotfl04dMvti2kg9xkgNuhacV/s6s93wpJSbIyWvMX+fu5dKe5eZMbhjvtkkySdAqnW1mWlep5P53tl/j8d2SoteN98nvCIFVXNuPZVFRH3pj3OkBS9Ja740f+ctbiXULQ9e3lLcMNPi4vs/m5B39rOmFcYt/zEhMAAAgBsi4AUAeKaqDaSqjcxCRzsWmEDFlRzfYz5CvH6KdGhd0efYvE3IFhQpBVc3X4OqmZ6ie5dJi141i8nFv2xmAdJvsuxYlrTpe2n+S+Yj9ZLpzdrtb1KL2y7dX9fbR6rZ3mwdH5McuVLKRhP27llqgt+MIyZ82v3T2cf4mvPrdDSBb+y1ZjGximJZ0vSRUs5pqV5nqc09FffcnsDHV4r/u9lQ/iLqS4N/kFZ+Ks35m7T/N+mDG8yCd9c/YT4FAQAA4EYIeAEAnqtxgrR8m7R1jmsEvCeTzUyy9d+awCGPl4/UoLvU7CbTCzQ4Ugqqbj4mX1SQaFnSxqkmuDixT/p6iAkFe70mxbSuqLupfLJPS3t/Ma09ts01oaxkFlC78Rmp/R9K11bBy9ssvBXdSrruEfP3d2SrtPtnE/buWSqdTCpY/Ounf5lwv0Zb8/dap5OZHRwQXpZ3W9jar8x9e/tJN73JmwVwfzabWWitYU/px5GmH/vCV8yidv3+YxZoAwAAcBMEvAAAz9Uo3vQU3TbHLLB0qVmX5SXjmAkU1n9rAj1ZZw/YpHo3SC0HSM1ukQIjin9Nm+3sR7wTpGXvSD+/YULCD2+UrhosdRt98Y/X5+ZIhzeZhaYOJMpnf6ISju2Td3J9M0O1Sh0pvLYUfvb7sNiyXXzKlThypeS10o6F0s5FJtzNzSo4bg+U4oabWbj+oWX3vDabVL2J2To8YALf47vOmeG7VErdm/93pGVvS7KZgLhOJ9PHt3ZHKahq2dRzaIM0e5T5/sanzex3oLIIqyndM1la940082nTY/r/upt/113+SpsMAADgFgh4AQCeq3ac5BdqPg5/cKXpc1oRsk5Km2eYvro7FkiOnIJjta4xoW6L/lJI9JU9j2+g1OUZqe1Aad4LJkROnCBtmCJ1GWUWYks7WBAUHkiUDq42H8M/yybJX5KSVputKCExJvSt3sSEyg26med2R6l7pe3zTKC7a8mFvY5DapjeuvW7mFnVZRWiXorNZj5SHlFfuur+s3XuOzu79+ws36PbTRidvFb69T1zToNuphdwaWdtZ5+WFo8zAbIjR4psLnX8c9ncE+BKbDaz4F39LtKsZ8xr5dI3zaze+6dKoTFOLhAAAODSCHgBAJ7Lx9eEdRunSVtnl2/Am33azBRe9435mpNZcCy61dlQ9zYzK7ashcdKt39iAt2Zz5gQcNZfpXkvFq4jj1+o+XhyzfbKiW6rn9ft1vWt6srn5AEpdY/pD5z3NTvdtA84mSTt+9UsOObjL9XvKjXtIzXuZVpKuLLUvdKGqaatxYHEwsf8QqW6N5jgp34XqVoj12hPEB4rhd8ltbnL/HwyuaB/7+6lZhb2jgVm9nGbe8ys7bCaxb/+zkXS9CfMwmqS1PQmqe+/SteCAnAXwdXNa2XL26XpI6TDm6WJfaUh06XQGs6uDgAA4KIIeAEAnq1xr7MB7yyp23Nle+2cMyYoW/+NtPlH6cypgmNVG5oQoeUAqXrjsn3ei6nTUXpokbTqc7M4WMYRycsuRbcsWPSrZnuz+NzZdhVWdrZO7Jghq0kfyX7ewkOWZVpMpO42Ye++FdKWH01gunWm2WSTanUwYW+TvhV3r5eTus8EuhumSgd+L9hv8zILmDXoZgLdGleZRdFcXUi0GUstB5ifj++W5r9sxt6aSWbWdtxwqdPjl24nkX5UmjPaPEYys7P7/ENqdnO53wLgMpr2kaJaSBNvko7tMF8JeQEAgAtzg/9jAQCgHDXsKclmZrWmHbzy/4F35Jpeuuu/lTZ9X/gj/mGxUsvbTLAb3co5M0G9vKX2g00QeHy3CZpL20PXZjMtCoKqmmC45W1Sr7Fm8bHNM0zYe3CVtH+F2ea9aJ6vSW8T9sZeY+qpKKn7TJi/cWrhRexkk+peb9piNLvF9WccF0eVutLtH0vXPWoC273LpJ/+KSVOlLqOkq4aUji4tiyzkNrsUVLGUUk2M+O7+/Nl218YcBdV6phQ91NCXgAA4PoIeAEAni24ulTzKvPR/G1zzKrqJWVZJjBc/6204Tvp1KGCY0GRZsGzlgPMTFZnLORWFL9gM3O3rNlsZuZbVAvpxqdMaL5lhgl8dy0xvWKXvWO2wGpmBnXTPqalQ3n17d3/u5mxvGvxuYWaBcnyQt2QqPJ5bmer1V76wwzzdzD3efPn/+OT0q8fmP68TXqbBdymj5R2LjSPiWwu3fy2FNvBubUDzlaljjTkR9Om4dgO83Xw9JK1OwEAAKgABLwAADTuZQLerSUIeC3LrLa+7htp/RTpxN6CY/7hUvNbTKhb94aKnaXqakJrmJmgHf4kZaZJO+absHfbbNMiYvXnZiuPvr1Hd5hgd+PUsztspk1Fi1tNy4ErXcTOXdhsUtO+UqN4M4N30VjpyFZp8j2mBUXKJrOwnrefWZSv458lb/tlLwt4hPDa54S8O8/25P2RkBcAALgUAl4AABrFSwtfMf1yszMLtyxw5Jo+s+mHTSCZfkQ6vMX0ND2yteA8e5AJ0VoOMP1bWYzqQv6hJlxtcauUm20WBNsys+i+vbHXFLRyKGnf3lOHpSXjpN8/kRw55nptB0pd/mrCGk/lbZeueVBqfaf08xvS8nelgyvNsXqdpZvelKo2cGqJgEvKD3lvMjPeCXkBAICLIeAFACCmjRQcLZ1KlibdYULd9CMm1D19XJJV9OO8/aTG8SbUbZRQfi0GKiNvu1T/RrP1Gisd2nC2lcOPUtJqad+vZsvv29vHbJfq23sm3YSWS98sWNCuYU+px4vl047CXfmHmT+Tqx+QVnwgRbeRWt3unJ7QgLs4dyZvfsg7XQqr5ezKAAAACHgBAJDNZmaLJk4wfWIvPEEKqCIFVZeCqknBUWbWb9O+LEBVFmw2E8BGt5RufFo6ccDM5C3Ut/dtsxXVtzc3x7R5WDjWhPSSFNNW6vmSCZBRtPBYKf7vzq4CcB/hsSbk/fT8mbyEvAAAwLkIeAEAkKRuo6WI+pKPnwlxA6sVBLoBEZI3vzIrTFjNwn17t88zs3u3zSm6b++xndKRLeax4XWk7s9LLW5znQXtAFQe4bFmobVPb5KO7ybkBQAALoH/WwUAQDJBbqc/O7sKnM8/VGp5m9ny+/bOMLN7T5zt2yuZEP7Gp6Wr/2hCegAoL3kzeSf2NSHvRz2kni/T6gQAADgNAS8AAHAPhfr2viYdWi9tnWV6IbcfbHrLAkBFCKtlQt7/9jNtZKb8Sfr1fdNTPPYaZ1cHVB6nDptP8mybI2WfluIeNQuDAgAKIeAFAADux2aToluZDQCcIayW9MjP0vL/SD+9IR34Xfq4p1l4s8eLZmG2krAsMyPYL1QKqloeFQOuz+Ewi61um2O2AytVaLHbrTPNAqo9x0hRLZxVJQC4HAJeAAAAACgNe4DU+Smp3f3SgpelVV9I67+VNv8oxQ2Trn9C8gu5+OPPpJvFJLfNlbbPlVL3Sl52ExLHDZNiWlfcvRRHTpYJon38aEeBspN5QtqxwPw72DZXSk8pfDymjVnc9nSqWRB3+1wzq7ftQKnrs/TABgAR8AIAAADAlQmJlvqNl655SJr9nLT7J+mnf0mrPjeLeLa9V/LyNuHo4S0FAdWeZVLumYLrePlIjmxp7WSz1essxQ03MxbLe+HIrFPSySQp7YCUdvCcr+d8n3G04HxvP7PYpU/eV9+Cn+2BUvshpi8xcDGnj0uznpXWfSU5cgr2+4ZIDbpIjRKkhj2k0JiCY9cNlea/JG2cKq0++4bKtY+YN1MCwiv4BgDAdRDwAgAAAEBZiGkjDf7BzOCdM1o6vkv6/jFpxYdSzfbS9gVmgchzhdeRGvU0IW69G6TDm6Xl70obvjOze3ctkao2Mr1HW98t+QaWrCbLMjMkzw9rCwW4B6WsEyW7bm6W2bIucnz3T5LlkFrfWbLrwjNsmyd9P9y8qSBJ1RqbWbqN4qXaceYNg6JUbSDd+am0/3dp7vPSnqXS0jellZ+a2fQd/sRiq5WRw2HC/BUfSnWvl258RrL7O7sqwKUQ8AIAAABAWbHZpGY3maBqxYfS4nFS8jqzSWbma93rz4a6PaSqDQu3O6jZXrr9Y9PHd8UHUuKn0tFt0vQnpPkvSx0ekDo8KIVEmfA24+iFYe35AW52evFq9wuVQmucs9Us+BoSY7738jGtGnIyC3/NPef7LTOklf+Vpg6V/MOlxvFl/adceTlyzd9ZaA0z67uyyTpp3vxInGh+rtpQ6v9eyRcnrHW1Wehw6yxp7gvSkS3S7GfNYofXDjWzeb3skrfP2a92M3a97UX87HOJY2d/piWJc1iW+Tue/7KUssHs27/C7Lv1A9drYwM4EQEvAAAAAJQ1H1+p43CpzT3Sr++ZFggNuplwtzizcMNjpfi/m5lqqz6XfnnX9Ohd8g9p6VsmAExLMsFqcQREXCS8PSfA9Q+9snvO0yhBys40H73/apA0aKpU+7qyuXZltvtnaeYz0qH1Umgt02O27UApop6zKysbu36Spj1qxrEkXfeo1O1vJZ+Vnsdmk5r0NrPfV38hLXzVXHv2qLKrOf+5vM8JfM8GwhcEyJcKlM1jvG3eqnMiRLJ6l32Nlc2un0w7jv0rzM9+YVK7+6S1X0opG6X/6yZ1HSV1GlE53wwBSoiAFwAAAADKS1BV04e3tPxCTN/RDg9Km6dLy8ebwOP47nOeI7Lo0PbcQNcecMW3UmxeXlL/d02P1e1zpUl3Sn+YKUW1qLga3EnqPmnu30xbjjxp+6Ul48xW9wazkF+zm0sfhjrTmQwT1P36nvk5vLbU713TkqQsePtI7Qebns8rPpT2/iLlZpt+1rk5pr9v/vfZ5x3L+zmnYL/luPA5rFwpJ1dS5hWV6iWpraTcX2Klzk9e0bUqrQMrzXjZudD87BMgXfeI1OlxKaCK6bc8fYR5PZz/krR1tnTr+1JEfaeWDTgbAS8AAAAAuDpvH6lFf7Mlr5ey0gpm3l6sX6kzedulO/8rfXartO8X6bPbpD/OqjyzUSUTCG6YKm2bYz4q3ryfCS+LK/u0tOwd6ad/SzmnJZuX1P4PUue/SHuXm5nbOxaafsa7f5JmhEotB5iwt+ZV7tE2YN9v0tRHpKPbzc/th5iZ6X4hZf9cvkEm/LtSDsc5ofB54e8FP58XGjtyL34sN0e5h7fKO/FjeS94SapaX2px65XXW1kc3iIteFna9IP52cvHjJfOT5mFLPMEV5fu+lxaPcnMeN/3q/Te9VLCK+Z8d/h3AZQDAl4AAAAAcCfRLZ1dQfH4BkoDJ0sT+pr+mZ/dKv1xtukf7M6yTkmrPjOzqU/sM/vWfWV6y9a82oTwzfubNhtFsSwz+3D2swXtCmp3lHq/XtBTtOUAs6Xuk9b8zzxf6l4pcYLZqjeT2t0rNe5tFh5zpVArN8f0hv71fbMAmuUwb0Tc8h+pUQ9nV3d5Xl6Sl6+ksn/jxJGdrT1796r+4bnSlIelkBpS7WvL/HnchmWZGdeJE82/IcshySa1vkvq8teLvyFks5nxX+8Gaeqj5g2Q6SNM/+9b3ikcCAMegoAXAAAAAFA+AqpI930rfZIgHd8lfT5AGjLdLILlbk6lSL9+IP32kZSZavYFVTdhVNIa00P3wO9myw97bz07s/ds2Juyycw63LXY/BxaU4p/WWpxW9EhbXisdOPT0g1/kfb8bGb1bpwmHd5knmPOaNOvt0EXqX5Xqd6NZoZjWTqTIWUckdKPSBnHzvn+iAly04+e8/2Rgj+bPK3vMuF1QJWyrctNrat5r+qGe8lr22xp8j3Sn+Z5XnuBozukNZNNP93UPQX7m95kWtpENivedcJrS4O+N+0/5o0xs+nfjZNuesO80QJ4EAJeAAAAAED5CY2R7v9O+qSXdGid9L97pPunVGxf4CtxdIdppbB6UsGidhENpI6PmUX07P5m38lD0qbvTduGPUvPCXufk2p1kKo2MoGWlSt5+0md/mxaCvgGXb4GLy+pXmez9R4nbZhievbu/cX06131udkkKbqVVL+LCXxrxxXu2+twmAA2L4zNOHqR8PZowTk5p0vxh2aTqtSRer4sNb+lFI+vxGxeyu3/obw+7yclrZa+uEN6YK4UGFF+z5l9umDRN2dJP2rG7ZrJ5t9FHt9g8ybI1Q9ItdqX/LpeXlLcMLOI5ZSHpOS10teDpc13ml7gzrxnoAIR8AIAAAAAylfVBmYm78S+0t5l0td/kO76zLXDl/2/mxYDm6ZLssy+Wh3MYk9N+khe3oXPD4mSrnnQbOeHvft/M5tkZinG/730/YgDwqWr/2i2Mxnmz3PHQmnnYhOgJ5/dlr1jguTolgWzcDOOmYC5pLx9pcBqUmBVs3BgYDUp6OzPgVXP+f7s/oAqF/75oIBvkDTwS+mjHqY/8eR7pUFTJR+/snuO3GxpxwLT4mPzDDPb9Z7/SdUald1zXE52prR1lnljY9sc079YkmzeJpBtc7f5t1QWiwdGNpP+NN8sTPjTvyRZrv36ApQxAl4AAAAAQPmLaS3dM1n6/DZp60zp+8ekfu+aGXiuwuEwQdTSt0xwmqdxbxPs1r6ueP1uC4W9yWbhqOR1ZqZiw+5lV69voNSwh9kk00Zi52Jp50IT+p48KB1ILOJxIcULavP2+4W4Vp/fyiAkWhr4lWlfsneZNG2YdNv/Xdmfs2WZGaxrJkvrvpbSDxccO7pN+qi7dMenUoOuV17/xTgcZmHFNZPNGxxZJwqOxbSRWt8ttbpdCo4s++f28TUtHhr3Mm8qAR6EgBcAAAAAUDHqdpJunyB9eZ+ZWegbbFoOODvkzckygdiyd6TDm80+L7vU5i4p7jEpsmnprx0SbYLeihAcKbW+w2yWJR3ZZha48w8vHOCW5UxRlF5Uc+nOT02bhnVfS1XqSd2eK/l10pLM49f8T0rZWLA/sJrU+k4zS3bBy9K+X00f7D7jpA5/Krv7kKQj26W1eX119xbsD611dkzefWX/jkqi1tUV8zyACyHgBQAAAABUnKZ9pH7/kaYOlX77Pyk7Q7r5bcnbCf97mnlCSpwo/fKedDLJ7PMLla7+g3TtI1JojYqvqazYbFL1xmaD62rQzSwK9v1jpr1AlbpSu3sv/RjLko7vNu0/1k8xM7Ythznm7WsC3Tb3mNnieW0KBn0v/fC4CWF/fFI6vEVKGHtl/+7Sj5jnXzu58Exx3xAzW73NXVKd653/Bg7gAQh4AQAAAAAVq+1ASTZp2qPS6i+krJPSgI8qbmZp2kET6v4+QTpz0uwLiZGue1RqP1jyD6uYOgBJumqQdGyX9PO/pR/+LIXVkurfWHDckSsd2iDtXW62PculU8mFrxF7rQl1W/Q3PZDPZ/eXbn1fqt5Emj9GWvGh6f97+wTT17m4sjOlLTPMTN3t8wr31W3YXWp9V9n11QVQbAS8AAAAAICK1/YeyS9Y+uaPZkGy/90j3fV5+QZDKZtNG4a1X0qObLOvelOp45+lVneYHp6AM3T7m5mVu2GK9OX90i1vmQB2z3Jp34qCNyLyeNmlGm3NDODWdxWv56zNJt0w0iy0NuUhswjbxz1Nb+xLPd7hMH2C10yWNk6TstIKjsW0NYultRxQPn11ARQLAS8AAAAAwDma3SwN/FKafK+0Y75ZgG3gl2U7g9ayzKzHpW9JW2cV7K/TySyc1rAnHyGH83l5Sf3fM7PL9/0ifT2k8HHfECn2Gql2nFQnTqpxVenfDGl2s/THWeZNlSNbzeJrd30u1b2+8HmHt57tq/u1dOKcvrphseYNkTZ3mxnBAJyOgBcAAAAA4DwNukn3fyd9cacJYj+9WbpvilkQ7Eo4cqXNP5pg98DvZ3faTLjV6XEWYoLrsftLd08yb3ScOmTaLuQFupEtyrZPdUwb6cEF0uSBpn/uf/uZXsCNe0vrvzXB7sFVBef7hZq+uq3vMm+O8KYI4FIIeAEAAAAAzlX7OmnIdOmzW6WkNdKE3tKgaaVb5Cz7tLTmM2nZf6RjO8w+bz+zcFXc8OJ9lB1wlqCq0sOLK+a5QqKlIT9KUx81rSG+f8z00rVyzXEvH6lhj7N9dXtL9oCKqQtAiRHwAgAAAACcL6a1+dj4f/uZj41/kmBC3oj6xXv86eNqnPy9fMY/KaUfNvv8w6VrHpSueYj+oEBR7AHS7Z+YXtSLXjXhbo2rCvrqXulMegAVgoAXAAAAAOAaqjUqCHmP7ZQ+6W3aN0Q1N8ctSzqZJB3dYWbnHt1hzju6Qz7HdqhZ7hlzXlhtKW6Y1O4+s5AbgIuz2aQuz5ydpRsoVWvo7IoAlBABLwAAAADAdYTXlv4wy7RrSNkgTexjFn86utOEuTmni3yYTVJqQG0FJzwnn1a3l22/UsATxLR2dgUASonfeAAAAAAA1xISZXryfnGHWSBt0w8Fx2zeUpU6UkQD0083ooFUtb6yQ+to8bIN6tOiL+EuAMCj8FsPAAAAAOB6AiNMD97Vk0xf0LxAN7y25G2/8PzsbMm2seLrBADAyQh4AQAAAACuyS9YuvYhZ1cBAIBL83J2AQAAAAAAAACA0iHgBQAAAAAAAAA3RcALAAAAAAAAAG6KgBcAAAAAAAAA3BQBLwAAAAAAAAC4KQJeAAAAAAAAAHBTBLwAAAAAAAAA4KYIeAEAAAAAAADATRHwAgAAAAAAAICbIuAFAAAAAAAAADdFwIsSWbJkiW6++WbVqFFDNptNU6dOLXR8yJAhstlshbZevXoVOufYsWO69957FRoaqvDwcD3wwAM6depUBd4FAAAAAAAAUDkQ8KJE0tPT1aZNG40fP/6i5/Tq1UtJSUn52//+979Cx++9915t2LBBc+fO1fTp07VkyRI99NBD5V06AAAAAAAAUOn4OLsAuJfevXurd+/elzzHz89P0dHRRR7btGmTZs2apd9++01XX321JOmdd95Rnz599M9//lM1atQo85oBAAAAAACAyoqAF2Vu0aJFioyMVJUqVdStWzf9/e9/V9WqVSVJy5cvV3h4eH64K0k9evSQl5eXfv31V916661FXjMrK0tZWVn5P6elpUmSsrOzlZ2dXY53U3J59bhaXXBNjBe4OsYoSoLxgrLGmEJJMF7g6hijKC7GCEqKgBdlqlevXrrttttUr1497dixQ88++6x69+6t5cuXy9vbW8nJyYqMjCz0GB8fH0VERCg5Ofmi1x07dqzGjBlzwf45c+YoMDCwzO+jLMydO9fZJcCNMF7g6hijKAnGC8oaYwolwXiBq2OM4nIyMjKcXQLcDAEvytTdd9+d/32rVq3UunVrNWjQQIsWLVL37t1Lfd1Ro0Zp5MiR+T+npaUpNjZW8fHxCg0NvaKay1p2drbmzp2rnj17ym63O7scuDjGC1wdYxQlwXhBWWNMoSQYL3B1jFEUV96nloHiIuBFuapfv76qVaum7du3q3v37oqOjlZKSkqhc3JycnTs2LGL9u2VTF9fPz+/C/bb7XaX/cXoyrXB9TBe4OoYoygJxgvKGmMKJcF4gatjjOJyGB8oKS9nF4DKbf/+/Tp69KhiYmIkSXFxcUpNTVViYmL+OQsWLJDD4dC1117rrDIBAAAAAAAAt8QMXpTIqVOntH379vyfd+3apdWrVysiIkIREREaM2aMBgwYoOjoaO3YsUNPP/20GjZsqISEBElSs2bN1KtXLz344IN6//33lZ2dreHDh+vuu+9WjRo1nHVbAAAAAAAAgFtiBi9K5Pfff1e7du3Url07SdLIkSPVrl07Pf/88/L29tbatWt1yy23qHHjxnrggQfUvn17/fTTT4XaK3zxxRdq2rSpunfvrj59+uj666/Xhx9+6KxbAgAAAAAAANwWM3hRIl26dJFlWRc9Pnv27MteIyIiQpMmTSrLsgAAAAAAAACPRMALt5QXMrviypLZ2dnKyMhQWloajdFxWYwXuDrGKEqC8YKyxphCSTBe4OoYoyiuvKzjUhPsgHMR8MItnTx5UpIUGxvr5EoAAAAAAADK3smTJxUWFubsMuAGbBZvB8ANORwOHTx4UCEhIbLZbM4up5C0tDTFxsZq3759Cg0NdXY5cHGMF7g6xihKgvGCssaYQkkwXuDqGKMoLsuydPLkSdWoUUNeXiyfhctjBi/ckpeXl2rVquXsMi4pNDSUX9ooNsYLXB1jFCXBeEFZY0yhJBgvcHWMURQHM3dRErwNAAAAAAAAAABuioAXAAAAAAAAANwUAS9Qxvz8/PTCCy/Iz8/P2aXADTBe4OoYoygJxgvKGmMKJcF4gatjjAIoLyyyBgAAAAAAAABuihm8AAAAAAAAAOCmCHgBAAAAAAAAwE0R8AIAAAAAAACAmyLgBQAAAAAAAAA3RcALtzV27Fh16NBBISEhioyMVP/+/bVly5ZC52RmZmrYsGGqWrWqgoODNWDAAB06dCj/+Jo1a3TPPfcoNjZWAQEBatasmd56662LPufSpUvl4+Ojtm3bXrY+y7L0/PPPKyYmRgEBAerRo4e2bdtW6JxXXnlFHTt2VGBgoMLDw4t972vXrtUNN9wgf39/xcbGaty4cYWOb9iwQQMGDFDdunVls9n05ptvFvvalZWnjpfMzEwNGTJErVq1ko+Pj/r373/BOYsWLZLNZrtgS05OLtZzoGy4+xjdvXu3HnjgAdWrV08BAQFq0KCBXnjhBZ05c+ay1160aJGuuuoq+fn5qWHDhpo4cWKh40uWLNHNN9+sGjVqyGazaerUqZe9ZmXnqeMlKSlJAwcOVOPGjeXl5aURI0ZccM7EiRMveD3z9/e/bM2ezt3HlCTdcsstql27tvz9/RUTE6P7779fBw8evOy1eQ0qOU8dL7wGuY/KMEbzZGVlqW3btrLZbFq9evVlr81rGuCZCHjhthYvXqxhw4bpl19+0dy5c5Wdna34+Hilp6fnn/PEE0/ohx9+0Ndff63Fixfr4MGDuu222/KPJyYmKjIyUp9//rk2bNig5557TqNGjdJ//vOfC54vNTVVgwYNUvfu3YtV37hx4/T222/r/fff16+//qqgoCAlJCQoMzMz/5wzZ87ojjvu0NChQ4t932lpaYqPj1edOnWUmJiof/zjH3rxxRf14Ycf5p+TkZGh+vXr67XXXlN0dHSxr12Zeep4yc3NVUBAgP785z+rR48elzx3y5YtSkpKyt8iIyOL/Ty4cu4+Rjdv3iyHw6EPPvhAGzZs0BtvvKH3339fzz777CWvu2vXLvXt21ddu3bV6tWrNWLECP3pT3/S7Nmz889JT09XmzZtNH78+GLV6gk8dbxkZWWpevXqGj16tNq0aXPR80JDQwu9nu3Zs6dYdXsydx9TktS1a1d99dVX2rJli7799lvt2LFDt99++yWvy2tQ6XjqeOE1yH1UhjGa5+mnn1aNGjWKdV1e0wAPZgGVREpKiiXJWrx4sWVZlpWammrZ7Xbr66+/zj9n06ZNliRr+fLlF73Oo48+anXt2vWC/XfddZc1evRo64UXXrDatGlzyVocDocVHR1t/eMf/8jfl5qaavn5+Vn/+9//Ljh/woQJVlhY2GXu0Hj33XetKlWqWFlZWfn7nnnmGatJkyZFnl+nTh3rjTfeKNa1PYmnjJdzDR482OrXr98F+xcuXGhJso4fP17ia6L8uPMYzTNu3DirXr16l7z2008/bbVo0eKC2hISEoo8X5L13XffXfKanshTxsu5brzxRuvxxx+/YH9pXyNRWGUYU9OmTbNsNpt15syZi57Da1DZ8JTxci5eg9yLu47RGTNmWE2bNrU2bNhgSbJWrVp1yWvzmgZ4LmbwotI4ceKEJCkiIkKSecc1Ozu70KzFpk2bqnbt2lq+fPklr5N3jTwTJkzQzp079cILLxSrll27dik5ObnQc4eFhenaa6+95HMXx/Lly9W5c2f5+vrm70tISNCWLVt0/PjxK7q2J/GU8VISbdu2VUxMjHr27KmlS5dW2POiaJVhjBb13Odbvnz5BbPLExISKnTsVwaeMl6K69SpU6pTp45iY2PVr18/bdiwoUyu60ncfUwdO3ZMX3zxhTp27Ci73X7Ra/MaVDY8ZbwUF69Brscdx+ihQ4f04IMP6rPPPlNgYGCxrs1rGuC5CHhRKTgcDo0YMUKdOnVSy5YtJUnJycny9fW9oFdpVFTURXuLLlu2TF9++aUeeuih/H3btm3TX//6V33++efy8fEpVj1514+Kiir2cxdXcnJykdc993lxaZ40XoojJiZG77//vr799lt9++23io2NVZcuXbRy5cpyf24UrTKM0e3bt+udd97Rww8/fNlrF3XdtLQ0nT59ulj1eTpPGi/F0aRJE33yySeaNm2aPv/8czkcDnXs2FH79++/4mt7CnceU88884yCgoJUtWpV7d27V9OmTbvstXkNujKeNF6Kg9cg1+OOY9SyLA0ZMkSPPPKIrr766mJdN+/avKYBnomAF5XCsGHDtH79ek2ePLnU11i/fr369eunF154QfHx8ZJM/9KBAwdqzJgxaty4cZGP++KLLxQcHJy//fTTT6Wu4XwtWrTIv27v3r3L7LqejvFSWJMmTfTwww+rffv26tixoz755BN17NhRb7zxRpnVhpJx9zF64MAB9erVS3fccYcefPDB/P3nXveRRx4p3Y3hAoyXwuLi4jRo0CC1bdtWN954o6ZMmaLq1avrgw8+KHFtnsqdx9RTTz2lVatWac6cOfL29tagQYNkWZYkXoPKC+OlMF6DXI87jtF33nlHJ0+e1KhRoy56Dq9pAM5VvLeYABc2fPhwTZ8+XUuWLFGtWrXy90dHR+vMmTNKTU0t9M7soUOHLlh4bOPGjerevbseeughjR49On//yZMn9fvvv2vVqlUaPny4JPMOsGVZ8vHx0Zw5c3TLLbfo2muvzX9MzZo1lZSUlP9cMTExhZ67OKuq5pkxY4ays7MlSQEBAfn3de7qrnnXzTuGS/O08VJa11xzjX7++ecrugZKx93H6MGDB9W1a1d17Nix0OKPkgqt/BwaGpp/X0W9poWGhl7xOPYEnjZeSsNut6tdu3bavn17qa/hSdx9TFWrVk3VqlVT48aN1axZM8XGxuqXX35RXFwcr0HlwNPGS2nwGuRc7jpGFyxYoOXLl8vPz69QLVdffbXuvfdeffrpp7ymASjMWc1/gSvlcDisYcOGWTVq1LC2bt16wfG8xvnffPNN/r7Nmzdf0Dh//fr1VmRkpPXUU09dcI3c3Fxr3bp1hbahQ4daTZo0sdatW2edOnXqorVFR0db//znP/P3nThxokwXWTt3AYhRo0axyNpleOp4OdfFFlkrSo8ePaxbb721xM+B0qsMY3T//v1Wo0aNrLvvvtvKyckp1n0//fTTVsuWLQvtu+eee1gM5DI8dbyc62ILHJ0vJyfHatKkifXEE0+U+Dk8SWUYU+fbs2ePJclauHDhRc/hNah0PHW8nIvXINfm7mN0z549ha47e/ZsS5L1zTffWPv27bvoffOaBnguAl64raFDh1phYWHWokWLrKSkpPwtIyMj/5xHHnnEql27trVgwQLr999/t+Li4qy4uLj84+vWrbOqV69u3XfffYWukZKSctHnLc7KqJZlWa+99poVHh5uTZs2zVq7dq3Vr18/q169etbp06fzz9mzZ4+1atUqa8yYMVZwcLC1atUqa9WqVdbJkycvet3U1FQrKirKuv/++63169dbkydPtgIDA60PPvgg/5ysrKz8a8XExFh/+ctfrFWrVlnbtm27bN2VlaeOF8uyrA0bNlirVq2ybr75ZqtLly75j8vzxhtvWFOnTrW2bdtmrVu3znr88cctLy8va968eZetG2XH3cfo/v37rYYNG1rdu3e39u/fX+j5L2Xnzp1WYGCg9dRTT1mbNm2yxo8fb3l7e1uzZs3KP+fkyZP541aS9e9//9tatWqVtWfPnsvWXVl56nixLCt/LLRv394aOHCgtWrVKmvDhg35x8eMGWPNnj3b2rFjh5WYmGjdfffdlr+/f6FzcCF3H1O//PKL9c4771irVq2ydu/ebc2fP9/q2LGj1aBBAyszM/Oi1+U1qHQ8dbxYFq9B7sLdx+j5du3aZUkq9N/wReE1DfBcBLxwW5KK3CZMmJB/zunTp61HH33UqlKlihUYGGjdeuuthf7n8YUXXijyGnXq1Lno8xb3l7bD4bD+9re/WVFRUZafn5/VvXt3a8uWLYXOGTx4cJHPf7mZA2vWrLGuv/56y8/Pz6pZs6b12muvFTqe9x8A52833njjZeuurDx5vNSpU6fIx+V5/fXXrQYNGlj+/v5WRESE1aVLF2vBggWXrRlly93H6IQJEy56D5ezcOFCq23btpavr69Vv379Qvecd7yo6w4ePPiy166sPHm8XK7mESNGWLVr17Z8fX2tqKgoq0+fPtbKlSsve11P5+5jau3atVbXrl2tiIgIy8/Pz6pbt671yCOPWPv377/stXkNKjlPHi+8BrkHdx+j5ytuwGtZvKYBnspmWWe7yAMAAAAAAAAA3IqXswsAAAAAAAAAAJQOAS8AAAAAAAAAuCkCXgAAAAAAAABwUwS8AAAAAAAAAOCmCHgBAAAAAAAAwE0R8AIAAAAAAACAmyLgBQAAAAAAAAA3RcALAAAAAAAAAG6KgBcAAAAeYciQIbLZbLLZbLLb7YqKilLPnj31ySefyOFwFPs6EydOVHh4ePkVCgAAAJQAAS8AAAA8Rq9evZSUlKTdu3dr5syZ6tq1qx5//HHddNNNysnJcXZ5AAAAQIkR8AIAAMBj+Pn5KTo6WjVr1tRVV12lZ599VtOmTdPMmTM1ceJESdK///1vtWrVSkFBQYqNjdWjjz6qU6dOSZIWLVqkP/zhDzpx4kT+bOAXX3xRkpSVlaW//OUvqlmzpoKCgnTttddq0aJFzrlRAAAAeAwCXgAAAHi0bt26qU2bNpoyZYokycvLS2+//bY2bNigTz/9VAsWLNDTTz8tSerYsaPefPNNhYaGKikpSUlJSfrLX/4iSRo+fLiWL1+uyZMna+3atbrjjjvUq1cvbdu2zWn3BgAAgMrPZlmW5ewiAAAAgPI2ZMgQpaamaurUqRccu/vuu7V27Vpt3LjxgmPffPONHnnkER05ckSS6cE7YsQIpaam5p+zd+9e1a9fX3v37lWNGjXy9/fo0UPXXHONXn311TK/HwAAAECSfJxdAAAAAOBslmXJZrNJkubNm6exY8dq8+bNSktLU05OjjIzM5WRkaHAwMAiH79u3Trl5uaqcePGhfZnZWWpatWq5V4/AAAAPBcBLwAAADzepk2bVK9ePe3evVs33XSThg4dqldeeUURERH6+eef9cADD+jMmTMXDXhPnTolb29vJSYmytvbu9Cx4ODgirgFAAAAeCgCXgAAAHi0BQsWaN26dXriiSeUmJgoh8Ohf/3rX/LyMstVfPXVV4XO9/X1VW5ubqF97dq1U25urlJSUnTDDTdUWO0AAAAAAS8AAAA8RlZWlpKTk5Wbm6tDhw5p1qxZGjt2rG666SYNGjRI69evV3Z2tt555x3dfPPNWrp0qd5///1C16hbt65OnTql+fPnq02bNgoMDFTjxo117733atCgQfrXv/6ldu3a6fDhw5o/f75at26tvn37OumOAQAAUNl5ObsAAAAAoKLMmjVLMTExqlu3rnr16qWFCxfq7bff1rRp0+Tt7a02bdro3//+t15//XW1bNlSX3zxhcaOHVvoGh07dtQjjzyiu+66S9WrV9e4ceMkSRMmTNCgQYP05JNPqkmTJurfv79+++031a5d2xm3CgAAAA9hsyzLcnYRAAAAAAAAAICSYwYvAAAAAAAAALgpAl4AAAAAAAAAcFMEvAAAAAAAAADgpgh4AQAAAAAAAMBNEfACAAAAAAAAgJsi4AUAAAAAAAAAN0XACwAAAAAAAABuioAXAAAAAAAAANwUAS8AAAAAAAAAuCkCXgAAAAAAAABwUwS8AAAAAAAAAOCmCHgBAAAAAAAAwE0R8AIAAAAAAACAmyLgBQAAAAAAAAA3RcALAAAAAAAAAG6KgBcAAAAAAAAA3BQBLwAAAAAAAAC4KQJeAAAAAAAAAHBTBLwAAAAAAAAA4KYIeAEAAAAAAADATRHwAgAAAAAAAICbIuAFAAAAAAAAADdFwAsAAAAAAAAAboqAFwAAAAAAAADcFAEvAAAAAAAAALgpAl4AAAAAAAAAcFMEvAAAAAAAAADgpgh4AQAAAAAAAMBNEfACAAAAAAAAgJsi4AUAAAAAAAAAN0XACwAAAAAAAABuioAXAAAAAAAAANwUAS8AAAAAAAAAuCkCXgAAAAAAAABwUwS8AAAAAAAAAOCmCHgBAAAAAAAAwE39PxUbywGxcgDbAAAAAElFTkSuQmCC", "text/plain": [ "" ] @@ -421,14 +458,14 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['Date', 'META', 'TSLA']\n", + "['Date', 'META', 'TESLA']\n", "['2024-01-02', '346.2900085449219', '248.4199981689453']\n", "['2024-01-03', '344.4700012207031', '238.4499969482422']\n", "['2024-01-04', '347.1199951171875', '237.92999267578125']\n", @@ -470,7 +507,34 @@ "['2024-02-27', '487.04998779296875', '199.72999572753906']\n", "['2024-02-28', '484.0199890136719', '202.0399932861328']\n", "['2024-02-29', '490.1300048828125', '201.8800048828125']\n", - "['2024-03-01', '502.29998779296875', '202.63999938964844']\n" + "['2024-03-01', '502.29998779296875', '202.63999938964844']\n", + "['2024-03-04', '498.19000244140625', '188.13999938964844']\n", + "['2024-03-05', '490.2200012207031', '180.74000549316406']\n", + "['2024-03-06', '496.0899963378906', '176.5399932861328']\n", + "['2024-03-07', '512.1900024414062', '178.64999389648438']\n", + "['2024-03-08', '505.95001220703125', '175.33999633789062']\n", + "['2024-03-11', '483.5899963378906', '177.77000427246094']\n", + "['2024-03-12', '499.75', '177.5399932861328']\n", + "['2024-03-13', '495.57000732421875', '169.47999572753906']\n", + "['2024-03-14', '491.8299865722656', '162.5']\n", + "['2024-03-15', '484.1000061035156', '163.57000732421875']\n", + "['2024-03-18', '496.9800109863281', '173.8000030517578']\n", + "['2024-03-19', '496.239990234375', '171.32000732421875']\n", + "['2024-03-20', '505.5199890136719', '175.66000366210938']\n", + "['2024-03-21', '507.760009765625', '172.82000732421875']\n", + "['2024-03-22', '509.5799865722656', '170.8300018310547']\n", + "['2024-03-25', '503.0199890136719', '172.6300048828125']\n", + "['2024-03-26', '495.8900146484375', '177.6699981689453']\n", + "['2024-03-27', '493.8599853515625', '179.8300018310547']\n", + "['2024-03-28', '485.5799865722656', '175.7899932861328']\n", + "['2024-04-01', '491.3500061035156', '175.22000122070312']\n", + "['2024-04-02', '497.3699951171875', '166.6300048828125']\n", + "['2024-04-03', '506.739990234375', '168.3800048828125']\n", + "['2024-04-04', '510.9200134277344', '171.11000061035156']\n", + "['2024-04-05', '527.3400268554688', '164.89999389648438']\n", + "['2024-04-08', '519.25', '172.97999572753906']\n", + "['2024-04-09', '516.9000244140625', '176.8800048828125']\n", + "['2024-04-10', '519.8300170898438', '171.75999450683594']\n" ] } ], @@ -502,7 +566,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -513,7 +577,7 @@ "\n", "Analyze the data and write a brief but engaging blog post. \n", " Data: \n", - "Date,META,TSLA\n", + "Date,META,TESLA\n", "2024-01-02,346.2900085449219,248.4199981689453\n", "2024-01-03,344.4700012207031,238.4499969482422\n", "2024-01-04,347.1199951171875,237.92999267578125\n", @@ -556,124 +620,134 @@ "2024-02-28,484.0199890136719,202.0399932861328\n", "2024-02-29,490.1300048828125,201.8800048828125\n", "2024-03-01,502.29998779296875,202.63999938964844\n", + "2024-03-04,498.19000244140625,188.13999938964844\n", + "2024-03-05,490.2200012207031,180.74000549316406\n", + "2024-03-06,496.0899963378906,176.5399932861328\n", + "2024-03-07,512.1900024414062,178.64999389648438\n", + "2024-03-08,505.95001220703125,175.33999633789062\n", + "2024-03-11,483.5899963378906,177.77000427246094\n", + "2024-03-12,499.75,177.5399932861328\n", + "2024-03-13,495.57000732421875,169.47999572753906\n", + "2024-03-14,491.8299865722656,162.5\n", + "2024-03-15,484.1000061035156,163.57000732421875\n", + "2024-03-18,496.9800109863281,173.8000030517578\n", + "2024-03-19,496.239990234375,171.32000732421875\n", + "2024-03-20,505.5199890136719,175.66000366210938\n", + "2024-03-21,507.760009765625,172.82000732421875\n", + "2024-03-22,509.5799865722656,170.8300018310547\n", + "2024-03-25,503.0199890136719,172.6300048828125\n", + "2024-03-26,495.8900146484375,177.6699981689453\n", + "2024-03-27,493.8599853515625,179.8300018310547\n", + "2024-03-28,485.5799865722656,175.7899932861328\n", + "2024-04-01,491.3500061035156,175.22000122070312\n", + "2024-04-02,497.3699951171875,166.6300048828125\n", + "2024-04-03,506.739990234375,168.3800048828125\n", + "2024-04-04,510.9200134277344,171.11000061035156\n", + "2024-04-05,527.3400268554688,164.89999389648438\n", + "2024-04-08,519.25,172.97999572753906\n", + "2024-04-09,516.9000244140625,176.8800048828125\n", + "2024-04-10,519.8300170898438,171.75999450683594\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "To write a blog post, we need to analyze the data to identify trends, significant changes, and any other notable points. We will start by calculating the percentage change for both META and TSLA stocks from the beginning to the end of the data provided. This will give us an idea of the overall performance of each stock over the period.\n", + "To analyze this data and write a blog post, we first need to load the data into a pandas DataFrame, then perform some basic analysis on it. We can then use the results of this analysis to write the blog post.\n", "\n", - "Let's write a Python script to calculate the percentage change for both stocks.\n", + "Here is the Python code to load the data and perform the analysis:\n", "\n", "```python\n", - "# filename: stock_analysis.py\n", - "\n", + "# Python code\n", "import pandas as pd\n", "from io import StringIO\n", "\n", - "# Data provided as a CSV string\n", "data = \"\"\"\n", - "Date,META,TSLA\n", + "Date,META,TESLA\n", "2024-01-02,346.2900085449219,248.4199981689453\n", "2024-01-03,344.4700012207031,238.4499969482422\n", - "2024-01-04,347.1199951171875,237.92999267578125\n", - "2024-01-05,351.95001220703125,237.49000549316406\n", - "2024-01-08,358.6600036621094,240.4499969482422\n", - "2024-01-09,357.42999267578125,234.9600067138672\n", - "2024-01-10,370.4700012207031,233.94000244140625\n", - "2024-01-11,369.6700134277344,227.22000122070312\n", - "2024-01-12,374.489990234375,218.88999938964844\n", - "2024-01-16,367.4599914550781,219.91000366210938\n", - "2024-01-17,368.3699951171875,215.5500030517578\n", - "2024-01-18,376.1300048828125,211.8800048828125\n", - "2024-01-19,383.45001220703125,212.19000244140625\n", - "2024-01-22,381.7799987792969,208.8000030517578\n", - "2024-01-23,385.20001220703125,209.13999938964844\n", - "2024-01-24,390.70001220703125,207.8300018310547\n", - "2024-01-25,393.17999267578125,182.6300048828125\n", - "2024-01-26,394.1400146484375,183.25\n", - "2024-01-29,401.0199890136719,190.92999267578125\n", - "2024-01-30,400.05999755859375,191.58999633789062\n", - "2024-01-31,390.1400146484375,187.2899932861328\n", - "2024-02-01,394.7799987792969,188.86000061035156\n", - "2024-02-02,474.989990234375,187.91000366210938\n", - "2024-02-05,459.4100036621094,181.05999755859375\n", - "2024-02-06,454.7200012207031,185.10000610351562\n", - "2024-02-07,469.5899963378906,187.5800018310547\n", - "2024-02-08,470.0,189.55999755859375\n", - "2024-02-09,468.1099853515625,193.57000732421875\n", - "2024-02-12,468.8999938964844,188.1300048828125\n", - "2024-02-13,460.1199951171875,184.02000427246094\n", - "2024-02-14,473.2799987792969,188.7100067138672\n", - "2024-02-15,484.0299987792969,200.4499969482422\n", - "2024-02-16,473.32000732421875,199.9499969482422\n", - "2024-02-20,471.75,193.75999450683594\n", - "2024-02-21,468.0299987792969,194.77000427246094\n", - "2024-02-22,486.1300048828125,197.41000366210938\n", - "2024-02-23,484.0299987792969,191.97000122070312\n", - "2024-02-26,481.739990234375,199.39999389648438\n", - "2024-02-27,487.04998779296875,199.72999572753906\n", - "2024-02-28,484.0199890136719,202.0399932861328\n", - "2024-02-29,490.1300048828125,201.8800048828125\n", - "2024-03-01,502.29998779296875,202.63999938964844\n", + "...\n", + "2024-04-10,519.8300170898438,171.75999450683594\n", "\"\"\"\n", "\n", - "# Read the data into a pandas DataFrame\n", + "# Load the data into a pandas DataFrame\n", "df = pd.read_csv(StringIO(data))\n", "\n", - "# Calculate the percentage change for META and TSLA\n", - "meta_start = df['META'].iloc[0]\n", - "meta_end = df['META'].iloc[-1]\n", - "meta_change = ((meta_end - meta_start) / meta_start) * 100\n", + "# Calculate the mean, max, min, and standard deviation for each stock\n", + "meta_mean = df['META'].mean()\n", + "meta_max = df['META'].max()\n", + "meta_min = df['META'].min()\n", + "meta_std = df['META'].std()\n", "\n", - "tsla_start = df['TSLA'].iloc[0]\n", - "tsla_end = df['TSLA'].iloc[-1]\n", - "tsla_change = ((tsla_end - tsla_start) / tsla_start) * 100\n", + "tesla_mean = df['TESLA'].mean()\n", + "tesla_max = df['TESLA'].max()\n", + "tesla_min = df['TESLA'].min()\n", + "tesla_std = df['TESLA'].std()\n", "\n", "# Print the results\n", - "print(f\"META stock changed by {meta_change:.2f}% from the beginning to the end of the period.\")\n", - "print(f\"TSLA stock changed by {tsla_change:.2f}% from the beginning to the end of the period.\")\n", + "print(f\"META - Mean: {meta_mean}, Max: {meta_max}, Min: {meta_min}, Std: {meta_std}\")\n", + "print(f\"TESLA - Mean: {tesla_mean}, Max: {tesla_max}, Min: {tesla_min}, Std: {tesla_std}\")\n", "```\n", "\n", - "Please run this script to calculate the percentage change for both META and TSLA stocks. Once we have the results, we can proceed to write the blog post.\n", + "After running this code, we can use the results to write the blog post. Here is a possible blog post based on the results:\n", + "\n", + "---\n", + "\n", + "Title: A Comparative Analysis of META and TESLA Stocks in Early 2024\n", + "\n", + "In the first quarter of 2024, the stock market saw some interesting movements in the tech sector. Two companies that stood out during this period were META and TESLA. \n", + "\n", + "META, the social media giant, had an average stock price of [META Mean] during this period. The highest it reached was [META Max], while the lowest was [META Min]. The standard deviation, a measure of how spread out the prices were, was [META Std].\n", + "\n", + "On the other hand, TESLA, the electric vehicle and clean energy company, had an average stock price of [TESLA Mean]. The stock reached a high of [TESLA Max] and a low of [TESLA Min]. The standard deviation for TESLA was [TESLA Std].\n", + "\n", + "These figures show that both META and TESLA had their ups and downs during this period. However, the higher standard deviation for [Company with higher Std] indicates that its stock price fluctuated more compared to [Company with lower Std].\n", + "\n", + "As we move further into 2024, it will be interesting to see how these trends evolve. Will META and TESLA continue on their current trajectories, or will we see a shift in the market dynamics? Only time will tell.\n", + "\n", + "---\n", + "\n", + "Please replace [META Mean], [META Max], [META Min], [META Std], [TESLA Mean], [TESLA Max], [TESLA Min], [TESLA Std], [Company with higher Std], and [Company with lower Std] with the actual values obtained from the Python code.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", "exitcode: 0 (execution succeeded)\n", - "Code output: \n", - "META stock changed by 45.05% from the beginning to the end of the period.\n", - "TSLA stock changed by -18.43% from the beginning to the end of the period.\n", + "Code output: META - Mean: 403.53000895182294, Max: 519.8300170898438, Min: 344.4700012207031, Std: 100.72287240911488\n", + "TESLA - Mean: 219.54332987467447, Max: 248.4199981689453, Min: 171.75999450683594, Std: 41.68075797345465\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "Based on the analysis, we can see that META stock experienced a significant increase of 45.05% from the beginning to the end of the period, while TSLA stock saw a decrease of 18.43% in the same timeframe. This information will be the foundation for our blog post.\n", - "\n", - "Here's a draft for the blog post:\n", + "Great! Now that we have the results, let's write the blog post.\n", "\n", "---\n", "\n", - "**A Tale of Two Stocks: META Soars as TSLA Dips in Early 2024**\n", + "Title: A Comparative Analysis of META and TESLA Stocks in Early 2024\n", "\n", - "As we navigate through the early months of 2024, the stock market has presented a mixed bag of performances, with some companies experiencing remarkable growth and others facing downward trends. Two notable examples that have caught the attention of investors are META and TSLA.\n", + "In the first quarter of 2024, the stock market saw some interesting movements in the tech sector. Two companies that stood out during this period were META and TESLA. \n", "\n", - "META, the social media giant, has seen its stock price skyrocket by an impressive 45.05% since the start of the year. This surge can be attributed to a series of successful product launches and strategic acquisitions, positioning the company at the forefront of innovation and profitability. Investors have shown their confidence in META's future, as the company continues to diversify its revenue streams and expand its global reach.\n", + "META, the social media giant, had an average stock price of 403.53 during this period. The highest it reached was 519.83, while the lowest was 344.47. The standard deviation, a measure of how spread out the prices were, was 100.72.\n", "\n", - "On the other hand, TSLA, the electric vehicle pioneer, has faced a challenging period with its stock price declining by 18.43%. The dip reflects concerns over production delays, increased competition in the electric vehicle market, and a series of high-profile controversies surrounding its CEO. Despite these setbacks, loyal supporters of TSLA believe in the company's long-term vision and its potential to rebound as it addresses these challenges.\n", + "On the other hand, TESLA, the electric vehicle and clean energy company, had an average stock price of 219.54. The stock reached a high of 248.42 and a low of 171.76. The standard deviation for TESLA was 41.68.\n", "\n", - "The contrasting trajectories of META and TSLA highlight the volatile nature of the stock market, where fortunes can shift rapidly based on consumer sentiment, market conditions, and internal company developments. As investors continue to monitor these stocks, the coming months will be crucial in determining whether META can maintain its upward momentum and if TSLA can steer back onto the path of growth.\n", + "These figures show that both META and TESLA had their ups and downs during this period. However, the higher standard deviation for META indicates that its stock price fluctuated more compared to TESLA.\n", "\n", - "For those looking to invest, the current landscape serves as a reminder of the importance of due diligence and a balanced portfolio. While the allure of quick gains is tempting, the market's unpredictability necessitates a strategy that can withstand the ebbs and flows of stock valuations.\n", - "\n", - "As we move forward into 2024, all eyes will be on these two industry titans, as their stories unfold and continue to shape the investment world.\n", + "As we move further into 2024, it will be interesting to see how these trends evolve. Will META and TESLA continue on their current trajectories, or will we see a shift in the market dynamics? Only time will tell.\n", "\n", "---\n", "\n", - "This blog post provides a narrative based on the data analysis we performed. It should engage readers by discussing the recent performance of both stocks and offering a broader perspective on market volatility.\n", + "This blog post provides a brief but engaging analysis of the META and TESLA stocks based on the provided data. It highlights the mean, max, min, and standard deviation of the stock prices for both companies, and provides some commentary on what these figures might mean for the future.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33muser_proxy\u001b[0m (to assistant):\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", "TERMINATE\n", "\n", @@ -692,11 +766,14 @@ " file_content = \"No data found.\"\n", " return \"Analyze the data and write a brief but engaging blog post. \\n Data: \\n\" + file_content\n", "\n", + "\n", "# followup of the previous question\n", "chat_res = user_proxy.initiate_chat(\n", " recipient=assistant,\n", " message=my_message_generator,\n", " file_name=\"coding/stock_price_ytd.csv\",\n", + " summary_method=\"reflection_with_llm\",\n", + " summary_args={\"summary_prompt\": \"Return the blog post in Markdown format.\"},\n", ")" ] }, @@ -709,38 +786,28 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Based on the analysis, we can see that META stock experienced a significant increase of 45.05% from the beginning to the end of the period, while TSLA stock saw a decrease of 18.43% in the same timeframe. This information will be the foundation for our blog post.\n", - "\n", - "Here's a draft for the blog post:\n", - "\n", "---\n", "\n", - "**A Tale of Two Stocks: META Soars as TSLA Dips in Early 2024**\n", - "\n", - "As we navigate through the early months of 2024, the stock market has presented a mixed bag of performances, with some companies experiencing remarkable growth and others facing downward trends. Two notable examples that have caught the attention of investors are META and TSLA.\n", - "\n", - "META, the social media giant, has seen its stock price skyrocket by an impressive 45.05% since the start of the year. This surge can be attributed to a series of successful product launches and strategic acquisitions, positioning the company at the forefront of innovation and profitability. Investors have shown their confidence in META's future, as the company continues to diversify its revenue streams and expand its global reach.\n", + "# A Comparative Analysis of META and TESLA Stocks in Early 2024\n", "\n", - "On the other hand, TSLA, the electric vehicle pioneer, has faced a challenging period with its stock price declining by 18.43%. The dip reflects concerns over production delays, increased competition in the electric vehicle market, and a series of high-profile controversies surrounding its CEO. Despite these setbacks, loyal supporters of TSLA believe in the company's long-term vision and its potential to rebound as it addresses these challenges.\n", + "In the first quarter of 2024, the stock market saw some interesting movements in the tech sector. Two companies that stood out during this period were META and TESLA. \n", "\n", - "The contrasting trajectories of META and TSLA highlight the volatile nature of the stock market, where fortunes can shift rapidly based on consumer sentiment, market conditions, and internal company developments. As investors continue to monitor these stocks, the coming months will be crucial in determining whether META can maintain its upward momentum and if TSLA can steer back onto the path of growth.\n", + "META, the social media giant, had an average stock price of 403.53 during this period. The highest it reached was 519.83, while the lowest was 344.47. The standard deviation, a measure of how spread out the prices were, was 100.72.\n", "\n", - "For those looking to invest, the current landscape serves as a reminder of the importance of due diligence and a balanced portfolio. While the allure of quick gains is tempting, the market's unpredictability necessitates a strategy that can withstand the ebbs and flows of stock valuations.\n", + "On the other hand, TESLA, the electric vehicle and clean energy company, had an average stock price of 219.54. The stock reached a high of 248.42 and a low of 171.76. The standard deviation for TESLA was 41.68.\n", "\n", - "As we move forward into 2024, all eyes will be on these two industry titans, as their stories unfold and continue to shape the investment world.\n", + "These figures show that both META and TESLA had their ups and downs during this period. However, the higher standard deviation for META indicates that its stock price fluctuated more compared to TESLA.\n", "\n", - "---\n", - "\n", - "This blog post provides a narrative based on the data analysis we performed. It should engage readers by discussing the recent performance of both stocks and offering a broader perspective on market volatility.\n", + "As we move further into 2024, it will be interesting to see how these trends evolve. Will META and TESLA continue on their current trajectories, or will we see a shift in the market dynamics? Only time will tell.\n", "\n", - "\n" + "---\n" ] } ], @@ -752,281 +819,43 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's check how much the above chat cost" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "({'total_cost': 0.7510199999999999, 'gpt-4': {'cost': 0.7510199999999999, 'prompt_tokens': 14984, 'completion_tokens': 5025, 'total_tokens': 20009}}, {'total_cost': 0.3678, 'gpt-4': {'cost': 0.3678, 'prompt_tokens': 7478, 'completion_tokens': 2391, 'total_tokens': 9869}})\n" - ] - } - ], - "source": [ - "print(chat_res.cost)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Use a Different Code Execution Environment\n", + "This is the blog post that the agents generated.\n", "\n", - "The code execution happened in a separate process, so the plot is not directly displayed in the notebook. Is it possible to change the code execution environment into IPython?\n", + "# A Comparative Analysis of META and TESLA Stocks in Early 2024\n", "\n", - "Yes! In the following we demonstrate how to extend the `UserProxyAgent` to use a different code execution environment." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "class IPythonUserProxyAgent(autogen.UserProxyAgent):\n", - " def __init__(self, name: str, **kwargs):\n", - " super().__init__(name, **kwargs)\n", - " self._ipython = get_ipython()\n", + "In the first quarter of 2024, the stock market saw some interesting movements in the tech sector. Two companies that stood out during this period were META and TESLA. \n", "\n", - " def run_code(self, code, **kwargs):\n", - " result = self._ipython.run_cell(\"%%capture --no-display cap\\n\" + code)\n", - " log = self._ipython.ev(\"cap.stdout\")\n", - " log += self._ipython.ev(\"cap.stderr\")\n", - " if result.result is not None:\n", - " log += str(result.result)\n", - " exitcode = 0 if result.success else 1\n", - " if result.error_before_exec is not None:\n", - " log += f\"\\n{result.error_before_exec}\"\n", - " exitcode = 1\n", - " if result.error_in_exec is not None:\n", - " log += f\"\\n{result.error_in_exec}\"\n", - " exitcode = 1\n", - " return exitcode, log, None" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The implementation overrides two functions in `UserProxyAgent`:\n", - "* constructor. We get the ipython instance as the code execution environment.\n", - "* `run_code`. We execute the code with the ipython instance.\n", + "META, the social media giant, had an average stock price of 403.53 during this period. The highest it reached was 519.83, while the lowest was 344.47. The standard deviation, a measure of how spread out the prices were, was 100.72.\n", "\n", - "In addition, we create a **user defined message function** shown below to generate the initiate message to the chat. In this function, we append the raw message, carryover information (both of which are provide via `context`), and a string specifing IPython execution together as the final message." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "def my_ipy_message_generator(sender, recipient, context):\n", - " raw_message = context.get(\"raw_message\", \"\")\n", - " carryover = context.get(\"carryover\", \"\")\n", - " return raw_message + carryover + \"If you suggest code, the code will be executed in IPython.\"" + "On the other hand, TESLA, the electric vehicle and clean energy company, had an average stock price of 219.54. The stock reached a high of 248.42 and a low of 171.76. The standard deviation for TESLA was 41.68.\n", + "\n", + "These figures show that both META and TESLA had their ups and downs during this period. However, the higher standard deviation for META indicates that its stock price fluctuated more compared to TESLA.\n", + "\n", + "As we move further into 2024, it will be interesting to see how these trends evolve. Will META and TESLA continue on their current trajectories, or will we see a shift in the market dynamics? Only time will tell." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "With the new `IPythonUserProxyAgent`, we are able to run the code within the current notebook environment and display the plot directly." + "Let's check how much the above chat cost" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[33mipython_user_proxy\u001b[0m (to assistant):\n", - "\n", - "Plot a chart of META and TESLA stock price gain YTD. Use data from the following csv file if it exists: coding/stock_price_ytd.csv. Use csv to read the file. Otherwise, figure out how to get the data.If you suggest code, the code will be executed in IPython.\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33massistant\u001b[0m (to ipython_user_proxy):\n", - "\n", - "First, we need to check if the file `coding/stock_price_ytd.csv` exists and if it contains the necessary data for META and TESLA stock price gains YTD (Year-To-Date). We will attempt to read the file using Python's `csv` module. If the file does not exist or we cannot obtain the necessary data from it, we will then look for an alternative way to get the data.\n", - "\n", - "Let's start by checking if the file exists and reading its contents.\n", - "\n", - "```python\n", - "# filename: check_csv_file.py\n", - "\n", - "import csv\n", - "import os\n", - "\n", - "# Define the path to the CSV file\n", - "file_path = 'coding/stock_price_ytd.csv'\n", - "\n", - "# Check if the file exists\n", - "if os.path.exists(file_path):\n", - " try:\n", - " # Attempt to read the file and print its contents\n", - " with open(file_path, mode='r') as file:\n", - " csv_reader = csv.DictReader(file)\n", - " meta_data = []\n", - " tesla_data = []\n", - " for row in csv_reader:\n", - " if 'META' in row:\n", - " meta_data.append(row)\n", - " if 'TESLA' in row:\n", - " tesla_data.append(row)\n", - " print(\"META data:\", meta_data)\n", - " print(\"TESLA data:\", tesla_data)\n", - " except Exception as e:\n", - " print(f\"An error occurred while reading the file: {e}\")\n", - "else:\n", - " print(\"The file does not exist.\")\n", - "```\n", - "\n", - "Please execute the above code to check for the file and read its contents. If the file exists and contains the required data, we will proceed to plot the chart. If not, we will explore alternative ways to obtain the data.\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", - "\u001b[33mipython_user_proxy\u001b[0m (to assistant):\n", - "\n", - "exitcode: 0 (execution succeeded)\n", - "Code output: \n", - "META data: [{'Date': '2024-01-02', 'META': '346.2900085449219', 'TSLA': '248.4199981689453'}, {'Date': '2024-01-03', 'META': '344.4700012207031', 'TSLA': '238.4499969482422'}, {'Date': '2024-01-04', 'META': '347.1199951171875', 'TSLA': '237.92999267578125'}, {'Date': '2024-01-05', 'META': '351.95001220703125', 'TSLA': '237.49000549316406'}, {'Date': '2024-01-08', 'META': '358.6600036621094', 'TSLA': '240.4499969482422'}, {'Date': '2024-01-09', 'META': '357.42999267578125', 'TSLA': '234.9600067138672'}, {'Date': '2024-01-10', 'META': '370.4700012207031', 'TSLA': '233.94000244140625'}, {'Date': '2024-01-11', 'META': '369.6700134277344', 'TSLA': '227.22000122070312'}, {'Date': '2024-01-12', 'META': '374.489990234375', 'TSLA': '218.88999938964844'}, {'Date': '2024-01-16', 'META': '367.4599914550781', 'TSLA': '219.91000366210938'}, {'Date': '2024-01-17', 'META': '368.3699951171875', 'TSLA': '215.5500030517578'}, {'Date': '2024-01-18', 'META': '376.1300048828125', 'TSLA': '211.8800048828125'}, {'Date': '2024-01-19', 'META': '383.45001220703125', 'TSLA': '212.19000244140625'}, {'Date': '2024-01-22', 'META': '381.7799987792969', 'TSLA': '208.8000030517578'}, {'Date': '2024-01-23', 'META': '385.20001220703125', 'TSLA': '209.13999938964844'}, {'Date': '2024-01-24', 'META': '390.70001220703125', 'TSLA': '207.8300018310547'}, {'Date': '2024-01-25', 'META': '393.17999267578125', 'TSLA': '182.6300048828125'}, {'Date': '2024-01-26', 'META': '394.1400146484375', 'TSLA': '183.25'}, {'Date': '2024-01-29', 'META': '401.0199890136719', 'TSLA': '190.92999267578125'}, {'Date': '2024-01-30', 'META': '400.05999755859375', 'TSLA': '191.58999633789062'}, {'Date': '2024-01-31', 'META': '390.1400146484375', 'TSLA': '187.2899932861328'}, {'Date': '2024-02-01', 'META': '394.7799987792969', 'TSLA': '188.86000061035156'}, {'Date': '2024-02-02', 'META': '474.989990234375', 'TSLA': '187.91000366210938'}, {'Date': '2024-02-05', 'META': '459.4100036621094', 'TSLA': '181.05999755859375'}, {'Date': '2024-02-06', 'META': '454.7200012207031', 'TSLA': '185.10000610351562'}, {'Date': '2024-02-07', 'META': '469.5899963378906', 'TSLA': '187.5800018310547'}, {'Date': '2024-02-08', 'META': '470.0', 'TSLA': '189.55999755859375'}, {'Date': '2024-02-09', 'META': '468.1099853515625', 'TSLA': '193.57000732421875'}, {'Date': '2024-02-12', 'META': '468.8999938964844', 'TSLA': '188.1300048828125'}, {'Date': '2024-02-13', 'META': '460.1199951171875', 'TSLA': '184.02000427246094'}, {'Date': '2024-02-14', 'META': '473.2799987792969', 'TSLA': '188.7100067138672'}, {'Date': '2024-02-15', 'META': '484.0299987792969', 'TSLA': '200.4499969482422'}, {'Date': '2024-02-16', 'META': '473.32000732421875', 'TSLA': '199.9499969482422'}, {'Date': '2024-02-20', 'META': '471.75', 'TSLA': '193.75999450683594'}, {'Date': '2024-02-21', 'META': '468.0299987792969', 'TSLA': '194.77000427246094'}, {'Date': '2024-02-22', 'META': '486.1300048828125', 'TSLA': '197.41000366210938'}, {'Date': '2024-02-23', 'META': '484.0299987792969', 'TSLA': '191.97000122070312'}, {'Date': '2024-02-26', 'META': '481.739990234375', 'TSLA': '199.39999389648438'}, {'Date': '2024-02-27', 'META': '487.04998779296875', 'TSLA': '199.72999572753906'}, {'Date': '2024-02-28', 'META': '484.0199890136719', 'TSLA': '202.0399932861328'}, {'Date': '2024-02-29', 'META': '490.1300048828125', 'TSLA': '201.8800048828125'}, {'Date': '2024-03-01', 'META': '502.29998779296875', 'TSLA': '202.63999938964844'}]\n", - "TESLA data: []\n", - "\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33massistant\u001b[0m (to ipython_user_proxy):\n", - "\n", - "The output indicates that the file `coding/stock_price_ytd.csv` exists and contains the necessary data for META stock price gains YTD. However, it seems that the TESLA data is not separated correctly, as the TESLA data appears to be within the same rows as the META data, but the script is looking for a separate 'TESLA' entry in the rows.\n", - "\n", - "We need to adjust the script to correctly parse the TESLA data from the same rows as the META data. Let's modify the script to extract both META and TESLA stock prices from the same rows and then plot the chart.\n", - "\n", - "```python\n", - "# filename: plot_stock_prices.py\n", - "\n", - "import csv\n", - "import os\n", - "import matplotlib.pyplot as plt\n", - "\n", - "# Define the path to the CSV file\n", - "file_path = 'coding/stock_price_ytd.csv'\n", - "\n", - "# Initialize lists to hold the parsed data\n", - "dates = []\n", - "meta_prices = []\n", - "tesla_prices = []\n", - "\n", - "# Check if the file exists\n", - "if os.path.exists(file_path):\n", - " try:\n", - " # Read the file and parse the data\n", - " with open(file_path, mode='r') as file:\n", - " csv_reader = csv.DictReader(file)\n", - " for row in csv_reader:\n", - " dates.append(row['Date'])\n", - " meta_prices.append(float(row['META']))\n", - " tesla_prices.append(float(row['TSLA']))\n", - " \n", - " # Plot the data\n", - " plt.figure(figsize=(14, 7))\n", - " plt.plot(dates, meta_prices, label='META', marker='o')\n", - " plt.plot(dates, tesla_prices, label='TESLA', marker='x')\n", - " \n", - " # Formatting the plot\n", - " plt.title('META vs TESLA Stock Price Gain YTD')\n", - " plt.xlabel('Date')\n", - " plt.ylabel('Stock Price')\n", - " plt.xticks(rotation=45)\n", - " plt.legend()\n", - " plt.tight_layout()\n", - " \n", - " # Show the plot\n", - " plt.show()\n", - " except Exception as e:\n", - " print(f\"An error occurred while processing the file: {e}\")\n", - "else:\n", - " print(\"The file does not exist.\")\n", - "```\n", - "\n", - "Please execute the above code to plot the chart of META and TESLA stock price gains YTD.\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n" + "({'total_cost': 0.84249, 'gpt-4-0613': {'cost': 0.84249, 'prompt_tokens': 22513, 'completion_tokens': 2785, 'total_tokens': 25298}}, {'total_cost': 0.84249, 'gpt-4-0613': {'cost': 0.84249, 'prompt_tokens': 22513, 'completion_tokens': 2785, 'total_tokens': 25298}})\n" ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAKyCAYAAACuWPzHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4XElEQVR4nOzdd3hUZfrG8Xsy6W0gPUAIIdRQpBcbvSgiq1hQse3qKrJrXde6ApbVdVdX14L+XDsgNiywgoIFFVB6DVJDS4WETHqbOb8/QkbGJGQCSWaSfD/XNReZ97TnDAnizXue12QYhiEAAAAAAAAAgEfwcncBAAAAAAAAAIBfEdoCAAAAAAAAgAchtAUAAAAAAAAAD0JoCwAAAAAAAAAehNAWAAAAAAAAADwIoS0AAAAAAAAAeBBCWwAAAAAAAADwIIS2AAAAAAAAAOBBCG0BAAAAAAAAwIMQ2gIAAABucsMNNyg4ONht1x85cqRGjhzptus3tNmzZ8tkMrm7DAAAgDNGaAsAAFq0t956SyaTSSaTST/++GO17YZhKC4uTiaTSRdddJHTtqrjanrdeuut+u677065z8mvk11xxRUymUy67777GvXeXTVy5EiX7mH27NmSpE6dOtW6z8SJE53O/eOPP+qCCy5Q+/bt5e/vr44dO2ry5MlasGCB034mk0l/+tOfXK755Zdflslk0tChQ+t1r3a7Xe+8846GDh2qsLAwhYSEqFu3brruuuv0008/OfZLTk7W7NmzdeDAgXqdvylVBZRVr8DAQCUlJenhhx9WXl6eu8ur09atW3XjjTcqISFB/v7+Cg4OVr9+/fTXv/5V+/fvd3d5euqpp2QymfTll1/WuP3CCy+UxWLR+PHjXfr5ueGGGyQ5/7x5eXkpNDRU3bt317XXXqvly5c34R0CAABP5u3uAgAAAJqCv7+/FixYoHPPPddpfOXKlTpy5Ij8/PxqPG7cuHG67rrrqo1369ZN8fHxevfdd53GH3jgAQUHB+uhhx6q8Xx5eXlavHixOnXqpPfee88RDLnTQw89pJtuusnxft26dfrPf/6jBx98UD179nSM9+3b1/F1v379dM8991Q7V7t27Rxff/jhh7ryyivVr18/3XHHHWrbtq1SUlL0/fff67XXXtPVV1992jXPnz9fnTp10tq1a7V371516dLFpeNuv/12vfTSS5oyZYquueYaeXt7a9euXVq6dKk6d+6sYcOGSaoMbefMmaORI0eqU6dOp11nU5g7d66Cg4NVUFCgr776Sk888YS++eYbrVq1qs7vra+++qqJqnT22muvacaMGYqIiNA111yjHj16qKKiQtu3b9c777yj5557TsXFxTKbzfU678MPP6z777+/QWq85557tGDBAt12223avn27AgICHNs+/PBDLV26VC+99JL69+/v9GdESkqKHnnkEf3xj3/Ueeed5xhPTEx0fN2hQwc9+eSTkqTCwkLt3btXixYt0rx583TFFVdo3rx58vHxaZD7AAAAzZQBAADQgr355puGJOPSSy81IiIijPLycqftN998szFw4EAjPj7emDRpktM2ScbMmTPrdb1evXoZI0aMqHX7G2+8Yfj4+BjffPONIcn47rvv6nX+pvDhhx8akoxvv/22xu01fVY1SUpKMnr16mWUlpZW25aZmen0vj6f9f79+w1JxqJFi4zIyEhj9uzZLh2XkZFhmEwm4+abb662zW63O9VU12fQUK6//nojKCjotI6dNWuWIck4evSo0/ill15qSDJWr15d67GFhYWndc2GsGrVKsNsNhvnn3++kZeXV217cXGx8fDDDxsVFRVuqM7ZmjVrDC8vL+OBBx5wjOXl5Rnt2rUzhg0bZthstmrHrFu3zpBkvPnmmzWec8SIEUavXr2qjVdUVBi33XabIcn461//2mD3AAAAmifaIwAAgFbhqquuUnZ2ttPjx2VlZfroo4/OaMZnfc2fP1/jxo3TqFGj1LNnT82fP7/OY8rLyxUWFqYbb7yx2ra8vDz5+/vrL3/5i2PshRdeUK9evRQYGKi2bdtq0KBB1doRNIV9+/Zp8ODB8vX1rbYtKirqtM87f/58tW3bVpMmTdJll13m0mcoVc6ANAxD55xzTrVtJpPJUdNbb72lyy+/XJI0atQox6Ps3333nWP/l19+Wb169ZKfn5/atWunmTNnKjc3t9p5f/75Z1144YVq27atgoKC1LdvXz3//POnrHPz5s2KjIzUyJEjVVBQ4NK9nWz06NGO+5UqH8fv3bu3NmzYoPPPP1+BgYF68MEHHdt+29O2pKREs2fPVrdu3eTv76/Y2Fhdeuml2rdvn2Mfu92u5557Tr169ZK/v7+io6N1yy236Pjx43XWN2fOHJlMJs2fP18hISHVtvv7++uxxx5zmmX7ww8/6PLLL1fHjh3l5+enuLg43XXXXSouLnY6tqaetlWtNz799FP17t1bfn5+6tWrl5YtW1ZnrcOGDdOtt96qf/3rX0pOTpZUOZs3KytL//d//ycvr4b73ymz2az//Oc/SkpK0osvviir1dpg5wYAAM0PoS0AAGgVOnXqpOHDh+u9995zjC1dulRWq1XTpk2r9biSkhIdO3as2qusrKzeNaSlpenbb7/VVVddJakySP7oo4/qPJePj48uueQSffrpp9X2/fTTT1VaWuq4h9dee0233367kpKS9Nxzz2nOnDnq16+ffv7553rXeyrl5eU1fi4nh2jx8fH6+uuvdeTIkQa99vz583XppZfK19dXV111lfbs2aN169bVeVx8fLykykfbi4qKat3v/PPP1+233y5JevDBB/Xuu+/q3XffdbSKmD17tmbOnKl27drpmWee0dSpU/Xqq69q/PjxKi8vd5xn+fLlOv/885WcnKw77rhDzzzzjEaNGqUlS5bUeu1169Zp9OjR6t+/v5YuXXpai5RVhavh4eGOsezsbF1wwQXq16+fnnvuOY0aNarGY202my666CLNmTNHAwcO1DPPPKM77rhDVqtV27dvd+x3yy236N5779U555yj559/XjfeeKPmz5+vCRMmOH0Gv1VUVKRvvvlGI0eOVIcOHVy+p6rfsxkzZuiFF17QhAkT9MILL9TYuqQmP/74o2677TZNmzZNTz/9tEpKSjR16lRlZ2fXeeyTTz6pyMhI3XLLLdqwYYNeeukl/eUvf1GfPn1crt9VZrNZV111lYqKimrswQ0AAFoRd0/1BQAAaExV7RHWrVtnvPjii0ZISIhRVFRkGIZhXH755caoUaMMw6j5kX9Jtb7ee++9Gq93qvYI//rXv4yAgADHI+G7d+82JBmffPJJnffx5ZdfGpKMxYsXO41feOGFRufOnR3vp0yZUuOj1/XhSnuE2j6XJ5980rHf66+/bkgyfH19jVGjRhl/+9vfjB9++KHGR8rlYnuE9evXG5KM5cuXG4ZR2dagQ4cOxh133OHSvV133XWGJKNt27bGJZdcYvzrX/8ydu7c6fJnkJWVZfj6+hrjx493uo8XX3zRkGS88cYbhmFUPuqekJBgxMfHG8ePH3c6h91ud3x9cnuEH3/80QgNDTUmTZpklJSU1HkvVe0Rdu3aZRw9etRISUkxXn31VcPPz8+Ijo52tEAYMWKEIcl45ZVXqp1jxIgRTt+vb7zxhiHJePbZZ6vtW1X3Dz/8YEgy5s+f77R92bJlNY6fbMuWLYYk484776y2LTs72zh69KjjdXJbjaqf2ZM9+eSThslkMg4ePFjtMzlZ1ffg3r17q9Xxwgsv1FrryT766CNDkhEWFmZ07ty5xnqqnG57hCqffPKJIcl4/vnnXaoNAAC0TMy0BQAArcYVV1yh4uJiLVmyRPn5+VqyZEmdrRGmTJmi5cuXV3vVNlPxVObPn69JkyY5Hgnv2rWrBg4c6NLj/aNHj1ZERITef/99x9jx48e1fPlyXXnllY6xNm3a6MiRIy7NPD0TQ4cOrfFzqZpFLEm///3vtWzZMo0cOVI//vijHnvsMZ133nnq2rWrVq9efVrXnT9/vqKjox2fv8lk0pVXXqmFCxfKZrPVefybb76pF198UQkJCfrkk0/0l7/8RT179tSYMWOUmppa5/ErVqxQWVmZ7rzzTqdH42+++WaFhobqf//7nyRp06ZNSklJ0Z133qk2bdo4naOmxcG+/fZbTZgwQWPGjNGiRYtqXRivJt27d1dkZKQSEhJ0yy23qEuXLvrf//6nwMBAxz5+fn41ttf4rY8//lgRERH685//XG1bVd0ffvihLBaLxo0b5zTLeuDAgQoODta3335b6/nz8vIkqcYZxJ07d1ZkZKTj9fnnnzu2nbwIWGFhoY4dO6azzz5bhmFo06ZNdd7X2LFjnRYC69u3r0JDQ7V///46j5WkqVOn6sILL1ROTo5eeuklp3oaWtVnk5+f32jXAAAAns/b3QUAAAA0lcjISI0dO1YLFixQUVGRbDabLrvsslMe06FDB40dO/aMr71z505t2rRJ1113nfbu3esYHzlypF566SXl5eUpNDS01uO9vb01depULViwQKWlpfLz89OiRYtUXl7uFNred999WrFihYYMGaIuXbpo/Pjxuvrqq2vs43omIiIiXPpcJkyYoAkTJqioqEgbNmzQ+++/r1deeUUXXXSRfvnll3r1trXZbFq4cKFGjRrl6NcqVQbIzzzzjL7++muNHz/+lOfw8vLSzJkzNXPmTGVnZ2vVqlV65ZVXtHTpUk2bNk0//PDDKY8/ePCgpMqg9GS+vr7q3LmzY3tVi4LevXvXeV8lJSWaNGmSBg4cqA8++EDe3vX7K/rHH3+s0NBQ+fj4qEOHDk7hZJX27dvX2Fv4t/bt26fu3bufsoY9e/bIarXW+nuXlZVV67FV/2BRU6/ezz77TOXl5dqyZYtTj2ZJOnTokB555BF9/vnn1frmutL7tWPHjtXG2rZt61IP3iqDBw/WF198oUGDBrl8zOmo+mxq6vcLAABaD0JbAADQqlx99dW6+eablZGRoQsuuKDaLMjGMm/ePEnSXXfdpbvuuqva9o8//rjOmZDTpk3Tq6++qqVLl+p3v/udPvjgA/Xo0UNnnXWWY5+ePXtq165dWrJkiZYtW6aPP/5YL7/8sh555BHNmTOnYW+qHgIDA3XeeefpvPPOU0REhObMmaOlS5fq+uuvd/kc33zzjdLT07Vw4UItXLiw2vb58+fXGdqeLDw8XBdffLEuvvhijRw5UitXrtTBgwcdvW+bip+fny688EJ99tlnWrZsmS666KJ6HX/++ecrIiLilPs05MxQu92uqKioWmeIR0ZG1npsly5d5O3t7dQft8qIESMkqVpgbLPZNG7cOOXk5Oi+++5Tjx49FBQUpNTUVN1www2y2+111nzyomYnMwyjzmObWtVn06VLFzdXAgAA3InQFgAAtCqXXHKJbrnlFv30009OrQYak2EYWrBggUaNGqXbbrut2vbHHntM8+fPrzO0Pf/88xUbG6v3339f5557rr755hs99NBD1fYLCgrSlVdeqSuvvFJlZWW69NJL9cQTT+iBBx6Qv79/g93X6aqaqZienl6v4+bPn6+oqCi99NJL1bYtWrRIn3zyiV555ZXTCigHDRqklStXKj09XfHx8TW2MJB+Xcxs165d6ty5s2O8rKxMKSkpjtnHVbNdt2/fXueMZJPJpPnz52vKlCm6/PLLtXTpUo0cObLe99AQEhMT9fPPP6u8vFw+Pj617rNixQqdc8459f6sg4KCHAF5amqq2rdvX+cx27Zt0+7du/X22287LTy2fPnyel27ObDZbFqwYIECAwN17rnnurscAADgRvS0BQAArUpwcLDmzp2r2bNna/LkyU1yzVWrVunAgQO68cYbddlll1V7XXnllfr222+VlpZ2yvN4eXnpsssu0+LFi/Xuu++qoqLCqTWCJGVnZzu99/X1VVJSkgzDUHl5eYPf26l8/fXXNY5/8cUXkqq3GDiV4uJiLVq0SBdddFGNn+Gf/vQn5efnO/VB/a2MjAwlJydXGy8rK9PXX38tLy8vx+zGoKAgSVJubq7TvmPHjpWvr6/+85//OM3SfP3112W1WjVp0iRJ0oABA5SQkKDnnnuu2jlqmt3p6+urRYsWafDgwZo8ebLWrl3r0ufS0KZOnapjx47pxRdfrLatqu4rrrhCNptNjz32WLV9Kioqqt3vbz3yyCOy2WyaPn16jW0Sfvv5VM2SPXncMAw9//zzdd5Pc2Kz2XT77bdr586duv3220/ZLgUAALR8zLQFAACtTn0eyd+9e7ejtcHJoqOjNW7cOJfOMX/+fJnNZkeg91sXX3yxHnroIS1cuFB33333Kc915ZVX6oUXXtCsWbPUp08f9ezZ02n7+PHjFRMTo3POOUfR0dHauXOnXnzxRacF0BpCampqjZ9LcHCwfve730mqXMQtISFBkydPVmJiogoLC7VixQotXrzYEU6ebP369Xr88cernXPkyJFKTU1Vfn6+Lr744hrrGTZsmCIjIzV//vxqQXaVI0eOaMiQIRo9erTGjBmjmJgYZWVl6b333tOWLVt05513OtoM9OvXT2azWf/4xz9ktVrl5+en0aNHKyoqSg888IDmzJmjiRMn6uKLL9auXbv08ssva/DgwZo+fbqkyoB97ty5mjx5svr166cbb7xRsbGx+uWXX7Rjxw59+eWX1eoLCAjQkiVLNHr0aF1wwQVauXKlSz1xG9J1112nd955R3fffbfWrl2r8847z/H7dtttt2nKlCkaMWKEbrnlFj355JPavHmzxo8fLx8fH+3Zs0cffvihnn/++VP2ij7vvPP04osv6s9//rO6du2qa665Rj169FBZWZl2796t+fPny9fXVzExMZKkHj16KDExUX/5y1+Umpqq0NBQffzxx/XqR+tprFar4+enqKhIe/fu1aJFi7Rv3z5NmzatxkAcAAC0MgYAAEAL9uabbxqSjHXr1p1yv/j4eGPSpElOY5JqfY0YMaLG8/Tq1ctpW1lZmREeHm6cd955p7x+QkKC0b9//zrvx263G3FxcYYk4/HHH6+2/dVXXzXOP/98Izw83PDz8zMSExONe++917BarXWeu8qHH35oSDK+/fbbGrfHx8fX+rnEx8c79nvvvfeMadOmGYmJiUZAQIDh7+9vJCUlGQ899JCRl5fndM5TfdaPPfaYMXnyZMPf398oLCyste4bbrjB8PHxMY4dO1bj9ry8POP55583JkyYYHTo0MHw8fExQkJCjOHDhxuvvfaaYbfbnfZ/7bXXjM6dOxtms7na5/Hiiy8aPXr0MHx8fIzo6GhjxowZxvHjx6td88cffzTGjRtnhISEGEFBQUbfvn2NF154wbH9+uuvN4KCgpyOOXbsmJGUlGTExMQYe/bsqfV+Z82aZUgyjh49Wus+hmEYI0aMMHr16lXrtt9+LxcVFRkPPfSQkZCQYPj4+BgxMTHGZZddZuzbt89pv//7v/8zBg4caAQEBBghISFGnz59jL/+9a9GWlraKeupsmnTJuO6664zOnbsaPj6+jo+n3vuucfYu3ev077JycnG2LFjjeDgYCMiIsK4+eabjS1bthiSjDfffLPaZ3IyScbMmTOrXT8+Pt64/vrrXar15HPX9XmvW7euWl0nGzFihNP3d3BwsNG1a1dj+vTpxldffeVyPQAAoGUzGYYHdt8HAAAAAAAAgFaKnrYAAAAAAAAA4EEIbQEAAAAAAADAgxDaAgAAAAAAAIAHIbQFAAAAAAAAAA9CaAsAAAAAAAAAHoTQFgAAAAAAAAA8iLe7C/AEdrtdaWlpCgkJkclkcnc5AAAAAAAAAFogwzCUn5+vdu3aycur9vm0hLaS0tLSFBcX5+4yAAAAAAAAALQChw8fVocOHWrdTmgrKSQkRFLlhxUaGurmagAAAAAAAAC0RHl5eYqLi3PkkbUhtJUcLRFCQ0MJbQEAAAAAAAA0qrpatLIQGQAAAAAAAAB4EEJbAAAAAAAAAPAghLYAAAAAAAAA4EHoaesim82m8vJyd5fR4vn4+MhsNru7DAAAAAAAAMBtCG3rYBiGMjIylJub6+5SWo02bdooJiamzobMAAAAAAAAQEtEaFuHqsA2KipKgYGBBImNyDAMFRUVKSsrS5IUGxvr5ooAAAAAAACApkdoewo2m80R2IaHh7u7nFYhICBAkpSVlaWoqChaJQAAAAAAAKDVYSGyU6jqYRsYGOjmSlqXqs+bHsIAAAAAAABojQhtXUBLhKbF5w0AAAAAAIDWjNAWAAAAAAAAADwIoS0AAAAAAAAAeBBC2yZisxtasy9bn21O1Zp92bLZjUa93g033CCTyaRbb7212raZM2fKZDLphhtucNr3t6+JEyfqu+++q3Hbya/vvvtOknTkyBH5+vqqd+/ejXpvAAAAAAAAQEvm7e4CWoNl29M1Z3Gy0q0ljrFYi79mTU7SxN6xjXbduLg4LVy4UP/+978VEBAgSSopKdGCBQvUsWNHp30nTpyoN99802nMz89PQUFBSk9Pd4zdcccdysvLc9o3LCxMkvTWW2/piiuu0Pfff6+ff/5ZQ4cObaxbAwAAAAAAAFosQttGtmx7umbM26jfzqvNsJZoxryNmjt9QKMFtwMGDNC+ffu0aNEiXXPNNZKkRYsWqWPHjkpISHDa18/PTzExMTWe5+TxgIAAlZaWVtvXMAy9+eabevnll9WhQwe9/vrrhLYAAAAAAADAaaA9Qj0ZhqGisgqXXvkl5Zr1+Y5qga0kx9jsz5OVX1Lu0vkMo/4tFX7/+987zYp94403dOONN57ezZ/Ct99+q6KiIo0dO1bTp0/XwoULVVhY2ODXAQAAAAAAAFo6ZtrWU3G5TUmPfNkg5zIkZeSVqM/sr1zaP/nRCQr0rd9v2fTp0/XAAw/o4MGDkqRVq1Zp4cKFjj60VZYsWaLg4GCnsQcffFAPPvigS9d5/fXXNW3aNJnNZvXu3VudO3fWhx9+6OibCwAAAAAAAMA1hLYtXGRkpCZNmqS33npLhmFo0qRJioiIqLbfqFGjNHfuXKexql61dcnNzdWiRYv0448/OsamT5+u119/ndAWAAAAAAAAqCdC23oK8DEr+dEJLu27NiVHN7y5rs793rpxsIYk1B2QBviYXbrub/3+97/Xn/70J0nSSy+9VOM+QUFB6tKly2mdf8GCBSopKXHqYWsYhux2u3bv3q1u3bqd1nkBAAAAAADQctnshtam5Cgrv0RRIf4akhAms5fJ3WV5BELbejKZTC63KDiva6RiLf7KsJbU2NfWJCnG4q/zukY26jfkxIkTVVZWJpPJpAkTXAuc6+P111/XPffcU21W7W233aY33nhDTz31VINfEwAAAAAAAM3Xsu3pmrM4WenWEsdYrMVfsyYnaWLvWDdW5hlYiKwRmb1MmjU5SVJlQHuyqvezJic1+r8gmM1m7dy5U8nJyTKba56tW1paqoyMDKfXsWPH6jz35s2btXHjRt10003q3bu30+uqq67S22+/rYqKioa+JQAAAAAAADRTy7ana8a8jU6BrSRlWEs0Y95GLdue7qbKPAehbSOb2DtWc6cPUIzF32k8xuKvudMHNNm/HISGhio0NLTW7cuWLVNsbKzT69xzz63zvK+//rqSkpLUo0ePatsuueQSZWVl6Ysvvjij2gEAAAAAANAy2OyG5ixOrvGp9KqxOYuTZbPXtEfrYTIMo3V/ApLy8vJksVhktVqdgs2SkhKlpKQoISFB/v7+pzhD3ejR4bqG/NwBAAAAAADgOdbsy9ZVr/1U537v3TxMwxPDm6CiplVbDvlbbp1pO3v2bJlMJqfXyTM2S0pKNHPmTIWHhys4OFhTp05VZmam0zkOHTqkSZMmKTAwUFFRUbr33ns98nF8s5dJwxPDNaVfew1PDCewBQAAAAAAQKuTlV9S90712K+lcvtCZL169dKKFSsc7729fy3prrvu0v/+9z99+OGHslgs+tOf/qRLL71Uq1atkiTZbDZNmjRJMTExWr16tdLT03XdddfJx8dHf//735v8XgAAAAAAAADULirEz8X9WvfT124Pbb29vRUTE1Nt3Gq16vXXX9eCBQs0evRoSdKbb76pnj176qefftKwYcP01VdfKTk5WStWrFB0dLT69eunxx57TPfdd59mz54tX1/fpr4dAAAAAAAAADU4nFOkF7/Ze8p9TKpcC2pIQljTFOWh3L4Q2Z49e9SuXTt17txZ11xzjQ4dOiRJ2rBhg8rLyzV27FjHvj169FDHjh21Zs0aSdKaNWvUp08fRUdHO/aZMGGC8vLytGPHjlqvWVpaqry8PKcXAAAAAAAAgIZntxt6c1WKJjz3vVbty5b3ibahv20eWvV+1uSkVt9a1K2h7dChQ/XWW29p2bJlmjt3rlJSUnTeeecpPz9fGRkZ8vX1VZs2bZyOiY6OVkZGhiQpIyPDKbCt2l61rTZPPvmkLBaL4xUXF9ewNwYAAAAAAABAe7MKdPmrazRncbKKymwamhCmFXeP0CvTByjG4twCIcbir7nTB2hi71g3Ves53Noe4YILLnB83bdvXw0dOlTx8fH64IMPFBAQ0GjXfeCBB3T33Xc73ufl5RHcAgAAAAAAAA2k3GbX/32/X89/vUdlFXYF+3nr/gt66OohHeXlZVKniCCNS4rR2pQcZeWXKCqksiVCa59hW8XtPW1P1qZNG3Xr1k179+7VuHHjVFZWptzcXKfZtpmZmY4euDExMVq7dq3TOTIzMx3bauPn5yc/P9eaHgMAAAAAAABw3Y40q/760VbtSKtsSTqye6T+fkkftWvjPEnT7GXS8MRwd5To8dze0/ZkBQUF2rdvn2JjYzVw4ED5+Pjo66+/dmzftWuXDh06pOHDh0uShg8frm3btikrK8uxz/LlyxUaGqqkpKQmrx8AAAAAAABorUorbPrXl7s05cVV2pGWpzaBPnr2irP05g2DqwW2ODW3zrT9y1/+osmTJys+Pl5paWmaNWuWzGazrrrqKlksFv3hD3/Q3XffrbCwMIWGhurPf/6zhg8frmHDhkmSxo8fr6SkJF177bV6+umnlZGRoYcfflgzZ85kJi0AAAAAAADQRDYcPK77Pt6qvVkFkqQL+8RozsW9FRlCRnc63BraHjlyRFdddZWys7MVGRmpc889Vz/99JMiIyMlSf/+97/l5eWlqVOnqrS0VBMmTNDLL7/sON5sNmvJkiWaMWOGhg8frqCgIF1//fV69NFH3XVLAAAAAAAAQKtRVFahf365S2+tPiDDkCKC/fT473qxmNgZMhmGYbi7CHfLy8uTxWKR1WpVaGioY7ykpEQpKSlKSEiQv7//Kc7gWUymUzdsnjVrlm644QYlJCTUuH3NmjUaNmyYbDab/vnPf+qtt97SwYMHFRAQoK5du+rmm2/WTTfdJEm64YYblJubq08//fSU1zxy5Ig6d+6sbt26afv27afct7l+7gAAAAAAAK3Jqr3HdP+irTqcUyxJmjqgg/52UU+1CfR1c2Weq7Yc8rc8aiGyFunbJyUvszTir9W3rXxastukUQ806CXT09MdX7///vt65JFHtGvXLsdYcHCwjh07JklasWKFevXq5XR8eHhlA+g5c+bo1Vdf1YsvvqhBgwYpLy9P69ev1/Hjx+td01tvvaUrrrhC33//vX7++WcNHTr0dG4NAAAAAAAAbpZXUq6//2+nFq47LElq3yZAT1zSWyO7R7m5spaD0LaxeZmlb5+o/Prk4Hbl05Xjox5q8EvGxMQ4vrZYLDKZTE5jkhyhbXh4eLVtVT7//HPddtttuvzyyx1jZ511Vr3rMQxDb775pl5++WV16NBBr7/+OqEtAAAAAABAM7QiOVMPfbpNmXmlkqTrhsfrrxN7KNiPmLEh8WnWl2FI5UWu7z98pmQrqwxobWXSuXdJP/5b+v6f0vn3Vm4vK3TtXD6BUh2tDxpSTEyMvvnmG912222OPsOn49tvv1VRUZHGjh2r9u3b6+yzz9a///1vBQUFNWC1AAAAAAAAaCzZBaWaszhZn29JkyQlRATpqUv7aGjncDdX1jIR2tZXeZH093and+z3/6x81fa+Lg+mSb4NG3SeffbZ8vLychorKKhc5e/ZZ5/VZZddppiYGPXq1Utnn322pkyZogsuuKBe13j99dc1bdo0mc1m9e7dW507d9aHH36oG264oaFuAwAAAAAAAGfAZje0NiVHWfkligrx15CEMJm9TDIMQ4u3pmv25zuUU1gmL5N08/mdddfYbvL3Mbu77BaL0LaVe//999WzZ88atyUlJWn79u3asGGDVq1ape+//16TJ0/WDTfcoP/+978unT83N1eLFi3Sjz/+6BibPn26Xn/9dUJbAAAAAAAAD7Bse7rmLE5WurXEMRZr8dftY7rq651ZWrEzU5LUIyZET1/WV307tHFTpa0HoW19+QRWznitr6qWCGbfyjYJ599b2SqhvtduYHFxcerSpUut2728vDR48GANHjxYd955p+bNm6drr71WDz30kBISEuo8/4IFC1RSUuLUw9YwDNntdu3evVvdunVrkPsAAAAAAABA/S3bnq4Z8zbK+M14urVEDyzaJknyMZv0p1FdNWNkony9vaqfBA2O0La+TKb6tyhY+XRlYDvqocrFyKoWITP7Oi9O1gwkJSVJkgoLXevD+/rrr+uee+6pNqv2tttu0xtvvKGnnnqqoUsEAAAAAACAC2x2Q3MWJ1cLbE/mYzbps5nnKqldaJPVBULbxlcV0FYFttKvv377hPN7N8jOzlZGRobTWJs2beTv76/LLrtM55xzjs4++2zFxMQoJSVFDzzwgLp166YePXo49rdardq8ebPTOcLDw5Wdna2NGzdq/vz5TvtL0lVXXaVHH31Ujz/+uLy9+TYEAAAAAABoamtTcpxaItSk3GbIWlzeRBWhCmlZY7PbnAPbKlXv7bamr+kkY8eOrTb23nvvadq0aZowYYLee+89Pfnkk7JarYqJidHo0aM1e/Zsp6D1u+++U//+/Z3O8Yc//EEBAQFKSkqqFthK0iWXXKI//elP+uKLL3TxxRc3/I0BAAAAAAA0gNoW6GruDMPQlsO5Lu2blX/qYBcNz2QYxqlmQLcKeXl5slgsslqtCg39dap3SUmJUlJSlJCQIH9/fzdW2LrwuQMAAAAAAE9Q2wJdsyYnaWLvWDdWdnoMw1Byep6WbsvQF9vTtf+oa+0v37t5mIYnhjdyda1DbTnkbzHTFgAAAAAAoBlrqTNB3a22BboyrCWaMW+j5k4f0CyCW8MwtPWIVV9sT9fSbRk6lFPk2ObjZZKXl0mlFfYajzVJirFUfk+haRHaAgAAAAAANFMtbSaopzjVAl2GKsPMOYuTNS4pxiMDcrvd0KbDuVq6LV1Lt2coNbfYsc3P20ujukfpgj4xGt0jSqv2HtOMeRslyel+q+5q1uQkj7zHlo7QFgAAAAAAoBlqKTNBPVFdC3QZktKtJVqbkuMxbQNsdkPrD+Ro6fYMLdueoYy8X+sP9DVrVI8oXdg7ViO7RyrI79dIcGLvWM2dPqBa+B9D+O9WhLYAAAAAALQyPE7f/HnCTNCW+H2UW1Sm7/cc07trDri0/x/fXa/e7SzqGh2sLlGVr65RIYoI9pXJdPqfhaufbYXNrrUpOfpie7qWbc/UsYJSx7ZgP2+N7RmlC/rEakS3SPn7mGu93sTesRqXFNPifj+bM0JbAAAAAABaER6nbxlcnQk6+l/fqWt0sGItAYpt4692lgDFWvwVawlQtMVPft61B3mn0lK+j+x2Q9vTrPpu11F9tytLmw/nyl5TEl6L/JIKrdmfrTX7s53GLQE+6hr1a5DbJSpYXaND1M7iX2eYW9dnW26za/W+bC3dlq6vkjOVU1jm2C/U31vjkmJ0YZ8Ynds1ol6/v2Yvk8fMGoZkMgyjHt+KLVNtq7aVlJQoJSVF8fHxCgwMdGOFrUtRUZEOHjyohIQE+fv7u7scAAAAAGgxanucvipC4nH65uOzzam6Y+HmMz5PRLCf2rXxdwS5sRZ/xbYJULsTv0aF+MnH7OV0THP/PsopLNMPe47qu11H9f3uo8o+KfSUpO7RITq/W4Q+3piq44VlNc5mNkmKDvXTS9cMVMqxQu3Jyte+rALtySrQoZwi1Za2BfmalRjlPCu3S1SwOoYFyuxlOuVna0ga3jlcyel5shaXO7a1DfTRhF4xuqBPrIZ3Dpevt5fguWrLIX+Lmban4OvrKy8vL6WlpSkyMlK+vmc2tR2nZhiGysrKdPToUXl5ecnX19fdJQEAAABAi+EJj9Oj4USFuDbJ6a8Tuik0wFfp1mKlW0uUnluidGux0qwlKquw61hBqY4VlGrrEWuNx3uZpMgQP8VaAtSujb+iQ/310YYjzer7yGY3tPVIrlburgxqtxzJdQpVg/28dU6XcI3sHqUR3SLVrk2AJGlgfFvNmLfREZhWqbqr2Rf30sD4thoY39bpeiXlNu0/6hzk7s0qUMqxQhWW2bT1iLXa5+3r7aWE8EAdzCmq9bOV5JjRGxHsqwm9YnRhn1gNTQiTt5mgtqUhtD0FLy8vJSQkKD09XWlpae4up9UIDAxUx44d5eXFHzgAAAAA0FCa48JKqF14sK+8TKr1UX6TKheSumVElxrDU8MwlFNYVhnkWk8EuScC3fTcEqXnFSvDWqJym6HMvFJl5pVq8+G666r6Pvrnl7s0snuk2repnL3bUKGiq71eswtK9f1Js2mPF5U7be8RE+IIaQfGt61xdurpLtDl72NWUrtQJbVznkVZbrPrYHaR9mbla09mgfYeLdCezALtO1qg0gq7dmUWuPQZPHJRT11/doLHhOJoHIS2dfD19VXHjh1VUVEhm83m7nJaPLPZLG9vb2Y0AwAAAEADy8yrPbA9WVa+a/vBfXZn5uvq134+ZWArSbMmJ9Ua7JlMJoUH+yk82E+921tq3MduN3SssPTX2bm5Jfpx7zF980tWnTW+snKfXlm5T1LlbN1YS4DatwlQh7YBat+26utAtW9bOYPXld6rp+r1Oi4pRpsP52rlrix9t/uotqVanWbThvh569yuERrZPVIjukUpxuLaTOWGXKDLx+zlaIswsfev4za7odTjxZr38wH93/cpdZ4nPNiPwLYVILR1gclkko+Pj3x8fNxdCgAAAAAA9bbp0HG98M0el/YN8iMq8GQ70qy69vW1yiksU8/YUP3+nE56dvnues0EdZWXl0lRIf6KCvHXWXFtJEk9Y0NdCm17twtVQWmF0nJLVGazKzW3WKm5xVp7oOb9o0L81L7tiSD3pHC3Q5vKX7/ffbTGXq/p1hLdOm+jAn3NKipznmyXFBt6IqSN1ID4ttV687qqsRfoMnuZ1DE8UKO6R7sU2rraGgPNG38SAwAAAADQQmVYS/T0sl+0aFOqJFXrzVmTez/convGd9e0wXH0yfQwWw7n6ro31spaXK6+HSx65/dD1CbQV5cO6NAgM0FdMSQhTLEWf2VYS2pdoCvG4q/P/nSuzF4m2e2GjhaU6sjxytD2yPEipR4vdrxPPV6s4nKbsvJLlZVfqk2Hcmu8rsl06u/dojKbQvzMOr9blEZ0j9TIbpGKCm1e4aarn+2QhLCmLg1uYDKM2tazaz1cXbUNAAAAAIDmoKTcpv/+sF8vfbtPxeWVsw8vG9hBg+Pb6v5F2yRVX1jJkBQT6q+ME20UesSE6JGLknR2l4imLR412nAwRze8sU75pRUa0LGN3vr9EIX6u+eJ4GXb0zVj3kZJNS/QNXf6AJdn+Vb11q0MdCtD3Kpwt+p9fmmFS+ea94chOrdrZD3uxPM05GcLz+RqDkloK0JbAAAAAEDLYBiGlm7P0BP/26nU3GJJ0oCObTRrci/H4+2n6gs6pme0Fvx8SM8u3y1rceXCTeOTovXghT3VKSKoye8HlX7an63fv7VORWU2DU0I0+s3DFawm9tYnOr7qKFDxYVrDzn+seFUnp/WT1P6tW/Qa7tDU362aHqEtvVAaAsAAAAAaO52pFk1Z3Gy1qbkSKoMee6/oIcuPqtdtcWebXbjlI/T5xaV6bkVe/TuTwdlsxvyMZv0+3MS9KfRXRTiptmdrdUPe47q5nfWq6TcrvO6Ruj/rh2kAN+6F+1qCnV9HzWUNfuyddVrP9W533s3D2vU3rNNqak+WzQ9Qtt6ILQFAAAAADRXxwpK9cxXu7Rw3WEZhuTn7aVbRyTqlhGdFeh7ZrMx92Tm67H/7dT3u49KkiKCffWX8d11+aA4AqQm8M0vmbp13kaVVdg1qnuk5k4fKH8fzwhsm5LNbujcf3xTZ6/XH+8bzfclPB6hbT0Q2gIAAAAAmpuyCrveXn1A//l6j6Pn5+Sz2un+C3qofZuABruOYRj6dleWHl+yU/uPFUqSkmJDNWtykoZ2bhmzGj3Rsu0Z+vN7G1VuMzShV7ReuGqAfL1b78Jw9HpFS0FoWw+EtgAAAACA5sIwDH3zS5Ye/99OpZwIUXu3D9Wsyb00uFPjrSpfVmHXO2sO6Pmv9yi/pDIkvrBPjB64oKfiwgIb7bqt0eItabrz/c2y2Q1d1DdW/76yn3zMrTewrUKvV7QEhLb1QGgLAACAloqeeEDLsiczX48uSdYPe45JkiKC/fTXCd112cAO8mqin+3sglI9u3y33lt7SHZD8vX20k3nJui2UV3cvjhWS/DxhiO696MtshvSpQPa65+XncWf2yfhv2to7ght64HQFgAAAC0RM5KAluO3C4P5mr30+3MTNHNUotsWBtuZnqfHliRr9b5sSVJkSGWAPHVA0wXILc17aw/pwU+2yTCkaYPj9PdL+vBZAi0MoW09ENoCAACgpanq/ffbv+zT+w9oXipsdi1Ye0jPLt+t3KJySdL4pGg9NKmn4sOD3FxdZauG5cmZeuKLnTqYXSRJ6tvBokcuStKgRmzV0BK9vfqAZn2+Q5J0/fB4zZrci8AWaIEIbeuB0BYAAAAtSdUq2yfPsD0Zq2wDnqW2x71/3HNMjy7Zod2ZBZKk7tEhemRyks7pEuHmiqsrrbDprVUH9MI3e1VQy6JoPNZeu9e+368nvtgpSbr5vAQ9eGFPmUx8NkBL5GoOSbMZAAAAoIVZm5JTa2ArVa66nW4t0dqUHA1PZOV3wJ1qamMSGeynWIu/tqZaJUltA31097huumpIR3l76GJUft5m3TIiUZcO6KBnvtql99cf1uItaVqenKE/np+oxMggPbX0F9q11ODFb/boX1/tliT9aVQX3TO+G4EtAEJbAAAAoKXJyq89sD2d/QA0jtramBwtKNXRglJ5maTrz+6kO8d0kyXQPX1r6ysyxE9PTe2r6cPi9eiSZK1NydF/vt5T474Z1hLNmLexUdu1ePLsXsMw9Ozy3Xrhm72SpHvGddOfx3R1c1UAPAWhLQAAANDCRIX4N+h+ABqezW5ozuLkaoHtycKD/PTwpCSPCRnro3d7i97/4zD9b2u67li4SbYabtRQZbuWOYuTNS4ppsHv05MXYzQMQ08t/UWvfr9fkvTABT10y4hEt9YEwLMQ2gIAAAAtzJCEMMVa/JVhLak1EDKbTGrbTGbuAS1RXW1MpMoZt825jYnJZFJ4sF+NgW2VqnYt/R9drnZt/BUW5KvwYD+FB/kqPMhXYcG+Cg/yU3iw74kxP4UGeNfZPqC2WcxNMbu3LoZRGdi/tfqAJGnW5CTdeE6CW2oB4LkIbQEAAIAWxuxl0qzJSZoxb2Ot+9gMQ5e/skYvXN1fI7tHNWF1LYs7Hr325Me94brW0sbE1frzSsqVl1Hu0r4+ZpPaBp4U7gb7KizIVxHBfgoL8lXbAB899On2Gv/RqrFn99bFbjf00Kfb9d7aQ5KkJy7prWuGxjdpDQCaB0JbAAAAoAWa2DtWc6cP0F3vb1Fxuc0xHmvx193juunD9Ue09kCOfv/WOj08KUk3ntOJhW/qyR2PXnvy495wXUFphT7eeMSlfZt7GxNX63/y0t7q0DZQ2QVlyi4sU3ZBqXIKy3SsoEw5haXKLixTTkGZ8ksrVG4zlJVfqqz80tOqyV2LMdrshv760VZ9vPGITCbp6al9dfmguCa7PoDmxWQYxqla6LQKeXl5slgsslqtCg0NdXc5AAAAQIMZ8fQ3OphTrFtGdNbIblGOWZllFXY9/Ok2fbC+Mji6akhHPTqll3w8dGV6T1Pbo9dVsXdjPHrtjmu6U0udUbzhYI7uen+LDuUUnXI/k6QYi79+vG90s75vm93Quf/4ptZ2LfW9z5Jym3IKy04EupXB7m+D3j1ZBXV+vpIUEeyroZ3D1ae9RX3aW9S7naXRFnwrt9l19wdbtHhLmsxeJj17xVma0q99o1wLgGdzNYcktBWhLQAAAFqmo/mlGvzECplM0uZHxssS4BxGGIah139M0RNf7JRhSMM6h2nuNQPVNsjXTRU3D1UhVG39SBsibDMMQxV2Q+U2u8orDJVU2DT5hR9rnVnY2AFfUweoLXFGcbnNrhe+2asXv9kjuyG1bxOgaYPj9Ozy3ZLkFGi2tCC+6h8cpKa5zzX7snXVaz+d1rEdwwIrA9yqILd9qNoE1u/PxN/+vPSLa6O73t+sZTsy5O1l0gtX9dcFfZr/7yuA00NoWw+EtgAAAGiJlm1P163zNqpHTIiW3Xl+rft9vTNTt7+3SYVlNsWHB+r16werS1RwE1bavLgaCA1NaKsQf19V2O2O8LW8hq8rbJXhbFmF/deg9lQrN53COYnh6t3eoqhQf0WH+ikqpPLX6FB/+fuYT+ucTR2gtsQZxQeOFerO9zdr8+FcSdIl/dtrzpReCvX3aZEBdU2a8j5dmd0bFeqnp6f21Y70PG1PtWpbqlWHc4prPF9cWIBTkNunvaXWILem+/Tz9lJphV2+Zi+9fM0AjU2KboC7BNBcEdrWA6EtAAAAWqLHlyTrvz+m6JqhHfXEJX1Oue+ujHz94e11OnK8WCH+3nrp6gE6v1tkE1XavHy2OVV3LNzs7jLqLdTfW9Gh/ooO9VfUiSA3OsTvxPvKcDcyxE9+3r+Gu40VoNrshorKKlRcblNxmU1FJ16FJRW64/1NOl5U84JUza1lgGEYen/dYT26JFlFZTaF+HvriUv66OKz2jnt11JbQfxWU97n6czuzS0q0/bUPG1LtTqC3NraLHRoWz3I/Tklu8aflyp/Ht1F94zvfmY3BqDZI7StB0JbAAAAtERTXlqlLYdz9dyV/fS7/nX3TswuKNWt8zZo3YHj8jJJj1yUpOvPZoGy33J1pu2N53RSt+gQ+Zi95GM2nfjVS95mk3zNXvL2MsnH26vy66rtXl7y8Xb+2tvLSxsO5uiq136u85pXD4mTv4+3svJLlJVXqsz8EmVYS1RaYXf5/sKCfBUVUhngrj9w3Gkhu98KDfDWrSMSVVJuV/GJELao7NcgtrjMpqLyChU7vq4cL6tHPTV57+ZhTbqA1OnIKSzT/R9v1VfJmZIq2488c0U/tW8T4ObKWo+GmN1rLSrX9rTKALcqzD2YXXOQ62WS7KdIWGKb0T84AGg8ruaQ3k1YEwAAAIAmUlxm045UqyRpUKe2Lh0THuyneTcN1UOfbNdHG45o9uJk7ckq0OyLWaDsZMcLS2WSap1NVzUb9OFJSQ0WzgxJCFesxb/OxZwe+12fatc0DEN5JRXKyitRZl6pMvNKlFkV6uaVnHiV6mh+qcpsdsciT79k5NdZV15xhZ5etuu078tkkgJ8zAr0NSvA16yKCkPpeTX3Cj7Z1iO5Hh3artx9VH/5cIuO5pfKx2zSX8Z3103ndSasa2ITe8dqXFLMGc3utQT66JwuETqnS4RjzFpcrh2pzkHugeyiUwa2kpRuLdHalByP/t4F4DkIbQEAAIAWaPPhXFXYDcWE+tdrZp+ft1n/vKyvukYF66llv2j+z4eUcqxQL18zoN6L8bQ0NruhZ5fv0kvf7qt1n6ooaNbkhgtsJcnsZdKsyUmaMW9jtcC4rmuaTCZZAnxkCfBR1+iQWq9hGIZyi8qVmV8Z4i7bnq731h6us7bBndqqe0yIAn295X8igA30NZ8IY70V6Gt2Hvf9ddzP28tpJrers5ifXPqL1h88rhkjEzWgo2v/KNEUSsptemrpL3pr9QFJUpeoYD0/rZ96tbO4t7BWzOxlavCQ1BLgo7O7ROjsk4LchWsP6f5F2+o8Niu/7n+UAACJ0BYAAABokdYfyJFUOcu2vu0NTCaTbhmRqMTIYN2xcJNW78vWJS+v1n+vH6TEyNa5QJm1qFy3L9yklbuPSpJuOjdB/Tu20eP/2+n06HVMIy4gNbF3rOZOH1Dtce+GuqbJZFLbIF+1DfJVjxjJ1+zlUmh797juDRaKDUkIO+WMYkny9/ZSSYVdy5MztTw5U8M6h2nGyC46v2uEW1t5JKfl6c73N2l3ZoEk6YazO+n+C3qc9gJwaF7iw4Nc2i8qxL+RKwHQUhDaAgAAAC3Q+oPHJUmD4k9/FuLYpGh9fNvZ+sNb65VyrFCXvLRKL10zQOd1bV0LlP2Skac/vrNBh3KK5O/jpX9M7asp/Sp7BE/sHdukC0g1xOPerqorQK1qyTAkIazBrunKjOLnpvVTl6hgvbpyvz7ZlKqf9ufop/1r1atdqGaMTNQFvWObtA2B3W7ovz/u17++3K0ym10RwX765+V9Nap7VJPVAPdzx88LgJaNhcjEQmQAAABoWWx2Q/3mfKX80got+fO56t3+zB7NPlZQqlve3aANB487QrXrhndqmGI93JKtabr3w60qLrepQ9sAvXrtwFb1qPuy7emaMW+jpJoD1LnTBzTKrGJXF5BKyy3Wf39I0XtrDzkWTOsUHqhbRiTq0gHt5efduLNc03KLdc8HW7Rmf7YkaVxStJ66tI/Cg/0a9brwTO76eQHQvLiaQxLaitAWAAAALcvO9Dxd8PwPCvI1a8us8fJugEXESitsemDRNi3amCpJunZYvGZNTmqQc3sim93Q01/+oldX7pckndc1Qv+Z1l9tg1pfX19XA9SGZrMbLs8oziks09urD+it1QdkLS6XJEWF+Omm8xJ09dB4Bfs1/EOmS7am6cFF25RXUqEAH7MemZykaYPj3NqiAe7nrp8XAM0HoW09ENoCAACgJXl3zQH97bMdOq9rhN79w9AGO69hGHr1+/36x7JfZBjSuV0i9NLVA2QJ9Gmwa3iC44Vlun3hJv2w55gk6ZYRnXXv+O4tNqB2RX0CVHcqLK3Qe2sP6b8/pCgjrzI0C/X31nXDO+nGczo1yAzY/JJyzfpshxZtqvwHjLM6WPTctP5KiHCtpylavuby8wLAPQht64HQFgAAAC3JHQs36bPNabprbDfdMbZrg5//qx0ZuvP9zSoqs6lzRJD+e/0gdW4hC5TtSLPqlnc36MjxYgX4mPXPy/vqor7t3F0W6qmswq5PN6XqlZX7tP9YoSTJ38dLVw6K083nd1aHtoGndd51B3J01/ubdeR4sbxM0p9GddGfx3SVTysO9AEA9UNoWw+EtgAAAGhJznnqG6XmFmv+TUN1TpeIRrlGclqebn5nvVJzixXq76250wc22rWaymebU3Xfx1tVUm5Xx7BA/d91A9Ujhv8/aM5sdkNf7cjQy9/t07ZUq6TKxc6mnNVOt45MVLfokBqP+e0sSbth6PkVe/Tyd3tlN6S4sAD9+4p+GtSJRaUAAPVDaFsPhLYAAABoKdJyi3X2U9/I7GXS1lnjFdQIvTyrHM0v1S3vrtfGQ7kye5k05+Jemj4sXlLzejy4wmbXU0t/0X9/TJEkjegWqf9M69/i2j60ZoZhaNXebM1duVer9mY7xsf2jNZtoxI1oGNbSTX3I40M9lWgn7cOZhdJkqYO6KDZFycpxJ/vDwBA/RHa1gOhLQAAAFqKz7ek6fb3NqlPe4sW//ncRr9eSXnlAmWfnOjvef3weA1JCNPj/9vZLBbiyS4o1Z/f26TV+yqDvJmjEnX3uO4eGzDjzG05nKu53+3Tl8kZqvq/4aEJYRrcqa1e+nafavsf5EBfs/552Vma1NezvocBAM0LoW09ENoCAACgpXjks+16Z81B3XhOJ82a3KtJrmkYhl7+bp/++eWuWvepikDnTh/gMcHt9tTK/rWpucUK8jXrmSvO8pja0Pj2ZhXo/77fp082parcVvf/FkeH+Gn1A2MI9AEAZ8TVHJJu6QAAAEALsv7AcUnSoPim67VpMpk0c1QXvXz1gFr3qYrE5ixOls3u/nkjizYe0dS5q5WaW6yEiCB9OvMcAttWpktUsJ6+7CytvHeULuwdU+f+mfmlWpuS0wSVAQBAaAsAAAC0GPkl5folI0+SNKhT2ya/ftsg31NuNySlW0vcGnyV2+ya/fkO3f3BFpVW2DWmR5Q+nXmOutawIBVah3ZtAjTBhdBWkrLyS+reCQCABtB4qxIAAAAAaFKbDuXKbkgdwwIVHerf5Nd3NdBafzDHLQuTHc0v1cwFGx2h8e1juurOMV3lxePurV5UiGs/L67uBwDAmSK0BQAAAFqI9Qcqw8hB8U0/y1ZyPdB65qvd+r+V+zUkIUzDOodrWOdwJbULbdQQd8vhXN06b4PSrSUK9vPWv6/sp3FJ0Y12PTQvQxLCFGvxV4a1pMaFyEySYiz+GpLQdG1HAACtG6EtAAAA0EKsq+pn28k9wVJdwZck+Xl7ycdsUn5phb7+JUtf/5IlSQrx99bQk0LcnrENF+J+sP6wHv50u8oq7EqMDNKr1w5Sl6jgBjk3Wgazl0mzJidpxryNMklO379V34WzJiexCBkAoMkQ2gIAAAAtQLnNrs2HcyW5p5+t5Frw9fy0fhqXFKOd6Xn6aX+21uzL1tqUHOWXVGjFziyt2FkZ4ob6e2tIQriGJ4ZrWOcw9YwJrbONgc1uaG1KjrLySxQV4q9+cW309y926t2fDkqSxiVF69krzlKIv0/D3zyavYm9YzV3+gDNWZysdOuvrT5iLP6aNTmJheoAAE3KZBiG+5dudbO8vDxZLBZZrVaFhoa6uxwAAACg3rYcztWUl1bJEuCjTX8b59Y+rcu2p1cLvmJPEXzZ7IaS0/K0Zv8x/bQ/R2tTclRQWuG0jyXAx2kmbo+YEKd7rOmaPmaTym2GTCbprrHd9KdRXehfizr9Nvx3R/9lAEDL5WoOSWgrQlsAAAA0f6//mKLHliRrdI8ovXHDYHeXc0bBV4XNrh1pJ2bi7s/WupQcFZbZnPZpE/hriGszDD2xZGetLRlmjkrUvRN6nOEdAQAAnDlXc0jaIwAAAAAtgGMRMje1Rvgts5dJwxPDT+tYb7OXzopro7Pi2uiWEYmqsNm1Pe3XdgrrDuQot6hcX+7I1Jc7Mus836KNqbp7XHdmSwIAgGaD0BYAAABo5gzD0PqDJxYhi295q9t7m73UL66N+sW10a0jElVus2tbqlU/7c/Wsu0Z2nrEesrj060lWpuSc9ohMgAAQFMjtAUAAACauUM5RTqaXypfs5f6drC4u5xG52P20oCObTWgY1u1bxOgOxZurvOYrPySOvcBAADwFF7uLgAAAADAmVl3oHKWbZ8OFvn7mN1cTdOKCvFv0P0AAAA8AaEtAAAA0MxtOHiin228Z/SzbUpDEsIUa/FXbd1qTZJiLZULoQEAADQXHhPaPvXUUzKZTLrzzjsdYyNHjpTJZHJ63XrrrU7HHTp0SJMmTVJgYKCioqJ07733qqKioomrBwAAANynaqbtoE6tL5g0e5k0a3KSJFULbqvez5qcxCJkAACgWfGInrbr1q3Tq6++qr59+1bbdvPNN+vRRx91vA8MDHR8bbPZNGnSJMXExGj16tVKT0/XddddJx8fH/39739vktoBAAAAdzpeWKa9WQWSpIGtcKatJE3sHau50wdozuJkpVt/7V0bY/HXrMlJmtg71o3VAQAA1J/bQ9uCggJdc801eu211/T4449X2x4YGKiYmJgaj/3qq6+UnJysFStWKDo6Wv369dNjjz2m++67T7Nnz5avr29jlw8AAAC41YaDlbNsEyODFBbUev/+O7F3rMYlxWhtSo6y8ksUFVLZEoEZtgAAoDlye3uEmTNnatKkSRo7dmyN2+fPn6+IiAj17t1bDzzwgIqKihzb1qxZoz59+ig6OtoxNmHCBOXl5WnHjh21XrO0tFR5eXlOLwAAAKA5Wn8itB0U3/paI/yW2cuk4YnhmtKvvYYnhhPYAgCAZsutM20XLlyojRs3at26dTVuv/rqqxUfH6927dpp69atuu+++7Rr1y4tWrRIkpSRkeEU2EpyvM/IyKj1uk8++aTmzJnTQHcBAAAAuM/6AycWIevUOlsjAAAAtERuC20PHz6sO+64Q8uXL5e/v3+N+/zxj390fN2nTx/FxsZqzJgx2rdvnxITE0/72g888IDuvvtux/u8vDzFxcWd9vkAAAAAdygpt2nrEaskaXArXIQMAACgpXJbe4QNGzYoKytLAwYMkLe3t7y9vbVy5Ur95z//kbe3t2w2W7Vjhg4dKknau3evJCkmJkaZmZlO+1S9r60PriT5+fkpNDTU6QUAAAA0N9tTrSqz2RUR7Kv48MC6DwAAAECz4LbQdsyYMdq2bZs2b97seA0aNEjXXHONNm/eLLPZXO2YzZs3S5JiYytXfx0+fLi2bdumrKwsxz7Lly9XaGiokpKSmuQ+AAAAAHdZd+DXfrYmE/1bAQAAWgq3tUcICQlR7969ncaCgoIUHh6u3r17a9++fVqwYIEuvPBChYeHa+vWrbrrrrt0/vnnq2/fvpKk8ePHKykpSddee62efvppZWRk6OGHH9bMmTPl5+fnjtsCAAAAmsyGg/SzBQAAaIncuhDZqfj6+mrFihV67rnnVFhYqLi4OE2dOlUPP/ywYx+z2awlS5ZoxowZGj58uIKCgnT99dfr0UcfdWPlAAAAQOOz2w2tP3hipi39bAEAAFoUk2EYhruLcLe8vDxZLBZZrVb62wIAAKBZ2JuVr7HPfi9/Hy9tmz1BPma3dT4DAACAi1zNIfmbHQAAANAMVfWz7RfXhsAWAACgheFvdwAAAEAztO5AZT/bwbRGAAAAaHEIbQEAAIBmaMOJfrYD41mEDAAAoKUhtAUAAACamaz8Eh3MLpLJJA0gtAUAAGhxCG0BAACAZmbDiX623aNDFOrv4+ZqAAAA0NAIbQEAAIBmpmoRMvrZAgAAtEyEtgAAAEAzs+Fg5SJkgzrRGgEAAKAlIrQFAAAAmpGisgptT8uTJA1ipi0AAECLRGgLAAAANCObD+XKZjcUa/FX+zYB7i4HAAAAjYDQFgAAAGhG1h+s7GfLLFsAAICWi9AWAAAAaEbWHajsZzuYfrYAAAAtFqEtAAAA0EzY7IY2HcqVJA2MJ7QFAABoqQhtAQAAgGbil4w8FZRWKNjPWz1iQt1dDgAAABoJoS0AAADQTGw40c+2f8c2MnuZ3FwNAAAAGguhLQAAANBMrDtQGdoOZhEyAACAFo3QFgAAAGgm1p9YhGwQ/WwBAABaNEJbAAAAoBlIzS1WurVEZi+T+nVs4+5yAAAA0IgIbQEAAIBmoGqWbe92oQr09XZzNQAAAGhMhLYAAABAM7D+RD/bgfH0swUAAGjpCG0BAACAZmDdiZm2gzvRzxYAAKClI7QFAAAAPFxeSbl2ZeZLkgYS2gIAALR4hLYAAACAh9t48LgMQ4oPD1RUiL+7ywEAAEAjI7QFAAAAPNyv/WyZZQsAANAaENoCAAAAHm79wap+tixCBgAA0BoQ2gIAAAAerNxm1+bDuZKkQcy0BQAAaBUIbQEAAAAPtiMtTyXldrUJ9FFiZLC7ywEAAEATILQFAAAAPNj6A5WtEQbFt5WXl8nN1QAAAKApENoCAAAAHuzXRcjoZwsAANBaENoCAAAAHsowjJMWIaOfLQAAQGtBaAsAAAB4qAPZRTpWUCZfs5d6t7e4uxwAAAA0EUJbAAAAwENV9bPt28Eifx+zm6sBAABAUyG0BQAAADyUo58trREAAABaFUJbAAAAwEM5+tmyCBkAAECrQmgLAAAAeKCcwjLtO1ooSRoYz0xbAACA1oTQFgAAAPBAGw5WtkboEhWstkG+bq4GAAAATYnQFgAAAPBAVYuQDaafLQAAQKtDaAsAAAB4oHUnQtuB9LMFAABodQhtAQAAAA9TUm7TtlSrJGbaAgAAtEaEtgAAAICH2XrEqnKboYhgP3UMC3R3OQAAAGhihLYAAACAh1l/8Nd+tiaTyc3VAAAAoKkR2gIAAAAeZv2B45KkQZ3oZwsAANAaEdoCAAAAHsRuN7Th4InQNp5+tgAAAK0RoS0AAADgQfYeLZC1uFwBPmYltQt1dzkAAABwA0JbAAAAwIOsO1DZz7ZfXBv5mPnrOgAAQGvE3wIBAAAAD7LhRD/bwZ1ojQAAANBaEdoCAAAAHmTdwcqZtgNZhAwAAKDVIrQFAAAAPERmXokO5xTLyyQN6NjG3eUAAADATQhtAQAAAA+x/kRrhO4xoQrx93FzNQAAAHAXQlsAAADAQ6w/0RqBfrYAAACtG6EtAAAA4CGqZtoOop8tAABAq0ZoCwAAAHiAwtIKJafnSZIGxTPTFgAAoDUjtAUAAAA8wObDubLZDbVvE6B2bQLcXQ4AAADciNAWAAAA8ADrDlT2sx3ILFsAAIBWj9AWAAAA8AAbDlb2s2URMgAAABDaAgAAAG5WYbNr44nQdmA8i5ABAAC0doS2AAAAgJv9kpGvwjKbQvy81T0mxN3lAAAAwM0IbQEAAAA3W3+in+2A+LYye5ncXA0AAADcjdAWAAAAcLN1J1ojDGIRMgAAAIjQFgAAAHArwzAcM20HdaKfLQAAAAhtAQAAALc6crxYmXml8vYyqV9cG3eXAwAAAA9AaAsAAAC40YYTrRF6tbcowNfs5moAAADgCQhtAQAAADdaV9UagX62AAAAOIHQFgAAAHCjqpm2gzsR2gIAAKASoS0AAADgJtaicu3KzJckDYxnETIAAABUIrQFAAAA3GTjoeMyDKlTeKAiQ/zcXQ4AAAA8hLe7CwAAAIBnsdkNrU3JUVZ+iaJC/DUkIUxmL5O7y2qR1h880c+2E7NsAQAA8CtCWwAAADgs256uOYuTlW4tcYzFWvw1a3KSJvaObbTrttageN2Byn62LEIGAACAk3lMe4SnnnpKJpNJd955p2OspKREM2fOVHh4uIKDgzV16lRlZmY6HXfo0CFNmjRJgYGBioqK0r333quKioomrh4AAKD5W7Y9XTPmbXQKbCUpw1qiGfM2atn29Ea77rn/+EZXvfaT7li4WVe99pPO/cc3jXY9T1FWYdeWw7mSmGkLAAAAZx4R2q5bt06vvvqq+vbt6zR+1113afHixfrwww+1cuVKpaWl6dJLL3Vst9lsmjRpksrKyrR69Wq9/fbbeuutt/TII4809S0AAAA0aza7oTmLk2XUsM048Xrok+3anmrV4ZwiHS8sU1mF/Yyv666g2BNsT7OqtMKutoE+SowMcnc5AAAA8CBub49QUFCga665Rq+99poef/xxx7jVatXrr7+uBQsWaPTo0ZKkN998Uz179tRPP/2kYcOG6auvvlJycrJWrFih6Oho9evXT4899pjuu+8+zZ49W76+vu66LQAAgGblp/3Z1YLT38ouLNNFL/zoNOZr9lKQn1lBft4KPvEKcvxa23jltkAfb/3t0+21BsUmSXMWJ2tcUkyLbJWw4URrhIHxYTKZWt79AQAA4PS5PbSdOXOmJk2apLFjxzqFths2bFB5ebnGjh3rGOvRo4c6duyoNWvWaNiwYVqzZo369Omj6Ohoxz4TJkzQjBkztGPHDvXv37/Ga5aWlqq0tNTxPi8vrxHuDAAAwPPtysjXoo1H9N7aQy7tH+xnVrnNUOmJWbZlNrvKiuw6XlTe4LUZktKtJVqbkqPhieENfn53W3egahEy+tkCAADAmVtD24ULF2rjxo1at25dtW0ZGRny9fVVmzZtnMajo6OVkZHh2OfkwLZqe9W22jz55JOaM2fOGVYPAADQPB0rKNXnm9P08cYj2pFWv3+8fu26wRqeGK5ym11FpTYVlFWosLRC+SWVvxaWVqjgxK+FZbbq42UVKii1qaCkXMcKymQtrjvszco/9Qzg5sgwDG04WDnTdjChLQAAAH7DbaHt4cOHdccdd2j58uXy9/dv0ms/8MADuvvuux3v8/LyFBcX16Q1AAAANKWScpu++SVLH284ou92H5XNXtmUwMds0ugeUfpdv/aaszhZmXklNbYrMEmKsfhrSELYieO8ZAn0kiXQ57RrWrMvW1e99lOd++WXtLxFZlOOFSq7sEy+3l7q3d7i7nIAAADgYdwW2m7YsEFZWVkaMGCAY8xms+n777/Xiy++qC+//FJlZWXKzc11mm2bmZmpmJgYSVJMTIzWrl3rdN7MzEzHttr4+fnJz8+vAe8GAADA8xiGoY2HcvXxxiNasiVNeSeFn2fFtdHUAe01uW87tQ2qXAfAZJJmzNsok+QU3FZ1W501OalBe8sOSQhTrMVfGdaag+IqD3+6Xav2HtM947urS1Rwg13fndaf6Gd7VgeL/LzNbq4GAAAAnsZtoe2YMWO0bds2p7Ebb7xRPXr00H333ae4uDj5+Pjo66+/1tSpUyVJu3bt0qFDhzR8+HBJ0vDhw/XEE08oKytLUVFRkqTly5crNDRUSUlJTXtDAAAAHuJwTpE+3ZSqRZtSlXKs0DEea/HXJf3b69IBHWoMPyf2jtXc6QM0Z3Gy06JkMRZ/zZqcpIm9Yxu0TrOXSbMmJ9UaFBuShiWE6+cD2Vq6PUNf7sjQ5QPjdOe4roq1BDRoLU3FZje0NiVHizYekSQNiKc1AgAAAKozGYZxqokNTWrkyJHq16+fnnvuOUnSjBkz9MUXX+itt95SaGio/vznP0uSVq9eLalyZm6/fv3Url07Pf3008rIyNC1116rm266SX//+99dvm5eXp4sFousVqtCQ0Mb/L4AAABOV1XIl5VfoqiQyvYENc12zS8p19LtGfp4wxH9nJLjGA/0NWti7xhdNqCDhnUOl5cLM2VdvWZDWbY9vVpQHHtSULwrI1///HKXVuysfKLK19tLN5zdSTNGJDpmCTcHNd1n20AfPXlpnwYPxAEAAOCZXM0hPTq0LSkp0T333KP33ntPpaWlmjBhgl5++WWn1gcHDx7UjBkz9N133ykoKEjXX3+9nnrqKXl7uz6JmNAWAAB4orrCTJvd0Kq9x/TxxiP6ckeGSsrtkirbHJydGK6pAzpoQq8YBfm5de1Zl7gSFG84mKN/LN2ltQcqQ+kQP2/dMqKzbjwnwePvcdn2dM2Yt7FaG4iqO5w7fQDBLQAAQCvQLENbdyG0BQAArmjKGainCvkMSeOSorX1SK4y80od2xIjgzR1YAf9rl97tWvTPNsH1MUwDH23+6ieXrZLO9PzJEkRwX66fUwXTRvcUb7eXm6usDqb3dC5//jGKXw/WdUibz/eN7pRZzQDAADA/Qht64HQFgAA1KWuWa8Nqa6Q72RtAn108VntNHVAB/XtYJHJ1DpCP7vd0OKtaXrmq906lFMkSYoLC9A947rr4rPaudQGoqms2Zetq177qc793rt5mIYnhjdBRQAAAHAXQtt6ILQFAACn0lCPthuGoZJyuwpKK1RQWqHCar/aVFBarl8y8rVoY2qd57t7XDfdOiLRI2eXNpWyCrveX39Y//l6j47mV8467hETor9O7K5R3aPcGmJbi8u1LiVH838+qG93Ha1z/+en9dOUfu2boDIAAAC4i6s5pGc3/wIAAHAzm93QnMXJ1QJbSY6xez/aqk2Hc1VcZnOEsIWlNuU7vv41nLU34D+Xx4cHturAVqpclOzaYfGaOqC93lx1QK+s3KdfMvL1+7fWa3CntrpvYg8N6hTWJLVYi8q19kCOftqfrZ9TsrUjLU/1mR4RFeLfeMUBAACgWWGmrZhpCwBAc9NYvWVLK2w6crxYh3KKdDinSIeyi7T5cK7WHzzeAFU7C/I1K8jPW8H+3gr281aQr3flez+zCkortGJnVp3n4HH66nKLyjR35T69teqASisqF2Yb2zNKf5nQXT1iGvbveblFZfo5JUc/768MandmVA9pO0cEaXBCW325PVO5xeU1noeetgAAAK0H7RHqgdAWAIDm40x6yxqGoWMFZb+Gsie9DucUKSOvpF4zI092ftcInRXXRkF+v4avQb4nAtmTw1k/bwX6mE/Zc7Wqp22GtaTGGb6EfHVLtxbrP1/v0Qfrj8hmN2QySZf0a6+7xnVTXFigpPqH/8cLK0Paypm0OfqlppA2MkjDOodrWOdwDU0IU3Ro5ezZqhYbkpx+T+vbYgMAAADNG6FtPRDaAgDQPLjSW3Zk9ygdOX4ijM0u0qGcYqeQtrjcdsprBPqa1TEs0PGyGYbeXHWgztoaetYrIV/D2H+0QM8s363/bU2XJPmYTbpmaLx6xobquRW7Txn+5xSWaW1Ktn46MZP2l4z8aufvEhWsoQlhlSFt57BTtjhoysXsAAAA4JkIbeuB0BYAAM9XNfv05MDrt7xMqrNnrMkktbMEKC4swBHMxp0U0oYF+TotXuXOWa+EfA1n65Fc/fPLXfphz7E69x3ZLVLp1hLtyqwe0naNCnbMpB2SEKbIEL961dFYrT0AAADQPBDa1gOhLQAAnm/V3mO65r8/u7RvsJ/3iSDWOZiNDw9Suzb+8vM21+va7pz1SsjXsH7YfVS/f3udym2u/RW4e3SIhnYOc4S0EcH1C2kBAACAk7maQ3o3YU0AAAD1Yi0u1/e7j+rbX7L0ZXKGS8f8/ZLeumpIR6fZsmdqYu9YzZ0+oNqs15gmmPVq9jKx2FgD8jZ7uRTY3jW2q6YPi1c4IS0AAADcgNAWAAB4DMMwtO9ogb7emaVvfsnS+oPHZaur38FvJEQEN2hgW2Vi71iNS4ph1mszl5Vfe3uNk3WKCCKwBQAAgNsQ2gIAALcqKbfp55QcfftLlr7+JVOHc4qdtneNCtboHlEa2S1Sd32wRZl5p+4tOyQhrNFqZdZr83eqhcJOZz8AAACgMRDaAgCAM3I6PVcz80pOhLRZWrX3mIrKbI5tvmYvDUsM15geURrdI0pxYYGObbMvTtKMeRtlUs29ZWdNTmLmK05pSEKYYi3+dS4s15jhPwAAAFAXQlsAAHDalm1Pr9bnNbaGPq92u6EtR3IdQe2OtDyn80SH+ml0jyiN7hGtc7qEK9C35r+iuLO3LFoGs5dJsyYT/gMAAMCzmQzDqF+juBbI1VXbAADAr5ZtT9eMeRurzVasirqeveIs+fmY9fXOLK3cnaVjBWW/7mOSzurQRmN6RGlUjyj1ahdarz60pzO7FziZq//gAAAAADQkV3NIQlsR2gIAGkdLDhZtdkPn/uMbp8CrLiF+3jq/W6RG94jSiO6RimCRJ7hZS/4ZBQAAgGdyNYekPQIAAI2gpc/iW5uS41JgG2vx10V9YzWqR5QGdwqTj9mrCaoDXMPCcgAAAPBUhLYAADSw2toGZFhLNGPeRs2dPqBZBbc2u6GUYwVKTs/XzvQ87UzP08ZDx1069v4LemhKv/aNXCEAAAAAtCyEtgAANCCb3dCcxck1rkpvqLLf65zFyRqXFNMoj2Gf6ePe1uJy/XIimN2Znq+dGXnalZGv0gr7adUTFeJ/WscBAAAAQGtGaAsAQAOqq22AISndWqI7F25Snw4WRQT7/foK8VV4kN9ph7n1aclgtxs6mFPkmDlbFdKm5hbXeO5AX7O6x4SoZ2yoesaEqFt0iG5fuElZeaU1BtQmSTGWytAYAAAAAFA/hLYAADSQsgq7vkrOcGnfxVvTtXhrerVxk0kKC/R1hLhOoW6wb7WA19e7skdsXS0Z/jKhm0IDfB0B7a6MfBWV2WqsrX2bAPWMPRHQnnjFhwXK6zdh8pyLe2nGvI0ySU7Xrdpr1uQkFnUCAAAAgNNgMgyjpgkyrYqrq7YBAFCTvVkF+mD9YX284YiyC8tcOubC3jHy8fbSsYJSHcsv07GCUuUUlam+/1W2BPgoPMhHR44Xq8xWv4P9vL0qZ8/GhDpC2h4xobIE+rh8jpa+4BoAAAAANCRXc0hm2gIAcBqKy2z6Ylu63l93WGsP5DjGI4N9VVRuU2FpzbNYq9oGvHD1gGqzUG12QzmFlQGu43Ui0D1aUKpjBWU6ll85nl1YJpvdkLW4XNbicpdqPivOorMTI9QzNlRJsSHqFB4kb7PXaX8GkjSxd6zGJcWcUR9dAAAAAIAzQlsAAOphe6pV7687rE83pyq/pEKS5GWSRveI0pWDO2pU90it2JmpGfM2Sqpf2wCzl0mRIX6KDPGrsw77icD2WEGpPtucqhe/3VfnMb8/J0FT+rWvc7/6MnuZNDwxvMHPCwAAAACtFaEtAAB1yC8p12eb0/T+usPalmp1jMeFBejKQXG6bGCcYiz+jvGJvWM1d/qAam0DYhqwbYCXl0ltg3zVNshX53SJdCm0jQrxr3MfAAAAAID7EdoCAFADwzC04eBxLVx3WP/bmq7i8sp2B75mL43vFa1pgzvq7MTwaotzVWnKtgFDEsIUa/FXhrWk2kJk0q8tGYYkhDX4tQEAAAAADY/QFgDQKtjshksBanZBqT7ZlKqF6w5rb1aBY7xLVLCmDY7TpQM6KCzI16VrNlXbALOXSbMmJ2nGvI0yqX4tGQAAAAAAnofQFgDQ4i3bnl6tVUHsSa0K7HZDq/Yd08J1h/XVjgyV2ypjzwAfsy7qG6tpQ+I0oGNbmUyeG3o2RUsGAAAAAEDTMBmGUdOTlK1KXl6eLBaLrFarQkND3V0OAKABLduerhnzNlZrG1A1I/XivrHaeDhXR44XO7b1aW/RtCFxmnxWO4X6+zRluWfM1RnFAAAAAICm52oOyUxbAPAQhG0Nz2Y3NGdxco19XqvGPt+aLkkK8ffWJf3b64pBcerd3tJkNTa0pmrJAAAAAABoPIS2AOAB6np8H6dnbUqO02dam9tGJurPo7sqwNfcBFUBAAAAAHBqXu4uAABau6rH938bLmZYSzRj3kYt257upsqav8y8ugNbSeoeE0JgCwAAAADwGIS2AOBGrjy+P2dxsmz2Vt9+vF6sReX67w/79eTSnS7tHxXi38gVAQAAAADgOtojAIAb1fX4viEp3VqitSk59Cl1wbYjVr370wF9viVNJeV2Sb8uOFYTk6QYS2X/YAAAAAAAPAWhLQA0saKyCq0/cFyr92Xri21pLh2z4eBxDescJpOJhcl+q6Tcpv9tTde7Px3U5sO5jvEeMSG6bngnBfqaddf7myU5h7dVn+SsyUks+AYAAAAA8CiEtgA8ns1uaG1KjrLySxQVUjkrsjmFbGUVdm0+nKvV+45p9d5sbTp8XOW2+rU7+NdXu7R4S5ouH9RBU/q1V2SIXyNV23wczinSvJ8P6oN1h3W8qFyS5GM26YLesbpueLwGxrd1hNz+Pl7VFnqLYaE3AAAAAICHMhmG0eobJebl5clischqtSo0NNTd5QA4ybLt6dXCtlgPD9tsdkPbU61avS9bq/cd0/oDx1VcbnPap32bAJ2dGK5hncP0j2W7dDS/tNZH+P19vGSzG46g1+xl0qjukbpsYJxG94iSr3fraU9utxtaueeo3l1zUN/uylLVf8HaWfx1zbB4XTEortZAu7mH/wAAAACA5s/VHJLQVoS2gKdatj1dM+ZtrBZmVsVsc6cPaLTgtj4Bn2EY2p1ZoFV7j2n1vmz9nJKt/JIKp30ign01PDFCZyeG6+zEcHUMC3TMAq26T6nmx/fnTh+g4YkRWrwlTR9tOOLUAiAsyFdT+rXTZQM7qFc7S0Pdvsc5XlimD9Yf1vyfD+lQTpFj/LyuEbp2WLxG94iSt7n1hNcAAAAAgOaJ0LYeCG0Bz2OzGzr3H9/UukhX1QJSP943usFnS9Y1u9cwDB3MLnLMpF2zL1vZhWVO5wj199awzpUB7dldItQ1KviU/WjrM6N4T2a+Ptp4RIs2pupofqljPCk2VJcN7KAp/dopPLhltE/YcjhX7/50UIu3pKm0onJhsVB/b10+KE7XDO2ozpHBbq4QAAAAAADXEdrWA6Et4HnW7MvWVa/9VOd+F5/VTl2jghXga1agr7cCfc0nvq58Bfh4//r1iX1OFfLWNru3yrCEcB3KKVTab8LkAB+zBieEOWbS9mpnqXeYXN/H9ytsdv2w55g+2nBEy5MzVWarDDV9zCaN7hGlywbGaWT3SPl44AzUU91rSblNi7ek6d2fDmrrEavjmF7tQnXd8HhdfFZ7Bfia3VU6AAAAAACnjdC2HghtAc/z2eZU3bFwc6Oc29fbqzLI9fk1yA3wNSvAx0s/p+SopNxe5zl8zCb179hW5yRG6Owu4TqrQxu39pY9XlimxVvT9OH6I9qW+mvQGRHsq9/1a6/LB8Wpe0xIjcc2da/X2mYV3zYyUYePF+uD9YeVe2JhMV+zlyb1jdW1w+PVP67NKWcrAwAAAADg6Qht64HQFvA8q/ce09X//bnO/S7oHaM2gT4qKrOpqMym4jKbisoqKr8udx6zN9Cfdg9e2EPXDuvksbM9f8nI08cbjuiTTak6VvBr24Y+7S2O9gltAn0lNf1Cb3XNZK7Svk2Apg+L1xWDOrSYVg8AAAAAABDa1gOhLeBZMqwluueDzVq1L7vWferb09YwDJVW2CsD3HKbik8Eu7+Gujat2ntUC9YervNcz0/rpyn92tfnltyi3GbXyl1H9eGGw/p6Z5YqTqTWvmYvjU2KUkJEkF7+dl+jLPRWWmFTUalNBaWVn3NhWYXyi8t1x/ubHbNoa+Ln7aUXr+qv0T2jG3W2LwAAAAAA7uBqDundhDUBQJ2WbE3TQ59sl7W4XD5mk8pthkySU7BYFeXNmpzkcrBnMpnk72OWv49ZbWvZJyzI16XQNirE36VrupuP2Utjk6I1Nila2QWl+mxzmj7acETJ6Xn6YltGrcdVfdYPLtqmknK7isttKiytUGFp5YxlRxBbWqHCssrxwhNjldsqVG47vX8PLK2wK9jfh8AWAAAAANCqEdoC8AjW4nLN/nyHPtmUKkk6q4NF/76yn3Zn5ld7fD+mkR7fH5IQpliLvzKsJTU+vl81u3dIQliDXrcphAf76ffnJuj35yZoR5pVL3yzR8u2Z57ymJyict35/uYzuq6ft5eC/bwV6GeWzWZUW8CtJln5de8DAAAAAEBLRmgLwO3W7MvWPR9sVpq1RF4m6U+ju+rPo7vIx+ylzpHBGpcU0yQLZZm9TJo1OUkz5m1skNm9nqpXO4su6B1bZ2grSV2igtQpPEiBvt4K8vNWkK+58le/E7/WMh7oWznmbf51cbY1+7J11Ws/1XnN5jKTGQAAAACAxkJoC8BtSitseuar3Xrth/0yDCk+PFD/vrKfBnR0bmBg9jJpeGJ4k9Q0sXes5k4f0GSze93F1WD0sSl9Guyzb8kzmQEAAAAAaEiEtgDc4peMPN25cLN+yciXJF01JE4PT0pSkJ/7/1ia2Du2yWb3uos7AtTWMpMZAAAAAIAz5VX3LrUrKaHvIID6sdsN/feH/br4hVX6JSNf4UG+eu26QXry0r4eEdhWqZrdO6Vfew1PDG9xQWJVgCr9GphWacwAtWomc4zFeaZvjMVfc6cPaDEzmQEAAAAAOBMmwzDqtcS33W7XE088oVdeeUWZmZnavXu3OnfurL/97W/q1KmT/vCHPzRWrY0mLy9PFotFVqtVoaGh7i4HaLHScot1zwdbtGZ/tiRpTI8oPTW1ryJD/NxcWeu1bHt6tVYQsU3QCsJmN1r0TGYAAAAAAGriag5Z72ltjz/+uN5++209/fTTuvnmmx3jvXv31nPPPdcsQ1sAje+zzal6+NPtyi+pUICPWY9MTtK0wXEymQjq3MldrSCask8xAAAAAADNTb1D23feeUf/93//pzFjxujWW291jJ911ln65ZdfGrQ4AM2ftahcD3+2XYu3pEmS+sW10b+v7KeEiCA3V4YqBKgAAAAAAHiWeoe2qamp6tKlS7Vxu92u8vLyBikKQMuwau8x3fPBFmXklcjsZdLto7tq5qhEeZvPqJ02AAAAAABAi1bv0DYpKUk//PCD4uPjncY/+ugj9e/fv8EKA9B8lZTb9PSyXXpjVYokKSEiSP++sp/6xbVxb2EAAAAAAADNQL1D20ceeUTXX3+9UlNTZbfbtWjRIu3atUvvvPOOlixZ0hg1AqiFJy7mtCPNqrve36zdmQWSpGuGdtRDk3oq0Lfef9wAAAAAAAC0SibDMIz6HvTDDz/o0Ucf1ZYtW1RQUKABAwbokUce0fjx4xujxkbn6qptgCdZtj1dcxYnK91a4hiLtfhr1uQkTewd2+T12OyGXvthv575apfKbYYigv309GV9NLpHdJPXAgAAAAAA4IlczSFPK7RtaQht0dws256uGfM26rc/vFVzbOdOH9BowW1Ns3vTrcW6+4MtWpuSI0kalxStpy7to/Bgv0apAQAAAAAAoDlyNYes9/PK69atk91u19ChQ53Gf/75Z5nNZg0aNKj+1QJwmc1uaM7i5GqBrSQZqgxu5yxO1rikmAZvlVDT7F5LgI9Ky20qqbAr0NesWZOTdMWgOJlM7m3TAAAAAAAA0FzVO7SdOXOm/vrXv1YLbVNTU/WPf/xDP//8c4MVB6C6tSk5TqHpbxmS0q0l6jVrmcKD/BQa4CNLgLcsAT6yBPgo1L/yV0vgifcnxk9++Zi9qp23ttm91uJySVLnyCC9ecNgxYcHNeDdAgAAAAAAtD71Dm2Tk5M1YMCAauP9+/dXcnJygxQFoLrMvBJ9vjlNb60+4NL+JeV2peYWKzW3uN7XCvAxO4W4If7eWr0vu8bZvVWKy2zq0Daw3tcCAAAAAACAs3qHtn5+fsrMzFTnzp2dxtPT0+XtzerwQEMqKK3Qsu0Z+nRTqlbtO6b6dKB+9oqz1DkyWNbicscrr+rrohPvS8qdtueXVEiSisttKi63KSOv9hm9v5VuLdHalBwNTwyv720CAAAAAADgJPVOWcePH68HHnhAn332mSwWiyQpNzdXDz74oMaNG9fgBQKtTbnNrh/2HNUnm9K0PDlDJeV2x7bBndrq4n7t9OI3e5WVV1rjzFeTpBiLv6b0a1/vnrY2u6H8kpND3gpZi8v1/e6jen/94TqPz8p3PeQFAAAAAABAzeod2v7rX//S+eefr/j4ePXv31+StHnzZkVHR+vdd99t8AKB1sAwDG0+nKtPN6Vq8dZ05RSWObZ1jgzSJf3aa0q/9uoYXtl+IDLYTzPmbZRJcgpuqyLaWZOTTmsRMrOXSW0CfdUm0NdpPCzI16XQNirEv97XBAAAAAAAgLN6h7bt27fX1q1bNX/+fG3ZskUBAQG68cYbddVVV8nHx6cxagRarAPHCvXp5lR9uilVB7KLHOMRwb6afFY7XdK/vfq0t8hkcg5gJ/aO1dzpAzRncbLTomQxFn/Nmpykib1jG7TOIQlhirX4K8NacsrZvUMSwhr0ugAAAAAAAK2RyTDq0yWzZcrLy5PFYpHValVoaKi7y0EzZbMbWpuSo6z8EkWFVAaYNc12zSks05KtafpkU6o2Hcp1jAf4mDWhV7R+17+9zu0SIW+zV4NdsyEs256uGfM2Sqp5du/c6QMaPCwGAAAAAABoSVzNIV0KbT///HNdcMEF8vHx0eeff37KfS+++OL6V+tmhLY4U8u2p1eb9Rp70qzXknKbVuzM1KebUvXdrqOqsFf+2HmZpHO7RuqS/u00PilGQX6evZhfXfcJAAAAAACA2jVoaOvl5aWMjAxFRUXJy6v22X8mk0k2m+30KnYjQluciaoZqL/9QarqNzu8c7i2pVpVUFrh2NanvUW/699ek8+KbXZ9YJtydi8AAAAAAEBL4moO6dK0PrvdXuPXQGtnsxuaszi5xj6vVWNr9mdLktq3CdAl/dvrd/3bqUtUSJPV2NDMXiYNTwx3dxkAAAAAAAAtVt1NM09SXl6uMWPGaM+ePQ1y8blz56pv374KDQ1VaGiohg8frqVLlzq2jxw5UiaTyel16623Op3j0KFDmjRpkgIDAxUVFaV7771XFRUVv70U0CjWpuQ4tQqozezJSfrhr6P0lwndm3VgCwAAAAAAgMZXrwaaPj4+2rp1a4NdvEOHDnrqqafUtWtXGYaht99+W1OmTNGmTZvUq1cvSdLNN9+sRx991HFMYGCg42ubzaZJkyYpJiZGq1evVnp6uq677jr5+Pjo73//e4PVCZyspNymDQePa/W+Y1qyNd2lY9oG+cqLFgIAAAAAAABwgUs9bU921113yc/PT0899VSjFBQWFqZ//vOf+sMf/qCRI0eqX79+eu6552rcd+nSpbrooouUlpam6OhoSdIrr7yi++67T0ePHpWvr69L16SnLU6l3GbX1iO5Wr03W6v3ZWvDoeMqq6hfm5D3bh5GSwEAAAAAAIBWrkF72p6soqJCb7zxhlasWKGBAwcqKCjIafuzzz5b/2pVOWv2ww8/VGFhoYYPH+4Ynz9/vubNm6eYmBhNnjxZf/vb3xyzbdesWaM+ffo4AltJmjBhgmbMmKEdO3aof//+NV6rtLRUpaWljvd5eXmnVTNaJrvdUHJ6ntbsy9bqfce0NiVHhWXOC+xFh/rpnMQIDe0cpn99tVvH8ktr7GtrkhRjqVysCwAAAAAAAHBFvUPb7du3a8CAAZKk3bt3O20zmer/+Pe2bds0fPhwlZSUKDg4WJ988omSkpIkSVdffbXi4+PVrl07bd26Vffdd5927dqlRYsWSZIyMjKcAltJjvcZGRm1XvPJJ5/UnDlz6l0rmg+b3dDalBxl5ZcoKqQyNDXX0p7AMAztP1ao1XuPafW+bK3Zn63conKnfdoG+mh4YriGJ0bo7MRwdY4Icny/WwJ8NGPeRpkkp+C26mqzJifVem0AAAAAAADgt+rdHqGhlZWV6dChQ7Jarfroo4/03//+VytXrnQEtyf75ptvNGbMGO3du1eJiYn64x//qIMHD+rLL7907FNUVKSgoCB98cUXuuCCC2q8Zk0zbePi4lp8e4T6BJnN2bLt6ZqzONlpgbBYi79mTU7SxN6xkqQjx4sqA9oTs2kz80qdzhHka9bQzuE6OzFcwxPD1TMm9JQ9aV25JgAAAAAAAFq3RmmP8P777+vzzz9XWVmZxowZo1tvvfWMC/X19VWXLl0kSQMHDtS6dev0/PPP69VXX62279ChQyXJEdrGxMRo7dq1TvtkZmZKkmJiYmq9pp+fn/z8/M649uaktYSKy7ana8a8jdVaFaRbS3TrvI06t0u4Dh8v1sHsIqftvt5eGhTf9kRIG6G+HSzyMXu5fN2JvWM1LimmVYTiAAAAAAAAaFwuh7Zz587VzJkz1bVrVwUEBGjRokXat2+f/vnPfzZoQXa73WkW7Mk2b94sSYqNrQwZhw8frieeeEJZWVmKioqSJC1fvlyhoaE1ztRtrWoLMjOsJZoxb6PmTh/QIoJbm93QnMXJNfaWrfLj3mxJktnLpLM6WHT2iXYHA+Lbyt/HfEbXN3uZWGwMAAAAAAAAZ8zl9gi9evXSFVdcoVmzZkmS5s2bp1tuuUWFhYWnffEHHnhAF1xwgTp27Kj8/HwtWLBA//jHP/Tll1+qc+fOWrBggS688EKFh4dr69atuuuuu9ShQwetXLlSUuXiZf369VO7du309NNPKyMjQ9dee61uuukm/f3vf3e5DlenJTdHNruhc//xjdMM25NVLZT1432jG2VWaGO1ZCitsOlwTrEOZhcq5VihDmYXafPh49qWWveicn+d0E3XnZ2gYL96t3QGAAAAAAAATluDt0fYv3+/rr/+esf7q6++Wn/4wx+Unp7umPlaX1lZWbruuuuUnp4ui8Wivn376ssvv9S4ceN0+PBhrVixQs8995wKCwsVFxenqVOn6uGHH3YcbzabtWTJEs2YMUPDhw9XUFCQrr/+ej366KOnVU9LtDYlp9bAVqpcOCvdWqL7P96qgfFtFRXqp6gQf0WF+Ck82O+MAtYzbclQUm7TkeNFSjlWpIPZhTqQXagDx4p0ILtQabnFsp9mN+b2bQMJbAEAAAAAAOCxXJ5p6+XlpczMTEVGRjrGQkJCtGXLFnXu3LnRCmwKLXmm7WebU3XHws2ndayXSQoL8lNUiN+JMPdEoHvi68gT4W5kiF+11gK1tWSoioCrWjKUlNt0KKdIB46dCGWzTwS0x4qUZi3Wqb47g3zNig8PUqeIQHUKD5LNbujV7/fXeV/v3TyMNgYAAAAAAABoco2yENnf/vY3BQYGOt6XlZXpiSeekMVicYw9++yzp1EuGktUiL9L+43qHimTyaSs/BJl5ZXqWEGp7IZ0rKDy6+T0Ux9vCfBxhLuRwX5anpxZY2/ZqrHb39us8KAdysgvPWUwG+znrfjwQHWKCFKn8MpwtlNEkOLDAxUZ7CeT6deZwDa7oc+3pCnDWlLjtataQQxJCKvj0wAAAAAAAADcx+XQ9vzzz9euXbucxs4++2zt3//rzMaTAzR4hiEJYYq1+NcZZP73+sFOrRBsdkPZhaXKyivV0fxSR5ibVfV1/q/bymx2WYvLZS0u156sApfqKrPZlZ5XueBciJ+3I4itCmU7nQhqw4N8Xf6+MnuZNGtykmbM2yiT5HS/VWeYNTmpUXr3AgAAAAAAAA3F5fYILVlLbo8g/dqqQKo5yKxqVXA6DMOQtbjcEeJm5Zfou11H9fmWtDqPvXNsV107LF5h9QhmXXGmvXQBAAAAAACAxtAo7RHQPE3sHau50wdUCzJjGiDINJlMahPoqzaBvuoWHSJJirUEuBTaDk0IV3iw32lfuzYTe8dqXFKM1qbkKCu/RFEhlS0RmGELAAAAAACA5oDQtpVoyiDT1ZYMjdlb1uxlYrExAAAAAAAANEuEtq1IUwWZ9JYFAAAAAAAATp+XuwtAy1TVkiHG4u80HmPxP6MeugAAAAAAAEBLV++ZtuXl5fLx8alx27FjxxQREXHGRaFloLcsAAAAAAAAUH/1nmk7bdo0GUb1TqWZmZkaOXJkQ9SEFqSqJcOUfu01PDGcwBYAAAAAAACoQ71D20OHDummm25yGsvIyNDIkSPVo0ePBisMAAAAAAAAAFqjeoe2X3zxhVavXq27775bkpSWlqYRI0aoT58++uCDDxq8QAAAAAAAAABoTerd0zYyMlJfffWVzj33XEnSkiVLNGDAAM2fP19eXqxrBgAAAAAAAABnot6hrSTFxcVp+fLlOu+88zRu3Di9++67MpnoVQoAAAAAAAAAZ8ql0LZt27Y1hrJFRUVavHixwsPDHWM5OTkNVx0AAAAAAAAAtDIuhbbPPfdcI5cBAAAAAAAAAJBcDG2vv/76xq4DAAAAAAAAACCp3iuHffHFF/ryyy+rjX/11VdaunRpgxQFAAAAAAAAAK1VvUPb+++/Xzabrdq43W7X/fff3yBFAQAAAAAAAEBrVe/Qds+ePUpKSqo23qNHD+3du7dBigIAAAAAAACA1qreoa3FYtH+/furje/du1dBQUENUhQAAAAAAAAAtFb1Dm2nTJmiO++8U/v27XOM7d27V/fcc48uvvjiBi0OAAAAAAAAAFqbeoe2Tz/9tIKCgtSjRw8lJCQoISFBPXv2VHh4uP71r381Ro0AAAAAAAAA0Gp41/cAi8Wi1atXa/ny5dqyZYsCAgLUt29fnX/++Y1RHwAAAAAAAAC0KibDMAx3F+FueXl5slgsslqtCg0NdXc5AAAAAAAAAFogV3PIerdHkKSVK1dq8uTJ6tKli7p06aKLL75YP/zww2kXCwAAAAAAAACoVO/Qdt68eRo7dqwCAwN1++236/bbb1dAQIDGjBmjBQsWNEaNAAAAAAAAANBq1Ls9Qs+ePfXHP/5Rd911l9P4s88+q9dee007d+5s0AKbAu0RAAAAAAAAADS2RmuPsH//fk2ePLna+MUXX6yUlJT6ng4AAAAAAAAAcJJ6h7ZxcXH6+uuvq42vWLFCcXFxDVIUAAAAAAAAALRW3vU94J577tHtt9+uzZs36+yzz5YkrVq1Sm+99Zaef/75Bi8QAAAAAAAAAFqTeoe2M2bMUExMjJ555hl98MEHkir73L7//vuaMmVKgxcIAAAAAAAAAK1JvRcia4lYiAwAAAAAAABAY2u0hcg6d+6s7OzsauO5ubnq3LlzfU8HAAAAAAAAADhJvUPbAwcOyGazVRsvLS1VampqgxQFAAAAAAAAAK2Vyz1tP//8c8fXX375pSwWi+O9zWbT119/rU6dOjVocQAAAAAAAADQ2rgc2v7ud7+TJJlMJl1//fVO23x8fNSpUyc988wzDVocAAAAAAAAALQ2Loe2drtdkpSQkKB169YpIiKi0YoCAAAAAAAAgNbK5dC2SkpKSmPUAQAAAAAAAABQPRYiW7NmjZYsWeI09s477yghIUFRUVH64x//qNLS0gYvEAAAAAAAAABaE5dD20cffVQ7duxwvN+2bZv+8Ic/aOzYsbr//vu1ePFiPfnkk41SJAAAAAAAAAC0Fi6Htps3b9aYMWMc7xcuXKihQ4fqtdde0913363//Oc/+uCDDxqlSAAAAAAAAABoLVwObY8fP67o6GjH+5UrV+qCCy5wvB88eLAOHz7csNUBAAAAAAAAQCvjcmgbHR3tWISsrKxMGzdu1LBhwxzb8/Pz5ePj0/AVAgAAAAAAAEAr4nJoe+GFF+r+++/XDz/8oAceeECBgYE677zzHNu3bt2qxMTERikSAAAAAAAAAFoLb1d3fOyxx3TppZdqxIgRCg4O1ttvvy1fX1/H9jfeeEPjx49vlCIBAAAAAAAAoLUwGYZh1OcAq9Wq4OBgmc1mp/GcnBwFBwc7BbnNRV5eniwWi6xWq0JDQ91dDgAAAAAAAIAWyNUc0uWZtlUsFkuN42FhYfU9FQAAAAAAAADgN1zuaQsAAAAAAAAAaHyEtgAAAAAAAADgQQhtAQAAAAAAAMCDENoCAAAAAAAAgAchtAUAAAAAAAAAD0JoCwAAAAAAAAAehNAWAAAAAAAAADwIoS0AAAAAAAAAeBBCWwAAAAAAAADwIIS2AAAAAAAAAOBBCG0BAAAAAAAAwIMQ2gIAAAAAAACAByG0BQAAAAAAAAAPQmgLAAAAAAAAAB6E0BYAAAAAAAAAPAihLQAAAAAAAAB4EEJbAAAAAAAAAPAghLYAAAAAAAAA4EEIbQEAAAAAAADAgxDaAgAAAAAAAIAHcWtoO3fuXPXt21ehoaEKDQ3V8OHDtXTpUsf2kpISzZw5U+Hh4QoODtbUqVOVmZnpdI5Dhw5p0qRJCgwMVFRUlO69915VVFQ09a0AAAAAAAAAQINwa2jboUMHPfXUU9qwYYPWr1+v0aNHa8qUKdqxY4ck6a677tLixYv14YcfauXKlUpLS9Oll17qON5ms2nSpEn/3959hzlVpm8cv5Np1Bl6B0GkSu+goiCIq9gAFXStWMCuK7KAuqICyq51V9d111V/KrrrrgpWdBVQEKUzA0gH6Qx1hjotz++PQzIzMMCUZE4y+X6u61yZnGRyn5Ockjx5877KzMzUjz/+qLfffltvvfWWHn/8cbdWCQAAAAAAAABKxGNm5vZC5FWtWjX98Y9/1JAhQ1SzZk1NmTJFQ4YMkSStXLlSrVq10ty5c9WjRw99+eWXGjhwoLZt26batWtLkl577TWNHj1au3btUnx8fKEy09PTlZSUpLS0NCUmJoZs3QAAAAAAAABEr8LWIcOmT9ucnBx98MEHOnTokHr27KmFCxcqKytL/fr1C9ynZcuWatSokebOnStJmjt3rtq2bRso2ErSgAEDlJ6eHmitW5CMjAylp6fnmwAAAAAAAAAgHLhetE1JSVGlSpWUkJCgESNG6OOPP1br1q21Y8cOxcfHq0qVKvnuX7t2be3YsUOStGPHjnwFW//t/ttOZtKkSUpKSgpMDRs2DO5KAQAAAAAAAEAxuV60bdGihZYsWaKff/5ZI0eO1E033aQVK1aENHPMmDFKS0sLTJs3bw5pHgAAAAAAAAAUVqzbCxAfH6+zzjpLktS5c2fNnz9fL730kq699lplZmZq//79+Vrb7ty5U3Xq1JEk1alTR/Pmzcv3eDt37gzcdjIJCQlKSEgI8poAAAAAAAAAQMm53tL2eD6fTxkZGercubPi4uL07bffBm5btWqVNm3apJ49e0qSevbsqZSUFKWmpgbu88033ygxMVGtW7cu9WUHAAAAAAAAgJJytaXtmDFj9Jvf/EaNGjXSgQMHNGXKFM2cOVPTp09XUlKShg8froceekjVqlVTYmKi7r33XvXs2VM9evSQJF100UVq3bq1brjhBk2ePFk7duzQo48+qrvvvpuWtAAAAAAAAAAikqtF29TUVN14443avn27kpKS1K5dO02fPl39+/eXJL3wwgvyer0aPHiwMjIyNGDAAL366quB/4+JidFnn32mkSNHqmfPnqpYsaJuuukmPfnkk26tEgAAAAAAAACUiMfMzO2FcFt6erqSkpKUlpamxMREtxcHAAAAAAAAQBlU2Dpk2PVpCwAAAAAAAADRjKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEYo2gIAAAAAAABAGKFoCwAAAAAAAABhhKItAAAAAAAAAIQRirYAAAAAAAAAEEZcLdpOmjRJXbt2VeXKlVWrVi1deeWVWrVqVb77XHDBBfJ4PPmmESNG5LvPpk2bdOmll6pChQqqVauWRo0apezs7NJcFQAAAAAAAAAIilg3w2fNmqW7775bXbt2VXZ2tsaOHauLLrpIK1asUMWKFQP3u/322/Xkk08GrleoUCHwd05Oji699FLVqVNHP/74o7Zv364bb7xRcXFxmjhxYqmuDwAAAAAAAACUlMfMzO2F8Nu1a5dq1aqlWbNmqXfv3pKclrYdOnTQiy++WOD/fPnllxo4cKC2bdum2rVrS5Jee+01jR49Wrt27VJ8fPxpc9PT05WUlKS0tDQlJiYGbX0AAAAAAAAAwK+wdciw6tM2LS1NklStWrV889977z3VqFFDbdq00ZgxY3T48OHAbXPnzlXbtm0DBVtJGjBggNLT07V8+fICczIyMpSenp5vKtNmTJJmTS74tlmTndsBAAAAAAAAhAVXu0fIy+fz6YEHHtA555yjNm3aBOZfd911OuOMM1SvXj0lJydr9OjRWrVqlT766CNJ0o4dO/IVbCUFru/YsaPArEmTJmn8+PEhWpMw5I2RZkxw/j7/kdz5syY78/uMc2e5AAAAAAAAAJwgbIq2d999t5YtW6bZs2fnm3/HHXcE/m7btq3q1q2rCy+8UOvWrVPTpk2LlTVmzBg99NBDgevp6elq2LBh8RY8EvgLtTMmSIf3SB1/K636Mrdgm7eQCwAAAAAAAMBVYVG0veeee/TZZ5/p+++/V4MGDU553+7du0uS1q5dq6ZNm6pOnTqaN29evvvs3LlTklSnTp0CHyMhIUEJCQlBWPIIkrdw+/Nrzt897qJgCwAAAAAAAIQZV/u0NTPdc889+vjjj/Xdd9+pSZMmp/2fJUuWSJLq1q0rSerZs6dSUlKUmpoauM8333yjxMREtW7dOiTLHbHOeUDy5HnJ5/1d+uIR6eAu1xYJAAAAAAAAQH6uFm3vvvtuvfvuu5oyZYoqV66sHTt2aMeOHTpy5Igkad26dXrqqae0cOFCbdy4UdOmTdONN96o3r17q127dpKkiy66SK1bt9YNN9ygpUuXavr06Xr00Ud19913R19r2tOZ86JkPskb51z3ZUnz/ia91F6aMVE6WsYHZAMAAAAAAAAigMfMzLVwj6fA+W+++aZuvvlmbd68Wb/97W+1bNkyHTp0SA0bNtRVV12lRx99VImJiYH7//rrrxo5cqRmzpypihUr6qabbtIzzzyj2NjC9f6Qnp6upKQkpaWl5XvcMiXvoGPnP5J7vXJd6cB25z4Vqku9R0ldbpViKXgDAAAAAAAAwVTYOqSrRdtwUeaLtscXbI+ff/YgaUeytGetM79KI+e+ba+WvDHuLDMAAAAAAABQxhS2Dulq9wgoJb6cEwu2knO9zzipRnPprp+ly15yWt7u3yR9fKf02nnSqq8k6voAAAAAAABAqaGlraKgpW1RZB52+rmd/YJ0NM2Z16in1O8JqVEPVxcNAAAAAAAAiGS0tEXxxFeQzn1Qun+pdM4DUmw5adNc6Z8DpClDpZ0r3F5CAAAAAAAAoEyjaIuCla8q9R8v3bdY6nST5ImRVn8p/bWX9PFIpwsFAAAAAAAAAEFH0RanllhPuvxl6e6fpdZXSDJp6RTpz52lr8ZIh/a4vYTRacYkZyC5gsya7NwOAAAAAACAiETRFoVTo5l0zf9Jt38nNekt5WRKP70qvdTeKRJmHHR7CaOLN0aaMeHEwu2syc58b4w7ywUAAAAAAIASo2iLoqnfWbpxmvTbj6Q67aTMA06R8OUO0s+vS9mZbi9hdDj/EanPuPyFW3/Bts8453YAAAAAAABEJI+ZmdsL4bbCjtqG4/h80vKPpO+elvZtcOZVbSz1eVTavUaKiS24eDhrsuTLkfqMKdXFLTMyD0t71kq7V0sL35Q2zpY8Xsl80vmjpT5j3V5CAAAAAAAAFKCwdcjYUlwmlDVer9R2iNPX7aK3nWLsvo3SR7dJFWtJh1IlM+mC0bn/k7c1aCjMmOR0DVAWisWH9ki7VznF2V2rncvdq6T9myUd912L+ZzLua9IO5dLzQdIzS6SKtcp9cUGAAAAAABAyVC0RcnFxEldb5PaD5N++qs05yWnYCtJMydK6duky18qnZ/v+/t6lfJnhLJYXJJCsc8npW1yWibvOlag3b3a+fvI3pNnlq8q1WghZR+Vti/JbWmbeVBa+ZkzSVLd9lLzi6VmA6R6HZ1COwAAAAAAAMIaRVsET3xFqffDUpdbpR+ek+b9XcrJkBa9JS1+22l126inU8T84TkpJkGKPTbFJEix8cddJkgx8VJsuQLmHbv0ePIvg79wmrdwG+picWEKxVlHpb3rjhVm1+S2oN29Vso+cvLHTmok1Wwu1cgz1WwhVaxx4nrNfNYpkjfu7RRvty2Sti91plnPShVrSmf1d1rhNu0jlUsK/nMBAAAAAACAEqNPW9Gnbcjs3yzNfEZa8m7oMgoq5MYmSEf2SQd3SvJIMqnaWVKtls7tMfFO6+Bg/B177HLhm04r4173SS0HOq2NV30uVT/LKVLv/zW3C4MT1iFeqtb0WHG2xbHCbHPnf+MrFvw/JytE553f+WZpzTfS6q+kdTOcQeP8vLFOAb35xU4Rt/pZJxbAAQAAAAAAEFSFrUNStBVF25DyFxE9MZLlSA26SXXaOi1wszOdn/fnZErZGXkuj92Wk+Fcz3ubL8vtNSq+hKT8rWZrHivQVjnDGbStKIraJUN2prRprrR6urRmujOQWV5Vmxwr4F4knXGOU/gGAAAAAABAUFG0LQKKtiFyfGvQYHRT4PM5BdyCCrp5i72L35OSP3BalPqyndavZ10o5WTluf+xv3My8/xd0LyT/V3QvIxjC+qRut0h1Wh2rDjbQqpUK3xas+5Zl1vA3TgnfzE8vpJ05gUnDmZWlgZ5AwAAAAAAcEFh65D0aYvQKKhAW1B/s0Xl9UreclJcuVNnJ39wYrG4bvvQDYDmz50xwenuICfT6Xe22+2hyyuJ6k2lnnc5U8YBaf1MpxuFNd843UoUNJjZwVSnGwip9AZ5AwAAAAAAiEIUbREavpyCW9T6r/tyQpMbqmJxUXP910OVF0wJlaVWlzmTzyftWOq0wl09Pf9gZpIUV8FZr9RfpIuekhb80xlULlSDvNG6FwAAAAAARCGKtgiNUxXSQlnEdKNY7FahOBS8XqleR2e64PfSgZ3S2m+cAm7ewcyWf+RMfnNelha86RSA802JBcw7xfyYuOOWJ6bg55DWvQAAAAAAoAyjT1vRpy1KKFpag2ZnSpt+lFZ/Lf30qqQQHDpiy59YyD2wU9qzWqrfWWp9hXP9p1dC17oXAAAAAAAgROjTFigtbrUqLm2x8c4AZZvnSbLcvnvPeUDqdKPTN26+Kb2AeSeZn33Eycg+4kyHUk/M37rQmSQpqaFUsaZ0ZJ9UvmopPQEAAAAAAAClg6ItgMI7Wd+98RVLVqDOyTp9gfd/T0h2rHuLtM3SZw9IXz4iNbtIanet1HyAFJsQjLUEAAAAAABwFUVbAIUTyr57Y+KkCtWc6WTZlpPburdpX+lgqrRzmbTyM2cqlySdfZVTwG3Yw+mfFwAAAAAAIAJR1QBQOKca5K3PuNAM8iblLxY/tsu5XPed07/tiDnSOfdLletJR9OkhW9Jb/5Geqm99O2T0q5VoVkmAAAAAACAEGIgMjEQGRC2CmrdW9B8X4706xxp6b+kFVOlzAO5963bwWl922awVLl2qa8CAAAAAACAX2HrkBRtRdEWCFszJknemIK7XZg1+Vjr3+MGgss6Iq36Ukr+t7T2G8mX7cz3eKUz+zgF3JaXSgmVQr/8AAAAAAAAeVC0LQKKtkAZdWiPtPwjKflf0pb5ufPjKkqtBkrtrpGaXCDF0L03AAAAAAAIPYq2RUDRFogCe9ZJKR86Bdy963PnV6wltR3iFHDrdpBmPlP01r0AAAAAAACFQNG2CCjaAlHETNq6UFr6gbTsv9KRvbm31WghVa4jbZh1+n50AQAAAAAAioiibRFQtAWiVE6WtPZbp/Xtqi+k7KP5b2/+G+mqv0rz/k7BFgAAAAAAlBhF2yKgaAtAR9OlXz6Vkj+QNvwg6bhDY7c7pEv+6MqiAQAAAACAsoGibRFQtAWQT9pWadl/pG/+oHzF27P6ST3vls7sI3k8ri0eAAAAAACITIWtQzJkOgAcL6m+lJ0hySRvnOTLcuav/Z8z1TrbKd62HSLFJri6qAAAAAAAoOzxur0AABB28g469vhu51KSGnSV4ipKqculqXdJL7SRZv1ROrTH3eUFAAAAAABlCkVbAMgrb8HWP+jY+Y8417fMl7rfKfUbL1WuJx1KlWY8Lb1wtvTZg9LuNe4uOwAAAAAAKBPo01b0aQsgjxmTJG9MbsE2r1mTJV+O1GeMlJMlLf9EmvtnafvS3Ps0v1jqeY/U+Fz6vQUAAAAAAPkwEFkRULQFUGxm0q9zpLmvSKu+VGDgsjrtnOLt2VdJsfGuLiIAAAAAAAgPFG2LgKItgKDYvVb6+a/S4vek7CPOvMr1pO53SJ1vlspXdXXxAAAAAACAuyjaFgFFWwBBdXivtOCf0rzXpYM7nXlxFaSOv5V6jJSqnenu8vkVtisIAAAAAAAQFIWtQzIQGQAEW4VqUu+HpQdSpCv/KtVuI2Uddoq4L3eSPrhe+nWu07WCm7wxzqBrsybnn+8fjM0b485yAQAAAAAQ5WLdXgAAKLNiE6QO10nth0kbZjn93q75Wlr5mTPV6yT1ukdKXSnFxJV+i1d/3owJudf9Bds+4wpeHgAAAAAAEHJ0jyC6RwBQinatcoq3Sz+QcjKceQmJUka6dN7vpAsfz71vSQuo2RlSxgHnsTMOHDflmbd+lrR1geSJkSxHOv/3dIsAAAAAAEAI0KdtEVC0BVDqDu5y+r2d/3fp0K7c+Q26SVe9Ji18S/rxZanzLdLZV5684Hqq+TmZxVu22PJSgy5Sox7O1KCbVI5jIwAAAAAAJUXRtggo2gJwTdZRKeXfTuvbXStDkxFfSUqoXMCU6FzuSJF+nSN5PAX3s+vxSrXPlhoeK+I26ikl1Q/NsgIAAAAAUIZRtC0CirYAXGcmrftWeneIpGOH5XJJuYXVkxVcTzc/vtKpBxQ7vguGmc9KMydKLS5x8jfNlfZtPPH/khodK+B2d4q4NVtJXsa2BAAAAADgVApbh2QgMgAIBx6PtHWRJJNi4p2uDXreE9rBwArqM/eC0c6y+Odf9Zp0YIe06adj01ynZW7aJillk9NKWHIKvA27O4Xchj2k+p2kuPInZs6Y5BSRS3vQNQAAAAAAIghFWwAIB8cXUP3XpdAVbn05BQ9y5r/uy3EuK9dx+tU9+0rnesZBZ+AyfxF383zpaJq05mtnkiRvnFSvY253Cg27SxWrOwXbgtYr7/oDAAAAABDl6B5BdI8AwGUFtXg91fxwk5Mt7UyRNv3sFHE3/SQd3HHi/Wo0d4q4h/dJKz+VLhjrtOyNlPUEAAAAAKCE6NO2CCjaAnBVWesywMzpB3fTT9LmY90qnGyQNY9XMp/U9hqp/5NOq16Pp1QXFwAAAACA0kLRtggo2gJAiB3eK23+Obdv3G2LnH57j1exllSvg1S3/bGpg5TUgEIuAAAAAKBMoGhbBBRtAaCUfTdR+v5ZyRMjWY5UsaZ0eI/T6vZ45as5Bdy8xdyqTcK7kFvWWk8DAAAAAIKisHVIBiIDAJSuWZOdgu3xg671HiU1GyBtXyJtX+pcpv4iHdkrrZ/hTH4JSVLddscKuR2cQm61ppLXe2KeGwVUBlwDAAAAAJQARVsAQOkpaNAx/+WMCVJMfP4iZ3aGlLpC2rbkWCF3qbRzuZSRJm38wZn84itJddrlb5VbvZk7BdS86+S/zoBrAAAAAIBConsE0T0CAJSaYLR6zclyBjbbvjS3mLsjRco+cuJ9Y8tLddo6XTBsXSh1vU0672Fp7l+cqfsIqfPNki/beVxfjvO3L1vyHXf9VLfnZB2bl5Pntuxjg7H9nNsNRPeR0oCJBbcIBgAAAACUefRpWwQUbQEgwuVkS3vW5LbG3bZE2pEsZR50e8lOFFdBqtVaqn22U1CufbYzlUtye8kAAAAAACFG0bYIKNoCQBnk80l71x/rI3eJU8zd8H3u7fGVJG9s/ikm9sR5+aYYKSYu/3Vv3Mlv37rAaW3r8TqDrHljnRa4BUlqJNVpI9Vuk1vQrdrYecxwxYBrAAAAAFAkDEQGAIhuXq9U4yxnajvEKSJu+N7pNzcnUzrn/tD2LTtrslOwPX7AtW53So26O33z7ljmXKZvkdI2OdOqL3IfoyitchlwDQAAAADKDIq2AICy7/hBwPzXpdAUbk834FrFGtKFj+fe//BeZ8C1Hcukncem1F+krMNOa92tC/I/fqBV7tnHWua2kTye6Bhwjda9AAAAAKIARVsAQNl2ugJq3uvB4sspuGjpv+7LyT+/QjWp8bnOlPcx9qw7VsRdnnuZtvnkrXIr13PWact8qctwKeVDadl/pNZXSlUaSYvfzTNomn8AtWMDqgX+znb6CC7w7+Mu/X/7c2dMlGRSzZZS+jbpf+Ol8lVPPsWVK/pzS+teAAAAAFGAPm1Fn7YAUKaVtZaZR/ZJO1fktsjdcaxVbvYRt5es6GLLH1fIrXLqIq9/mvuKNHPiiS2nQ9W6FwAAAACChIHIioCiLQAgovlynEHX/EXc2c9JZpI8UqMeeQZaizs2cFpMnr/9A7AV9Hfccf97ksdZ8am07MPcgdaaXSTV7+wUmE82ma/46+uNc/omzjrkrKOMgi0AAACAiMBAZAAARAtvjFSjmTPtXuMUbP0DrjXtG/oB15Z9eGKr1wZdpd88W/D/+HxS5oFTFHX3n+Tvvc46+Y515SBJOvbdc/c7Q7eOAAAAAFDKKNoCAFBWhNuAayfL9XqlcknOVLVx4fPMpKwjTgF39vPS/H/k3vbGRdJdPzkDsgEAAABAhKNoCwBAWRAJA66VlMcjxVeQ5v7FKdj2GSc1vVB6o5+0a6X0/lDpun8FNxMAAAAAXECftqJPWwBAGVDWBlw7mYKK0z/+Wfr6UefvrrdJlz7n3vIBAAAAwCkwEFkRULQFACBCFFSc9vmcVrZrpkvlq0kPpEgJldxbRgAAAACnFi2NTgpQ2DqktxSXCQAAoGT6jDnxjZ3XK135V6lyPWewsi8edmfZAAAAgJKaMckpWhZk1mTn9rLAG+P8gu74dfX/ss4b485yhRGKtgAAIPJVrC4N/ofk8UpL35eWTHF7iQAAAICic6OY6Uah+PxHnC7P8q5rQV2hRTEGIgMAAGVD43OkC8Y4b/Q+/51Uv4tUs7nbSwUAAAAUXkGDCYe6mOkvFOfNl/Lnnk52ppR1+Nh0RMo85FwWOO/YZeZhqV5HJ2PmJMl8FGzzcLVP20mTJumjjz7SypUrVb58efXq1UvPPvusWrRoEbjP0aNH9bvf/U4ffPCBMjIyNGDAAL366quqXbt24D6bNm3SyJEjNWPGDFWqVEk33XSTJk2apNjYwtWk6dMWAIAywpcjvXOltOF7qXYb6bb/SXHl3V4qAADCRxT3IwmEtaNp0v7N0v5NzrT8I2nzz5I8kkyqdpZUo5nzyzKv17nMN8Xk+dtz7H4xBdyvgMkbI/36o7TxB6nJ+dIZ50jrZ0ib5kp12znZxxdb/YVYf1HWl13y58AbKz2+p+SPE+YKW4d0taXtrFmzdPfdd6tr167Kzs7W2LFjddFFF2nFihWqWLGiJOnBBx/U559/rg8//FBJSUm65557NGjQIM2ZM0eSlJOTo0svvVR16tTRjz/+qO3bt+vGG29UXFycJk6c6ObqAQCA0uaNkQb9XfrrOdLOZdL0sdLAF9xeKgAAwkcwWtQVFYViBIMb21GwMs2ko/tzC7J5i7Npxy6Ppp3sn52LvWudKdQ2zHImv+3JzlRYnhgpvqLTcCKugjPFVzh2Pc98/7yti6WN3zvPsy/beV5paSvJ5aLtV199le/6W2+9pVq1amnhwoXq3bu30tLS9MYbb2jKlCnq27evJOnNN99Uq1at9NNPP6lHjx76+uuvtWLFCv3vf/9T7dq11aFDBz311FMaPXq0nnjiCcXHx7uxagAAwC2V60iDXpfeHSQt+KfUpLd09lVuLxUAAOEh70+vD++V2gxy+oNf8E+p+0ip/TDpYKoUEy/FJkgxCU6rvpJwo1CMsseN7aiwmWbO/uQvwJ5QmN0sZaSfPq9CdalKI2c6sMNpaeuNdYqZLQdKzQc4XQj4cpxLs2OXPsly8vx9bPL5TpxnBfyvL8//LnrbufR4pfN+l1t4jSt/kmJshfzzYotQh5s12SnY+rtE8D+vxz/fUSqs+rRNS3O+VahWrZokaeHChcrKylK/fv0C92nZsqUaNWqkuXPnqkePHpo7d67atm2br7uEAQMGaOTIkVq+fLk6duxYuisBAADcd9aF0rkPSbOfl6bdJ9XtIFVr4vZSAQAQHrreJv3yqfTzX53J7/jrft5Yp4ibt5AbG5/n8nS3JUiNejrFmF/nSF1ulXakSN//kf4rUXil1derz+cUSX1ZUvc7na4AZkxwWsKePUia+2dp+cdS/c7SlgXSKz2cwmzWodM/dsWauUXZKo2kpIZSlTOOXW/oFEUlZ71WTD2xmFm3fWj3l1mTnYJtTLyUk+lcnvdQ6LKOf+0Keo2jWNgUbX0+nx544AGdc845atOmjSRpx44dio+PV5UqVfLdt3bt2tqxY0fgPnkLtv7b/bcVJCMjQxkZGYHr6emF+LYDAABElj7jnA+Gm3+W/nOLdOvXRfvmHwCAssZMSv63NH2MdPi4fiMrVJdysqTsDCknI/9tvmxnyjpc8mVYP9OZJKlmS6n6WVLGQSmhUskfG2Vf71FS2tb8A1fVbOV8CfD+MGc7zcnK3WYD13OcImyB17Nzi7S+bOcxCzL3L87kt3XhifepVMcpvuYrzPovGzgtU0/HrWLm8bmhbvXqyym42O6/7ssJfmaECZui7d13361ly5Zp9uzZIc+aNGmSxo8fH/IcAADgophYafAb0mvnStsWS9+OlwZMcHupAABwx9710mcPOYMLSU6Lv0O7clvUdR+RWywxcwpbORnOiPA5GceKuQXNy8y9zPu3v/jrv6+/ILzwzdyi2K6VzherseWlZv2k1ldKzS+mgFsU0dJf8JH9zhcOC9+SUpc78wLb0S/OFFLHBgPz/912yImF2aQGUly5kke5Ucx0o1B8qu0yylvY+oVF0faee+7RZ599pu+//14NGjQIzK9Tp44yMzO1f//+fK1td+7cqTp16gTuM2/evHyPt3PnzsBtBRkzZoweeii3eXd6eroaNmwYrNUBAADhokpD6cq/Sh8Mc1pGND5XavEbt5cKAIDSk5Ml/fiyU5TJPirFlpMa9XBau56sRZ3H4/w6JTZeSgjishz/0+tGPaUD26V9G53uGn751Fm+s/o5/dE3HyAlVA7iApRBZbm/YDNp8zynULv8Yyn7iDPf38erJ8bpn/Ws/s624o2VYuKcS/9UlOuBv+Oc5zXv9R/+5Dyf/m23RvPQFRbdKGbS6jUsuVq0NTPde++9+vjjjzVz5kw1aZK/r7nOnTsrLi5O3377rQYPHixJWrVqlTZt2qSePXtKknr27KkJEyYoNTVVtWrVkiR98803SkxMVOvWrQvMTUhIUEJCMM88AAAgbLW8xBlY5ee/Sp+MlEbMdlpCAABQ1m2eJ316v5S6wrl+5gXOT8l//mv4/PT6grFOwW3FJ9LyT6R9G6SVnzmTv4Db+kqpxcUUcAvSe5SUccB5LrcvdQrhe9Y6LZojtb/gw3tzW9XmbUFbq7XzHm7N1yduRw27hW5dS7vbADfQ6jUseczMTn+30Ljrrrs0ZcoUTZ06VS1atAjMT0pKUvny5SVJI0eO1BdffKG33npLiYmJuvfeeyVJP/74oyQpJydHHTp0UL169TR58mTt2LFDN9xwg2677TZNnDixUMuRnp6upKQkpaWlKTExMchrCQAAXJedIb1xkbR9ifNh5qbPnO4TAAAoi46mSf8bLy34pyRz+qsdMElqd40085nS/zn9yQaLOn6+mdM3qb+Au3dd7n1jEo61wL3S6UKhXBR9dvf5nBbJe9cXMG0oeACsuApOsbtZf6lpX6l8ldJe6qIxkzbNPdaq9pPcfpVjy0ttBkudb5bWfSfNnHj67SiYCrvtAkVQ2Dqkq0Vbj8dT4Pw333xTN998syTp6NGj+t3vfqf3339fGRkZGjBggF599dV8XR/8+uuvGjlypGbOnKmKFSvqpptu0jPPPKPY2MJ9GKNoCwBAFNi7Xnqtt5R5QDrvYenCx9xeIgAAgsvMGXH+y9HSwWMDc3f4rXTRU1KFau4tV3H6XTWTdi5zCngrPnFaj/rFxEtNL3QKuC1+I5VLCuHCF0FJ+pf1+aT0rccKsetyC7L+S3/XAAXxeKWkhtL+TcrtdzXv7THOl9bNjnUjULOl0wVGODi8V1r6vlOs3b06d37tNk6htt01ua+vG/33RkufwShVEVG0DRcUbQEAiBIp/5H+O1ySR7rhY6lpH7eXCACA4Ni/WfriYWn1V871ak2ly16UmvR2dbGCwkzauTy3Be6eNbm3xcQ7LUlbX+kUcP0tSt0otp2uVeYFY6T2Q3Nbye7J02J238bc1qUF8cRIVc+Qqp2ZZ2rqXFZpJM15MX+fqx2ul8pXldZ8I+1elf+xkhrlFnAbnyfFVwju83A6ZtKvc5xC7YqpzvJKTuvgNoOlzrdI9TuFT2EZCDKKtkVA0RYAgCgy7T5p0dtSxVpO/7aVa7u9RAAQvmhlFv5ysqV5f5O+m+D8TN4bJ537oHTe74Izkn24MZNSf8kt4OYtSHrjnALu2VdKu9dIs58P/c/afTlOn7L+6ee/Sov+T2p9lXRGLynl39KW+VL5as7tvqyTP5Y3Lk9htmme4mwTpzAbE1fw/52sz1X/9X0bneLt6unSxh+cAen8Yss5hdtmF0nNL5KqNi75c3Iyh/ZIS6c4xdq8LafrtJO63CK1GRJd3V4galG0LQKKtgAARJHMw9I/LnQGZTnzAum3H0ter9tLBQDhif4cw9u2xc5AY9uXOtcb9ZQGvijVaunqYpWq1F9yu1DYtTJ3vjfOKXTuXSed+5DU7w/5Bz875778xdZ8U3r+65kHC56fcUDKOly05Y2Jl6o2yV+QrX6sQJvYoOh97hd1H8087BRuV093BvRK25z/8Wq0yG2F27CHFBtftOU5npmTt/At6ZdPc1vVxleS2g5xukCo17FkGUCEoWhbBBRtAQCIMqkrpb/3cT5o9X1M6v2w20sEAOFr5rPO4D8tL5OanOe0kJv3OgVbN2UcdApyP78mmc/p87P/k1LHG6P7i8jUlbktcHf9ctyNHknmtCz1ZTtTMMUkSAmVpITKzrRjmZPn8UqXPpdbpE2s77ReD5aStIY3cwrda76WVn/tDARmObm3x1d2upJqPkA6q3/+XyedLvdoulSxhvPrpr3rc2+r19Ep1LYZ7DxPQBSiaFsEFG0BAIhCi9+Vpt7tfJi6+QvpjJ5uL1F04qfXQPg5tFvaskDauuDY5SIpIy3/fcolSW2vlpoNkBqfW/p9YkazVV85fdf6W0i2GSwNmER3P8fbtcrpL3X5J1Lq8pPcyeO0+PQXWk87JTqX+f4n0SnWxibkPqy/lau/f9lI+YLjyH5p/QyngLv2G+nQrvy31+3gFHCbXSSt/db5Mifvuvl80tS7nIHFPF7nCwXJKf62u1rqdJNUr0MprhAQngpbhyxiu3sAAIAyosP10obvpeR/OYOTjZjt7sja4cCNAqo3xvlgK538Z50AQifrqLQjOX+Rdv+vJ94vtpyUnaHAyPRH06T5/3Cm2HLOYFfNLnKmqmeU6ipEjfTt0lejnUKk5Pz0/9IXpGb93F2ucFWzRe55JXW55I11Wtd2u1M69wGn4BpXMfgtk0/Wv6wU/oXb8lWks69yJp9P2r7YKeCu+VratkjavsSZZj0rVagh1W7jrNvhvVKlWtKcl6Sj+53HMp9Uv4vTqvbsq5zCNoAioWgLAACik8fj/FxxywKnv7tPRkrDPojukYpDUUA1cwY8yTpy3OVRKfuIVK+T00psxgRp2xJnVO0t86UfX46clklApDCT9qzL04J2gfMT7oIGRqrR3Cm4NOjsXK76Upr1TG7LwbZXO0Wv1V9L6Vucos6ar53/rdnS6ROz2QCpUY+TD56EwvH5pIX/lP433ulT1RMj9bxbuuD3UnxFt5cuvJ2sgFqxRmjOLwX1I+u/jJTCrZ/XK9Xv7Ex9xkgHU6W1/3P6wl33nXR4tzNJzuBrfjEJUqcbpc43SXXaurPsQBlB9wiiewQAAKLa9mTpH/2knAxpwETng3A083/gbD9MathdWvm58xPJxuc6BdZTFWADl0dyb8s7QnVRlEuSml/sLEOjHlLNVtHdTyMgFb01/KE90taFeYq0C3NbweVVoYbUoEtukbZeJ6fFXd7HPtnI9L1HOQNBrZnuFHA3/5y/T8yERKdPzGYDpLP68RP+otq5whlobMs853q9TtJlL0l127m7XJHAjUH0oqXLn5wsZ19fPV1a801u/8HeWOn3m/gyATgN+rQtAoq2AABEuXl/d/oH9MZJw6c7rUqi0cFd0uL/k2a/dGL/lcHgjZViy0tx5fJclpPiyjuXG793WgIWJCFJatjVGcm6UXfnNYqkD4XR8kEeoXW6IlTnm50vOPxF2n0bTnyMmASpbvtjRdrOzmWVM07+K4OiFr6O7HNa4a35xpn8LfH86nU81o3CAOfvaP8y5mTHhqwj0juDnIGhZE4fqhc+LnW9LbiDWJVlHHdLR6T23wu4iD5tAQAACqvrbdKGWdIvn0of3iKN+MFp6RkNzJyiwPw3nH4Sj/+ZtMcrtb/uxAJrcS5P9RPpWZOd18D/oa/dUKdfzE0/OcWnjDTnZ5lr/3dsuWKclmb+Im7DHlJi3dA9TyXlRt+9FCzKnvMfcfbZGROkgzudlug//80p0npipIVvnfg/1c861oL2WJG2dhspNr7wmb6cgoswgYGHcvLPL1/V6fKkzWDnZ/3bFh0bmX660xfmtsXO5O8Ts1l/p4jbtG9u695o2nYLOjasmyF9eHNuq+iWA6XfTJaS6ruxhJHrVNsIRcXgiOT+e4EIQNEWAADA45Eu/4u0fakzAM+n90tD3izb/dseTXcGYVvwTyl1Re78+l2kynWllZ/mFlCrnhHaD1+n+un1TdOknGxp5zLnp5ibfnIu07fmFn/8felVaZSniNtdqtW64BZpbhSE8vZpmHlY6nKztOBNac6L0gVjQ/P8MshbaIViO8rOlA7ucAacSt8qHdgupW87drldOrDNuZRyBwHzsxypfLUTuzko6QCLJSl8eb3O8jToIvUZKx3Y6XS3snq6U5g8vNsZZX7p+07RuVEPp4B7eI80/+8nZpTFbTffseGQ81on/8uZF19Zuuo1qdVA95YPOJmy1H8vEKYo2gIAAEhOC68hb0r/HCAt/9gZCb3LrW4vVfDtWCYteENK/reUedCZF1dBajtE6jLcaRFXmq1mCvuhr14HZ+p+pzMvbUtuAXfTT05Rd/8mZ0r5t3OfhESnWBToUqGLM3p1MIuZZk5ruEO7j027nEJU3uuHdjlFqEO7JHmkOS84UyD3WemnV5wCTUIl52fQgcvKRb/ub9Fc0PMYyr4co01RtiMzZwCp9G0FFGHzzDu0q+jL4fFKV73uFGmrNgnvL5sq15Y6/taZsjOlzT8da4X7tbR7lfTrHGeSnP13xgRp9xqnD9e5fyl7266ZtGetMyhWrdbOlzh+9btIN3wslaP7PoSporbCB1Bk9Gkr+rQFAAB5zHlZ+uYxp9/H27+T6rRxe4lKLjvD6fpg/j+cIqdfjeZO1xDtrnWK1pE8aEvGAacbBX8Rd8v83KK0nyfGeT0b9nB+Wr7ikxOL0xeMlXqMKKAIu8sZ1On4ouzh3ZIvOyhPRdDEJOQv4h7ZL6VvcYp75nMGjur7qNtLWTb4t5te90utr3CK78v+KzXq6bT8zlugzTpUuMeMiZcq15ES6zut3hPrHbusK1Wu51xf8p5T7C9LfUju2+j0gbt6urTxh4IHMWzQTeoxUmrQVUpqEN4F6oKYSXvXSxu+lzbOdqaDO068nzdOenz3ifMBAGUCA5EVAUVbAAAQ4PNJU65xfsJbo7l0+wynABaJ9m6QFr4pLX7XaekpOYOBtbrMaVXb+Nz8RY+y1I+kL0fauTx/lwppm09yZ4+cgX4qSzkZThGsqBISndZyFWpIFWtKFas7l8dfT/639OPLucW2837nFM4zDkqZB45dHizE9QMnzivscsdXklpfKbUfKp1xDgNBFUbmYacV976NJ0571hS+cF+uSsFF2MC8elKF6qcuRp6qO5FIL9z6ZR52Crerpzu/DChI5brHul7o5hRx63Vw+s4OJ/4i7cbZzvpsnO0U8fOKSZAadnP+3vhD2SrEAwAKRNG2CCjaAgCAfA7tll471/lw3f466aq/ur1EhefLcX5uPP+NY4N2HXurl9jAGVm+0w1OK75olLbV+Tn2pp+dyx0pTsvTgsRXcopnFWs6xdh8BdkCrscmnD4/1MW27Mzcgm7eQu/i96TlHzktje24n6smNZTaXSO1HybVaFbyZXBLSb9w8Pmc1tcFFWX3bSy4NWSBPM6XInmLsHkv4ysUccUKWJfSbg3vJv96eeOcQRLrd3YK5DuWnbgte2OlOm2dAm6Dbk5Bt2rj0m2Naybt25DbinbjbKdv4rxi4p3la3yuMzXo6nyRU9YL8QCAgMLWIenTFgAA4HgVa0iD/yG9fZm0dIrTv22HYW4v1akdTJUW/Z8zenzeFqVNL5S6DpeaDZBiovytX1J9KenYqPaS9O1T0g9/coo9vmyp8y1Oy9eKNYLfYq80BmyJjZdiq+UfeGrWZKdg68+d+aw0c6JUt4PTEjtts/TDc85Uv7NTvG0zuOSDV5W2wvQvm3lI2vdrwUXZ/b8W/HP8vBKSpGqNnUJg3mnN19JPf81tIVmnbegKbdHUh+SpvuS45Stp+xJp8zynK5Qt852iu39wwnmvO49RseaxIm6XY61xO536lxNFLf6bOdvOhh/yFGm35P8/b5yT3eS83CJt3uMLgzkBAE4iyt+5AwAAnETjc6Xzf+8UuD7/nVPQqtnc7aXKz0z69Uenr9pfPnVaoklS+arOQD+db5GqN3V3GcPVrMlOwfb4glBivdAUSNwothVUDLpgtNPycMYEqfcjUq1W0tIPnFbZWxc601djpOYDnO4Tml1UuFbEbstb5Erb7PRbvGSK9Otsp2/YeX/PLYCdjCdGqtLwxKKsfypf9cT/mTXZKdiW1sB9p2otXJYKe4UtZJ7Ry/nbzHndt8yXNh8r4m5f6vRBveoLZ5Kcfp1rnS017HqsmNtVqn5WbmvcwhT/9/2apyXtDyd2u+KNc4rEjc+VGp/nZJyqhXU0FeIBAEVC9wiiewQAAHASvhzp/65wPpjXbiPd9r/S6zPxVC2+vn1S2p4spW2Rdv2SO79BV6d/1NZXSnHlSmc5I1G0/MS8KK0GD6ZKKf+Rlr4v7UjOvV/5qk7L2/bDnC8uwmngJ59P2rNW2rrAGYRuy3ynywud4uNNuSonFmOrNXEuExsUrTV6tGxHbghG/9pZR51tecv8Yy1yF5zYClZytvH6XZx+ZRt0cYqxPzyX+/pNHyfN/YtUp510dL/Tt3Fe3ljn//3dHTTsXvJuMAAAZRp92hYBRVsAAHBSB3ZIL3WQso84g3cNfD7/7aEaoKugws/2ZOnT+5yf//rFVXD6JO0yXKrbLrjLUFaVpQHXQmHnCin5A2fQtLyDJlU/y2l92+5aqUqj0l+uw3udwtvWYwXarQulo2knv7/HK134hzwF2jMKbi1bXGxHkSd9W253ClsWOMfSE7rF8Dj9WR/eXfBjeGOdbhb83R007C7FVwz5ogMAyg6KtkVA0RYAAJzSR3c6RSxJuvot6eyrnL9L0qLOl+MUC7IzpKwjx/4+NmUdu1wyRVr2H6c/2iP7pC3zcv+/ZkunUNv+WqlcUlBWE8jHlyNtmOV0n/DLp1LW4dzbGp/nFHBbXS6VC8H75+xMaWeKtGXhsQLtAmnv+hPvF1tOqtfRaQXcoItTiJv7l9z+ZWntilPJzpR2LstTyJ3v9HF8vAZd87Sk7XHqfnEBADgNirZFQNEWAACc1j8vljbNlWISpL7jpLXfOgWtht2dn80WVHTNdz3Daa3rL9L6+58tqpqtpEv/JJ1xTnj9VB1lW8YBp3C79H1n0CV/FwSx5aVWA50CbpMLnO4FijWY06Y83RwscPojzck48f+rn+UU0Op3di5rny3FxOU+9skGrqJwi8I6mCp9NVZa9mHuIIVsQwCAIKJoWwQUbQEAwGnlZEkvtZfStwb/sb1xTovBuHLOpX/yX984W5I5xanHTvKTXaC07N8spfzbaYG7e3Xu/Ep1pHZXO19SzP/7yft6Pe9hqUnv3C4OtiyQDqWemOPva7TBsaleJ6lCtYKXif5lESwU/wEAIUbRtggo2gIAgEJJ3ya9cLZkPqe/zK63SbEJTmvD2ARnkLKTXj9FUdYbc/JMf8GAn3sj3JhJ2xY5xduU/0hH9ubeVqmW02Kx173OIGbfPS2t+kKqWFM6tFsnDBbmjZXqtD1WpO3qFGmrnVn41uT0L4tgoPgPACgFha1DFmF4VAAAgCi3+F2nYOsvoFasGdoP8Cdr8SVROID7PB6nm4L6naWLJkhrv3G6T1j1lVOwlaQf/+xMfod2OZdJjaQGnXOLtHXbOV9yFNepCrLsKygsX07BhVn/dV9O6S8TACBqUbQFAAAojNIuoBbUsst/SeEW4SY2Xmp5qTMd3ist/9hpgRsYPM8jnfvAsf5ou0iVa7u5tEDBKP4DAMIIRVsAAIDTcaOASosvRKoK1aSuw6XDe5yirb9lelwFp6gLAACA06JoCwAAcDpuFFBp8YVIRtceAAAAJULRFgAA4HQooAKFR9ceAAAAJUbRFgAAAEDw0LUHAABAiXnMzNxeCLelp6crKSlJaWlpSkxMdHtxAAAAAAAAAJRBha1DektxmQAAAAAAAAAAp0HRFgAAAAAAAADCCEVbAAAAAAAAAAgjFG0BAAAAAAAAIIxQtAUAAAAAAACAMELRFgAAAAAAAADCCEVbAAAAAAAAAAgjFG0BAAAAAAAAIIxQtAUAAAAAAACAMELRFgAAAAAAAADCCEVbAAAAAAAAAAgjFG0BAAAAAAAAIIxQtAUAAAAAAACAMELRFgAAAAAAAADCCEVbAAAAAAAAAAgjFG0BAAAAAAAAIIxQtAUAAAAAAACAMELRFgAAAAAAAADCSKzbCxAOzEySlJ6e7vKSAAAAAAAAACir/PVHfz3yZCjaSjpw4IAkqWHDhi4vCQAAAAAAAICy7sCBA0pKSjrp7R47XVk3Cvh8Pm3btk2VK1eWx+Nxe3FCKj09XQ0bNtTmzZuVmJhYZjPdyiWTzEjMdCuXTDIjMdOtXDLJjMRMt3LJJDNSc8kkMxIz3colk8xIZmY6cOCA6tWrJ6/35D3X0tJWktfrVYMGDdxejFKVmJhY6juCG5lu5ZJJZiRmupVLJpmRmOlWLplkRmKmW7lkkhmpuWSSGYmZbuWSSWakOlULWz8GIgMAAAAAAACAMELRFgAAAAAAAADCCEXbKJOQkKA//OEPSkhIKNOZbuWSSWYkZrqVSyaZkZjpVi6ZZEZiplu5ZJIZqblkkhmJmW7lkklmNGAgMgAAAAAAAAAII7S0BQAAAAAAAIAwQtEWAAAAAAAAAMIIRVsAAAAAAAAACCMUbQEAAAAAAAAgjFC0BYrJjTH8GDcQCH/sp2ULx3oAQFnBOQ0AIgtFW6CIjh49KknyeDyl9iZk7969gczS4vP5Tnm9tJTlN5fR8CZ227Zt+vnnn0s1c9WqVbr//vtLNTM7Ozvwt8fjcW1/cSu3LIqWY/3OnTu1Zs2aUssrSFk/Fpb19XNLWlpaqWfu2bNHu3fvLvXcjRs36u233y71XJQdnNOAwnPjWM9xHidD0RZBsXPnTs2fP19ffvmlDh06VCqZmzZt0nvvvaeXX35Z8+fPL5XMFStW6KqrrtL06dMllc4bn8WLF6tGjRpasGBBSHPyWrNmjUaNGqU777xTEydOlCR5vaE/XGzatEnTp0/XO++8o19++UWS8xzn5OSELNN/gvzzn/+s2bNnBzJDWfzat2+fjhw5UqpvnLdu3aqvv/5a7777rtavX18qmcnJyTrnnHP03XffafPmzaWSuXTpUp1zzjl6/fXXlZycXCqZq1at0ogRI3TNNdfozjvvlFQ6+8uGDRv0zjvv6KWXXtI333wTyA3lNsWxPnTcONYnJyfr3HPP1fTp05WamloqmW4c5yVp8+bN+vLLL/X+++9rw4YNIc3yO3jwoLKyskr1WJ+RkVHqX97s3r1bq1ev1k8//VRqmUuWLFG7du20fPnyUstMSUlR79699fnnn5dqwTg5OVkdO3bUX/7yl1LLXLdunZ5++mmNGTNG7733Xqlkbtu2TfPnz9fnn3+uffv2lUom57TQiZZzmiRt375d8+bN0zfffFNq21G0HOu3bt2qr776Su+//762b99eKpluHOvdOM5L0XOsd2N/CSoDSig5OdlatmxpHTp0MI/HYwMGDLClS5eGPLNBgwZ24YUXWpUqVez888+3RYsWhTTT5/PZrbfeaomJiXbppZfaV199le+2UFi8eLFVrlzZfve734Xk8QuSnJxsNWrUsGuuucb69etnnTp1sr/85S+B20O1rkuXLrVatWrZb37zG6tevbr16NHDbrzxxsDt2dnZQc9MSUmxatWq2QUXXGDVq1e3tm3b2iWXXGJZWVlmZpaTkxP0zBUrVliXLl1s/PjxdujQITML3XPql5ycbE2aNLGePXtaXFycnX/++TZ16tSQZq5du9Zq1aplDz74YOD5zCsUz+2SJUusXLlydvfdd1vjxo1t9OjRQc84XkpKilWvXt1uuOEGu/nmm61Nmzb59tdQvbb+/fTKK6+05s2bW6dOneyCCy6wtLS0kOVyrC9bx/rVq1db9erV7f7777cDBw6ccHso9lE3jvNmznZUu3Zt69atm8XGxlrnzp3trrvuCkmW34oVK6xfv372zjvvWEZGhpmF/li/fPlyu+aaa2zOnDkhz/JLSUmxTp062dlnn20ej8eGDRtm+/fvD2nmkiVLrHz58vbII48E5oV6fVeuXGlVq1a1+++/31JTU0OaldeSJUusQoUKdtVVV1lSUpK98847Ic9MTk62WrVq2RVXXGFnn3229ejRwz7//POQZi5dutQaNGhgF1xwgZUvX9569+5tjz/+eEgzOadxTguGpUuXWv369a1du3bm8XjsnHPOsWeffTYkWX7RcqxPTk62M88803r27Gkej8f69+8f8uOvG8d6N47zZtFzrHdjfwk2irYokdWrV1vdunXt0UcftQ0bNtjatWutUaNGds8994Qsc+XKlVanTh0bN26cHTlyxLZu3Wo1atSw9957L2SZfvfee691797dBg0aZH379rUvv/wyZFkpKSlWvnz5wIHM5/PZ9u3bbcmSJZaZmRmSzN27d1v79u0DH4TS09Nt4MCB9qc//Snf/YL9wXrnzp3WunVrGzt2rGVlZdnu3btt/Pjx5vF47OKLLw7cL5hvuA4dOmTnnHOOjRw50nJycmzv3r32r3/9y1q3bm3t2rULFFSDua6//vqrtW/f3mrXrm29evWyyZMnh7xwu3btWmvYsKGNGzfO9uzZY1u2bLHzzjvPhg0bFpI8vwkTJtigQYPMzHnd/vKXv9jjjz9u48ePD8n2u2jRIitfvrz9/ve/NzOzP/7xj9akSZOQfgDbv3+/de/e3R566CEzM8vIyLB7773XHnvssZBlmpnt2bPHOnToEChKp6en23vvvRf4sLBt2zYzC+7+wrG+bB3rzcxGjRplQ4cODWS+99579sILL9hbb70VuE8wtyE3jvNmZmlpadaxY0e7//77LS0tzbZv324TJ060du3a2YABA4Ka5bdx40Zr1aqVxcfHW48ePezDDz8MeeF2/fr1duaZZ5rH47Fu3brZggULSqWQWbNmTRs3bpwtXLjQ5s6da5UqVbInn3wyZJn+/SXvcTY9Pd3Wrl0bssycnBy7/fbb7YYbbjAz5zWcPn26vf322/bdd9+FLNdfnB4zZoyZmQ0aNMgGDRpkhw4dCtlru2PHDmvVqlUgc9euXda2bVv7+9//HpI8M7OtW7da8+bN7dFHH7V9+/bZtm3b7Le//a3FxMTY8OHDQ5LJOY1zWjDs3r3bWrZsaQ8//LBt2bLFNm7caMOHD7cuXbrYHXfcEdQsv2g51v/yyy9Wq1Yte/TRR23v3r22fv1683g89sUXX4Qs041jvRvHebPoOda7sb+EAkVbFNvhw4dtxIgRNnz4cMvIyAgUt/7xj39Yq1at7MiRI0HfKQ4dOmS333673XHHHZaVlRU4+V599dX25JNP2h/+8IeQvvn517/+ZRMnTrQFCxbYxRdfbP3797f58+fbxIkTbcOGDUHLOXDggPXt29cSExMD86666irr2LGjeTweO//88+2FF14IWp7f4sWLrUWLFrZq1arAvFtvvdWuvPJKGzp0qN1+++2B1zmYb3xmz55t7du3ty1btgTmrVy50s444wyrUaNGvg/0wbJv3z5r166dffTRR4F5WVlZtnDhQmvTpo117do1MD8Y27HP57PXXnvNBgwYYAsWLLARI0ZY165d8xVug/1mMiMjw0aNGmXXX3+9HTx4MPDaff7551avXj3btWtXUPPyGjFiRKD4361bNzv//POtV69eduaZZ9qZZ55p69atM7PgrPOWLVusYcOG+VpdzZkzx+rXr29vvPGGmYWmBd+6deusZcuWNm/evMC8kSNHWvfu3e2iiy6ySy+91DZt2mRmwS3UpKSkWJs2bWz16tWBedu3b7c2bdpY3bp1rWPHjkHLMuNYXxaP9WZm11xzjT3//PNmZta9e3c777zzrFmzZtasWTPr3Llz4MN1sF5bN47zZmabNm2y5s2b2w8//BCYd/DgQfvvf/9rrVq1squuuiqoednZ2fbcc8/ZZZddZkuWLLGLL77YOnbsGNLCbUZGho0fP96uvvpqW758ubVq1cratWuX78NJsDMPHDhg1113XeCLT//j/+EPf7ALLrjAzIJ/Ttu7d6916dLFGjduHJh3/fXXW+fOnS0uLs4uv/zyfOf0YBowYIBNmTLFzMx69eplvXr1smrVqlnbtm3tiiuuCHreypUrzev12tixYwPz/vGPf1h8fLwtW7bMzELzBcCsWbOsdevW+fbT3/72t3bPPffYyJEjbcKECUHP/Oyzz6xLly62d+/ewDrNnTvXatasaU2bNg168YtzGue0YElJSbGmTZsG9kkz5zj1pz/9yTp06GAPPPBA0LLMoudYn5aWZkOHDrW7777bfD5f4PGvuOIK+/vf/24vv/yyzZo1K6iZfqV5rHfrOG8WHcd6N/aXUKFPWxSbmSkrK0vnnHOO4uPjFRMTI0mqXbu29u7dq4yMjKBnxsTE6IorrtBdd92l2NhYeb1ePfXUU/rPf/6j1atX69tvv9Wzzz6rBx54IOjZkpSYmKhp06apc+fOGj16tBITE3XllVdq3LhxKleunKTgDDgSGxur2267TXXr1tVll12mAQMGKDs7W48++qh+/PFHnXHGGZoyZUrQOyuvWLGiMjIy9O677yozM1NPPvmk/u///k+tWrVSvXr1NGfOHJ177rmSgttnZ0ZGhvbv369t27YF5h09elQ1a9bUY489pg0bNuj9998PWp4kJSUlyePx6Ntvvw3Mi42NVadOnfTaa6/pwIEDGj16tKTgDKDg8Xh0+eWX684771Tnzp3117/+VZ07d9aHH36oV155RYcOHQp6f6Rmpvj4ePXp00cVK1YM7KPVq1fX4cOHQ7KP5rV48WL961//UvXq1TVt2jT973//008//aQGDRpo0KBBkoKzHcXFxenVV1/Vs88+G5jXq1cvXXrppXr66aeVnp4eWPdgSkpKUnZ2tl555RWlpqbq8ccf1z//+U9ddtlluvTSS7V//37169dPGRkZQR+E48CBA0pJSQlcT0tLk9fr1QsvvKD9+/fney5KimN92TvWS86gdYsXL9Zrr72mpKQkffzxx/r55581ZcoUZWRk6IorrpAUvAFk3DjOS85r6fP59OOPPwbmVaxYUQMHDtS4ceO0fv16vfrqq0HLi4mJUZ8+fXTjjTeqffv2+vzzz1W7dm1NnDhR06ZNCxwPgnms93q96tatm4YMGaLWrVsrOTlZWVlZuvXWW7Vo0SL5fL6gH4N8Pp/S09PVtWtXeb3ewOM3atRIW7duVVZWVlDzJGc9r7jiClWvXl133XWX+vbtq/3792vEiBGaNm2a9u3bp+eff14zZswIenZ2draSk5M1ceJEVapUSR9++KFSUlL06KOPasOGDRo5cmRQ82JiYvTiiy9qwoQJgW1l+PDh6tq1qyZMmKDMzMyQDO4UGxurw4cP64svvpAkTZw4Ue+99568Xq92796tDz74QNdcc01QM9PS0rRv3z4dPXo0sE45OTlq3ry5hgwZop9++klz5swJWp7P5+OcxjktKCpVqqSsrKzAGApmpqpVq+qOO+7Q4MGDNXv2bH3++edBy/N6verevXtUHOsvvvhi3XHHHfJ4PPJ6vXr66ac1bdo0TZs2Ta+88ooefPBBvfDCC0HPLs1jvVvHeSk6jvVuvDcKGZeKxSgj/D/DNcttyTZv3jw7++yz833rtmLFiqBlHjlyJPB3SkqKVapUKV//nGPHjrVOnTrZjh07gpbp/2Zx9erV1q1bt8D8/v37W4UKFax79+42c+bMoOWZOS0B/vvf/1rTpk2tZ8+e+Z7r/fv323nnnWfXXnttUDP3799vo0ePtoYNG1q/fv0sLi7O/vvf/wZunzVrltWpUyfoPxH59ddfrUmTJnb99dfblClTbObMmZaUlBT45rFnz55B7RfL/63ak08+aT179rRPP/003+3Z2dn20EMPWd++fQMto0IhKyurwBa3b775Zokf27+Ou3fvDszz75ObNm2yFi1a2J49ewK3/fTTTyXOzJs7e/ZsO+ecc6xnz56Bn7z48+fPn28NGjSwn3/+ucR5BX277583a9Ysa9q0qf373/8+6X1LIisry/72t79Zo0aNbMCAAVahQgV7//33A7dv3LjRqlatmm9eMOzZs8cuvPBCu+KKK2zSpEn26aefWpUqVezBBx80M7Nrr73Wbr755qBmRtOx3szK9LHev4++88471q9fP+vfv789+uij+e7z4YcfWqtWrQIt4oNh06ZNduaZZ5bacd7v8OHDdvPNN1v//v1tyZIl+W47cuSIXXnllTZkyJCgZh7/E+CMjIx8LW79t3/yySdBy8y7v5iZHT16NF+rEjPntQ/m9rt58+bA3/7jwscff2ydO3fOd7+8LXlKas+ePfanP/3JzjjjDLvgggvy7f87d+60s846y+69996g5fmPCePHj7fLLrvMrrjiinz9/GdmZtqzzz5rPXv2tH379gUt92TGjx9vLVu2DDynwT6v7dixw6655hpr3Lix9e/f32JiYvIdd9966y0766yzLCUlJWiZK1eutAoVKtj9999vP/zwg82bN88SExMDLb2aNGlizzzzTFCy/Me/vNtNqM9p/sy87ydL65zmVxrnNP96Hj161D766KNSO6f5X6/SPqeZOb/au+CCC2zQoEEn/HotLS3NOnToYCNGjAhq5tGjR0+4XhaP9YcPHw78/dNPP1nlypVt6tSplp2dbVlZWTZ06FDr37//Cc9HcfnX68knnyyVY/2pWniG+jhv5u6x/r777gv5sd7PjfdGoUDRFkWya9cuW7Roka1cuTJfwSfvweSnn36yhg0b2sGDB83MeRPSr1+/Yh/g8mbu3bvXzJydy3+w2759e75leOONN6x169YlOqDmzcz7OD6fz84//3zbuHGj3XDDDVavXj177bXXbNCgQdalS5cSFTMLem4PHDhgn3/+uX355ZeBk4n/8v7777fzzjuvRAfygjL3799vGzZssB9++MHOPvvsfJ2wL1q0yJo1a2bz588vdubxuf6i4vz5861Dhw525plnWsOGDfMNInXdddcF+qkqrrwfov3bzsaNG61Xr1528cUX27fffpvv/u+99541a9YsX9GzJJnH87+OmZmZgcLtM888Y3fccYfFxMTYxo0bS5SZ9+dE/ut+a9eutTp16tjWrVvNzGzcuHHWrl27Yne4X9B67tmzx2655RaLi4uzvn375rtt2bJl1qpVqxK9ESjsz9z8r28wFLQNZWdn2759+2zFihXWunXrwOvm8/lszZo11rp16xO2reLm5n1Nf/nlFxs8eLC1bNnSWrRoke8Dyr333lvivjrT0tJs/fr1tnXr1sCx3Cy0x/q8mXn7eg7lsT5vZt4PCD6fzy644IKQHOsLWs+DBw+G9Fhf0Hr++uuv1qdPn8CAInnNnj3bWrRoUaKfzebN9A8K4z/ON23aNCTHeTPng8isWbNsxowZgW1m2bJlVrduXRs0aFC+bkXMzF588UXr0KFDvu28JJn+gkveY4SZ80HBX7j94IMP7M4777S6desGjsNFtW/fPlu7dq2lpqbm62LH5/MFBn88cuRI4MPJ3LlzbcSIEda+fftiH+v9mTt37sz3fOXtfmbq1KnWokWLwPUxY8bYddddF1jG4mampqYGMlNTU+3111+3r7766oTn+frrr7eBAwcWK6ugTP9yr1ixItAv3vFfLnz66afWsmVL27lzZ9By/fupf73867l//36rXbu2jRo1qkRZBWX6n99t27bZokWL7OOPP7YOHTrkG2xoxowZduaZZ9rKlSuDkuk/Nnz11VdWs2bNQHcpeZ/jiy++uMSFeP8+cfx7o1Ce0woahDWvUJzTTpUZqnNa3kz/dnrkyJGQntMKWs/Nmzdb3759Q3ZOM3O6udi1a5cdPHgwsAzz5s2z+Ph4u+eee04YAG3s2LHWp0+f024Lhc08vquvUB3rC1pPs/z7S7CP9adaz6NHj9qvv/5qZrnb0bPPPmsdOnTI994tGJkrV64M6bE+b6b/+Tz+p/rBPs4fn+v/XLFjx46QHusLyvz666+tVq1aITvWu/HeqDRQtEWhLV261Jo3b25Nmza1Bg0aWOfOnW3u3Lkn3O+HH36wKlWq2OHDh+3xxx+32NjYYhf5CpN5/En/vvvusyFDhhT7IH6qzMzMTDv//POtTp061rBhQ1u8eLGZOW82hw4dGjihBCNzzpw5ZuZ8M1/QyX7o0KF2zz33FLsvluMzO3XqFMg0czru7ty5c75vnh577DFr3759iVoBFJTr72tw165dtnnz5nwniKysLLvkkkvsqaeeMrPi9T2zcuVKu+6662zhwoWBx/CfnFesWBEYkMbf/2lmZqY98MADdv755xf7g/zxmQXxL4O/xW1CQoIlJiYWeyThwmSaOQWMChUq2M6dO238+PEWHx9f7H20oEz/Prl582YbMmSIlStXzm677Tbz+Xy2e/due/LJJ61Dhw7FftNTlOf2m2++sbp16+b79jgYmXmLiWbOm4TOnTvnG/DiiSeesFatWpWo5UFBuf7jQXp6uqWnp+c77vh8Phs8eHCJWiympKRYr169rEWLFnbmmWfa/fffX+BrFcxjfWEyj9/3S3qsP1VmRkZGSI71BWX6P7iH6lhfUKa/5dOaNWusS5cuVrVq1cCAIkeOHLHHH3/cevbsGfiiNBiZ/uJkampqSI7zZs5IyGeffba1bt3aGjdubL/5zW8CuQsXLrTKlSvbVVddZd98803gf+644w4bOHBgsX9VcXzmJZdccsK2639dMzIy7JJLLrG4uDirWLHiaY/VJ7N06VJr166dnXXWWXbmmWfakCFD7JdffjGz3OOv/wPS0aNHrW3bthYbG2vly5cPaaaZ03q4QYMGZmb26KOPWkxMTL5+v0uauXz5cjNzjn/Hv2Y5OTl2xRVX2Lhx44qVd7JMf9+CS5cuterVq1uDBg3yHevHjBljffv2LXDE+pLkHv/8+i8fffRR69q1a6DP9GBlDh48OPD8mjnFqO7du9v69esD88aMGWPdu3cv9hfaBWX6n99ff/3VkpOTA8dbM+d41KdPH3v55ZfNrHjHhtWrV9vo0aNP+MLmeME8pxUmM9jntJNl+ny+kH1+KSgzb8viUJzTCsr0v+dbu3ZtSM5pZs575379+lmbNm2sTZs29uKLLwYeb+rUqZaQkGDDhw/PNy7I9ddfb9ddd12xx1U4PvOll16y9PT0fPcJ9rG+MJlmwT3WFzYzrzvuuMNuueWWYg9ud6rXc/ny5SE51hdmPYN9nC8o98UXX8z35dD8+fODfqw/VeaWLVssJSUl6Md6N94blRaKtiiU7du3W6NGjeyRRx6xVatW2ccff2xDhw61uLi4wE9//TvXzz//bF26dLGHHnrIEhISAk3PQ5GZ16FDh2zs2LFWs2bNfB3CByvTP0DA+++/bz169DhhvYr7zeKpMv0doR+fM3bsWKtTp06xv/0qzHO7c+dO69q1q1144YU2ePBgu+WWW6xatWr5DrDByo2NjbV33333hPtv2bLFxo4dazVq1Djtm+2TWbdunTVs2NCqVKliV111VaAgmrf4tWrVKhs8eLC1aNHC6tevb3369LGqVasWe11PllkQ/0nkrrvusqpVqxZ72y1K5oYNG6xjx442fPjwEu2jp3pu/W9Qt27dar///e+tQYMGlpiYaJ06dbI6deoUuzBdlPU0c1oMNWzY0B5++OFit+ooTGZ6eroNHTrUevToYb169bJrr73WatSoUaL95VTPb0Hrsnr1ahszZoxVrVo18CalqH755RerWbOmPfTQQ/bDDz/YU089ZV27dg10k5L3TVSwjvVFyTQLzrH+dJlmZh988IH17NkzaMf6k2X+5z//KfD+wTjWFyZz3bp1ds0111ijRo2sVq1adt5551n16tWLvY8WdT2DcZw3c76Aq1Gjhv3+97+3DRs22JQpU6xZs2b53ogvWLDAOnbsaJ06dbI2bdrY5ZdfbomJiSd0m1DSzLzPnX9f9R8TR44cadWqVSv2trt582arU6eOPfjgg/bTTz/ZSy+9ZAMGDLAqVaoEvmDO+4WgmTMwZPXq1fMV5IKd6f8gNHXqVDv33HPt8ccft4SEhGJ/EDpZZlJSkv34449mlr9YnJ2dbePGjbP69esXezs6Veb3339vZs5I3126dLEWLVpYs2bN7NJLL7UqVaqU6FhflNfUzPmA7fF47F//+lfQM5OSkgKZ69evtxo1athll11m9957r40YMcKqVq1a7P3lVJl5Bwr027Nnj40dO9Zq165d7J+1r1271mrVqmWJiYn2wAMP2Nq1a09632Cd04qSaRacc9qpMv3n0GCf04q7niU5p50sM+/7zmCf08ycY33NmjXt3nvvtY8//thuv/12a9WqVb5uvr799lurXr26nXfeeda3b18bNmyYVapUyZKTk4OaWVBhNFjH+sJk+renYB3rT5d5/HvArKwsGzdunNWuXbvY3ZcU5vVctmyZde3a1Zo3bx6UY31RXk+z4BznC5u7adOmoB7rC8ps2bLlSbvFC8ax3o33RqWJoi0KZfHixdamTZt8Pys5fPiwPfzwwxYfH2+fffZZYP7cuXPN4/FYtWrVSvStRWEzc3JybOrUqXbTTTdZo0aNSnRSPlVmXFxcoO/TvN86lXTUwaKs58cff2zDhg2zunXrhmw94+PjA60Sly9fbnfffbddeumlNmLEiBL37VWUdV2/fr2NGzfO6tWrV+x19fdlOGTIEHvllVfswgsvtMsuu6zAwu3u3btt0aJF9vTTT9ubb75pa9asCUlmQf75z3+ax+MJ2Xoeb/Xq1ebxeCwpKSmkz63/5Hj48GHbuXOnvfnmmzZ9+vRid/1QnOfWzOzdd98t9gehwmTm7Sv4+eeft2HDhtmYMWNK9JOioq5ramqqPfnkk9aoUaNiv6FMS0uzK664wu6888588wcMGGBXXXXVCfcPxrG+qJnTpk0r8bG+sJlZWVkndI9TXEVdz2Ac6wuT6d929+7da8nJyTZ58mR7//33i/2muajrGYzjvJnT0r13794n/KzuwgsvtHfffdemTZsWKORt2LDBPvnkE7v//vvtj3/8Y7H309Nlfvrpp4FWK/7n+ZVXXinRsd7MKQx07tw5XxdVa9eutWHDhlmFChUCj+3PfO6550ot08zZRz0ej9WoUaPYRa+iZPp8PpsyZYoNGjSoRF8Ini6zfPnygQ+5mzZtss8//9xGjRplf/nLX/K1rAt2bt51zc7ODhyHHnrooRK9JzvduvpbmC5cuNAuvvhiO//8823YsGHFPpcWJjPvtpuSkmKjRo2yWrVqFfs1PXjwoF133XU2bNgwGz9+vHXs2NHuueeekxYXg3FOK2pmMM5phcn0v98N1jmtqOsZjHPa6TLzvu8M1jnN/1gXXXSR3XXXXfnmd+rUKdBfbd7+8F944QW74YYb7JFHHil2Magwmccr6bG+qJnBONYXNfNf//qXDR061OrXrx/S9czb8OSLL74o8bG+OK+nWcmP80XZdpcsWRKUY31R13XZsmUlPtabufPeqDRRtEWhzJw50zwezwkfQHw+n919992WmJgY+EC0efNm69GjR4m/tShK5tatW+3FF1887be8Jcm866678mUGS1Gf24kTJxa7oFjYzMqVKwdOEv6fH5akP6bC5uZd1yNHjtjixYvzdX5fHB988IG9/vrrZmb23//+t8DiYrA7eD9dZkFK2s9WUTJTU1Pt6quvLnZrzKJkuvncFvfnaMXJPL7PtmCsd1HWNSsryzZt2pRvwI+i2rhxow0fPjzw5ZS/5dwrr7xil112mZnl/5C3adOmEh/ri5q5ZcuWEh/ri5oZDMV5bidMmFCiY31hMv39fAVLUdfz8OHDtmjRohIf59PT0+3NN9/M91Pmp556yrxer7Vr1846depksbGxxf7pZnEz4+Li8n2Y3b17d4kHwvnvf/9rMTExJ3RTtHXrVhsyZIg1bdo08HNKn89nixYtKvH7lqJkrlmzxho0aFDs1mXFydywYYPdf//9JfqirLCZJT1XFzf3+J/IlvQ9WWEy/e/V/N1ElXTAn6KsZ3p6un399dcler79g4W+8847Zmb25z//+ZTFxWCc04qauWXLFnvhhRdKdE4ramYwjvnFeW5Lek4rbGaw33empKTYkCFDbNasWWaW+7lo1KhRduutt5pZwZ8lSrIchck8PmvhwoUlOtYXNXP16tVWv379Eh3ri5q5YcMG+/3vf1+iL8oK+3oG871RUdfTn13S43xh19X/2cXf7UNJjvVFXdf09HSbPn16ic+tbrw3Kk0UbVEo2dnZ1rt3b7v22msD32D4T0Zbtmyx3r172xNPPJGv37bSyjx+kIZQZ44fPz5oeYXNzLuewXgzUtjMnJwcV57fUIyS6ffhhx8Gil/+FolHjx4N9CtZ1jP9/TsGYx8tbGa0PLclKZiWJDeY65q3r0//Pv/mm29anz598s3z9/sVjFF7C5vpbyEUjONDYTNP16daKDL96xmMLx0Km5mWllbirKJm5h3wIhjy9jH373//22rUqGGffPKJ7d2713bv3m2XXXaZXXjhhXb48OGgnWPcyNy+fbt169bNxowZc8L2OXfuXOvSpUuB3Q2VZmYwjgtFzQzG/lKUzGC+T3EjtziZJX0f6Ma2e+TIkXzL/dJLLwUKff4vUDIyMgIf9IOx7RY209/3dTBe08JkZmZm2q5du0qcVZTMvOsZjH20sJnBXE+fz5evex//6zVp0iS75ppr8t23JANaRlKm/z3DkSNHSi3Tf8wo6XZUlMzidh0SDplFzS1Jn+xuZ5q5c34pTV4BhRATE6Nrr71WGzdu1Msvv6z09HR5vc7mU79+fVWqVEmrVq1SbGysJCk+Pr7UMmNiYiRJHo+nVDJXrlwZtLzCZuZdT/9tpZHp9XpdeX6DsY7Hy8nJkSQNGTJEd955pw4fPqzHH39c8+fP14MPPqjOnTsrIyNDZlamM7t06aKMjIzAvloamdH23AYzszC5wVhX///269cvcN2/zx88eFB79+4NzHvqqad0xx13KCsrS3FxcaWWefvttysrK6tEx6KiZg4fPlzZ2dml+tz617Mkx8GiZt52223Kzs4udl5xMv3rGaz9pVKlSoG/+/btq2+++UZXXHGFqlatqurVq6t+/fqKjY1V+fLlg3aOcSOzTp06Ov/88zV9+nR99NFHOnr0aOC2Hj16KCcnR3PmzAlKVnEzg/EesKiZ/vcqpZUZzPcpbuQWJ7Ok7wPd2HbLlSsnj8cTOI/ed999uvnmmzVnzhy98MILWrlypR555BFdccUVyszMLNE5raiZl19+uTIzM4Py/rowmaNGjdLAgQOVmZkZlONuUdczGNtuYTODtZ4+n08ej0eDBw+W5JzX/Otx6NAh7dq1K3DfyZMn64knnggsW2ll/uEPfyj1zCeffFLZ2dklOtYXNXP8+PHKzs4u0XYUCc9tMDKLk+vGtuvPDMbxyI3zS2kK3qd2lFn+D1kjR47UunXrNHXqVB05ckTjxo1TYmKiJKl69eqqWrWqcnJy5PV6S/wGhMyylRkOuTExMYEi09VXXy2Px6PXX39dv/nNb5STk6Pp06crISGhxHlkkhkspZnr39f8mR6PR9nZ2YqNjVVSUpIqV64sj8ejxx57TM8++6x+/vnnEn+4jZTMkn7BwXqGbj3z8ueamapXr67q1avnm5+dna3WrVuH5PxSWpk+n09er1fPPPOMrrnmGv3xj3/UkSNHdPPNN6tcuXKSpCZNmqhevXolXreSZEbLekZqbrRkSgWfR++77z5J0jvvvKMvvvhCqampmjFjRlC+bCCzbGX6C04FndcqV66spKQkSdJjjz2mCRMmaMmSJSX+AilSMkv6niFSMiPx9XQr1611dev8UqqK2UIXUeT4n+U/+eST1r17d2vRooWNGjXKhg4dapUqVSrR4ARklu1Mt3L9mXl/hpv3Z1V9+/a1KlWqWEpKCplkhk2mW7kFZZo5Az9cfvnlNnbs2BKNqE0mmaHIPFWumfNz58cee8xq165d4j5PwyXT75ZbbrFOnTpZ//797Y9//KMNHz7cKleuXOL+ysksnUy3cqMtM+9PcPN2RdC9e3erWrVqiftfJrPsZp4s18zsxRdftFtvvdXGjx9v5cqVC8m5lEwyIy3XzUy/0jp/lyaKtsjn+H6V/DvBxo0brXXr1jZjxgwzcwaUuvfee+3iiy+2m266qUSFAzLLVqZbuafKbNeuXWBgHDOnY/dRo0ZZXFycLVmyhEwyXct0K7coma+//rp5PB6rWLFisUfUJpPMYGQWNXfmzJl2++23l3hUYjcy8/KP/O7P7N27tyUnJ5vP57O3337brrvuOuvevbtdeeWVtnTpUjLDPNOt3GjNvPDCC+2HH34I3J6ZmWm33XabeTyeoBX4yCxbmYXJnTBhQuC8FqwCFJlkRmpuOGSW1vnbDRRtYWb5W4oc/+Fk48aNVr9+fbvzzjtPGMWwoNEyyYzOTLdyC5t5/AAaH3zwQbGLXmSSWdJMt3KLkzl9+nTr0qWLrVixgkwyXcksbu7nn39uY8eOLXbrCjcyt27dap988ol98MEHJxS4161bZw0bNrQ77rjjhPPo0aNHLTMzk8wwy3Qrl8z8mcefR1977TWbN28emWQWKTevN954wxo3blzs8xqZZJY0061cNzLXr19vzz//vI0ZM8amTZt20sxgn7/DBUVb2PLlyy0pKckmTJgQmJf3w8ktt9xywgmypCPIklm2Mt3KJZPMSMx0K7c4mX6pqalkkulKZklzizsavBuZycnJ1rRpU+vSpYs1atTIGjVqZJ999pmZOfv/RRddZNddd11QjkFkhj7TrVwyT55Z0nwyy1ZmcXP9t23bto1MMl3JdCvXjcylS5dagwYNrG/fvtarVy/zeDw2derUwO39+/e3YcOGBf38HU4o2ka5zZs3W8eOHa158+ZWrVo1mzRpUuA2/8//gv3tBJllK9OtXDLJjMRMt3KLm1mSlvdkklnSzJLkRlrm2rVrrX79+jZ69Gjbt2+fJScn24gRI2zw4MF28OBBMzPLyMgI6ocSMkOX6VYumWSSGfrckpzXyCSzpJlu5bqRuWrVKmvQoIGNGTPGMjIybO/evXbJJZfYK6+8ErhPcb8ojyQUbaNYTk6OvfjiizZo0CD77rvv7JlnnrHExMR8H06C/aGEzLKV6VYumWRGYqZbuWSSGYmZbuW6kZmRkWEPPvigXX311fke+4033rB69epZenp6UPPIDG2mW7lkkklmeOeSSWak5rqVed1119lNN92Ub7CxwYMH2w033GC33nqrvfjii7Z3796gZ4ebWCFqeb1eXXLJJapVq5b69OmjDh06yMw0adIkSdLvf/97xcXFyefzyev1kklm2OSSSWYkZrqVSyaZkZjpVq5bmWeddZaaNGmiuLg4mZk8Ho/69u2rJ598UmlpaapcuXK+//Hfh8zwy3Qrl0wyyQzvXDLJZNstvPj4eI0dO1bbtm1TTEyMJGnixIn6+OOPNWzYMJUrV04PPvig1q5dqz//+c/FzokIQSn9IqLlbcK+a9euE1qVZGdn27Rp02zXrl1kkhlWuWSSGYmZbuWSSWYkZrqVW9qZeft682dv3brVzjjjDNu4cWNgXnEHOCOzdDPdyiWTTDLDO5dMMiM116119UtOTrZ+/frZF198Ecj6z3/+Y7GxsbZy5cqQZIYLWtpGmW3btmnr1q3as2eP+vXrJ6/XK6/Xq+zsbMXGxqpGjRq69dZbJTnfZJiZ9uzZo5deekmbNm0ik8yoWlcyyWR/IZNM9pdQZu7evVsDBgxQ7dq1JSmQ6fP5lJ6ersOHDys+Pl4ej0djxozRs88+q3379ikxMbHILVjIDF1mNK0rmWRGYmY0rSuZZSszmtb1ZO/HJKlt27b6v//7P9WtWzdwf6/Xq9atW6tGjRpFyok4pVoihquWLl1qDRs2tNatW1tsbKx17NjR/vrXv9qBAwfMzPL1FbJr1y6bNGmSeTweq1q1qs2fP59MMqNqXckkk/2FTDLZX0or89VXXw1k+gftWLdundWtW9f27dtnTzzxhFWuXNl+/vlnMsMsM5rWlUwyIzEzmtaVzLKVGU3rerr3Y2b5fwVlZjZq1Ci75JJLQtZ/cLigaBsldu3aZa1atbLRo0fbhg0bLDU11YYNG2bdu3e3Bx54ILCh5x3d74YbbrDExERbvnw5mWRG1bqSSSb7C5lksr+4mWlmtnPnTmvXrp1dffXVFh8fbwsWLCAzzDKjaV3JJDMSM6NpXcksW5nRtK5FyTRzump49NFHrUqVKpaSklKszEhC0TZKpKSkWOPGjW3p0qWBeRkZGfb4449bt27dbNy4cXbkyBEzc77BeOedd6x27dq2cOFCMsl0NZdMMiMx061cMsmMxEy3csM9c9myZebxeKx8+fK2ZMkSMsMw061cMskkM7xzySSTbTc0mQsWLLDf/va31qRJE1u8eHGxMyMJRdsosWrVKmvSpIl9+umnZmaWlZUVuBw1apR16NDBvv/++8D9169fbxs3biSTTNdzySQzEjPdyiWTzEjMdCs33DP37dtnDz/8sK1YsYLMMM10K5dMMskM71wyyWTbDU3mli1bbNq0abZ+/foSZUYSirZR4ujRo9alSxcbOHBgoH82/87g8/msbdu2duONNwauk0lmuOSSSWYkZrqVSyaZkZjpVm64Z/rvT2b4ZrqVSyaZZIZ3LplkBkO0rGthMm+44YYS50Qqr9sDoSH0fD6fEhIS9Oabb+r777/XyJEjJUmxsbEyM3k8Hl1++eVKTU2VpGKNaEhm2c50K5dMMiMx061cMsmMxEy3csM908wkSQkJCWSGaaZbuWSSSWZ455JJJttu8DN37dpVopxIRtE2Cni9XuXk5KhNmzZ6++239f777+vGG2/Uzp07A/fZsGGDqlatqpycHDLJDJtcMsmMxEy3cskkMxIz3coN90yfz0dmmGe6lUsmmWSGdy6ZZEZqbrhnBvO9ZyTxmL9EjjLD5/PJ682tx2dnZys2NlYHDx5URkaGlixZouuuu05nnHGGqlWrpurVq2vq1KmaO3eu2rZtSyaZUbWuZJLJ/kImmaWXGU3rSmbZyoymdSWTzEjMjKZ1JbNsZUbTurr1/EYyWtqWIbt375aU+22FJOXk5Cg2NlYbN25U8+bNNX/+fF144YVavny5LrnkEtWvX1+1atXSvHnzirUTkFm2MqNpXckkk/2FTDLZX8gkM1xzySSTzPDOJZNMtt3wziwzSt4tLsLBqlWrrHLlynb77bcH5vk7cd60aZPVqFHDhg8fbj6fLzDfP6hGTk4OmWS6lksmmZGY6VYumWRGYqZbuWSSybZLJpllO9OtXDLJZNsN78yyhJa2ZcSKFStUvnx5paSk6M4775QkxcTEKDMzU9OmTdMNN9ygv/3tb/J4PIqJicn3v8UdXIPMspXpVi6ZZEZiplu5ZJIZiZlu5ZJJZkkz3colk0wywzuXTDJLmulWbrRkliluV40RHF988YU1b97cnnnmGWvbtq3deeedgds2b95MJplhm0smmZGY6VYumWRGYqZbuWSSGam5ZJJJZnjnkklmpOZGS2ZZEut20RjB0bZtW3Xu3Fm33Xab4uPj9dZbb+mhhx5SWlqaunXrpltvvVVxcXFkkhl2uWSSGYmZbuWSSWYkZrqVSyaZkZpLJplkhncumWRGam60ZJYpbleNERyHDh2ydu3a2eLFi+3QoUP2+uuvW/Xq1c3j8VhycrKZ5fYbQiaZ4ZRLJpmRmOlWLplkRmKmW7lkkhmpuWSSSWZ455JJZqTmRktmWUKftmVAVlaWEhISVKdOHR08eFAVKlTQt99+q6ysLJ111ln6xz/+IUkn9A9CJplu55JJZiRmupVLJpmRmOlWLplkRmoumWSSGd65ZJIZqbnRklnW0D1ChNm2bZsWLVqkzMxMNW7cWJ06dQo0Je/cubPWrl2r119/Xd9//70+/fRTpaSk6JlnnlFsbKyee+45MsmMqnUlk0z2FzLJZH8hk8xwzSWTTDLDO5dMMtl2wzszKrjd1BeFl5ycbGeeeaZ169bNatSoYV26dLEPP/wwcPsTTzxhHo/HmjRpYgsXLjQzs3379tmrr75q69atI5PMqFpXMslkfyGTTPYXMskM11wyySQzvHPJJJNtN7wzowVF2wixdu1aa9CggT3yyCO2f/9+W7Bggd1000126623WlZWlpmZZWVl2V133WXz5s0zMzOfz2dmZjk5OWSSGVXrSiaZ7C9kksn+QiaZ4ZpLJplkhncumWSy7YZ3ZjShaBsBMjIy7KGHHrJrrrnGMjIyAvPfeOMNq169uu3evZtMMsMyl0wyIzHTrVwyyYzETLdyySQzUnPJJJPM8M4lk8xIzY2WzGhDn7YRwOfzqUGDBmrVqpXi4+NlZvJ4POrVq5cqVaqkrKysAv/H6y3+OHNklq1Mt3LJJDMSM93KJZPMSMx0K5dMMtl2ySSzbGe6lUsmmWy74Z0ZdUJVDUZwrV+/PvC3vyn59u3b7ayzzrJNmzYFblu0aBGZZIZVLplkRmKmW7lkkhmJmW7lkklmpOaSSSaZ4Z1LJpmRmhstmdGE8naY2r59u+bNm6evvvpKPp9PTZo0kSTl5OTI4/FIktLS0rRv377A/zz++OO68MILtWfPHpkZmVGeGU3rSiaZ7C9kksn+QiaZ4ZpLJplkhncumWSy7YZ3ZlQLVTUYxbd06VI744wzrHnz5paUlGQtW7a0KVOm2J49e8ws99uLVatWWc2aNW3v3r321FNPWfny5W3BggVkkhlV60ommewvZJLJ/kImmeGaSyaZZIZ3Lplksu2Gd2a0o2gbZlJTU61ly5Y2duxYW7dunW3dutWuvfZaa9Wqlf3hD3+w1NTUwH137txpHTt2tGuvvdbi4+OLvROQWbYyo2ldySST/YVMMtlfyCQzXHPJJJPM8M4lk0y23fDOBEXbsLN8+XJr3LjxCRv16NGjrW3btjZ58mQ7dOiQmZmtWLHCPB6PlS9f3hYvXkwmma7mkklmJGa6lUsmmZGY6VYumWSy7ZJJZtnOdCuXTDLZdsM7ExRtw86SJUusQYMG9v3335uZ2eHDhwO33XfffdakSRNbunSpmTmdO9999932yy+/kEmm67lkkhmJmW7lkklmJGa6lUsmmWy7ZJJZtjPdyiWTTLbd8M4ERduw1LVrV+vTp0/g+tGjRwN/d+nSxYYOHRq4fuTIETLJDJtcMsmMxEy3cskkMxIz3colk8xIzSWTTDLDO5dMMiM1N1oyo53X7YHQot2hQ4d04MABpaenB+b97W9/0/Lly3XddddJkhISEpSdnS1J6t27tw4dOhS4b7ly5ciM8ky3cskkMxIz3colk8xIzHQrl0wy2XbJJLNsZ7qVSyaZbLvhnYkTUbR10YoVKzRo0CCdf/75atWqld577z1JUqtWrfTSSy/pm2++0dVXX62srCx5vc5LlZqaqooVKyo7O1tmRmaUZ0bTupJJJvsLmWSyv5BJZrjmkkkmmeGdSyaZbLvhnYmTCFUTXpza8uXLrXr16vbggw/ae++9Zw899JDFxcXZokWLzMzs0KFDNm3aNGvQoIG1bNnSrrzySrvmmmusYsWKlpKSQiaZUbWuZJLJ/kImmewvZJIZrrlkkklmeOeSSSbbbnhn4uQ8ZpTAS9vevXs1bNgwtWzZUi+99FJgfp8+fdS2bVu9/PLLgXkHDhzQ008/rb1796pcuXIaOXKkWrduTWaUZ0bTupJJJvsLmWSyv5BJZrjmkkkmmeGdSyaZbLvhnYlTi3V7AaJRVlaW9u/fryFDhkiSfD6fvF6vmjRpor1790qSzBkkTpUrV9azzz6b735kkhlN60ommSXNjKZ1JZPMkmZG07qSWbYyo2ldySQzEjOjaV3JLFuZ0bSubj2/ODmeVRfUrl1b7777rs477zxJUk5OjiSpfv36gQ3d4/HI6/Xm6/TZ4/GQSaaruWSSGYmZbuWSSWYkZrqVSyaZJc10K5dMMskM71wyySxpplu50ZKJU6No65JmzZpJcr6RiIuLk+R8Y5Gamhq4z6RJk/SPf/wjMBpfSXcEMstWplu5ZJIZiZlu5ZJJZiRmupVLJplsu2SSWbYz3colk0y23fDOxMnRPYLLvF6vzCywkfu/vXj88cf19NNPa/HixYqNDe7LRGbZynQrl0wyIzHTrVwyyYzETLdyySQzUnPJJJPM8M4lk8xIzY2WTJyIlrZhwMwZCy42NlYNGzbUn/70J02ePFkLFixQ+/btySQzbHPJJDMSM93KJZPMSMx0K5dMMiM1l0wyyQzvXDLJjNTcaMlEfpTFw4D/G4u4uDj9/e9/V2JiombPnq1OnTqRSWZY55JJZiRmupVLJpmRmOlWLplkRmoumWSSGd65ZJIZqbnRkonjGMLG/PnzzePx2PLly8kkM6JyySQzEjPdyiWTzEjMdCuXTDIjNZdMMskM71wyyYzU3GjJhMNjdqy9M8LCoUOHVLFiRTLJjLhcMsmMxEy3cskkMxIz3colk8xIzSWTTDLDO5dMMiM1N1oyIVG0BQAAAAAAAIAwwkBkAAAAAAAAABBGKNoCAAAAAAAAQBihaAsAAAAAAAAAYYSiLQAAAAAAAACEEYq2AAAAAAAAABBGKNoCAAAAAAAAQBihaAsAAAAAAAAAYYSiLQAAAKLWzTffLI/HI4/Ho7i4ONWuXVv9+/fXP//5T/l8vkI/zltvvaUqVaqEbkEBAAAQVSjaAgAAIKpdfPHF2r59uzZu3Kgvv/xSffr00f3336+BAwcqOzvb7cUDAABAFKJoCwAAgKiWkJCgOnXqqH79+urUqZPGjh2rqVOn6ssvv9Rbb70lSXr++efVtm1bVaxYUQ0bNtRdd92lgwcPSpJmzpypW265RWlpaYFWu0888YQkKSMjQw8//LDq16+vihUrqnv37po5c6Y7KwoAAICIQdEWAAAAOE7fvn3Vvn17ffTRR5Ikr9erl19+WcuXL9fbb7+t7777To888ogkqVevXnrxxReVmJio7du3a/v27Xr44YclSffcc4/mzp2rDz74QMnJybr66qt18cUXa82aNa6tGwAAAMKfx8zM7YUAAAAA3HDzzTdr//79+uSTT064bejQoUpOTtaKFStOuO0///mPRowYod27d0ty+rR94IEHtH///sB9Nm3apDPPPFObNm1SvXr1AvP79eunbt26aeLEiUFfHwAAAJQNsW4vAAAAABCOzEwej0eS9L///U+TJk3SypUrlZ6eruzsbB09elSHDx9WhQoVCvz/lJQU5eTkqHnz5vnmZ2RkqHr16iFffgAAAEQuirYAAABAAX755Rc1adJEGzdu1MCBAzVy5EhNmDBB1apV0+zZszV8+HBlZmaetGh78OBBxcTEaOHChYqJicl3W6VKlUpjFQAAABChKNoCAAAAx/nuu++UkpKiBx98UAsXLpTP59Nzzz0nr9cZEuLf//53vvvHx8crJycn37yOHTsqJydHqampOu+880pt2QEAABD5KNoCAAAgqmVkZGjHjh3KycnRzp079dVXX2nSpEkaOHCgbrzxRi1btkxZWVn685//rMsuu0xz5szRa6+9lu8xGjdurIMHD+rbb79V+/btVaFCBTVv3lzXX3+9brzxRj333HPq2LGjdu3apW+//Vbt2rXTpZde6tIaAwAAINx53V4AAAAAwE1fffWV6tatq8aNG+viiy/WjBkz9PLLL2vq1KmKiYlR+/bt9fzzz+vZZ59VmzZt9N5772nSpEn5HqNXr14aMWKErr32WtWsWVOTJ0+WJL355pu68cYb9bvf/U4tWrTQlVdeqfnz56tRo0ZurCoAAAAihMfMzO2FAAAAAAAAAAA4aGkLAAAAAAAAAGGEoi0AAAAAAAAAhBGKtgAAAAAAAAAQRijaAgAAAAAAAEAYoWgLAAAAAAAAAGGEoi0AAAAAAAAAhBGKtgAAAAAAAAAQRijaAgAAAAAAAEAYoWgLAAAAAAAAAGGEoi0AAAAAAAAAhBGKtgAAAAAAAAAQRijaAgAAAAAAAEAY+X+Jfffj0X++QgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mipython_user_proxy\u001b[0m (to assistant):\n", - "\n", - "exitcode: 0 (execution succeeded)\n", - "Code output: \n", - "\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33massistant\u001b[0m (to ipython_user_proxy):\n", - "\n", - "It appears that the code executed successfully and the chart should have been displayed on your screen. Since I cannot view the chart, I will assume that you were able to see the META and TESLA stock price gains YTD plotted correctly.\n", - "\n", - "If you have any further requests or need assistance with another task, feel free to ask. Otherwise, if everything is done, please let me know.\n", - "\n", - "TERMINATE\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': 'Plot a chart of META and TESLA stock price gain YTD. Use data from the following csv file if it exists: coding/stock_price_ytd.csv. Use csv to read the file. Otherwise, figure out how to get the data.If you suggest code, the code will be executed in IPython.', 'role': 'assistant'}, {'content': 'First, we need to check if the file `coding/stock_price_ytd.csv` exists and if it contains the necessary data for META and TESLA stock price gains YTD (Year-To-Date). We will attempt to read the file using Python\\'s `csv` module. If the file does not exist or we cannot obtain the necessary data from it, we will then look for an alternative way to get the data.\\n\\nLet\\'s start by checking if the file exists and reading its contents.\\n\\n```python\\n# filename: check_csv_file.py\\n\\nimport csv\\nimport os\\n\\n# Define the path to the CSV file\\nfile_path = \\'coding/stock_price_ytd.csv\\'\\n\\n# Check if the file exists\\nif os.path.exists(file_path):\\n try:\\n # Attempt to read the file and print its contents\\n with open(file_path, mode=\\'r\\') as file:\\n csv_reader = csv.DictReader(file)\\n meta_data = []\\n tesla_data = []\\n for row in csv_reader:\\n if \\'META\\' in row:\\n meta_data.append(row)\\n if \\'TESLA\\' in row:\\n tesla_data.append(row)\\n print(\"META data:\", meta_data)\\n print(\"TESLA data:\", tesla_data)\\n except Exception as e:\\n print(f\"An error occurred while reading the file: {e}\")\\nelse:\\n print(\"The file does not exist.\")\\n```\\n\\nPlease execute the above code to check for the file and read its contents. If the file exists and contains the required data, we will proceed to plot the chart. If not, we will explore alternative ways to obtain the data.', 'role': 'user'}, {'content': \"exitcode: 0 (execution succeeded)\\nCode output: \\nMETA data: [{'Date': '2024-01-02', 'META': '346.2900085449219', 'TSLA': '248.4199981689453'}, {'Date': '2024-01-03', 'META': '344.4700012207031', 'TSLA': '238.4499969482422'}, {'Date': '2024-01-04', 'META': '347.1199951171875', 'TSLA': '237.92999267578125'}, {'Date': '2024-01-05', 'META': '351.95001220703125', 'TSLA': '237.49000549316406'}, {'Date': '2024-01-08', 'META': '358.6600036621094', 'TSLA': '240.4499969482422'}, {'Date': '2024-01-09', 'META': '357.42999267578125', 'TSLA': '234.9600067138672'}, {'Date': '2024-01-10', 'META': '370.4700012207031', 'TSLA': '233.94000244140625'}, {'Date': '2024-01-11', 'META': '369.6700134277344', 'TSLA': '227.22000122070312'}, {'Date': '2024-01-12', 'META': '374.489990234375', 'TSLA': '218.88999938964844'}, {'Date': '2024-01-16', 'META': '367.4599914550781', 'TSLA': '219.91000366210938'}, {'Date': '2024-01-17', 'META': '368.3699951171875', 'TSLA': '215.5500030517578'}, {'Date': '2024-01-18', 'META': '376.1300048828125', 'TSLA': '211.8800048828125'}, {'Date': '2024-01-19', 'META': '383.45001220703125', 'TSLA': '212.19000244140625'}, {'Date': '2024-01-22', 'META': '381.7799987792969', 'TSLA': '208.8000030517578'}, {'Date': '2024-01-23', 'META': '385.20001220703125', 'TSLA': '209.13999938964844'}, {'Date': '2024-01-24', 'META': '390.70001220703125', 'TSLA': '207.8300018310547'}, {'Date': '2024-01-25', 'META': '393.17999267578125', 'TSLA': '182.6300048828125'}, {'Date': '2024-01-26', 'META': '394.1400146484375', 'TSLA': '183.25'}, {'Date': '2024-01-29', 'META': '401.0199890136719', 'TSLA': '190.92999267578125'}, {'Date': '2024-01-30', 'META': '400.05999755859375', 'TSLA': '191.58999633789062'}, {'Date': '2024-01-31', 'META': '390.1400146484375', 'TSLA': '187.2899932861328'}, {'Date': '2024-02-01', 'META': '394.7799987792969', 'TSLA': '188.86000061035156'}, {'Date': '2024-02-02', 'META': '474.989990234375', 'TSLA': '187.91000366210938'}, {'Date': '2024-02-05', 'META': '459.4100036621094', 'TSLA': '181.05999755859375'}, {'Date': '2024-02-06', 'META': '454.7200012207031', 'TSLA': '185.10000610351562'}, {'Date': '2024-02-07', 'META': '469.5899963378906', 'TSLA': '187.5800018310547'}, {'Date': '2024-02-08', 'META': '470.0', 'TSLA': '189.55999755859375'}, {'Date': '2024-02-09', 'META': '468.1099853515625', 'TSLA': '193.57000732421875'}, {'Date': '2024-02-12', 'META': '468.8999938964844', 'TSLA': '188.1300048828125'}, {'Date': '2024-02-13', 'META': '460.1199951171875', 'TSLA': '184.02000427246094'}, {'Date': '2024-02-14', 'META': '473.2799987792969', 'TSLA': '188.7100067138672'}, {'Date': '2024-02-15', 'META': '484.0299987792969', 'TSLA': '200.4499969482422'}, {'Date': '2024-02-16', 'META': '473.32000732421875', 'TSLA': '199.9499969482422'}, {'Date': '2024-02-20', 'META': '471.75', 'TSLA': '193.75999450683594'}, {'Date': '2024-02-21', 'META': '468.0299987792969', 'TSLA': '194.77000427246094'}, {'Date': '2024-02-22', 'META': '486.1300048828125', 'TSLA': '197.41000366210938'}, {'Date': '2024-02-23', 'META': '484.0299987792969', 'TSLA': '191.97000122070312'}, {'Date': '2024-02-26', 'META': '481.739990234375', 'TSLA': '199.39999389648438'}, {'Date': '2024-02-27', 'META': '487.04998779296875', 'TSLA': '199.72999572753906'}, {'Date': '2024-02-28', 'META': '484.0199890136719', 'TSLA': '202.0399932861328'}, {'Date': '2024-02-29', 'META': '490.1300048828125', 'TSLA': '201.8800048828125'}, {'Date': '2024-03-01', 'META': '502.29998779296875', 'TSLA': '202.63999938964844'}]\\nTESLA data: []\\n\", 'role': 'assistant'}, {'content': 'The output indicates that the file `coding/stock_price_ytd.csv` exists and contains the necessary data for META stock price gains YTD. However, it seems that the TESLA data is not separated correctly, as the TESLA data appears to be within the same rows as the META data, but the script is looking for a separate \\'TESLA\\' entry in the rows.\\n\\nWe need to adjust the script to correctly parse the TESLA data from the same rows as the META data. Let\\'s modify the script to extract both META and TESLA stock prices from the same rows and then plot the chart.\\n\\n```python\\n# filename: plot_stock_prices.py\\n\\nimport csv\\nimport os\\nimport matplotlib.pyplot as plt\\n\\n# Define the path to the CSV file\\nfile_path = \\'coding/stock_price_ytd.csv\\'\\n\\n# Initialize lists to hold the parsed data\\ndates = []\\nmeta_prices = []\\ntesla_prices = []\\n\\n# Check if the file exists\\nif os.path.exists(file_path):\\n try:\\n # Read the file and parse the data\\n with open(file_path, mode=\\'r\\') as file:\\n csv_reader = csv.DictReader(file)\\n for row in csv_reader:\\n dates.append(row[\\'Date\\'])\\n meta_prices.append(float(row[\\'META\\']))\\n tesla_prices.append(float(row[\\'TSLA\\']))\\n \\n # Plot the data\\n plt.figure(figsize=(14, 7))\\n plt.plot(dates, meta_prices, label=\\'META\\', marker=\\'o\\')\\n plt.plot(dates, tesla_prices, label=\\'TESLA\\', marker=\\'x\\')\\n \\n # Formatting the plot\\n plt.title(\\'META vs TESLA Stock Price Gain YTD\\')\\n plt.xlabel(\\'Date\\')\\n plt.ylabel(\\'Stock Price\\')\\n plt.xticks(rotation=45)\\n plt.legend()\\n plt.tight_layout()\\n \\n # Show the plot\\n plt.show()\\n except Exception as e:\\n print(f\"An error occurred while processing the file: {e}\")\\nelse:\\n print(\"The file does not exist.\")\\n```\\n\\nPlease execute the above code to plot the chart of META and TESLA stock price gains YTD.', 'role': 'user'}, {'content': 'exitcode: 0 (execution succeeded)\\nCode output: \\n', 'role': 'assistant'}, {'content': 'It appears that the code executed successfully and the chart should have been displayed on your screen. Since I cannot view the chart, I will assume that you were able to see the META and TESLA stock price gains YTD plotted correctly.\\n\\nIf you have any further requests or need assistance with another task, feel free to ask. Otherwise, if everything is done, please let me know.\\n\\nTERMINATE', 'role': 'user'}], summary='It appears that the code executed successfully and the chart should have been displayed on your screen. Since I cannot view the chart, I will assume that you were able to see the META and TESLA stock price gains YTD plotted correctly.\\n\\nIf you have any further requests or need assistance with another task, feel free to ask. Otherwise, if everything is done, please let me know.\\n\\n', cost=({'total_cost': 2.1070799999999994, 'gpt-4': {'cost': 2.1070799999999994, 'prompt_tokens': 45338, 'completion_tokens': 12449, 'total_tokens': 57787}}, {'total_cost': 1.7238599999999995, 'gpt-4': {'cost': 1.7238599999999995, 'prompt_tokens': 37832, 'completion_tokens': 9815, 'total_tokens': 47647}}), human_input=[])" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ - "ipy_user = IPythonUserProxyAgent(\n", - " \"ipython_user_proxy\",\n", - " human_input_mode=\"NEVER\",\n", - " max_consecutive_auto_reply=10,\n", - " is_termination_msg=lambda x: x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\")\n", - " or x.get(\"content\", \"\").rstrip().endswith('\"TERMINATE\".'),\n", - " code_execution_config={\n", - " \"use_docker\": False, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.\n", - " },\n", - ")\n", - "# the assistant receives a message from the user, which contains the task description\n", - "ipy_user.initiate_chat(\n", - " assistant,\n", - " message=my_ipy_message_generator,\n", - " raw_message=\"\"\"Plot a chart of META and TESLA stock price gain YTD. \"\"\",\n", - " carryover=\"Use data from the following csv file if it exists: coding/stock_price_ytd.csv. Use csv to read the file. Otherwise, figure out how to get the data.\",\n", - ")" + "print(chat_res.cost)" ] } ], @@ -1053,7 +882,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.5" }, "vscode": { "interpreter": { diff --git a/notebook/agentchat_cost_token_tracking.ipynb b/notebook/agentchat_cost_token_tracking.ipynb index 7334f2e36bb..7feb7a908f4 100644 --- a/notebook/agentchat_cost_token_tracking.ipynb +++ b/notebook/agentchat_cost_token_tracking.ipynb @@ -32,7 +32,7 @@ "To gather usage data for a list of agents, we provide an utility function `autogen.gather_usage_summary(agents)` where you pass in a list of agents and gather the usage summary.\n", "\n", "## Caution when using Azure OpenAI!\n", - "If you are using azure OpenAI, the model returned from completion doesn't have the version information. The returned model is either 'gpt-35-turbo' or 'gpt-4'. From there, we are calculating the cost based on gpt-3.5-0613: ((0.0015, 0.002) per 1k prompt and completion tokens) and gpt-4-0613: (0.03,0.06). This means the cost is wrong if you are using the 1106 version of the models from azure OpenAI.\n", + "If you are using azure OpenAI, the model returned from completion doesn't have the version information. The returned model is either 'gpt-35-turbo' or 'gpt-4'. From there, we are calculating the cost based on gpt-3.5-turbo-0125: (0.0005, 0.0015) per 1k prompt and completion tokens and gpt-4-0613: (0.03, 0.06). This means the cost can be wrong if you are using a different version from azure OpenAI.\n", "\n", "This will be improved in the future. However, the token count summary is accurate. You can use the token count to calculate the cost yourself.\n", "\n", @@ -55,25 +55,18 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import autogen\n", "from autogen import AssistantAgent, OpenAIWrapper, UserProxyAgent, gather_usage_summary\n", "\n", - "# config_list = autogen.config_list_from_json(\n", - "# \"OAI_CONFIG_LIST\",\n", - "# filter_dict={\n", - "# \"model\": [\"gpt-3.5-turbo\", \"gpt-4-1106-preview\"],\n", - "# },\n", - "# )\n", - "\n", "config_list = autogen.config_list_from_json(\n", " \"OAI_CONFIG_LIST\",\n", - " # filter_dict={\n", - " # \"model\": [\"gpt-3.5-turbo\", \"gpt-35-turbo\"],\n", - " # },\n", + " filter_dict={\n", + " \"tags\": [\"gpt-3.5-turbo\", \"gpt-3.5-turbo-16k\"], # comment out to get all\n", + " },\n", ")" ] }, @@ -81,21 +74,23 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "It first looks for environment variable \"OAI_CONFIG_LIST\" which needs to be a valid json string. If that variable is not found, it then looks for a json file named \"OAI_CONFIG_LIST\". It filters the configs by models (you can filter by other keys as well).\n", + "It first looks for environment variable \"OAI_CONFIG_LIST\" which needs to be a valid json string. If that variable is not found, it then looks for a json file named \"OAI_CONFIG_LIST\". It filters the configs by tags (you can filter by other keys as well).\n", "\n", "The config list looks like the following:\n", "```python\n", "config_list = [\n", " {\n", - " \"model\": \"gpt-4\",\n", + " \"model\": \"gpt-3.5-turbo\",\n", " \"api_key\": \"\",\n", - " }, # OpenAI API endpoint for gpt-4\n", + " \"tags\": [\"gpt-3.5-turbo\"],\n", + " }, # OpenAI API endpoint for gpt-3.5-turbo\n", " {\n", " \"model\": \"gpt-35-turbo-0613\", # 0613 or newer is needed to use functions\n", " \"base_url\": \"\", \n", " \"api_type\": \"azure\", \n", " \"api_version\": \"2024-02-15-preview\", # 2023-07-01-preview or newer is needed to use functions\n", - " \"api_key\": \"\"\n", + " \"api_key\": \"\",\n", + " \"tags\": [\"gpt-3.5-turbo\", \"0613\"],\n", " }\n", "]\n", "```\n", @@ -112,14 +107,14 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.00861\n" + "0.00020600000000000002\n" ] } ], @@ -128,7 +123,7 @@ "messages = [\n", " {\"role\": \"user\", \"content\": \"Can you give me 3 useful tips on learning Python? Keep it simple and short.\"},\n", "]\n", - "response = client.create(messages=messages, model=\"gpt-3.5-turbo\", cache_seed=None)\n", + "response = client.create(messages=messages, cache_seed=None)\n", "print(response.cost)" ] }, @@ -143,7 +138,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -164,7 +159,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -172,19 +167,21 @@ "output_type": "stream", "text": [ "----------------------------------------------------------------------------------------------------\n", - "No actual cost incurred (all completions are using cache).\n", + "Usage summary excluding cached usage: \n", + "Total cost: 0.00023\n", + "* Model 'gpt-35-turbo': cost: 0.00023, prompt_tokens: 25, completion_tokens: 142, total_tokens: 167\n", "\n", - "Usage summary including cached usage: \n", - "Total cost: 0.01059\n", - "* Model 'gpt-4': cost: 0.01059, prompt_tokens: 25, completion_tokens: 164, total_tokens: 189\n", + "All completions are non-cached: the total cost with cached completions is the same as actual cost.\n", "----------------------------------------------------------------------------------------------------\n", "----------------------------------------------------------------------------------------------------\n", - "No actual cost incurred (all completions are using cache).\n", + "Usage summary excluding cached usage: \n", + "Total cost: 0.00023\n", + "* Model 'gpt-35-turbo': cost: 0.00023, prompt_tokens: 25, completion_tokens: 142, total_tokens: 167\n", "----------------------------------------------------------------------------------------------------\n", "----------------------------------------------------------------------------------------------------\n", "Usage summary including cached usage: \n", - "Total cost: 0.01059\n", - "* Model 'gpt-4': cost: 0.01059, prompt_tokens: 25, completion_tokens: 164, total_tokens: 189\n", + "Total cost: 0.00023\n", + "* Model 'gpt-35-turbo': cost: 0.00023, prompt_tokens: 25, completion_tokens: 142, total_tokens: 167\n", "----------------------------------------------------------------------------------------------------\n" ] } @@ -192,7 +189,7 @@ "source": [ "# The first creation\n", "# By default, cache_seed is set to 41 and enabled. If you don't want to use cache, set cache_seed to None.\n", - "response = client.create(messages=messages, model=\"gpt-35-turbo-1106\", cache_seed=41)\n", + "response = client.create(messages=messages, cache_seed=41)\n", "client.print_usage_summary() # default to [\"actual\", \"total\"]\n", "client.print_usage_summary(mode=\"actual\") # print actual usage summary\n", "client.print_usage_summary(mode=\"total\") # print total usage summary" @@ -200,15 +197,15 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "None\n", - "{'total_cost': 0.01059, 'gpt-4': {'cost': 0.01059, 'prompt_tokens': 25, 'completion_tokens': 164, 'total_tokens': 189}}\n" + "{'total_cost': 0.0002255, 'gpt-35-turbo': {'cost': 0.0002255, 'prompt_tokens': 25, 'completion_tokens': 142, 'total_tokens': 167}}\n", + "{'total_cost': 0.0002255, 'gpt-35-turbo': {'cost': 0.0002255, 'prompt_tokens': 25, 'completion_tokens': 142, 'total_tokens': 167}}\n" ] } ], @@ -220,7 +217,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -228,11 +225,13 @@ "output_type": "stream", "text": [ "----------------------------------------------------------------------------------------------------\n", - "No actual cost incurred (all completions are using cache).\n", + "Usage summary excluding cached usage: \n", + "Total cost: 0.00023\n", + "* Model 'gpt-35-turbo': cost: 0.00023, prompt_tokens: 25, completion_tokens: 142, total_tokens: 167\n", "\n", "Usage summary including cached usage: \n", - "Total cost: 0.02118\n", - "* Model 'gpt-4': cost: 0.02118, prompt_tokens: 50, completion_tokens: 328, total_tokens: 378\n", + "Total cost: 0.00045\n", + "* Model 'gpt-35-turbo': cost: 0.00045, prompt_tokens: 50, completion_tokens: 284, total_tokens: 334\n", "----------------------------------------------------------------------------------------------------\n" ] } @@ -240,13 +239,13 @@ "source": [ "# Since cache is enabled, the same completion will be returned from cache, which will not incur any actual cost.\n", "# So actual cost doesn't change but total cost doubles.\n", - "response = client.create(messages=messages, model=\"gpt-35-turbo-1106\", cache_seed=41)\n", + "response = client.create(messages=messages, cache_seed=41)\n", "client.print_usage_summary()" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -265,7 +264,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -276,15 +275,15 @@ "No actual cost incurred (all completions are using cache).\n", "\n", "Usage summary including cached usage: \n", - "Total cost: 0.01059\n", - "* Model 'gpt-4': cost: 0.01059, prompt_tokens: 25, completion_tokens: 164, total_tokens: 189\n", + "Total cost: 0.00023\n", + "* Model 'gpt-35-turbo': cost: 0.00023, prompt_tokens: 25, completion_tokens: 142, total_tokens: 167\n", "----------------------------------------------------------------------------------------------------\n" ] } ], "source": [ "# all completions are returned from cache, so no actual cost incurred.\n", - "response = client.create(messages=messages, model=\"gpt-35-turbo-1106\", cache_seed=41)\n", + "response = client.create(messages=messages, cache_seed=41)\n", "client.print_usage_summary()" ] }, @@ -302,7 +301,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -313,32 +312,22 @@ "\n", "$x^3=125$. What is x?\n", "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to ai_user):\n", "\n", - "To find the value of $x$ when $x^3 = 125$, you can find the cube root of 125. The cube root of a number is a value that, when multiplied by itself three times, gives the original number.\n", - "\n", - "The cube root of 125 can be written as $125^{1/3}$ or $\\sqrt[3]{125}$. Since $5 \\times 5 \\times 5 = 125$, it follows that:\n", - "\n", - "$$x = \\sqrt[3]{125} = 5$$\n", + "To find x, we need to take the cube root of 125. The cube root of a number is the number that, when multiplied by itself three times, gives the original number.\n", "\n", - "Therefore, $x = 5$.\n", + "In this case, the cube root of 125 is 5 since 5 * 5 * 5 = 125. Therefore, x = 5.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mai_user\u001b[0m (to assistant):\n", "\n", - "Your calculation is correct. The value of $x$ when $x^3 = 125$ is indeed $x = 5$. Great job!\n", + "That's correct! Well done. The value of x is indeed 5, as you correctly found by taking the cube root of 125. Keep up the good work!\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to ai_user):\n", "\n", - "Thank you for the confirmation! I'm glad the answer was helpful. If you have any more questions or need assistance with anything else, feel free to ask!\n", + "Thank you! I'm glad I could help. If you have any more questions, feel free to ask!\n", "\n", "--------------------------------------------------------------------------------\n" ] @@ -346,10 +335,10 @@ { "data": { "text/plain": [ - "ChatResult(chat_history=[{'content': '$x^3=125$. What is x?', 'role': 'assistant'}, {'content': 'To find the value of $x$ when $x^3 = 125$, you can find the cube root of 125. The cube root of a number is a value that, when multiplied by itself three times, gives the original number.\\n\\nThe cube root of 125 can be written as $125^{1/3}$ or $\\\\sqrt[3]{125}$. Since $5 \\\\times 5 \\\\times 5 = 125$, it follows that:\\n\\n$$x = \\\\sqrt[3]{125} = 5$$\\n\\nTherefore, $x = 5$.', 'role': 'user'}, {'content': 'Your calculation is correct. The value of $x$ when $x^3 = 125$ is indeed $x = 5$. Great job!', 'role': 'assistant'}, {'content': \"Thank you for the confirmation! I'm glad the answer was helpful. If you have any more questions or need assistance with anything else, feel free to ask!\", 'role': 'user'}], summary=\"Thank you for the confirmation! I'm glad the answer was helpful. If you have any more questions or need assistance with anything else, feel free to ask!\", cost=({'total_cost': 0.022019999999999998, 'gpt-4': {'cost': 0.022019999999999998, 'prompt_tokens': 372, 'completion_tokens': 181, 'total_tokens': 553}}, {'total_cost': 0.022019999999999998, 'gpt-4': {'cost': 0.022019999999999998, 'prompt_tokens': 372, 'completion_tokens': 181, 'total_tokens': 553}}), human_input=[])" + "ChatResult(chat_id=None, chat_history=[{'content': '$x^3=125$. What is x?', 'role': 'assistant'}, {'content': 'To find x, we need to take the cube root of 125. The cube root of a number is the number that, when multiplied by itself three times, gives the original number.\\n\\nIn this case, the cube root of 125 is 5 since 5 * 5 * 5 = 125. Therefore, x = 5.', 'role': 'user'}, {'content': \"That's correct! Well done. The value of x is indeed 5, as you correctly found by taking the cube root of 125. Keep up the good work!\", 'role': 'assistant'}, {'content': \"Thank you! I'm glad I could help. If you have any more questions, feel free to ask!\", 'role': 'user'}], summary=\"Thank you! I'm glad I could help. If you have any more questions, feel free to ask!\", cost={'usage_including_cached_inference': {'total_cost': 0.000333, 'gpt-35-turbo': {'cost': 0.000333, 'prompt_tokens': 282, 'completion_tokens': 128, 'total_tokens': 410}}, 'usage_excluding_cached_inference': {'total_cost': 0.000333, 'gpt-35-turbo': {'cost': 0.000333, 'prompt_tokens': 282, 'completion_tokens': 128, 'total_tokens': 410}}}, human_input=[])" ] }, - "execution_count": 22, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -387,7 +376,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -397,8 +386,8 @@ "Agent 'ai_user':\n", "----------------------------------------------------------------------------------------------------\n", "Usage summary excluding cached usage: \n", - "Total cost: 0.00669\n", - "* Model 'gpt-4': cost: 0.00669, prompt_tokens: 161, completion_tokens: 31, total_tokens: 192\n", + "Total cost: 0.00011\n", + "* Model 'gpt-35-turbo': cost: 0.00011, prompt_tokens: 114, completion_tokens: 35, total_tokens: 149\n", "\n", "All completions are non-cached: the total cost with cached completions is the same as actual cost.\n", "----------------------------------------------------------------------------------------------------\n", @@ -406,8 +395,8 @@ "Agent 'assistant':\n", "----------------------------------------------------------------------------------------------------\n", "Usage summary excluding cached usage: \n", - "Total cost: 0.01533\n", - "* Model 'gpt-4': cost: 0.01533, prompt_tokens: 211, completion_tokens: 150, total_tokens: 361\n", + "Total cost: 0.00022\n", + "* Model 'gpt-35-turbo': cost: 0.00022, prompt_tokens: 168, completion_tokens: 93, total_tokens: 261\n", "\n", "All completions are non-cached: the total cost with cached completions is the same as actual cost.\n", "----------------------------------------------------------------------------------------------------\n" @@ -422,7 +411,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -446,17 +435,17 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Actual usage summary for assistant (excluding completion from cache): {'total_cost': 0.01533, 'gpt-4': {'cost': 0.01533, 'prompt_tokens': 211, 'completion_tokens': 150, 'total_tokens': 361}}\n", - "Total usage summary for assistant (including completion from cache): {'total_cost': 0.01533, 'gpt-4': {'cost': 0.01533, 'prompt_tokens': 211, 'completion_tokens': 150, 'total_tokens': 361}}\n", - "Actual usage summary for ai_user_proxy: {'total_cost': 0.00669, 'gpt-4': {'cost': 0.00669, 'prompt_tokens': 161, 'completion_tokens': 31, 'total_tokens': 192}}\n", - "Total usage summary for ai_user_proxy: {'total_cost': 0.00669, 'gpt-4': {'cost': 0.00669, 'prompt_tokens': 161, 'completion_tokens': 31, 'total_tokens': 192}}\n", + "Actual usage summary for assistant (excluding completion from cache): {'total_cost': 0.0002235, 'gpt-35-turbo': {'cost': 0.0002235, 'prompt_tokens': 168, 'completion_tokens': 93, 'total_tokens': 261}}\n", + "Total usage summary for assistant (including completion from cache): {'total_cost': 0.0002235, 'gpt-35-turbo': {'cost': 0.0002235, 'prompt_tokens': 168, 'completion_tokens': 93, 'total_tokens': 261}}\n", + "Actual usage summary for ai_user_proxy: {'total_cost': 0.0001095, 'gpt-35-turbo': {'cost': 0.0001095, 'prompt_tokens': 114, 'completion_tokens': 35, 'total_tokens': 149}}\n", + "Total usage summary for ai_user_proxy: {'total_cost': 0.0001095, 'gpt-35-turbo': {'cost': 0.0001095, 'prompt_tokens': 114, 'completion_tokens': 35, 'total_tokens': 149}}\n", "Actual usage summary for user_proxy: None\n", "Total usage summary for user_proxy: None\n" ] @@ -475,27 +464,27 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'total_cost': 0.022019999999999998,\n", - " 'gpt-4': {'cost': 0.022019999999999998,\n", - " 'prompt_tokens': 372,\n", - " 'completion_tokens': 181,\n", - " 'total_tokens': 553}}" + "{'total_cost': 0.000333,\n", + " 'gpt-35-turbo': {'cost': 0.000333,\n", + " 'prompt_tokens': 282,\n", + " 'completion_tokens': 128,\n", + " 'total_tokens': 410}}" ] }, - "execution_count": 26, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "total_usage_summary, actual_usage_summary = gather_usage_summary([assistant, ai_user_proxy, user_proxy])\n", - "total_usage_summary" + "usage_summary = gather_usage_summary([assistant, ai_user_proxy, user_proxy])\n", + "usage_summary[\"usage_including_cached_inference\"]" ] } ], diff --git a/notebook/agentchat_function_call.ipynb b/notebook/agentchat_function_call.ipynb index 1ae6dd81b74..c91699d0d44 100644 --- a/notebook/agentchat_function_call.ipynb +++ b/notebook/agentchat_function_call.ipynb @@ -31,7 +31,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 10, "id": "2b803c17", "metadata": {}, "outputs": [], @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 11, "id": "dca301a4", "metadata": {}, "outputs": [], @@ -65,9 +65,7 @@ "\n", "config_list = autogen.config_list_from_json(\n", " \"OAI_CONFIG_LIST\",\n", - " filter_dict={\n", - " \"model\": [\"gpt-4\", \"gpt-3.5-turbo\", \"gpt-3.5-turbo-16k\"],\n", - " },\n", + " filter_dict={\"tags\": [\"tool\"]}, # comment out to get all\n", ")" ] }, @@ -77,7 +75,7 @@ "id": "92fde41f", "metadata": {}, "source": [ - "It first looks for environment variable \"OAI_CONFIG_LIST\" which needs to be a valid json string. If that variable is not found, it then looks for a json file named \"OAI_CONFIG_LIST\". It filters the configs by models (you can filter by other keys as well). Only the models with matching names are kept in the list based on the filter condition.\n", + "It first looks for environment variable \"OAI_CONFIG_LIST\" which needs to be a valid json string. If that variable is not found, it then looks for a json file named \"OAI_CONFIG_LIST\". It filters the configs by tags (you can filter by other keys as well). Only the configs with matching tags are kept in the list based on the filter condition.\n", "\n", "The config list looks like the following:\n", "```python\n", @@ -85,6 +83,7 @@ " {\n", " 'model': 'gpt-4',\n", " 'api_key': '',\n", + " 'tags': ['tool', 'gpt-4'],\n", " },\n", " {\n", " 'model': 'gpt-3.5-turbo',\n", @@ -92,6 +91,7 @@ " 'base_url': '',\n", " 'api_type': 'azure',\n", " 'api_version': '2024-02-15-preview',\n", + " 'tags': ['tool', 'gpt-3.5-turbo'],\n", " },\n", " {\n", " 'model': 'gpt-3.5-turbo-16k',\n", @@ -99,6 +99,7 @@ " 'base_url': '',\n", " 'api_type': 'azure',\n", " 'api_version': '2024-02-15-preview',\n", + " 'tags': ['tool', 'gpt-3.5-turbo-16k'],\n", " },\n", "]\n", "```\n", @@ -119,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 12, "id": "9fb85afb", "metadata": {}, "outputs": [], @@ -188,7 +189,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 13, "id": "27d3e43a", "metadata": {}, "outputs": [ @@ -203,62 +204,9 @@ "--------------------------------------------------------------------------------\n", "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", "\n", - "\u001b[32m***** Suggested tool Call (call_bsaGbd8WGdC869LhG62hI0uK): python *****\u001b[0m\n", - "Arguments: \n", - "cell = \"\"\"\n", - "import matplotlib.pyplot as plt\n", - "import matplotlib.patches as patches\n", - "\n", - "# Creating a simple scene for two agents chatting\n", - "fig, ax = plt.subplots()\n", - "\n", - "# Draw two circles representing the agents\n", - "ax.add_patch(patches.Circle((2, 2), 0.5, fill=True, color='blue', label='Agent A'))\n", - "ax.add_patch(patches.Circle((5, 2), 0.5, fill=True, color='green', label='Agent B'))\n", - "\n", - "# Example dialogues as text\n", - "ax.text(1, 3, \"Hello!\", style='italic', bbox={'facecolor': 'red', 'alpha': 0.5, 'pad': 5})\n", - "ax.text(4, 3, \"Hi there!\", style='italic', bbox={'facecolor': 'yellow', 'alpha': 0.5, 'pad': 5})\n", - "\n", - "# Setting the limits of the plot\n", - "ax.set_xlim(0, 7)\n", - "ax.set_ylim(0, 4)\n", - "\n", - "# Hiding the axes\n", - "ax.axis('off')\n", - "\n", - "# Use this line just before the plt.show() if necessary\n", - "plt.savefig(\"agents_chatting.png\")\n", - "\n", - "# Don't add plt.show() as per the instructions\n", - "\"\"\"\n", - "return cell\n", - "\u001b[32m***********************************************************************\u001b[0m\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33muser_proxy\u001b[0m (to chatbot):\n", - "\n", - "\u001b[33muser_proxy\u001b[0m (to chatbot):\n", - "\n", - "\u001b[32m***** Response from calling tool \"call_bsaGbd8WGdC869LhG62hI0uK\" *****\u001b[0m\n", - "Error: Expecting value: line 1 column 1 (char 0)\n", - " You argument should follow json format.\n", - "\u001b[32m**********************************************************************\u001b[0m\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", - "\n", - "\u001b[32m***** Suggested tool Call (call_ujcz2CkK0UgEEUen7X1ctXhe): python *****\u001b[0m\n", + "\u001b[32m***** Suggested tool call (call_BiLzujDvfB7WMZ0hqcgBdjN2): python *****\u001b[0m\n", "Arguments: \n", - "{\n", - " \"cell\": \"import matplotlib.pyplot as plt\\nimport matplotlib.patches as patches\\n\\n# Creating a simple scene for two agents chatting\\nfig, ax = plt.subplots()\\n\\n# Draw two circles representing the agents\\nax.add_patch(patches.Circle((2, 2), 0.5, fill=True, color='blue', label='Agent A'))\\nax.add_patch(patches.Circle((5, 2), 0.5, fill=True, color='green', label='Agent B'))\\n\\n# Example dialogues as text\\nax.text(1, 3, \\\"Hello!\\\", style='italic', bbox={'facecolor': 'red', 'alpha': 0.5, 'pad': 5})\\nax.text(4, 3, \\\"Hi there!\\\", style='italic', bbox={'facecolor': 'yellow', 'alpha': 0.5, 'pad': 5})\\n\\n# Setting the limits of the plot\\nax.set_xlim(0, 7)\\nax.set_ylim(0, 4)\\n\\n# Hiding the axes\\nax.axis('off')\\n\\n# Use this line just before the plt.show() if necessary\\nplt.savefig(\\\"agents_chatting.png\\\")\\n\\n# Don't add plt.show() as per the instructions\\n\"\n", - "}\n", + "{\"cell\":\"import matplotlib.pyplot as plt\\nimport numpy as np\\n\\n# Create a simple representation of two agents\\nagent1_x, agent1_y = [1, 2], [1, 1]\\nagent2_x, agent2_y = [4, 3], [1, 1]\\n\\n# Create dialog bubbles\\nbubble1_x = np.linspace(1.5, 2.5, 100)\\nbubble1_y = np.sin(np.pi * (bubble1_x - 1.5)) + 1.2\\nbubble2_x = np.linspace(3.5, 2.5, 100)\\nbubble2_y = np.sin(np.pi * (bubble2_x - 2.5)) + 1.2\\n\\n# Drawing agents and dialog bubbles\\nplt.figure(figsize=(6, 3))\\nplt.plot(agent1_x, agent1_y, 'ko-', markersize=20)\\nplt.plot(agent2_x, agent2_y, 'ko-', markersize=20)\\nplt.plot(bubble1_x, bubble1_y, 'k')\\nplt.plot(bubble2_x, bubble2_y, 'k')\\nplt.fill_between(bubble1_x, 1, bubble1_y, color = 'grey', alpha = 0.5)\\nplt.fill_between(bubble2_x, 1, bubble2_y, color = 'grey', alpha = 0.5)\\n\\n# Example Dialog\\nplt.text(1.5, 1.5, 'Hi!', fontsize=12)\\nplt.text(3.5, 1.5, 'Hello!', fontsize=12)\\n\\nplt.xlim(0, 5)\\nplt.ylim(0, 2.5)\\nplt.axis('off')\\n\"}\n", "\u001b[32m***********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", @@ -268,9 +216,19 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAhyklEQVR4nO3de3hU9b3v8c/MmoQQCIGQCBG530EhCt4qiuKFugW1sKlVqy2ictm4z1Gstlu3ioKeXWt7tDyogFZPLbUqqDVURcD7FYhBLpIgoKJJIIEQkNzmss4fI4FIiAQm+c2s3/v1PDyPJGHmm5g18561fmuNz3VdVwAAwFp+0wMAAACziAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMsRAwAAWI4YAADAcsQAAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADLEQMAAFiOGAAAwHLEAAAAliMGAACwHDEAAIDliAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMsRAwAAWI4YAADAcsQAAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADLEQMAAFiOGAAAwHLEAAAAliMGAACwHDEAAIDliAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMsRAwAAWI4YAADAcsQAAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADLEQMAAFiOGAAAwHLEAAAAliMGAACwHDEAAIDliAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsFzA9QKKoqKhQZWWl6TGaRWpqqtLT002PAYt4eXtqDmyjaG7EwBGoqKjQnPvuU7CszPQozSIpM1PT//u/ebBBi6ioqNCcOfcpGPTm9tQckpIyNX062yiaDzFwBCorKxUsK9O41q2VlZpqepyYKq2s1OKyMlVWVvJAgxZRWVmpYLBM48a1VlaWt7an5lBaWqnFi9lG0byIgSbISk1Vdlqa6TFir6rK9ASwUFZWqrKzPbg9NQu2UTQvFhACAGA5YgAAAMsRAwAAWI4YAADAcsRAHPr3557T/37ttbq/D583T//3o48MTgTErw8/3KZWrWZp377aJv27OXM+UU7OY800FZBYiIEYGvnUU7ru5ZcP+fjclSvV9v77FXHdI7qd/JIS5XTuLEkKRSJaX1pa9/cj1ekPf9Dv33+/Sf8GiCcjRz6l665rYHuau1Jt296vSCS6PeXkdNa3396iNm2SD3tbGRn/o3/+s6Dex/LzSzRkSKfYDt0Ec+euVFraA3XfB2ASMRAjruvq0+JiDcvOPuRzq4qKlNO5s/w+34/ezt6aGm0pL6978t9YVqbqUEhDOx35g9a2igrt2LdPw48//si/ASCOuK6rTz8t1rBhDWxPq4qUk9NZfn90e2rdOkmZmYe/XsGmTTtVXl6t4cPrbw/5+SUaOjS2MRAMho/4a1evLtLJJx/4PgCTiIEY2bRrl/bW1mpYA0/Aq4qK6iIhFInoDx98oN6PPKLWs2dr2Lx5everr+q+ds327Qr4/RqUlSUpupegW3q6OrRuXfc1C/LydOLcuWo9e7ZOevRRLSksrHd/q4uLJUmnNBAmQCLYtGmX9u6t1bBhDWxPq4rqRcK55z6le+55q8HbefLJT9Wv3xxJUpcuf5TPN1OPPbZKoVBE69eXKj09RePHP6e0tAfUrduf9Mor9fcerF+/Q2PGLFTbtvfruOMe1PTp/1JNTajefd9yy+uaNm2JMjL+R+PHPydJ2rmzUtOmLdFxxz2otLQHNGbMQm3bVlHvtlevbjh2ABOIgRhZXVQkx+c75BV8VTCoDaWlOiU7W67ravxzz2nJpk166rLLtH7aNF3cp48u/8c/tKemRlL0yX9gVpaSHafu7wcfIrhj+XLd/dZbmj1qlDZMm6arTzpJ4597Tl/s2lVvlt4dOqh9SkoLfOdA7K1eXSTH8R3yyr2qKqgNG0p1yikHnkQ/+2y7cnIaPox2xRWDdcstZ2jkyO4qLp6h4uIZmjgxRxs3lqm6OqS5c1dq4sQcrVkzRSNH9tB//ueBtToffLBNZ531pC68sJfy86do0aKf6/XXN+vBBz+od99PP71Gffpk6JNPbtDDD/9UZWWVOvXU+XJdV8uXX6uPPpokSZo48cAhj+rqkNavL20wdgATuAJhjOQVFyvsukq9//4GP39Kdrb+vm6dPi8t1dqpU9UqEP3Rzxo1Sg9//LHyS0p0Tvfuhzz555eU6KyuXSVJn23frv/z/vv6cNIkndaliyTptyNG6M+ffKI3Nm9Wn4wMSdG9C/s/DySivLxihcOuUlMPsz19HwNffbVb5eXVh93d36ZNsjZvLtfw4cerc+e2dR/Pzy9RIODXs8/+u/r16yhJ+vnPB+nFFz+XJIXDEU2a9E/96U+jNXHiyZKkPn0yNGXKMC1Zskl33nlO3X0/+OCFuuWWM+tu+8YbX9HZZ3fXo4+OqfvYzJnn6swzn1A4HJHj+LVhQ6lCoYhOO43tFPGBGIiRvJIS/WzAAN01cmS9jz+7bp0e+fhjDcrK0v967TVt3b1bHX//+3pfsy8YVMAf3UmTX1Kiq046qe5za7Zv17RTT5UkLVy7Vqcef/whT/TJjqOa8IFjlZt27dKMM88UkKjy8kr0s58N0F13/WB7enadHnnkYw0aFD2MtmbNdqWnt1LPnh0Oe1ufflqi8eMH1vtYfn6Jzj67W10ISNLWrbvVp080qN9/f5s2bizT9Omv6qabXq37mmAwopEju9fdd3Kyo8mTh9V9vro6pL/9ba3C4YgWLdpQ9/FIxJXP56tbH7Bp00516ZJW7/4Bk4iBGMkrLtbMc889ZNX/3JUrNaRTJzl+v/JLSvTYJZdoZI8eh/z77unph5w58M2ePSqrrKz7+/rSUp143HH1/t3emhptq6jQSQd9/PQuXTS6d+8Yf4dAy8nLK9bMmecesvt/7tyVGjKkkxzn+3j+kTMCysur9PXXFRo6tP7t5OeX6IwzTjjkY/vvb//tLlr080NuMy0tue5rhg3LVlpaq7rPFRbuVGVlUGvXTlVKSv2H10DAL9/3i4jbtEnWjBkEO+IHMRADW8rLtbu6usEFe3nFxTr9+1fySY4jV6rbnf9D63bsUHUoVPfkn19SonatWqln+/aSpLTkZFWFQvX+zSMff6zstLR6gfHU5Zcf8/cEmLJlS7l2766uty5gv7y8Yp1++oE9Y2vWHH69gCStXbtDycmOBg7MrPfxNWu213tFL0X3IPzqV0MlSUlJfu3aVaXevTvUPYH/0Jo123XyyfXvOykpGikpKYG6vQwNGTOm32E/B5jAAsIYWF1UJL/Pd8hegWA4rHU7dtRFwr/17auZb7+tJYWF+nL3bn38zTea/c47+vibbyRFn/xPaNdOGd+fOZBfUqIhnTrVPRhd3KeP/llQoNzCQm0tL9fDH32k+997T09cemndYYaHP/pIF/31ry31rQMxt3p1kfx+3yFP8sFgWOvW7agXCT92emAk4sp1XeXnl6ik5DvV1ob1zTd7VFZWqZNPPnA7wWBYGzaU1t3n+ef3UmnpPk2f/i99/nmpCgrK9PLLG3XXXW/Wu++Db0OS+vbtqD59MnT99f/UJ598qy1byvXmm1t1003/UlVVUJJUWxvW4MFzD7nuAWASewZiIK+4WH0zMtQ2uf5FTzaUlqomHK6LgYd/+lP9dtkyTc7NVVllpTq3bauRPXpoyvDhkg49cyC/pEQ5B52d8MshQ7SlvFxTcnNVXl2t4ccfr9euvlpnd+9e9zVvfvmlUgL8b0XiyssrVt++GWrb9gfb04ZS1dSE62Jg794abd1a3uiegREjumn8+EE677yntW9fUOvWTdXWrbuVlpas3r0PrDNYv75UtbXhutvq16+jXnrpF7rrrjd16qnzlZzsaMCATN1002mN3ncg4Fdu7pW69dY3dPHFf1N1dUg9e7bX5ZcPUOvWSXXfx4YNpTrhhHbH/sMCYsTnukd4WTyLFRcX6/Hf/U6TO3ZUdpq33n+9eO9ePb5zpyY/8ICyuS4BWkBxcbEef/x3mjy5o7KzvbU9NYfi4r16/PGdmjyZbRTNh8MEAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMtxqbomKK2sND1CzHnxe0JiKC3ld+9I8HNCSyAGjkBqaqqSMjO1uKxMqqoyPU7MJWVmKjU11fQYsERqaqqSkjK1eHGZJO9tT80hKYltFM2LyxEfoYqKClV69FV0amqq0tPTTY8Bi3h5e2oObKNobsQAAACWYwEhAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADLEQMAAFiOGAAAwHLEAAAAliMGAACwHDEAAIDliAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMsRAwAAWI4YAADAcsQAAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADLEQMAAFiOGAAAwHIB0wMg8dXWSvn50ubN0tat0T/l5VIwKDmOlJIide0q9eol9ewpDR0qdepkemogfm3/brvWbF+jreVbtaV8i7bt2abqULXCblhJ/iR1SOmgnh16qmf7nuqd0Vs5nXOU7CSbHhsJjBjAUSkslF5+WXrjDendd6Xq6ujHA9//RoXDkutG/9txJL9fCoUOfKx/f2n0aOmii6J/kpJa/nsA4kUwHNTSzUu1dPNSvbb5NRXuLJQk+eRTwB9QxI0o7IbrPub4HUlSKBKSJKUEUnROt3N0Qa8LdNmAy9SvYz8z3wgSls919z88A42rrpYWLZIee0x6773oE7wkRSJHd3uBQDQQMjOlG26Qrr8+uvcAsMWW8i1akLdA8/Pmq6yyTEn+JAUjwaO6Lb8vukFG3IhGdBuhqcOnatzAcUoJpMRyZHgUMYAfVVsrzZsn3X23tGtX9JV+OBzb+9h/m1dcId1/P1EAb9u8a7PuWHGH/rH+H3J8Tt2r/ljZf5sZrTM089yZunHYjRxGQKOIARyW60rPPy/ddpv01Vctc5/7DzNMnSrddVd0rwHgFWWVZbr37Xv16KpHJVcKuaEWud/u6d31+wt/rwmDJsjn87XIfSKxEANo0I4d0qRJUm5u9HDA0R4KOFqOI6WnS08/LY0Z07L3DTSHVwpe0a9f/rUqqitivifgx/jlV0QRje03VgsuXaDj2hzXoveP+EcM4BCvvCL96lfSnj2xPxzQFPsj5IYbpD/+UWrb1twswNH6rvY73fz6zVqQt6DuSdkUx+coPSVdT132lMb2H2tsDsQfYgB1XFe65x7p3nvN7A04HL8/evbB0qXSCSeYngY4ctsqtmn0M6NVsLNAETc+Nqj9QXL3yLt198i7OWwAScQAvldbG13N/9e/mp6kYYGAlJEhvf66lJNjehrgx+WX5Gv0M6O1q2pX3SmA8ebaoddq/tj5LC4EMQBp3z7pkkui1wuIl70BDXEcKTk5uo5h1CjT0wCHt2LrCo1ZOEa14doWXx/QFH6fX+d0P0e5V+aqTXIb0+PAIGLAcjU10QV6b75pdn3AkfL7o0Hw5pvSGWeYngY41IfbPtSo/zdKteHauDk00BjH5+i8Hucp96pctQq0Mj0ODOG9CSwWCklXXimtWJEYISBF91wEg9GrFq5da3oaoL7Ptn+m0c+MTpgQkKSwG9aKL1foqsVXKRxJkAcCxBwxYCnXlaZNk156Kb4PDTQkHJYqK6Xzzmu56x8AP+ar3V9p1NOjVBmsTJgQ2C/iRvTi5y9q6pKpYmexnYgBSz3+uDR//oH3Ckg04bBUUSFdeqlUVWV6GtiuKlilsX8fq4qalr+GQKy4cjU/b77mrZ5nehQYQAxYaOVK6aabTE9x7EIhad06b3wvSGzTX52u9aXr4/asgaaY/up0rSpaZXoMtDAWEFpmzx7pxBOloqLEWSdwJBYujK5/AFrawrULdfXiq02PETOOz1GXdl20dupatWvVzvQ4aCHsGbDMb3/rvRDw+aLvZVBaanoS2GbHvh2aumSqfPLOhXvCbljf7vlWv1v+O9OjoAURAxb58MPo2w97KQSk6LqH776Tbr7Z9CSwzc2v3ax9tfvkyls7WMNuWI+ufFQfbvvQ9ChoIRwmsEQwKA0ZIm3a5L0YONjSpdKFF5qeAjZ4Y/MbuuiZi0yP0Wwcn6N+HftpzZQ1SnKSTI+DZsaeAUv8+c9SQYG3Q8Dvl268MbqwEGhOwXBQN+beKL/Puw+hYTesjWUbNeeTOaZHQQvw7m8y6lRWSrNnJ+5phEcqEpG+/DK6mBBoTgvXLtSXu79MuOsJNJUrV7Pfna3KYKXpUdDMiAELzJsnlZebnqJl+HzRd1708h4QmBWKhDTz7ZmeWjTYmF1VuzR/9XzTY6CZEQMeV1Vlx16B/VxX2rpVevZZ05PAq55d96y27t7quUWDh7N/70B1qNr0KGhGxIDHLVgg7dxpeoqW5fezdwDNIxwJ65637pHfsofOssoyLchbYHoMNCO7fqMtU10tzZplz16B/SIR6YsvpBdeMD0JvOb5Dc9rc/lmReTttQINmfXOLNWEakyPgWZCDHjYiy9KO3aYnsIMv1966CHTU8Br/vjhHz19BsHhuHK1fd92Lf58selR0Ezs+622yKJFkuOYnsKMSCT6HgzFxaYngVcU7S3SyqKVnj+D4HAC/gAx4GHEgEdVVUlLlth93Nzni75FMxALL218yZozCBoSioSUuylXVUHeJtSLiAGPeuON6JoBm/l80b0jQCy8sOEF+Xz2xoAkVYeqtWzLMtNjoBkQAx714otSIGB6CrMiEemtt+y5xgKaz66qXXr7q7etPUSwX8Af0IsbXzQ9BpoBMeBBoZC0eDGX5ZWih0lyc01PgUSXW5hrfQhI0UMFiz9frFCEBxevIQY86J13pD17TE8RHxwnGkbAsVj0+SI5PktX4/5ARU2F3v3qXdNjIMaIAQ/iEMEB4bD06qvR92cAjsa+2n167YvXFHYtXo17EA4VeBMx4EEcIqivpkZaxponHKXlW5erNlxreoy4sf9QAbyFGPCYigqpqMj0FPElEJA++8z0FEhUa0rWKOBnV9vBvt37rfbUcCzSS4gBjykoMD1B/HFdfi44egU7C+Tadk3vI1BQxkblJcSAx/Ckd6hwWFq3zvQUSFTrdqxjvUADCnbyYOMlxIDHbNwoJSWZniL+FBba94ZNOHau66pwZ6HpMeJOkj9JG8s2mh4DMUQMeExBgd2XID6cykqppMT0FEg0xd8VqyrE5Xd/KOyGOUzgMcSAx6xbF73yHg7FIRQ0FU94DYu4Ea0r5diblxADHhIOS1u2mJ4iPvl8xACarmBngdVvTtSYLeVbuCqjhxADHvL111IwaHqK+BQIEANouoKyAk4rPIzacK2+rvja9BiIEWLAQ774wvQE8SsUii4iBJpi065NCkYo7MPZtHOT6REQI8SAh3z3nekJ4pfrSnv3mp4CiYYL6zRuX3Cf6REQI8SAh9TUmJ4gvvHzQVNVh6pNjxDXakJsVF5BDHhILZdPb1Q1j+toopowT3aN4T0bvIMY8BBe+TaOnw+aile+jSOWvIMY8BCuL9A4LsaEpuLUucaFI2xUXkEMeEhysukJ4ltKiukJkGhaOa1MjxDXWgX4+XgFMeAhrdguG0UsoamSA/zSNIZY8g5iwEN4smscewbQVCkBfmkak+zwoOMVxICHsGegccQAmooYaByHCbyDGPCQE04wPUH8CgSkbt1MT4FE0y29G5cjbsQJ7XjQ8QpiwEP69TM9QfxyXal/f9NTINH079hfruuaHiNu9c3oa3oExAgx4CFt2kidOpmeIj6Fw8QAmq5/x/4Ku5w+15DObTurTXIb02MgRogBjxk82PQE8WvAANMTINEMyOSX5nAGZ/Fg4yXEgMcMHCglJZmeIv74/VKvXqanQKLpndFbfh8Pkz+U5E/SwMyBpsdADPFb7jH9+3OlvYZ068apl2i6ZCdZXdt1NT1G3AlFQuqfyXE3LyEGPKZ/fy5L/EM+H4dPcPQGHzdYPvlMjxFXXLnq35EY8BJiwGNYJHeoQID1Ajh6AzoO4PTCBrBnwFuIAY/p2pWL6/xQMEgM4OgNyBygYCRoeoy4khJI4RoDHkMMeIzfL40aJTmO6Uniy/nnm54Aier8XvzyHMzxOTq/5/ksrPQY/m960PjxLCI82IknSj17mp4CiapXh16cRneQsBvW+IHjTY+BGCMGPGjs2OiiOUT3kEyYYHoKJLoJgybI8bG7TZJ88mls/7Gmx0CMEQMelJUlnXVW9JCB7cJhadw401Mg0Y0bOI4rEUry+/wa0W2EMlMzTY+CGOPpwqN4NRzVowenFeLYnXjcieqe3t30GMa5rqsJg3hw8SJiwKMuv5zrDQQC0SjikAmOlc/n04RBE6w/xdCVq8sHXG56DDQDYsCjunWThg61+4kwFOIQAWJn3MBxCkVCpscwKqdzjrqmc0VGLyIGPMz2V8VZWdJpp5meAl5x+gmnKys1y/QYxjg+h0MEHkYMeNhVV5mewBzHkSZOZBElYsfv8+vXOb+29qwCV66uPPFK02OgmfBQ6WE9e0q//GX02LltAgHplltMTwGvmXHmDCvXDQT8AV0z5Br17MAFO7yKGPC4O++07wJEjiP9x39InTqZngRe06ltJ007dZp1ewfCkbDuPOdO02OgGREDHte3b/RwgU17BxxHuvVW01PAq37zk99YdSnegC+gq4dcrT4ZfUyPgmZkz2+0xWzaO+A40pQpUna26UngVdlp2ZoyfIo1ewfCblh3ns1eAa8jBiwwYIB0xRV27B3w+6Xbbzc9Bbzu9rNul8+CU3UC/oB+ceIveLtiCxADlpg92/vvZOj3S7fdJh1/vOlJ4HVd2nXRbT+5zfOHCxyfo1mjZpkeAy3A27/JqNOrlzRzpnevO+D3Ry+0dMcdpieBLe485051bdfVs0Hgk0/3nnevenXoZXoUtACf67qu6SHQMoJBKSdHKijw5hqCZcuk83nrebSgZVuW6cK/Xmh6jJhzfI76Z/ZX/uR8JTlJpsdBC/Bm0qJBSUnSk09KXss/x5GuvZYQQMu7oNcFumbINZ5bTOjK1V8u+wshYBFiwDKnny7dd5/pKWLHcaSuXaU5c0xPAlvN+bc56pre1VNBMOu8WTqtC9fytgmHCSwUiUgXXywtX574hwtatZI++ih6+AMwJb8kX6cvOF214VrToxwTx+fogl4X6F9X/8uzayHQMP5vW8jvl/7+9+iq+0Q/w2DBAkIA5uV0ztETlz5heoxj4vgcdWnXRQvHLyQELMT/cUtlZEQX3KWnJ24QzJoVfe8FIB78csgvdd95iXkMzvE5Sk9J1xvXvKGM1hmmx4EBxIDF+vWLHipo3Trx3t1vxgzpv/7L9BRAfXecfYduOSOx3iHL7/OrdVJrrbh2hfp17Gd6HBjCmgHo/felCy6InnqYCGsIJk2S5s/37jUTkNhc19X1r1yvJz990vQoP8rxOUpykrTsmmU6q9tZpseBQQn2ehDN4ayzpHfekdq3j/9LFt9+uzRvHiGA+OXz+TR/7Hzd9pPbTI/SqIA/oPYp7fXuxHcJAbBnAAd8+aV00UXSli3xtYfA54v+mTtXmjzZ9DTAkXts1WOatmSapOi5+/HC8Tnq1aGXll6zVD3a9zA9DuIAMYB6ysula66RliwxPUmU40QXOS5cKI0ebXoaoOle/+J1XbX4KlVUVyjsxkdlX9L3Ej0z7hm1T2lvehTECWIAh3Bd6YknpJtukkKh6B9Txo6NzpKVZW4G4Fjt2LdDk16epNxNucZmCPgDCvgDmnPxHF138nVWvOsijhwxgMPavFm6/nrprbeir9Bb6tCB3y+1ayc99JA0cSLrA+ANruvqL/l/0YylM7SnZo8ibqRF7tfxOQq7YZ3b41wtGLtAvTN6t8j9IrEQA2iU60pLl0ZP5Vu/vnmjwHGi75/wm99It94aDQLAa/bU7NEfPviDHvzgQQXDwWY7dLA/AgZnDdZDFz2ki3pfxN4AHBYxgCMSiUjPPx99D4D33otdFOy/ncxM6YYboocmsrOP/XaBeFe8t1iPfPyI5ufN186qnXVP3sdq/+2M6DZC00+drgmDJ3BFQfwoYgBNVlAQvQzwCy9Ez0CQoqckHsnaAr8/uts/HI5e7Oj886XrrpPGjInuFQBsEwwHlVuYqyfzn9TyLctVFaqS43Pkyj2iQwkBf0ChSHTj69G+hyYMmqDrT7meCwihSYgBHJNt26QVK6J7CwoLo+sMioujexIOlpYm9ewZverh0KHRCBg+nAAADhYMB7WqaJWWb12uNSVrVLirUFvLt2pv7d56X+f3+ZXdNlu9M3qrX0Y/jeg2QqN6jlLX9K6GJkeiIwYQc8Gg9N13Um1tdI9BSorUpo3pqYDEta92n6pD1QpFQkp2ktU2ua2SHEoasUMMAABgOVaVAABgOWIAAADLEQMAAFiOGAAAwHLEAAAAliMGAACwHDEAAIDliAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMsRAwAAWI4YAADAcsQAAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADLEQMAAFiOGAAAwHLEAAAAliMGAACwHDEAAIDliAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMsRAwAAWI4YAADAcsQAAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADLEQMAAFiOGAAAwHLEAAAAliMGAACwHDEAAIDliAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMsRAwAAWI4YAADAcsQAAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADLEQMAAFiOGAAAwHLEAAAAliMGAACwHDEAAIDliAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMsRAwAAWI4YAADAcsQAAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADLEQMAAFiOGAAAwHLEAAAAliMGAACwHDEAAIDliAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMsRAwAAWI4YAADAcsQAAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADLEQMAAFiOGAAAwHLEAAAAliMGAACwHDEAAIDliAEAACxHDAAAYDliAAAAyxEDAABYjhgAAMByxAAAAJYjBgAAsBwxAACA5YgBAAAsRwwAAGA5YgAAAMsRAwAAWI4YAADAcsQAAACWIwYAALAcMQAAgOWIAQAALEcMAABgOWIAAADL/X+ddod+TKnv1QAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "(0.0, 5.0, 0.0, 2.5)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAD7CAYAAAC7WecDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdGUlEQVR4nO3deXCU9R3H8c9ml8WcQGI8EI+AUQIBQYEgSeRUK3igRavRUadaa9vBo1oVq1U6Uqh27BQHR0fFC0NFEeVU5IgSD5CpiEAAhVggKmCABIgJye7TP5hNAZOY4zl+u3m/ZvwnWfb3zcfs88nz7LPP47MsyxIAAPBUnNcDAAAAChkAACNQyAAAGIBCBgDAABQyAAAGoJABADAAhQwAgAEoZAAADEAhAwBgAAoZAAADUMgAABiAQgYAwAAUMgAABqCQAQAwAIUMAIABKGQAAAxAIQMAYAAKGQAAA1DIAAAYgEIGAMAAFDIAAAagkAEAMACFDACAAShkAAAMQCEDAGAAChkAAANQyAAAGIBCBgDAABQyAAAGoJABADAAhQwAgAEoZAAADEAhAwBgAAoZAAADUMgAABgg4PUAgNeqqqq0fv16ff/995Kkk046Sb1791ZCQoLHk8UuMgd+ikJGu1RXV6c33nhD06dPV1FRkerq6o76fiAQ0NChQ3XLLbfo6quvViDAS6WtyBxoms+yLMvrIQA3zZ8/X3fffbe+/vrr+q916tRJaWlpkqTy8nJVVFTUf6979+7617/+pUsvvdT1WWMFmQM/j0JGu3Hw4EH94Q9/0MsvvyzpcCFceOGFGjlypLp3764OHTrI5/MpHA5r27ZtWrx4sRYsWKDKykpJ0g033KBnnnlGiYmJXv4YUYXMgeajkNEu7NixQ2PGjNHatWsVFxen0aNH66abblJaWpp8Pl+j/66qqkovvPCC5syZI8uy1KtXL7333nvq1q2bi9NHJzIHWoZCRsz7+uuvNWLECG3fvl2dO3fWXXfdpfz8fMXFNf9DBmvWrNGjjz6qiooKde3aVUVFRcrMzHRw6uhG5kDLUciIad98843y8vJUVlamU045RX/5y1+UmZnZ5B5aY7777jv96U9/UllZmU466SR98sknOuOMM+wfOsodmXnXrl31yCOPkDnQDBQyYlZ5ebmGDBmizZs3q1u3bpo0aZJOO+20Nj3nnj17dOedd2rHjh3KyMjQ6tWrlZqaatPE0Y/MgdbjwiCISbW1tRo3bpw2b96s9PR0TZw4sc3FIEmpqal68sknlZ6ertLSUl122WU/+fhOe0XmQNtQyIhJ999/v4qKihQfH68JEyYoIyPDtudOT0/XlClTdNxxx+njjz/WXXfdZdtzRzMyB9qGQkbMmTt3rv75z39Kkn7/+9+rX79+rXr/sindu3fXhAkTJEnTpk3T7NmzbX3+aHNk5r/73e/IHGgFChkx5fvvv9evf/1rSdLo0aN1ySWX2F4MERdccIF++ctfSpJuvfVWfffdd46sY7pjMx89ejSZA61AISNmWJal2267TeXl5TrjjDP029/+Vn6/39E1b7vtNnXv3l379u3TjTfeqPZ2jiSZA/ahkBEzCgsLNW/ePAUCAd15551KSUlxfM1gMKiHHnpIgUBAS5Ys0UsvveT4miYhc8A+FDJiwp49e3T33XdLkq688kr17dvXtbUzMjJ0ww03SJLuvfdelZeXu7a2l8gcsBeFjJjw5z//Wbt371a3bt10ww03tOiKUHYoKCjQqaeeqj179uiPf/yjq2t7hcwBe1HIiHr/+c9/9Oyzz0qSfvOb37hy2PRYHTp0qC+FV199VatWrXJ9Bjcdmfmtt95K5oANKGRENcuydPfdd8uyLOXm5mrIkCGezdKvXz8NGzZMlmVp/PjxMXuy0bGZ5+bmejZLe8kc7QOFjKj2zjvv6MMPP1QwGNTNN9/s+U3tb7/9dgWDQa1atUqzZs3ydBankDngDAoZUauurk4PPPCApMOff+3Ro4fHE0knnniirr76aknShAkTYu4Sj2QOOIdCRtR6+eWXtWnTJiUnJ+u6665z7GIULXXttdcqOTlZpaWleuaZZ7wex1ZkDjiHQkZUqqmp0V//+ldJ0tixY5Wenu7xRP+XlJSk66+/XpI0adIkVVdXezyRPcgccBaFjKg0ffp0bdu2TampqbryyiuN2VOLGDt2rNLS0vT9999r2rRpXo9jCzIHnEUhI+rU1NRo8uTJkqQrrrhCnTt39nagBnTs2FEFBQWSpCeeeEI1NTUeT9Q2ZA44j0JG1HnllVe0fft2paam6oorrjBuTy3i0ksvVVpamnbu3Bn172uSOeA8ChlRpa6uTlOmTJF0eOPrxQUpmisYDOqaa66RdHiPLVrP/iVzwB0UMqLKG2+8oa1btyolJcXoPbWIyy67TCkpKSorK9Mrr7zi9TitQuaAOyhkRA3LsvT4449Lki6++GJ16dLF44l+Xnx8vK666ipJh/fYou1KUmQOuIdCRtRYtmyZ1qxZo44dO2rs2LHG76lFjB07Vh07dtTGjRu1cOFCr8dpETIH3EMhI2r84x//kCQNHz5cJ598ssfTNF+nTp10ySWXSJL+/ve/ezxNy5A54B4KGVFhw4YNevfddxUXFxdVe2oR48aNk8/n04oVK/TFF194PU6zkDngLgoZUWHq1KmSpPPOO09nnnmmx9O03CmnnFJ/J6onnnjC42mah8wBd1HIMN7evXvrz5a99NJL5ff7PZ6odcaNGydJevPNN1VeXu7xNE0jc8B9FDKM9+KLL+rHH3/U6aefrsGDB3s9Tqudc845ysjIUE1NjfGXdiRzwH0UMowWDof19NNPSzr8sZtgMOjxRK3n8/l05ZVXSpKee+45hcNhjydqGJkD3qCQYbTFixdry5YtSkhI0MUXX+z1OG02atQoJSYmaseOHXrnnXe8HqdBZA54g0KG0SJ7akOHDo2Ki1L8nPj4+PqSe+qppzyepmFkDniDQoaxtm/frgULFkiSxowZE3Ufu2nMFVdcIUn64IMPVFpa6vE0RyNzwDsUMoz1/PPPKxwOq3fv3urZs6fX49jmtNNOU9++fRUOh43bYyNzwDsUMowUCoX0wgsvSDr8HmC0fuymMZdffrkk6bXXXjPmjkRkDniLQoaR3n33XZWVlSk5OVkjRozwehzb5efnKzk5Wbt27dLbb7/t9TiSyBzwGoUMIz3//POS/r8RjTXBYFAXXXSRJOnZZ5/1eJrDyBzwFoUM4+zcuVPz58+XdPhzsLFyYtGxxowZI0lavny5vv32W09nIXPAexQyjPPqq6+qrq5OmZmZ6tWrl9fjOCYjI0M9e/ZUKBTyfI+NzAHvUcgwimVZevHFFyVJw4YNUyAQ8HgiZ40ePVqSNGPGDFmW5ckMZA6YgUKGUT777DNt2LBBwWBQo0aN8nocxw0fPlzBYFBbt25VcXGxJzOQOWAGChlGeemllyRJgwYNUnp6urfDuCApKUn5+fmSvDvRiMwBM1DIMEZNTY1mzpwp6fBeTKyeWHSsX/ziF5KkuXPnqrq62tW1ydz9zIHGUMgwxrx587Rv3z6lpqZG9S3/Wqp///46/vjjtX//fr3++uuurk3m7mcONIZChjFeeeUVSVJeXp7i4+M9nsY9fr+//r3bl19+2dW1ydz9zIHGUMgwwu7du7Vo0SJJhy/b2F4OnUZELljx4YcfaufOna6sSebuZw40hUKGEWbNmqW6ujplZGQoKyvL63Fcl5GRoTPPPFOhUEjTp093ZU0ydz9zoCkUMowwY8YMSZLP54v5z8E2JrLH9u9//9uV9SKZ5+XlkblLmbfEzTffrDPOOOOor/l8Pj366KOezAPnUchwzEsvvSSfz6fVq1c3+P1hw4YpOztbX3/9tT799FNJUteuXY96zJo1azR8+HCtWbPG6XE9N2LECMXFxWnt2rXasGGDo2tFMo+Li2sXnz1ujB2ZN/f33GtFRUXy+XwqKiryehQ0gkKG5yIfu8nOztbDDz/s8TTeSUtLU//+/SXJ8UOoR2berVs3R9cymZuZAz+HQobnXnvtNUnS0KFDFQwGPZ7GW5G91dmzZzt2WUfLsuozz8/PV1xc+94MuJE50Bzt+5UIz1VXV2vTpk0KBoOaNWuWpkyZ4vVInsrPz1eHDh30zTff1B/Gt9uaNWvqMx86dKgja0QTNzI/1owZM3TeeecpPj5eqampuvbaa7V9+/ZWPdfnn3+uSy65RCkpKUpKStLIkSNd+zlgLwoZjquoqNAPP/zwk/9qa2tVUVEh6fCFGtr7npokJSYm1l+gw6nPx0YOV/fv319paWmOrBFN7Mq8qd/zI02aNEk33nijMjMz9eSTT+quu+7S0qVLdcEFF2jfvn0tWnP9+vXKz8/XF198ofvuu08PP/ywSktLNWzYMK1cubLVPwu80T5PrYSrmjppKHJ2b35+vr755huXJjLbyJEjtWLFCs2ZM0fTpk2T3++37bnD4XB9IXO4+v/syLyp3/PevXtLkv773//qkUce0WOPPaYHH3yw/vtXXXWV+vfvr6effvqor/+chx56SLW1tSouLlb37t0lSTfeeKPOPvts3Xffffrggw9a/HPAOxQyHDdt2jSdddZZP/n67bffri1btighIUF5eXl69dVXPZjOPIMHD1Z8fLx27dqlpUuX1n80xw4ff/yxduzYUZ85DrMj88Z+z++55x6FQiFJ0ltvvaVwOKxrrrlGP/zwQ/1jTjrpJGVmZmr58uXNLuRQKKTFixdr7Nix9WUsSSeffLIKCgr03HPPqbKyUikpKS3+WeANChmOGzRokAYMGPCTr//444+SpAEDBrDROELHjh2Vn5+vxYsXa8aMGbYWcuTztmR+NDsyb+z3vEuXLvXl+9VXX8myLGVmZjb4HB06dGj2ert371ZVVZXOPvvsn3wvKytL4XBY27dvr987h/koZHiirq5Ou3fvlnT40Gl7u2zjzxkxYoQWL16s+fPnq7a2tkUb6sbU1dXpjTfekETmDXEi82OFw2H5fD4tWrSowcPiSUlJtq+J6EEhwxNFRUWqra1VXFxck3cZ6tevn5YvX+7iZGY477zzlJycrL1792rRokW6/PLL2/ycRUVF2rVrl5KSktrVnZ2ay4nMj9WjRw9ZlqWMjIwGD2+3RHp6uhISErRp06affG/jxo2Ki4vTqaeeWv+1YcOG8bEuw3FGBzwxa9YsSVJ8fLwSExMbfdyBAwe0bdu2dnfP2kAgoPz8fElSYWGhLc8ZyXzQoEFNZt5eOZH5sa666ir5/X5NnDjxJ+VoWZbKy8ub/Vx+v18XXXSR3nnnnaNOiNy5c6cKCwuVl5d31NsSFRUV2rhxo6qqqtr8c8AZFDJcV1tbq7feekuSlJCQ0OSh0+LiYt10003auHGjW+MZY8SIEZKkRYsW6dChQ216riMzz8vL43B1I+zMvCE9evTQY489Vl+YTzzxhJ555hndf//9Ovvss/Xiiy+26Pkee+wxBQIB5eXl6W9/+5sef/xxDRkyRDU1NXr88cePeuycOXOUlZWlVatW2fkjwUYUMly3bNkylZeXy+/3t6t78LZUv3791KlTJ1VWVmr+/Plteq5I5ikpKRo0aJBNE8YeOzNvzAMPPKDZs2crLi5OEydO1L333qu5c+fqoosuavFh8t69e2vFihXKzs7W5MmTNXHiRJ1++ulavny5cnJyHJkfzvFZvKkAl91yyy2aPn26LrzwQk2YMIG9tSY8+eSTmjdvnsaNG1d/QlZrkHnz2ZU50FLsIcNVhw4d0pw5cyRx6LQ5hg8fLkl67733VFNT06rnIPOWsSNzoDUoZLhq6dKl2rt3rzp37tzgZzZxtL59+6pLly7av3+/5s2b16rnIPOWsSNzoDUoZLgqcghw0KBBvH/cDH6/v/7M39dff71Vz0HmLXNk5pELqQBuoJDhmtraWr399tuSpNzcXA6dNtOwYcMkSYsXL27xmb9k3jqRzN9//31HzrYGGkIhwzXLli3T3r171alTJw6dtkDfvn3VuXPnVp35S+at05bMgdaikOGayKHTgQMHcui0BdpyCJXMW4fD1vAChQxX1NXV1R865Uzflhs6dKikw2f+Hnt/3caQedu0JnOgLShkuKKoqKj+whQcOm25fv36KSUlRZWVlVq0aFGz/g2Zt01rMgfagkKGK958801Jh2/7l5CQ4PE00cfv99ffv7i5h1DJvG1akznQFhQyHBcKheovTDFkyBAOnbZS5BDqu+++q7q6uiYfS+b2aEnmQFtRyHBccXFx/W3/uL5u6/Xv319JSUnau3ev3n///SYfS+b2aEnmQFtRyHDc7NmzJUnnnnsut/1rgw4dOmjIkCGSfv4iIWRuj5ZkDrQVhQxHhcPh+tv+nX/++Rw6baMLLrhAkrRw4UKFQqEGH0Pm9mpO5oAdKGQ4atWqVSorK9Nxxx2n888/3+txol7k88S7d+/Whx9+2OBjyNxezckcsAOFDEcdeeg0JSXF42miXzAY1ODBgyU1fuYvmdurOZkDdqCQ4RjLsuoPnQ4ePJhDpzaJHEKdP3++jr2dOZk7o6nMAbtQyHDMF198oa1btyoYDCo3N9frcWJGTk6OgsGgvv32W61cufKo75G5M5rKHLALhQzHRPbUzjnnHHXp0sXjaWJHfHy8Bg4cKEmaOXPmUd8jc2c0lTlgFwoZjomUQ05ODodObXbkIdQjkblzGsscsAuFDEds2rRJ69evVyAQqL/8IOwzZMgQ+f1+bd26VV9++aUkMndaQ5kDdqKQ4YjInlp2drbS09M9nib2JCUl6dxzz5UkzZgxQxKZO62hzAE7UchwRKQcBg4cqLg4fs2cELlfb+QQKpk779jMATvxqoXttm3bptWrV8vn89W/7wb75ebmyufzacOGDfrggw/I3AVHZv7VV195PQ5iDIUM20XuMtSzZ0+dfPLJHk8Tu1JTU5WdnS1JmjJliiQyd9qRmXO2NexGIcN2kUOngwYNkt/v93ia2BbZGy4uLpZE5m6IZD537lyPJ0GsoZBhq507d2rFihWSxKFTF0Te0zxw4IAkMndDJPPPP/9cZWVlHk+DWEIhw1Zz586VZVnq0aOHTjvtNK/HiXknnniiTjjhBEnS8ccfT+YuOPHEE5WZmalwOMy1rWErChm2KioqknT4TN9AIODtMO1EcnKyJOm4444jc5dEjkREft8BO/gsrpQOG0X2GiorK9WzZ0+vx2kXdu3apYULFyorK0s5OTlej9Mu/PDDD9q8ebPGjBmjc845x+txECP4cxq2iouLU58+fVRSUuL1KO3GCSecwI0kXHb88ccrHA7zeW/Yit8mAAAMwB6ygSzL0v79+3Xo0CEFg0ElJydzowCHWZalqqoq1dXVKRAIKCEhgcwdRubuY9tiNgrZEOvWrVNhYaFWrlyp1atXq7Kysv57KSkpGjBggHJyclRQUFB/YQK0TWlpqZYsWaKSkhJt3rxZBw8erP9eYmKizjrrLGVlZWnUqFHKyMjwcNLYQebuY9sSPTipy2MLFizQ5MmT9dFHHykQCCgUCqmh/yU+n09+v191dXXKzc3Vgw8+qNGjR3sw8c/78ssvVVJSUv9xHNN88sknKiws1Lp16+T3+xUKhRp9bOT72dnZuv766zV48GAXJ22+yGUcMzMzPZ6kYbGY+a5du5SVlaU+ffp4PUqDYnHbEusoZI+Ul5dr/PjxmjlzpuLi4hQOh5v9byOPLygo0FNPPaXU1FQHJ205Uwu5oqJCU6dO1bJly1qd+ciRI3XHHXcoJSXFwUlbztRCjuXMTS3kWN62xDpO6vLA2rVr1atXL82aNUuSWvSCOfLxr7/+urKysrg3azNs2bJFN998c/3nRlub+fLly3XTTTdp69atdo8Yc8jcfWxbohuF7LK1a9cqPz9f5eXlTR62a45QKKTy8nLl5eXxwmnCli1bdMcdd6iysrLFG6hjhcNhVVZWavz48RREE8jcfWxboh+F7KLy8nJdeOGFOnjwYJtfMBGhUEgHDx7UqFGjtGfPHlueM5ZUVFTo3nvvVXV1dZuLISIcDqu6ulr33HPPUSfI4DAydx/blthAIbto/Pjxtvz1eqzIX7Pjx4+39XljwdSpU23ZSztWZK9t6tSptj5vLCBz97FtiQ0UsksWLFigmTNn2v6CiQiFQiosLNTChQsdef5o9Mknn2jZsmW2F0NEOBzW0qVL9emnnzry/NGIzN3HtiV2UMgumTx5suOX2fP7/Zo8ebKja0STwsJCxzOPi4tTYWGho2tEEzJ3H9uW2EEhu2DdunX66KOPHNtriAiFQiouLtb69esdXScalJaWat26dY5nHg6H9eWXX6q0tNTRdaIBmbuPbUtsoZBdUFhY6Npt8QKBAHsPkpYsWSK/3+/KWn6/X0uXLnVlLZORufvYtsQWCtkFK1euVF1dnStrhUIhrVy50pW1TFZSUuLYe2rHCoVC3N1KZO4Fti2xhWtZO8yyLK1evdrV9T777DMdOHDAs4vGV1VVqbq6Wj/++KMn61uWpU2bNrm65qZNm2RZVru9UL9lWdq8ebOra27cuFFVVVWeZV5dXa2qqqqjrsftJq+2Le3599xpFLLD9u/f7/rnJisrK5WcnOzqmu3dwYMHVVZWpvj4eE/WP3TokCzLUnl5uSfre1FMVVVVGjNmjKtrtneVlZU6cOAA2xeHUMgOO3TokNcjwCUnnHCCOnXq5MnaSUlJkqTOnTt7sv6+ffs8WRfuY5vmHArZYcFg0JN1v/vuu3b7V2xlZaW6du3q+rrnn39+u87cC/yeu/977tU2rT3gbk8OsyxLnTt3dnWDlZKSon379rXb93nI3H1k7j4yjz2cZe0wn8+nAQMGuLrewIED2/ULhszdR+buI/PYQyG7ICcnx7XPCvr9fuXk5LiylsnI3H1k7j4yjy0csnbBunXrXL2J+bp169S7d2/X1jMRmbuPzN1H5rGFPWQXZGdnKzc315Xrzebl5fGCEZl7gczdR+axhUJ2yYQJE1y53uyECRMcXSOakLn7yNx9ZB5DLLjmuuuus/x+vyXJ9v/8fr9VUFDg9Y9oHDJ3H5m7j8xjA+8hu6i8vFy9evWy/Ubifr9faWlpKikpUWpqqm3PGwvI3H1k7j4yjw0csnZRWlqalixZosTERNvuiuP3+5WYmKglS5bwgmkAmbuPzN1H5rGBQnZZnz59VFxcrLS0tDa/cCJ/vRYXF7t6pmW0IXP3kbn7yDz6Ucge6NOnj0pKSvSrX/1Kklr84ok8/tprr1VJSQkvmGYgc/eRufvIPMp5/SZ2e7dgwQIrLy/PkmQFAgHL5/M1eGKFz+ezAoGAJcnKy8uzFixY4PXoUYvM3Ufm7iPz6MNJXYZYv369CgsLtXLlSn322WdHXZ82JSVFAwcOVE5OjgoKCvgsoE3I3H1k7j4yjx4UsoEsy9KBAwd06NAhBYNBJSUlcf1Yh5G5+8jcfWRuNgoZAAADcFIXAAAGoJABADAAhQwAgAEoZAAADEAhAwBgAAoZAAADUMgAABiAQgYAwAAUMgAABqCQAQAwAIUMAIABKGQAAAxAIQMAYAAKGQAAA1DIAAAYgEIGAMAAFDIAAAagkAEAMACFDACAAShkAAAMQCEDAGAAChkAAANQyAAAGIBCBgDAABQyAAAGoJABADAAhQwAgAEoZAAADEAhAwBgAAoZAAADUMgAABiAQgYAwAAUMgAABqCQAQAwAIUMAIABKGQAAAxAIQMAYAAKGQAAA1DIAAAYgEIGAMAAFDIAAAagkAEAMACFDACAAShkAAAMQCEDAGAAChkAAANQyAAAGIBCBgDAABQyAAAGoJABADAAhQwAgAEoZAAADEAhAwBgAAoZAAADUMgAABiAQgYAwAAUMgAABqCQAQAwAIUMAIABKGQAAAxAIQMAYAAKGQAAA1DIAAAYgEIGAMAAFDIAAAagkAEAMACFDACAAShkAAAMQCEDAGAAChkAAANQyAAAGIBCBgDAABQyAAAGoJABADAAhQwAgAEoZAAADEAhAwBgAAoZAAADUMgAABiAQgYAwAAUMgAABqCQAQAwAIUMAIABKGQAAAxAIQMAYID/AQt5YVPXQ2LLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" ] }, "metadata": {}, @@ -284,14 +242,24 @@ "\n", "\u001b[33muser_proxy\u001b[0m (to chatbot):\n", "\n", - "\u001b[32m***** Response from calling tool \"call_ujcz2CkK0UgEEUen7X1ctXhe\" *****\u001b[0m\n", - "None\n", + "\u001b[32m***** Response from calling tool (call_BiLzujDvfB7WMZ0hqcgBdjN2) *****\u001b[0m\n", + "(0.0, 5.0, 0.0, 2.5)\n", "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", "\n", - "TERMINATE\n", + "I've drawn two agents chatting with each other, including example dialogues saying \"Hi!\" and \"Hello!\" within their speech bubbles. This visualization is created using matplotlib, and the conversation is represented graphically with the agents and their dialogue bubbles placed on a 2D plot. The drawing does not include `plt.show()`, adhering to your instruction.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33muser_proxy\u001b[0m (to chatbot):\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", + "\n", + "It seems your last message was empty. How can I assist you further?\n", "\n", "--------------------------------------------------------------------------------\n" ] @@ -304,16 +272,9 @@ " chatbot,\n", " message=\"Draw two agents chatting with each other with an example dialog. Don't add plt.show().\",\n", " cache=cache,\n", + " max_turns=3,\n", " )" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ab081090", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/notebook/agentchat_function_call_code_writing.ipynb b/notebook/agentchat_function_call_code_writing.ipynb new file mode 100644 index 00000000000..3ae3084d698 --- /dev/null +++ b/notebook/agentchat_function_call_code_writing.ipynb @@ -0,0 +1,1011 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "id": "9a71fa36", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Writing a software application using function calls\n", + "\n", + "The default way of creating code in Autogen is its built-in code extractor. Although it allows for creating and executing simple scripts fast, that way of creating code is not suitable for developing advanced software applications, according to my experiences. The process of developing an application is mostly the process of introducing changes into existing files rather than creating new files with code. And in my experience, the code extractor is bad at introducing changes as the model often gets lost and can damage existing files.\n", + "\n", + "Properly created functions that can modify code provide us with the ability to have more control over code changes and result in better quality. Additionally, as the scope of possible operations is predefined inside the tools, we can safely use Autogen without Docker, avoiding all the complications related to it.\n", + "\n", + "## Requirements" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c528cd6d", + "metadata": {}, + "outputs": [], + "source": [ + "! pip install pyautogen" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "5ebd2397", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Set your API Endpoint" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "dca301a4", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "import autogen\n", + "\n", + "config_list = [{\"model\": \"gpt-4-turbo-preview\", \"api_key\": os.getenv(\"OPENAI_API_KEY\")}]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "2b9526e7", + "metadata": {}, + "source": [ + "## Create agents\n", + "\n", + "In this example, we will improve a simple FastAPI application using only dedicated function calls. Let's create an Engineer agent that will think out and execute code changes, and a user proxy Admin agent, through which we will guide our Engineer." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "1a10c9fe-1fbc-40c6-b655-5d2256864ce8", + "metadata": {}, + "outputs": [], + "source": [ + "llm_config = {\n", + " \"temperature\": 0,\n", + " \"config_list\": config_list,\n", + "}\n", + "\n", + "engineer = autogen.AssistantAgent(\n", + " name=\"Engineer\",\n", + " llm_config=llm_config,\n", + " system_message=\"\"\"\n", + " I'm Engineer. I'm expert in python programming. I'm executing code tasks required by Admin.\n", + " \"\"\",\n", + ")\n", + "\n", + "user_proxy = autogen.UserProxyAgent(\n", + " name=\"Admin\",\n", + " human_input_mode=\"ALWAYS\",\n", + " code_execution_config=False,\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "966c96a4-cc8a-4400-b8db-a21b7142e33c", + "metadata": {}, + "source": [ + "Mention, unlike in many other examples, here we don't need a separate Executor agent to save our code, as that will be done by functions. We also don't need Docker to be running because of that - which makes the entire process easier.\n", + "\n", + "Next, let's set up our group chat." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "354b4a8f-7a96-455b-9f17-cbc19d880462", + "metadata": {}, + "outputs": [], + "source": [ + "groupchat = autogen.GroupChat(\n", + " agents=[engineer, user_proxy],\n", + " messages=[],\n", + " max_round=500,\n", + " speaker_selection_method=\"round_robin\",\n", + " enable_clear_history=True,\n", + ")\n", + "manager = autogen.GroupChatManager(groupchat=groupchat, llm_config=llm_config)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "d7b0ad4c-a287-456d-9c0e-c4895e5f8ed2", + "metadata": {}, + "source": [ + "## Prepare appropriate functions\n", + "\n", + "Let's go to core of the thing. Prepare functions that provide Engineer with functionality to modify existing code, create new code files, check filesystem and files.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "94b85d81-bdc5-4c9c-a9da-59a796317731", + "metadata": {}, + "outputs": [], + "source": [ + "from typing_extensions import Annotated\n", + "\n", + "default_path = \"backend_dir/\"\n", + "\n", + "\n", + "@user_proxy.register_for_execution()\n", + "@engineer.register_for_llm(description=\"List files in choosen directory.\")\n", + "def list_dir(directory: Annotated[str, \"Directory to check.\"]):\n", + " files = os.listdir(default_path + directory)\n", + " return 0, files\n", + "\n", + "\n", + "@user_proxy.register_for_execution()\n", + "@engineer.register_for_llm(description=\"Check the contents of a chosen file.\")\n", + "def see_file(filename: Annotated[str, \"Name and path of file to check.\"]):\n", + " with open(default_path + filename, \"r\") as file:\n", + " lines = file.readlines()\n", + " formatted_lines = [f\"{i+1}:{line}\" for i, line in enumerate(lines)]\n", + " file_contents = \"\".join(formatted_lines)\n", + "\n", + " return 0, file_contents\n", + "\n", + "\n", + "@user_proxy.register_for_execution()\n", + "@engineer.register_for_llm(description=\"Replace old piece of code with new one. Proper indentation is important.\")\n", + "def modify_code(\n", + " filename: Annotated[str, \"Name and path of file to change.\"],\n", + " start_line: Annotated[int, \"Start line number to replace with new code.\"],\n", + " end_line: Annotated[int, \"End line number to replace with new code.\"],\n", + " new_code: Annotated[str, \"New piece of code to replace old code with. Remember about providing indents.\"],\n", + "):\n", + " with open(default_path + filename, \"r+\") as file:\n", + " file_contents = file.readlines()\n", + " file_contents[start_line - 1 : end_line] = [new_code + \"\\n\"]\n", + " file.seek(0)\n", + " file.truncate()\n", + " file.write(\"\".join(file_contents))\n", + " return 0, \"Code modified\"\n", + "\n", + "@user_proxy.register_for_execution()\n", + "@engineer.register_for_llm(description=\"Create a new file with code.\")\n", + "def create_file_with_code(\n", + " filename: Annotated[str, \"Name and path of file to create.\"], code: Annotated[str, \"Code to write in the file.\"]\n", + "):\n", + " with open(default_path + filename, \"w\") as file:\n", + " file.write(code)\n", + " return 0, \"File created successfully\"" + ] + }, + { + "cell_type": "markdown", + "id": "8a3a09c9", + "metadata": {}, + "source": [ + "## Prepare code to work with\n", + "\n", + "In this example, we will show how AI can extend the functionalities of existing code, as improving existing code is a much more frequent use case in software development than creating a new one. Let's prepare the initial code on which we will work. That will be a simple FastAPI script that will allow you to calculate today's stock spread in percentage for CD Project Red, a famous Polish gamedev company. Create a folder called 'backend_dir' and place a 'main.py' file here with the following content:" + ] + }, + { + "cell_type": "markdown", + "id": "370a9f8d-d5ce-4127-8646-cf0e4effd9f5", + "metadata": {}, + "source": [ + "```python\n", + "# backend_dir/main.py\n", + "\n", + "from fastapi import FastAPI\n", + "import yfinance as yf\n", + "\n", + "app = FastAPI()\n", + "\n", + "@app.get(\"/cdr_daily_spread\")\n", + "async def calculate_daily_spread():\n", + " cdr = yf.Ticker(\"CDR.WA\")\n", + " today_data = cdr.history(period=\"1d\")\n", + " spread = ((today_data[\"High\"] - today_data[\"Low\"]) / today_data[\"Low\"]) * 100\n", + " return spread\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "945003b5-b764-4ef1-99d9-b9464e39dfed", + "metadata": {}, + "source": [ + "Install needed libraries. We can run our API using:\n", + "\n", + "```bash\n", + "uvicorn main:app --reload\n", + "```\n", + "\n", + "Send a request to 'localhost:8000/cdr_daily_spread' to check if it works.\n", + "\n", + "## Edit code using agents\n", + "\n", + "Let's assume we want our agents to extend the functionality of the application. Let's modify the endpoint to check the spread also for 11bits, another gamedev company, and compare it for both stocks. Also, let's separate the internal logic into a different file.\n", + "\n", + "Finally, instantiate a chat between the Engineer and the Admin. It will start by exploring the filesystem first, and after that, it will wait for our orders. Then, we will explain the task to the Engineer and ask him to provide a plan of changes first - according to my experience, that greatly increases the quality of LLM responses.\n", + "\n", + "After that, introduce changes with the Engineer one after another. Ask him to correct something or improve the functionality if needed. Do not hesitate to interrupt the tool's execution if you feel he is going to do something wrong. If errors occur, provide him with the error log and ask him to check out the file to refresh his knowledge about it before actually introducing changes." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d5518947", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\n", + "You will need to improve app in FastApi. For now, check out all the application files, try to understand it and wait for next instructions.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_SA61u9yCLhyXfd9NCV9TAIiM): list_dir *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"directory\": \"./\"\n", + "}\n", + "\u001b[32m*************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION list_dir...\u001b[0m\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_SA61u9yCLhyXfd9NCV9TAIiM\" *****\u001b[0m\n", + "[0, [\"main.py\", \"__pycache__\"]]\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_IVJNPI12s4fCzysnWjExZjL2): see_file *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"main.py\"\n", + "}\n", + "\u001b[32m*************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION see_file...\u001b[0m\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_IVJNPI12s4fCzysnWjExZjL2\" *****\u001b[0m\n", + "[0, \"1:from fastapi import FastAPI\\n2:import yfinance as yf\\n3:\\n4:app = FastAPI()\\n5:\\n6:@app.get(\\\"/cdr_daily_spread\\\")\\n7:async def calculate_daily_spread():\\n8: cdr = yf.Ticker(\\\"CDR.WA\\\")\\n9: today_data = cdr.history(period=\\\"1d\\\")\\n10: spread = ((today_data[\\\"High\\\"] - today_data[\\\"Low\\\"]) / today_data[\\\"Low\\\"]) * 100\\n11: return spread\"]\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "The application is a FastAPI application with a single endpoint `/cdr_daily_spread`. This endpoint calculates the daily spread of the stock \"CDR.WA\" using the `yfinance` library. The spread is calculated as the percentage difference between the high and low prices of the stock for the day.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: Let's move spread calculation logic to separate file. Create spread_calculation function with ticker argument in it. in our endpoint, we need to compare daily spread for CD Project Red and 11bits Studio - return difference between them. Start with providing plan of changes. Don't do any changes yet.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "Let's move spread calculation logic to separate file. Create spread_calculation function with ticker argument in it. in our endpoint, we need to compare daily spread for CD Project Red and 11bits Studio - return difference between them. Start with providing plan of changes. Don't do any changes yet.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "Sure, here is the plan of changes:\n", + "\n", + "1. Create a new Python file named `spread_calculation.py`.\n", + "2. In this file, define a function named `calculate_daily_spread` that takes a `ticker` as an argument. This function will contain the logic to calculate the daily spread of a given stock.\n", + "3. Modify the `main.py` file to import the `calculate_daily_spread` function from `spread_calculation.py`.\n", + "4. Modify the `/cdr_daily_spread` endpoint in `main.py` to calculate the daily spread for both \"CDR.WA\" (CD Project Red) and \"11B.WA\" (11bits Studio) by calling the `calculate_daily_spread` function with the respective ticker as argument.\n", + "5. The endpoint will then return the difference between the daily spreads of the two stocks.\n", + "\n", + "Please confirm if this plan is correct and I can proceed with the changes.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: go with the plan\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "go with the plan\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_cqaVQJ6VQjR7lh114bxJGVfi): create_file_with_code *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"spread_calculation.py\",\n", + " \"code\": \"import yfinance as yf\\n\\ndef calculate_daily_spread(ticker):\\n stock = yf.Ticker(ticker)\\n today_data = stock.history(period=\\\"1d\\\")\\n spread = ((today_data[\\\"High\\\"] - today_data[\\\"Low\\\"]) / today_data[\\\"Low\\\"]) * 100\\n return spread\"\n", + "}\n", + "\u001b[32m**************************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION create_file_with_code...\u001b[0m\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_cqaVQJ6VQjR7lh114bxJGVfi\" *****\u001b[0m\n", + "[0, \"File created successfully\"]\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_qcoMK0RO5bXdY4yQz5RCh4mp): modify_code *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"main.py\",\n", + " \"start_line\": 1,\n", + " \"end_line\": 11,\n", + " \"new_code\": \"from fastapi import FastAPI\\nfrom spread_calculation import calculate_daily_spread\\n\\napp = FastAPI()\\n\\n@app.get(\\\"/cdr_daily_spread\\\")\\nasync def compare_daily_spread():\\n cdr_spread = calculate_daily_spread(\\\"CDR.WA\\\")\\n bits_spread = calculate_daily_spread(\\\"11B.WA\\\")\\n return cdr_spread - bits_spread\"\n", + "}\n", + "\u001b[32m****************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: Do not change whole the file. concentrate on the concrete lines.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_qcoMK0RO5bXdY4yQz5RCh4mp\" *****\u001b[0m\n", + "USER INTERRUPTED\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "Do not change whole the file. concentrate on the concrete lines.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_hz1v2vEPPxKHeygjqs2lc8ii): modify_code *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"main.py\",\n", + " \"start_line\": 1,\n", + " \"end_line\": 2,\n", + " \"new_code\": \"from fastapi import FastAPI\\nfrom spread_calculation import calculate_daily_spread\\nimport yfinance as yf\"\n", + "}\n", + "\u001b[32m****************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION modify_code...\u001b[0m\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_hz1v2vEPPxKHeygjqs2lc8ii\" *****\u001b[0m\n", + "[0, \"Code modified\"]\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_1ABNdk6AATaVvn8UqLKBD5ZR): modify_code *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"main.py\",\n", + " \"start_line\": 6,\n", + " \"end_line\": 11,\n", + " \"new_code\": \"@app.get(\\\"/cdr_daily_spread\\\")\\nasync def compare_daily_spread():\\n cdr_spread = calculate_daily_spread(\\\"CDR.WA\\\")\\n bits_spread = calculate_daily_spread(\\\"11B.WA\\\")\\n return cdr_spread - bits_spread\"\n", + "}\n", + "\u001b[32m****************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: Check out file first to get actual lines position. Also, change endpoint name.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_1ABNdk6AATaVvn8UqLKBD5ZR\" *****\u001b[0m\n", + "USER INTERRUPTED\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "Check out file first to get actual lines position. Also, change endpoint name.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_2vlnu0RJ11qg6ygGT6l2tS3Q): see_file *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"main.py\"\n", + "}\n", + "\u001b[32m*************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION see_file...\u001b[0m\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_2vlnu0RJ11qg6ygGT6l2tS3Q\" *****\u001b[0m\n", + "[0, \"1:from fastapi import FastAPI\\n2:from spread_calculation import calculate_daily_spread\\n3:import yfinance as yf\\n4:\\n5:app = FastAPI()\\n6:\\n7:@app.get(\\\"/cdr_daily_spread\\\")\\n8:async def calculate_daily_spread():\\n9: cdr = yf.Ticker(\\\"CDR.WA\\\")\\n10: today_data = cdr.history(period=\\\"1d\\\")\\n11: spread = ((today_data[\\\"High\\\"] - today_data[\\\"Low\\\"]) / today_data[\\\"Low\\\"]) * 100\\n12: return spread\"]\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_gNwVSM2u33Ej89Yc2IkSAovu): modify_code *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"main.py\",\n", + " \"start_line\": 7,\n", + " \"end_line\": 12,\n", + " \"new_code\": \"@app.get(\\\"/compare_daily_spread\\\")\\nasync def compare_daily_spread():\\n cdr_spread = calculate_daily_spread(\\\"CDR.WA\\\")\\n bits_spread = calculate_daily_spread(\\\"11B.WA\\\")\\n return cdr_spread - bits_spread\"\n", + "}\n", + "\u001b[32m****************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION modify_code...\u001b[0m\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_gNwVSM2u33Ej89Yc2IkSAovu\" *****\u001b[0m\n", + "[0, \"Code modified\"]\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "The changes have been made successfully. Now, the FastAPI application has an endpoint `/compare_daily_spread` which calculates and returns the difference between the daily spreads of \"CDR.WA\" (CD Project Red) and \"11B.WA\" (11bits Studio). The calculation logic is now in a separate file `spread_calculation.py`.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: Good. But add in return some addition description to be understandable which stock change is bigger. Remember to check out main.py first to actualize your knowledge.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "Good. But add in return some addition description to be understandable which stock change is bigger. Remember to check out main.py first to actualize your knowledge.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_1Clo7beP49gWm1oXQXK7W6RH): see_file *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"main.py\"\n", + "}\n", + "\u001b[32m*************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION see_file...\u001b[0m\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_1Clo7beP49gWm1oXQXK7W6RH\" *****\u001b[0m\n", + "[0, \"1:from fastapi import FastAPI\\n2:from spread_calculation import calculate_daily_spread\\n3:import yfinance as yf\\n4:\\n5:app = FastAPI()\\n6:\\n7:@app.get(\\\"/compare_daily_spread\\\")\\n8:async def compare_daily_spread():\\n9: cdr_spread = calculate_daily_spread(\\\"CDR.WA\\\")\\n10: bits_spread = calculate_daily_spread(\\\"11B.WA\\\")\\n11: return cdr_spread - bits_spread\\n\"]\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_Cl6jBUwvfa8JGbyldfrzYfiB): modify_code *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"main.py\",\n", + " \"start_line\": 7,\n", + " \"end_line\": 11,\n", + " \"new_code\": \"@app.get(\\\"/compare_daily_spread\\\")\\nasync def compare_daily_spread():\\n cdr_spread = calculate_daily_spread(\\\"CDR.WA\\\")\\n bits_spread = calculate_daily_spread(\\\"11B.WA\\\")\\n spread_difference = cdr_spread - bits_spread\\n if spread_difference > 0:\\n return {'message': 'CD Project Red has a larger daily spread', 'difference': spread_difference}\\n elif spread_difference < 0:\\n return {'message': '11bits Studio has a larger daily spread', 'difference': -spread_difference}\\n else:\\n return {'message': 'Both stocks have the same daily spread', 'difference': 0}\"\n", + "}\n", + "\u001b[32m****************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION modify_code...\u001b[0m\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_Cl6jBUwvfa8JGbyldfrzYfiB\" *****\u001b[0m\n", + "[0, \"Code modified\"]\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "The changes have been made successfully. Now, the `/compare_daily_spread` endpoint returns a dictionary with a message indicating which stock (CD Project Red or 11bits Studio) has a larger daily spread and the absolute difference between the daily spreads. If both stocks have the same daily spread, the message will indicate this and the difference will be 0.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: ValueError: The truth value of a Series is ambiguous.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "ValueError: The truth value of a Series is ambiguous.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "The error message indicates that the comparison operation is being performed on a pandas Series object, which is ambiguous. This is likely because the `calculate_daily_spread` function is returning a Series object instead of a single value.\n", + "\n", + "To fix this, we need to ensure that the `calculate_daily_spread` function returns a single value. We can do this by taking the first (and only) value from the Series object. \n", + "\n", + "Here is the plan of changes:\n", + "\n", + "1. Modify the `calculate_daily_spread` function in `spread_calculation.py` to return only the first value from the `spread` Series.\n", + "2. No changes are required in `main.py` as the returned value from `calculate_daily_spread` function will now be a single value.\n", + "\n", + "Please confirm if this plan is correct and I can proceed with the changes.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: Cool. Remember to check out file before introducing modifications.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "Cool. Remember to check out file before introducing modifications.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_4wPhGFFW8pt8B28nVhVvWztN): see_file *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"spread_calculation.py\"\n", + "}\n", + "\u001b[32m*************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION see_file...\u001b[0m\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_4wPhGFFW8pt8B28nVhVvWztN\" *****\u001b[0m\n", + "[0, \"1:import yfinance as yf\\n2:\\n3:def calculate_daily_spread(ticker):\\n4: stock = yf.Ticker(ticker)\\n5: today_data = stock.history(period=\\\"1d\\\")\\n6: spread = ((today_data[\\\"High\\\"] - today_data[\\\"Low\\\"]) / today_data[\\\"Low\\\"]) * 100\\n7: return spread\"]\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Suggested tool Call (call_DL0p37GzppRSmoqFaOOLSNaI): modify_code *****\u001b[0m\n", + "Arguments: \n", + "\n", + "{\n", + " \"filename\": \"spread_calculation.py\",\n", + " \"start_line\": 3,\n", + " \"end_line\": 7,\n", + " \"new_code\": \"def calculate_daily_spread(ticker):\\n stock = yf.Ticker(ticker)\\n today_data = stock.history(period=\\\"1d\\\")\\n spread = ((today_data[\\\"High\\\"] - today_data[\\\"Low\\\"]) / today_data[\\\"Low\\\"]) * 100\\n return spread.values[0]\"\n", + "}\n", + "\u001b[32m****************************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION modify_code...\u001b[0m\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling tool \"call_DL0p37GzppRSmoqFaOOLSNaI\" *****\u001b[0m\n", + "[0, \"Code modified\"]\n", + "\u001b[32m**********************************************************************\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "\n", + "The changes have been made successfully. Now, the `calculate_daily_spread` function in `spread_calculation.py` returns a single value instead of a pandas Series. This should resolve the ValueError you were encountering.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Provide feedback to chat_manager. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: exit\n" + ] + } + ], + "source": [ + "chat_result = user_proxy.initiate_chat(\n", + " manager,\n", + " message=\"\"\"\n", + "You will need to improve app in FastApi. For now, check out all the application files, try to understand it and wait for next instructions.\n", + "\"\"\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "41b6dc05-b1fc-4c1d-b101-4e91dfa63b43", + "metadata": {}, + "source": [ + "## Result\n", + "\n", + "Finally, our agents modified a code so it looks like this:" + ] + }, + { + "cell_type": "markdown", + "id": "0dec75d5-035d-4cd6-956e-cafb37f304e7", + "metadata": {}, + "source": [ + "```python\n", + "# backend_dir/main.py\n", + "\n", + "from fastapi import FastAPI\n", + "from spread_calculation import calculate_daily_spread\n", + "import yfinance as yf\n", + "\n", + "app = FastAPI()\n", + "\n", + "@app.get(\"/compare_daily_spread\")\n", + "async def compare_daily_spread():\n", + " cdr_spread = calculate_daily_spread(\"CDR.WA\")\n", + " bits_spread = calculate_daily_spread(\"11B.WA\")\n", + " spread_difference = cdr_spread - bits_spread\n", + " if spread_difference > 0:\n", + " return {'message': 'CD Project Red has a larger daily spread', 'difference': spread_difference}\n", + " elif spread_difference < 0:\n", + " return {'message': '11bits Studio has a larger daily spread', 'difference': -spread_difference}\n", + " else:\n", + " return {'message': 'Both stocks have the same daily spread', 'difference': 0}\n", + "\n", + "\n", + "# backend_dir/spread_calculation.py\n", + "\n", + "import yfinance as yf\n", + "\n", + "def calculate_daily_spread(ticker):\n", + " stock = yf.Ticker(ticker)\n", + " today_data = stock.history(period=\"1d\")\n", + " spread = ((today_data[\"High\"] - today_data[\"Low\"]) / today_data[\"Low\"]) * 100\n", + " return spread.values[0]\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "b4c1dc47-53b7-417f-af8b-f8c4d73c1d7c", + "metadata": {}, + "source": [ + "You can check out work of application with Postman or curl and see the next output:" + ] + }, + { + "cell_type": "markdown", + "id": "3d52418e-9a67-4ea2-984e-5a14bdd78255", + "metadata": {}, + "source": [ + "```json\n", + "{\n", + " \"message\": \"11bits Studio has a larger daily spread\",\n", + " \"difference\": 1.7968083865943187\n", + "}\n", + "```" + ] + } + ], + "metadata": { + "front_matter": { + "description": "Equip your agent with functions that can efficiently implement features into your software application.", + "tags": [ + "function call", + "code generation", + "tool use", + "software engineering" + ] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebook/agentchat_function_call_currency_calculator.ipynb b/notebook/agentchat_function_call_currency_calculator.ipynb index de82476593e..a7a5a92bbd9 100644 --- a/notebook/agentchat_function_call_currency_calculator.ipynb +++ b/notebook/agentchat_function_call_currency_calculator.ipynb @@ -29,7 +29,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 14, "id": "2b803c17", "metadata": {}, "outputs": [], @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 15, "id": "dca301a4", "metadata": {}, "outputs": [], @@ -65,9 +65,7 @@ "\n", "config_list = autogen.config_list_from_json(\n", " \"OAI_CONFIG_LIST\",\n", - " filter_dict={\n", - " \"model\": [\"gpt-4\", \"gpt-3.5-turbo\", \"gpt-3.5-turbo-16k\"],\n", - " },\n", + " filter_dict={\"tags\": [\"3.5-tool\"]}, # comment out to get all\n", ")" ] }, @@ -77,14 +75,15 @@ "id": "92fde41f", "metadata": {}, "source": [ - "It first looks for environment variable \"OAI_CONFIG_LIST\" which needs to be a valid json string. If that variable is not found, it then looks for a json file named \"OAI_CONFIG_LIST\". It filters the configs by models (you can filter by other keys as well). Only the models with matching names are kept in the list based on the filter condition.\n", + "It first looks for environment variable \"OAI_CONFIG_LIST\" which needs to be a valid json string. If that variable is not found, it then looks for a json file named \"OAI_CONFIG_LIST\". It filters the configs by tags (you can filter by other keys as well). Only the configs with matching tags are kept in the list based on the filter condition.\n", "\n", "The config list looks like the following:\n", "```python\n", "config_list = [\n", " {\n", - " 'model': 'gpt-4',\n", + " 'model': 'gpt-3.5-turbo',\n", " 'api_key': '',\n", + " 'tags': ['tool', '3.5-tool'],\n", " },\n", " {\n", " 'model': 'gpt-3.5-turbo',\n", @@ -92,6 +91,7 @@ " 'base_url': '',\n", " 'api_type': 'azure',\n", " 'api_version': '2024-02-15-preview',\n", + " 'tags': ['tool', '3.5-tool'],\n", " },\n", " {\n", " 'model': 'gpt-3.5-turbo-16k',\n", @@ -99,6 +99,7 @@ " 'base_url': '',\n", " 'api_type': 'azure',\n", " 'api_version': '2024-02-15-preview',\n", + " 'tags': ['tool', '3.5-tool'],\n", " },\n", "]\n", "```\n", @@ -119,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 16, "id": "9fb85afb", "metadata": {}, "outputs": [], @@ -179,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 17, "id": "3e52bbfe", "metadata": {}, "outputs": [ @@ -203,7 +204,7 @@ " 'required': ['base_amount']}}}]" ] }, - "execution_count": 4, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -228,7 +229,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 18, "id": "bd943369", "metadata": {}, "outputs": [], @@ -246,7 +247,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 19, "id": "d5518947", "metadata": {}, "outputs": [ @@ -258,12 +259,22 @@ "\n", "How much is 123.45 USD in EUR?\n", "\n", - "--------------------------------------------------------------------------------\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", "\n", - "\u001b[32m***** Suggested tool Call (call_Ak49uR4cwLWyPKs5T2gK9bMg): currency_calculator *****\u001b[0m\n", + "\u001b[32m***** Suggested tool call (call_9ogJS4d40BT1rXfMn7YJb151): currency_calculator *****\u001b[0m\n", "Arguments: \n", - "{\"base_amount\":123.45}\n", + "{\n", + " \"base_amount\": 123.45,\n", + " \"base_currency\": \"USD\",\n", + " \"quote_currency\": \"EUR\"\n", + "}\n", "\u001b[32m************************************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", @@ -273,14 +284,14 @@ "\n", "\u001b[33muser_proxy\u001b[0m (to chatbot):\n", "\n", - "\u001b[32m***** Response from calling tool \"call_Ak49uR4cwLWyPKs5T2gK9bMg\" *****\u001b[0m\n", + "\u001b[32m***** Response from calling tool (call_9ogJS4d40BT1rXfMn7YJb151) *****\u001b[0m\n", "112.22727272727272 EUR\n", "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", "\n", - "123.45 USD is approximately 112.23 EUR.\n", + "123.45 USD is equivalent to 112.23 EUR.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33muser_proxy\u001b[0m (to chatbot):\n", @@ -306,7 +317,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 20, "id": "4b5a0edc", "metadata": {}, "outputs": [ @@ -314,7 +325,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Chat summary: 123.45 USD is equivalent to approximately 112.23 EUR.\n" + "Chat summary: 123.45 USD is equivalent to 112.23 EUR.\n" ] } ], @@ -340,7 +351,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 21, "id": "7b3d8b58", "metadata": {}, "outputs": [], @@ -389,7 +400,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 22, "id": "971ed0d5", "metadata": {}, "outputs": [ @@ -420,7 +431,7 @@ " 'required': ['base']}}}]" ] }, - "execution_count": 8, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -431,7 +442,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 23, "id": "ab081090", "metadata": {}, "outputs": [ @@ -443,12 +454,24 @@ "\n", "How much is 112.23 Euros in US Dollars?\n", "\n", - "--------------------------------------------------------------------------------\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", "\n", - "\u001b[32m***** Suggested tool Call (call_G64JQKQBT2rI4vnuA4iz1vmE): currency_calculator *****\u001b[0m\n", + "\u001b[32m***** Suggested tool call (call_BQkSmdFHsrKvmtDWCk0mY5sF): currency_calculator *****\u001b[0m\n", "Arguments: \n", - "{\"base\":{\"currency\":\"EUR\",\"amount\":112.23},\"quote_currency\":\"USD\"}\n", + "{\n", + " \"base\": {\n", + " \"currency\": \"EUR\",\n", + " \"amount\": 112.23\n", + " },\n", + " \"quote_currency\": \"USD\"\n", + "}\n", "\u001b[32m************************************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", @@ -458,23 +481,14 @@ "\n", "\u001b[33muser_proxy\u001b[0m (to chatbot):\n", "\n", - "\u001b[32m***** Response from calling tool \"call_G64JQKQBT2rI4vnuA4iz1vmE\" *****\u001b[0m\n", + "\u001b[32m***** Response from calling tool (call_BQkSmdFHsrKvmtDWCk0mY5sF) *****\u001b[0m\n", "{\"currency\":\"USD\",\"amount\":123.45300000000002}\n", "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", "\n", - "112.23 Euros is equivalent to approximately 123.45 US Dollars.\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33muser_proxy\u001b[0m (to chatbot):\n", - "\n", - "\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", - "\n", + "112.23 Euros is equivalent to 123.45 US Dollars.\n", "TERMINATE\n", "\n", "--------------------------------------------------------------------------------\n" @@ -491,7 +505,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 24, "id": "4799f60c", "metadata": {}, "outputs": [ @@ -499,7 +513,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Chat summary: 112.23 Euros is approximately 123.45 US Dollars.\n" + "Chat summary: 112.23 Euros is equivalent to 123.45 US Dollars.\n" ] } ], @@ -509,7 +523,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 25, "id": "0064d9cd", "metadata": {}, "outputs": [ @@ -521,12 +535,24 @@ "\n", "How much is 123.45 US Dollars in Euros?\n", "\n", - "--------------------------------------------------------------------------------\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", "\n", - "\u001b[32m***** Suggested tool Call (call_qv2SwJHpKrG73btxNzUnYBoR): currency_calculator *****\u001b[0m\n", + "\u001b[32m***** Suggested tool call (call_Xxol42xTswZHGX60OjvIQRG1): currency_calculator *****\u001b[0m\n", "Arguments: \n", - "{\"base\":{\"currency\":\"USD\",\"amount\":123.45},\"quote_currency\":\"EUR\"}\n", + "{\n", + " \"base\": {\n", + " \"currency\": \"USD\",\n", + " \"amount\": 123.45\n", + " },\n", + " \"quote_currency\": \"EUR\"\n", + "}\n", "\u001b[32m************************************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", @@ -536,14 +562,14 @@ "\n", "\u001b[33muser_proxy\u001b[0m (to chatbot):\n", "\n", - "\u001b[32m***** Response from calling tool \"call_qv2SwJHpKrG73btxNzUnYBoR\" *****\u001b[0m\n", + "\u001b[32m***** Response from calling tool (call_Xxol42xTswZHGX60OjvIQRG1) *****\u001b[0m\n", "{\"currency\":\"EUR\",\"amount\":112.22727272727272}\n", "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mchatbot\u001b[0m (to user_proxy):\n", "\n", - "123.45 US Dollars is approximately 112.23 Euros.\n", + "123.45 US Dollars is equivalent to 112.23 Euros.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33muser_proxy\u001b[0m (to chatbot):\n", @@ -571,7 +597,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 26, "id": "80b2b42c", "metadata": {}, "outputs": [ @@ -579,7 +605,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Chat history: [{'content': 'How much is 123.45 US Dollars in Euros?', 'role': 'assistant'}, {'tool_calls': [{'id': 'call_qv2SwJHpKrG73btxNzUnYBoR', 'function': {'arguments': '{\"base\":{\"currency\":\"USD\",\"amount\":123.45},\"quote_currency\":\"EUR\"}', 'name': 'currency_calculator'}, 'type': 'function'}], 'content': None, 'role': 'assistant'}, {'content': '{\"currency\":\"EUR\",\"amount\":112.22727272727272}', 'tool_responses': [{'tool_call_id': 'call_qv2SwJHpKrG73btxNzUnYBoR', 'role': 'tool', 'content': '{\"currency\":\"EUR\",\"amount\":112.22727272727272}'}], 'role': 'tool'}, {'content': '123.45 US Dollars is approximately 112.23 Euros.', 'role': 'user'}, {'content': '', 'role': 'assistant'}, {'content': 'TERMINATE', 'role': 'user'}]\n" + "Chat history: [{'content': 'How much is 123.45 US Dollars in Euros?', 'role': 'assistant'}, {'tool_calls': [{'id': 'call_Xxol42xTswZHGX60OjvIQRG1', 'function': {'arguments': '{\\n \"base\": {\\n \"currency\": \"USD\",\\n \"amount\": 123.45\\n },\\n \"quote_currency\": \"EUR\"\\n}', 'name': 'currency_calculator'}, 'type': 'function'}], 'content': None, 'role': 'assistant'}, {'content': '{\"currency\":\"EUR\",\"amount\":112.22727272727272}', 'tool_responses': [{'tool_call_id': 'call_Xxol42xTswZHGX60OjvIQRG1', 'role': 'tool', 'content': '{\"currency\":\"EUR\",\"amount\":112.22727272727272}'}], 'role': 'tool'}, {'content': '123.45 US Dollars is equivalent to 112.23 Euros.', 'role': 'user'}, {'content': '', 'role': 'assistant'}, {'content': 'TERMINATE', 'role': 'user'}]\n" ] } ], @@ -589,30 +615,30 @@ } ], "metadata": { - "front_matter": { - "description": "Learn how to register function calls using AssistantAgent and UserProxyAgent in AutoGen.", - "tags": [ - "function call", - "tool use" - ] - }, - "kernelspec": { - "display_name": "flaml_dev", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } + "front_matter": { + "description": "Learn how to register function calls using AssistantAgent and UserProxyAgent in AutoGen.", + "tags": [ + "function call", + "tool use" + ] + }, + "kernelspec": { + "display_name": "flaml_dev", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } }, "nbformat": 4, "nbformat_minor": 5 diff --git a/notebook/agentchat_groupchat_RAG.ipynb b/notebook/agentchat_groupchat_RAG.ipynb index 35ab96909f2..1057deabf92 100644 --- a/notebook/agentchat_groupchat_RAG.ipynb +++ b/notebook/agentchat_groupchat_RAG.ipynb @@ -42,7 +42,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "LLM models: ['gpt-4-1106-preview', 'gpt-4-turbo-preview', 'gpt-4-0613', 'gpt-35-turbo-0613', 'gpt-35-turbo-1106']\n" + "LLM models: ['gpt4-1106-preview', 'gpt-35-turbo', 'gpt-35-turbo-0613']\n" ] } ], @@ -77,12 +77,23 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", + " torch.utils._pytree._register_pytree_node(\n" + ] + } + ], "source": [ "def termination_msg(x):\n", " return isinstance(x, dict) and \"TERMINATE\" == str(x.get(\"content\", \"\"))[-9:].upper()\n", "\n", "\n", + "llm_config = {\"config_list\": config_list, \"timeout\": 60, \"temperature\": 0.8, \"seed\": 1234}\n", + "\n", "boss = autogen.UserProxyAgent(\n", " name=\"Boss\",\n", " is_termination_msg=termination_msg,\n", @@ -96,13 +107,13 @@ " name=\"Boss_Assistant\",\n", " is_termination_msg=termination_msg,\n", " human_input_mode=\"NEVER\",\n", + " default_auto_reply=\"Reply `TERMINATE` if the task is done.\",\n", " max_consecutive_auto_reply=3,\n", " retrieve_config={\n", " \"task\": \"code\",\n", " \"docs_path\": \"https://raw.githubusercontent.com/microsoft/FLAML/main/website/docs/Examples/Integrate%20-%20Spark.md\",\n", " \"chunk_token_size\": 1000,\n", " \"model\": config_list[0][\"model\"],\n", - " \"client\": chromadb.PersistentClient(path=\"/tmp/chromadb\"),\n", " \"collection_name\": \"groupchat\",\n", " \"get_or_create\": True,\n", " },\n", @@ -114,7 +125,7 @@ " name=\"Senior_Python_Engineer\",\n", " is_termination_msg=termination_msg,\n", " system_message=\"You are a senior python engineer, you provide python code to answer questions. Reply `TERMINATE` in the end when everything is done.\",\n", - " llm_config={\"config_list\": config_list, \"timeout\": 60, \"temperature\": 0},\n", + " llm_config=llm_config,\n", " description=\"Senior Python Engineer who can write code to solve problems and answer questions.\",\n", ")\n", "\n", @@ -122,7 +133,7 @@ " name=\"Product_Manager\",\n", " is_termination_msg=termination_msg,\n", " system_message=\"You are a product manager. Reply `TERMINATE` in the end when everything is done.\",\n", - " llm_config={\"config_list\": config_list, \"timeout\": 60, \"temperature\": 0},\n", + " llm_config=llm_config,\n", " description=\"Product Manager who can design and plan the project.\",\n", ")\n", "\n", @@ -130,7 +141,7 @@ " name=\"Code_Reviewer\",\n", " is_termination_msg=termination_msg,\n", " system_message=\"You are a code reviewer. Reply `TERMINATE` in the end when everything is done.\",\n", - " llm_config={\"config_list\": config_list, \"timeout\": 60, \"temperature\": 0},\n", + " llm_config=llm_config,\n", " description=\"Code Reviewer who can review the code.\",\n", ")\n", "\n", @@ -150,9 +161,7 @@ " groupchat = autogen.GroupChat(\n", " agents=[boss_aid, pm, coder, reviewer], messages=[], max_round=12, speaker_selection_method=\"round_robin\"\n", " )\n", - " manager = autogen.GroupChatManager(\n", - " groupchat=groupchat, llm_config={\"config_list\": config_list, \"timeout\": 60, \"temperature\": 0}\n", - " )\n", + " manager = autogen.GroupChatManager(groupchat=groupchat, llm_config=llm_config)\n", "\n", " # Start chatting with boss_aid as this is the user proxy agent.\n", " boss_aid.initiate_chat(\n", @@ -172,9 +181,7 @@ " speaker_selection_method=\"auto\",\n", " allow_repeat_speaker=False,\n", " )\n", - " manager = autogen.GroupChatManager(\n", - " groupchat=groupchat, llm_config={\"config_list\": config_list, \"timeout\": 60, \"temperature\": 0}\n", - " )\n", + " manager = autogen.GroupChatManager(groupchat=groupchat, llm_config=llm_config)\n", "\n", " # Start chatting with the boss as this is the user proxy agent.\n", " boss.initiate_chat(\n", @@ -226,9 +233,7 @@ " allow_repeat_speaker=False,\n", " )\n", "\n", - " manager = autogen.GroupChatManager(\n", - " groupchat=groupchat, llm_config={\"config_list\": config_list, \"timeout\": 60, \"temperature\": 0}\n", - " )\n", + " manager = autogen.GroupChatManager(groupchat=groupchat, llm_config=llm_config)\n", "\n", " # Start chatting with the boss as this is the user proxy agent.\n", " boss.initiate_chat(\n", @@ -270,49 +275,129 @@ "text": [ "\u001b[33mSenior_Python_Engineer\u001b[0m (to chat_manager):\n", "\n", - "To use Apache Spark for parallel training in FLAML, you need to use the `flaml.tune.run` function. Here is a sample code:\n", + "To use Spark for parallel training in FLAML (Fast and Lightweight AutoML), you would need to set up a Spark cluster and utilize the `spark` backend for joblib, which FLAML uses internally for parallel training. Here’s an example of how you might set up and use Spark with FLAML for AutoML tasks:\n", + "\n", + "Firstly, ensure that you have the Spark cluster set up and the `pyspark` and `joblib-spark` packages installed in your environment. You can install the required packages using pip if they are not already installed:\n", "\n", "```python\n", - "from flaml import tune\n", + "!pip install flaml pyspark joblib-spark\n", + "```\n", + "\n", + "Here's a sample code snippet that demonstrates how to use FLAML with Spark for parallel training:\n", + "\n", + "```python\n", + "from flaml import AutoML\n", + "from pyspark.sql import SparkSession\n", + "from sklearn.datasets import load_digits\n", + "from joblibspark import register_spark\n", + "\n", + "# Initialize a Spark session\n", + "spark = SparkSession.builder \\\n", + " .master(\"local[*]\") \\\n", + " .appName(\"FLAML_Spark_Example\") \\\n", + " .getOrCreate()\n", + "\n", + "# Register the joblib spark backend\n", + "register_spark() # This registers the backend for parallel processing\n", + "\n", + "# Load sample data\n", + "X, y = load_digits(return_X_y=True)\n", "\n", - "# Define your training function\n", - "def training_function(config):\n", - " # your training code here\n", - " pass\n", + "# Initialize an AutoML instance\n", + "automl = AutoML()\n", "\n", - "# Define your search space\n", - "search_space = {\n", - " \"lr\": tune.loguniform(1e-4, 1e-1),\n", - " \"momentum\": tune.uniform(0.1, 0.9),\n", + "# Define the settings for the AutoML run\n", + "settings = {\n", + " \"time_budget\": 60, # Total running time in seconds\n", + " \"metric\": 'accuracy', # Primary metric for evaluation\n", + " \"task\": 'classification', # Task type\n", + " \"n_jobs\": -1, # Number of jobs to run in parallel (use -1 for all)\n", + " \"estimator_list\": ['lgbm', 'rf', 'xgboost'], # List of estimators to consider\n", + " \"log_file_name\": \"flaml_log.txt\", # Log file name\n", "}\n", "\n", - "# Use SparkTrials for parallelization\n", - "from ray.tune import SparkTrials\n", + "# Run the AutoML search with Spark backend\n", + "automl.fit(X_train=X, y_train=y, **settings)\n", "\n", - "spark_trials = SparkTrials(parallelism=2)\n", + "# Output the best model and its performance\n", + "print(f\"Best ML model: {automl.model}\")\n", + "print(f\"Best ML model's accuracy: {automl.best_loss}\")\n", "\n", - "analysis = tune.run(\n", - " training_function,\n", - " config=search_space,\n", - " num_samples=10,\n", - " scheduler=tune.schedulers.FIFOScheduler(),\n", - " progress_reporter=tune.JupyterNotebookReporter(overwrite=True),\n", - " trial_executor=spark_trials,\n", - ")\n", + "# Stop the Spark session\n", + "spark.stop()\n", + "```\n", + "\n", + "The `register_spark()` function from `joblib-spark` is used to register the Spark backend with joblib, which is utilized for parallel training within FLAML. The `n_jobs=-1` parameter tells FLAML to use all available Spark executors for parallel training.\n", + "\n", + "Please note that the actual process of setting up a Spark cluster can be complex and might involve additional steps such as configuring Spark workers, allocating resources, and more, which are beyond the scope of this code snippet.\n", + "\n", + "If you encounter any issues or need to adjust configurations for your specific Spark setup, please refer to the Spark and FLAML documentation for more details.\n", "\n", - "print(\"Best config: \", analysis.get_best_config(metric=\"accuracy\", mode=\"max\"))\n", + "When you run the code, ensure that your Spark cluster is properly configured and accessible from your Python environment. Adjust the `.master(\"local[*]\")` to point to your Spark master's URL if you are running a cluster that is not local.\n", "\n", - "# Get a dataframe for analyzing trial results.\n", - "df = analysis.results_df\n", + "--------------------------------------------------------------------------------\n", + "To use Spark for parallel training in FLAML (Fast and Lightweight AutoML), you would need to set up a Spark cluster and utilize the `spark` backend for joblib, which FLAML uses internally for parallel training. Here’s an example of how you might set up and use Spark with FLAML for AutoML tasks:\n", + "\n", + "Firstly, ensure that you have the Spark cluster set up and the `pyspark` and `joblib-spark` packages installed in your environment. You can install the required packages using pip if they are not already installed:\n", + "\n", + "```python\n", + "!pip install flaml pyspark joblib-spark\n", "```\n", "\n", - "In this code, `training_function` is your training function, which should take a `config` argument. This `config` argument is a dictionary that includes hyperparameters for your model. The `search_space` is a dictionary that defines the search space for your hyperparameters.\n", + "Here's a sample code snippet that demonstrates how to use FLAML with Spark for parallel training:\n", + "\n", + "```python\n", + "from flaml import AutoML\n", + "from pyspark.sql import SparkSession\n", + "from sklearn.datasets import load_digits\n", + "from joblibspark import register_spark\n", + "\n", + "# Initialize a Spark session\n", + "spark = SparkSession.builder \\\n", + " .master(\"local[*]\") \\\n", + " .appName(\"FLAML_Spark_Example\") \\\n", + " .getOrCreate()\n", "\n", - "The `tune.run` function is used to start the hyperparameter tuning. The `config` argument is your search space, `num_samples` is the number of times to sample from the search space, and `scheduler` is the scheduler for the trials. The `trial_executor` argument is set to `spark_trials` to use Spark for parallelization.\n", + "# Register the joblib spark backend\n", + "register_spark() # This registers the backend for parallel processing\n", "\n", - "The `analysis.get_best_config` function is used to get the best hyperparameters found during the tuning. The `analysis.results_df` gives a dataframe that contains the results of all trials.\n", + "# Load sample data\n", + "X, y = load_digits(return_X_y=True)\n", "\n", - "Please note that you need to have Apache Spark and Ray installed and properly configured in your environment to run this code.\n", + "# Initialize an AutoML instance\n", + "automl = AutoML()\n", + "\n", + "# Define the settings for the AutoML run\n", + "settings = {\n", + " \"time_budget\": 60, # Total running time in seconds\n", + " \"metric\": 'accuracy', # Primary metric for evaluation\n", + " \"task\": 'classification', # Task type\n", + " \"n_jobs\": -1, # Number of jobs to run in parallel (use -1 for all)\n", + " \"estimator_list\": ['lgbm', 'rf', 'xgboost'], # List of estimators to consider\n", + " \"log_file_name\": \"flaml_log.txt\", # Log file name\n", + "}\n", + "\n", + "# Run the AutoML search with Spark backend\n", + "automl.fit(X_train=X, y_train=y, **settings)\n", + "\n", + "# Output the best model and its performance\n", + "print(f\"Best ML model: {automl.model}\")\n", + "print(f\"Best ML model's accuracy: {automl.best_loss}\")\n", + "\n", + "# Stop the Spark session\n", + "spark.stop()\n", + "```\n", + "\n", + "The `register_spark()` function from `joblib-spark` is used to register the Spark backend with joblib, which is utilized for parallel training within FLAML. The `n_jobs=-1` parameter tells FLAML to use all available Spark executors for parallel training.\n", + "\n", + "Please note that the actual process of setting up a Spark cluster can be complex and might involve additional steps such as configuring Spark workers, allocating resources, and more, which are beyond the scope of this code snippet.\n", + "\n", + "If you encounter any issues or need to adjust configurations for your specific Spark setup, please refer to the Spark and FLAML documentation for more details.\n", + "\n", + "When you run the code, ensure that your Spark cluster is properly configured and accessible from your Python environment. Adjust the `.master(\"local[*]\")` to point to your Spark master's URL if you are running a cluster that is not local.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mCode_Reviewer\u001b[0m (to chat_manager):\n", "\n", "TERMINATE\n", "\n", @@ -335,17 +420,38 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 4, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-04-07 18:26:04,562 - autogen.agentchat.contrib.retrieve_user_proxy_agent - INFO - \u001b[32mUse the existing collection `groupchat`.\u001b[0m\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "doc_ids: [['doc_0', 'doc_1', 'doc_122']]\n", - "\u001b[32mAdding doc_id doc_0 to context.\u001b[0m\n", - "\u001b[32mAdding doc_id doc_1 to context.\u001b[0m\n", - "\u001b[32mAdding doc_id doc_122 to context.\u001b[0m\n", + "Trying to create collection.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-04-07 18:26:05,485 - autogen.agentchat.contrib.retrieve_user_proxy_agent - INFO - Found 1 chunks.\u001b[0m\n", + "Number of requested results 3 is greater than number of elements in index 1, updating n_results = 1\n", + "Model gpt4-1106-preview not found. Using cl100k_base encoding.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VectorDB returns doc_ids: [['bdfbc921']]\n", + "\u001b[32mAdding content of doc bdfbc921 to context.\u001b[0m\n", "\u001b[33mBoss_Assistant\u001b[0m (to chat_manager):\n", "\n", "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", @@ -363,6 +469,7 @@ "Context is: # Integrate - Spark\n", "\n", "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", + "\n", "- Use Spark ML estimators for AutoML.\n", "- Use Spark to run training in parallel spark jobs.\n", "\n", @@ -377,6 +484,7 @@ "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", "\n", "This function also accepts optional arguments `index_col` and `default_index_type`.\n", + "\n", "- `index_col` is the column name to use as the index, default is None.\n", "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", "\n", @@ -385,10 +493,13 @@ "```python\n", "import pandas as pd\n", "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "\n", "# Creating a dictionary\n", - "data = {\"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", - " \"Age_Years\": [20, 15, 10, 7, 25],\n", - " \"Price\": [100000, 200000, 300000, 240000, 120000]}\n", + "data = {\n", + " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", + " \"Age_Years\": [20, 15, 10, 7, 25],\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000],\n", + "}\n", "\n", "# Creating a pandas DataFrame\n", "dataframe = pd.DataFrame(data)\n", @@ -401,8 +512,10 @@ "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", "\n", "Here is an example of how to use it:\n", + "\n", "```python\n", "from pyspark.ml.feature import VectorAssembler\n", + "\n", "columns = psdf.columns\n", "feature_cols = [col for col in columns if col != label]\n", "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", @@ -412,10 +525,13 @@ "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", "\n", "### Estimators\n", + "\n", "#### Model List\n", + "\n", "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", "\n", "#### Usage\n", + "\n", "First, prepare your data in the required format as described in the previous section.\n", "\n", "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", @@ -424,6 +540,7 @@ "\n", "```python\n", "import flaml\n", + "\n", "# prepare your data in pandas-on-spark format as we previously mentioned\n", "\n", "automl = flaml.AutoML()\n", @@ -441,24 +558,25 @@ ")\n", "```\n", "\n", - "\n", "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", "\n", "## Parallel Spark Jobs\n", + "\n", "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", "\n", "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", "\n", "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", "\n", - "\n", "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performes parallel tuning.\n", "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", "\n", "An example code snippet for using parallel Spark jobs:\n", + "\n", "```python\n", "import flaml\n", + "\n", "automl_experiment = flaml.AutoML()\n", "automl_settings = {\n", " \"time_budget\": 30,\n", @@ -466,7 +584,7 @@ " \"task\": \"regression\",\n", " \"n_concurrent_trials\": 2,\n", " \"use_spark\": True,\n", - " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", "}\n", "\n", "automl.fit(\n", @@ -476,127 +594,48 @@ ")\n", "```\n", "\n", - "\n", "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", "\n", - "2684,4/26/2011,2,0,4,17,0,2,1,1,0.68,0.6364,0.61,0.3582,521\n", - "2685,4/26/2011,2,0,4,18,0,2,1,1,0.68,0.6364,0.65,0.4478,528\n", - "2686,4/26/2011,2,0,4,19,0,2,1,1,0.64,0.6061,0.73,0.4179,328\n", - "2687,4/26/2011,2,0,4,20,0,2,1,1,0.64,0.6061,0.73,0.3582,234\n", - "2688,4/26/2011,2,0,4,21,0,2,1,1,0.62,0.5909,0.78,0.2836,195\n", - "2689,4/26/2011,2,0,4,22,0,2,1,2,0.6,0.5606,0.83,0.194,148\n", - "2690,4/26/2011,2,0,4,23,0,2,1,2,0.6,0.5606,0.83,0.2239,78\n", - "2691,4/27/2011,2,0,4,0,0,3,1,1,0.6,0.5606,0.83,0.2239,27\n", - "2692,4/27/2011,2,0,4,1,0,3,1,1,0.6,0.5606,0.83,0.2537,17\n", - "2693,4/27/2011,2,0,4,2,0,3,1,1,0.58,0.5455,0.88,0.2537,5\n", - "2694,4/27/2011,2,0,4,3,0,3,1,2,0.58,0.5455,0.88,0.2836,7\n", - "2695,4/27/2011,2,0,4,4,0,3,1,1,0.56,0.5303,0.94,0.2239,6\n", - "2696,4/27/2011,2,0,4,5,0,3,1,2,0.56,0.5303,0.94,0.2537,17\n", - "2697,4/27/2011,2,0,4,6,0,3,1,1,0.56,0.5303,0.94,0.2537,84\n", - "2698,4/27/2011,2,0,4,7,0,3,1,2,0.58,0.5455,0.88,0.2836,246\n", - "2699,4/27/2011,2,0,4,8,0,3,1,2,0.58,0.5455,0.88,0.3284,444\n", - "2700,4/27/2011,2,0,4,9,0,3,1,2,0.6,0.5455,0.88,0.4179,181\n", - "2701,4/27/2011,2,0,4,10,0,3,1,2,0.62,0.5758,0.83,0.2836,92\n", - "2702,4/27/2011,2,0,4,11,0,3,1,2,0.64,0.5909,0.78,0.2836,156\n", - "2703,4/27/2011,2,0,4,12,0,3,1,1,0.66,0.6061,0.78,0.3284,173\n", - "2704,4/27/2011,2,0,4,13,0,3,1,1,0.64,0.5909,0.78,0.2985,150\n", - "2705,4/27/2011,2,0,4,14,0,3,1,1,0.68,0.6364,0.74,0.2836,148\n", - "\n", - "\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mProduct_Manager\u001b[0m (to chat_manager):\n", - "\n", - "To use Spark for parallel training in FLAML, you can follow these steps:\n", - "\n", - "1. Prepare your data in the required format using the `to_pandas_on_spark` function from the `flaml.automl.spark.utils` module. This function converts your data into a pandas-on-spark dataframe, which is required by Spark estimators. Here is an example code snippet:\n", - "\n", - "```python\n", - "import pandas as pd\n", - "from flaml.automl.spark.utils import to_pandas_on_spark\n", - "\n", - "# Creating a dictionary\n", - "data = {\n", - " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", - " \"Age_Years\": [20, 15, 10, 7, 25],\n", - " \"Price\": [100000, 200000, 300000, 240000, 120000]\n", - "}\n", - "\n", - "# Creating a pandas DataFrame\n", - "dataframe = pd.DataFrame(data)\n", - "label = \"Price\"\n", - "\n", - "# Convert to pandas-on-spark dataframe\n", - "psdf = to_pandas_on_spark(dataframe)\n", - "```\n", "\n", - "2. Format your data appropriately for Spark ML models. Use the `VectorAssembler` from `pyspark.ml.feature` to merge all feature columns into a single vector column. Here is an example:\n", "\n", - "```python\n", - "from pyspark.ml.feature import VectorAssembler\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mBoss_Assistant\u001b[0m (to chat_manager):\n", "\n", - "columns = psdf.columns\n", - "feature_cols = [col for col in columns if col != label]\n", - "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", - "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "For code generation, you must obey the following rules:\n", + "Rule 1. You MUST NOT install any packages because all the packages needed are already installed.\n", + "Rule 2. You must follow the formats below to write your code:\n", + "```language\n", + "# your code\n", "```\n", "\n", - "3. Use the Spark ML models in FLAML's AutoML. Include the models you want to try in the `estimator_list` argument to `flaml.AutoML()`. FLAML will start trying configurations for these models. Here is an example code snippet:\n", + "User's question is: How to use spark for parallel training in FLAML? Give me sample code.\n", "\n", - "```python\n", - "import flaml\n", + "Context is: # Integrate - Spark\n", "\n", - "automl = flaml.AutoML()\n", - "settings = {\n", - " \"time_budget\": 30,\n", - " \"metric\": \"r2\",\n", - " \"estimator_list\": [\"lgbm_spark\"],\n", - " \"task\": \"regression\"\n", - "}\n", + "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", "\n", - "automl.fit(\n", - " dataframe=psdf,\n", - " label=label,\n", - " **settings\n", - ")\n", - "```\n", + "- Use Spark ML estimators for AutoML.\n", + "- Use Spark to run training in parallel spark jobs.\n", "\n", - "4. To enable parallel Spark jobs during parallel tuning, set the `use_spark` parameter to `True`. FLAML will dispatch your job to the distributed Spark backend using `joblib-spark`. Here is an example code snippet:\n", + "## Spark ML Estimators\n", "\n", - "```python\n", - "import flaml\n", + "FLAML integrates estimators based on Spark ML models. These models are trained in parallel using Spark, so we called them Spark estimators. To use these models, you first need to organize your data in the required format.\n", "\n", - "automl_experiment = flaml.AutoML()\n", - "automl_settings = {\n", - " \"time_budget\": 30,\n", - " \"metric\": \"r2\",\n", - " \"task\": \"regression\",\n", - " \"n_concurrent_trials\": 2,\n", - " \"use_spark\": True,\n", - " \"force_cancel\": True\n", - "}\n", + "### Data\n", "\n", - "automl.fit(\n", - " dataframe=dataframe,\n", - " label=label,\n", - " **automl_settings\n", - ")\n", - "```\n", + "For Spark estimators, AutoML only consumes Spark data. FLAML provides a convenient function `to_pandas_on_spark` in the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark (`pyspark.pandas`) dataframe/series, which Spark estimators require.\n", "\n", - "Please note that you should not set `use_spark` to `True` when applying AutoML and Tuning for Spark Data, as SparkML models will be used for Spark Data in AutoML and Tuning.\n", + "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", "\n", - "Let me know if you need anything else.\n", + "This function also accepts optional arguments `index_col` and `default_index_type`.\n", "\n", - "--------------------------------------------------------------------------------\n", - "To use Spark for parallel training in FLAML, you can follow these steps:\n", + "- `index_col` is the column name to use as the index, default is None.\n", + "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", "\n", - "1. Prepare your data in the required format using the `to_pandas_on_spark` function from the `flaml.automl.spark.utils` module. This function converts your data into a pandas-on-spark dataframe, which is required by Spark estimators. Here is an example code snippet:\n", + "Here is an example code snippet for Spark Data:\n", "\n", "```python\n", "import pandas as pd\n", @@ -606,7 +645,7 @@ "data = {\n", " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", " \"Age_Years\": [20, 15, 10, 7, 25],\n", - " \"Price\": [100000, 200000, 300000, 240000, 120000]\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000],\n", "}\n", "\n", "# Creating a pandas DataFrame\n", @@ -617,7 +656,9 @@ "psdf = to_pandas_on_spark(dataframe)\n", "```\n", "\n", - "2. Format your data appropriately for Spark ML models. Use the `VectorAssembler` from `pyspark.ml.feature` to merge all feature columns into a single vector column. Here is an example:\n", + "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", + "\n", + "Here is an example of how to use it:\n", "\n", "```python\n", "from pyspark.ml.feature import VectorAssembler\n", @@ -628,27 +669,57 @@ "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", "```\n", "\n", - "3. Use the Spark ML models in FLAML's AutoML. Include the models you want to try in the `estimator_list` argument to `flaml.AutoML()`. FLAML will start trying configurations for these models. Here is an example code snippet:\n", + "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", + "\n", + "### Estimators\n", + "\n", + "#### Model List\n", + "\n", + "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", + "\n", + "#### Usage\n", + "\n", + "First, prepare your data in the required format as described in the previous section.\n", + "\n", + "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", + "\n", + "Here is an example code snippet using SparkML models in AutoML:\n", "\n", "```python\n", "import flaml\n", "\n", + "# prepare your data in pandas-on-spark format as we previously mentioned\n", + "\n", "automl = flaml.AutoML()\n", "settings = {\n", " \"time_budget\": 30,\n", " \"metric\": \"r2\",\n", - " \"estimator_list\": [\"lgbm_spark\"],\n", - " \"task\": \"regression\"\n", + " \"estimator_list\": [\"lgbm_spark\"], # this setting is optional\n", + " \"task\": \"regression\",\n", "}\n", "\n", "automl.fit(\n", " dataframe=psdf,\n", " label=label,\n", - " **settings\n", + " **settings,\n", ")\n", "```\n", "\n", - "4. To enable parallel Spark jobs during parallel tuning, set the `use_spark` parameter to `True`. FLAML will dispatch your job to the distributed Spark backend using `joblib-spark`. Here is an example code snippet:\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", + "\n", + "## Parallel Spark Jobs\n", + "\n", + "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", + "\n", + "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", + "\n", + "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", + "\n", + "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", + "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performes parallel tuning.\n", + "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", + "\n", + "An example code snippet for using parallel Spark jobs:\n", "\n", "```python\n", "import flaml\n", @@ -660,99 +731,69 @@ " \"task\": \"regression\",\n", " \"n_concurrent_trials\": 2,\n", " \"use_spark\": True,\n", - " \"force_cancel\": True\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", "}\n", "\n", "automl.fit(\n", " dataframe=dataframe,\n", " label=label,\n", - " **automl_settings\n", + " **automl_settings,\n", ")\n", "```\n", "\n", - "Please note that you should not set `use_spark` to `True` when applying AutoML and Tuning for Spark Data, as SparkML models will be used for Spark Data in AutoML and Tuning.\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", "\n", - "Let me know if you need anything else.\n", "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mSenior_Python_Engineer\u001b[0m (to chat_manager):\n", "\n", - "Here is the sample code to use Spark for parallel training in FLAML:\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_Manager\u001b[0m (to chat_manager):\n", "\n", "```python\n", - "import pandas as pd\n", + "from flaml.automl import AutoML\n", "from flaml.automl.spark.utils import to_pandas_on_spark\n", "from pyspark.ml.feature import VectorAssembler\n", - "import flaml\n", + "import pandas as pd\n", "\n", - "# Step 1: Prepare your data in the required format\n", + "# Sample data in a dictionary\n", "data = {\n", " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", " \"Age_Years\": [20, 15, 10, 7, 25],\n", - " \"Price\": [100000, 200000, 300000, 240000, 120000]\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000],\n", "}\n", "\n", + "# Convert dictionary to pandas DataFrame\n", "dataframe = pd.DataFrame(data)\n", "label = \"Price\"\n", "\n", + "# Convert pandas DataFrame to pandas-on-spark DataFrame\n", "psdf = to_pandas_on_spark(dataframe)\n", "\n", - "# Step 2: Format your data for Spark ML models\n", - "columns = psdf.columns\n", - "feature_cols = [col for col in columns if col != label]\n", + "# Use VectorAssembler to merge feature columns into a single vector column\n", + "feature_cols = [col for col in psdf.columns if col != label]\n", "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", - "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\", label]\n", "\n", - "# Step 3: Use Spark ML models in FLAML's AutoML\n", - "automl = flaml.AutoML()\n", - "settings = {\n", - " \"time_budget\": 30,\n", - " \"metric\": \"r2\",\n", - " \"estimator_list\": [\"lgbm_spark\"],\n", - " \"task\": \"regression\"\n", - "}\n", + "# Initialize AutoML instance\n", + "automl = AutoML()\n", "\n", - "automl.fit(\n", - " dataframe=psdf,\n", - " label=label,\n", - " **settings\n", - ")\n", - "\n", - "# Step 4: Enable parallel Spark jobs during parallel tuning\n", - "automl_experiment = flaml.AutoML()\n", + "# AutoML settings\n", "automl_settings = {\n", - " \"time_budget\": 30,\n", - " \"metric\": \"r2\",\n", + " \"time_budget\": 30, # Total running time in seconds\n", + " \"metric\": \"r2\", # Evaluation metric\n", " \"task\": \"regression\",\n", - " \"n_concurrent_trials\": 2,\n", - " \"use_spark\": True,\n", - " \"force_cancel\": True\n", + " \"n_concurrent_trials\": 2, # Number of concurrent Spark jobs\n", + " \"use_spark\": True, # Enable Spark for parallel training\n", + " \"force_cancel\": True, # Force cancel Spark jobs if they exceed the time budget\n", + " \"estimator_list\": [\"lgbm_spark\"] # Optional: Specific estimator to use\n", "}\n", "\n", + "# Run AutoML fit with pandas-on-spark dataframe\n", "automl.fit(\n", - " dataframe=dataframe,\n", + " dataframe=psdf,\n", " label=label,\n", - " **automl_settings\n", + " **automl_settings,\n", ")\n", "```\n", - "\n", - "Let me know if you need anything else.\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mCode_Reviewer\u001b[0m (to chat_manager):\n", - "\n", - "The code you provided is correct and follows the guidelines for using Spark for parallel training in FLAML. It includes the necessary steps to prepare the data, format it for Spark ML models, and use Spark ML models in FLAML's AutoML. It also demonstrates how to enable parallel Spark jobs during parallel tuning.\n", - "\n", - "Great job! You can now terminate the conversation.\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mBoss_Assistant\u001b[0m (to chat_manager):\n", - "\n", - "\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mProduct_Manager\u001b[0m (to chat_manager):\n", - "\n", "TERMINATE\n", "\n", "--------------------------------------------------------------------------------\n" @@ -775,7 +816,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -787,28 +828,35 @@ "How to use spark for parallel training in FLAML? Give me sample code.\n", "\n", "--------------------------------------------------------------------------------\n", - "How to use spark for parallel training in FLAML? Give me sample code.\n", - "\n", - "--------------------------------------------------------------------------------\n", "\u001b[33mProduct_Manager\u001b[0m (to chat_manager):\n", "\n", - "\u001b[32m***** Suggested function Call: retrieve_content *****\u001b[0m\n", + "\u001b[32m***** Suggested function call: retrieve_content *****\u001b[0m\n", "Arguments: \n", - "{\n", - " \"message\": \"How to use spark for parallel training in FLAML? Give me sample code.\"\n", - "}\n", + "{\"message\":\"using Apache Spark for parallel training in FLAML with sample code\"}\n", "\u001b[32m*****************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[35m\n", - ">>>>>>>> EXECUTING FUNCTION retrieve_content...\u001b[0m\n", - "doc_ids: [['doc_0', 'doc_1', 'doc_122']]\n", - "\u001b[32mAdding doc_id doc_0 to context.\u001b[0m\n", - "\u001b[32mAdding doc_id doc_1 to context.\u001b[0m\n", - "\u001b[32mAdding doc_id doc_122 to context.\u001b[0m\n", + ">>>>>>>> EXECUTING FUNCTION retrieve_content...\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Number of requested results 3 is greater than number of elements in index 1, updating n_results = 1\n", + "Model gpt4-1106-preview not found. Using cl100k_base encoding.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VectorDB returns doc_ids: [['bdfbc921']]\n", + "\u001b[32mAdding content of doc bdfbc921 to context.\u001b[0m\n", "\u001b[33mBoss\u001b[0m (to chat_manager):\n", "\n", - "\u001b[32m***** Response from calling function \"retrieve_content\" *****\u001b[0m\n", + "\u001b[32m***** Response from calling function (retrieve_content) *****\u001b[0m\n", "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", "context provided by the user.\n", "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", @@ -819,11 +867,12 @@ "# your code\n", "```\n", "\n", - "User's question is: How to use spark for parallel training in FLAML? Give me sample code.\n", + "User's question is: using Apache Spark for parallel training in FLAML with sample code\n", "\n", "Context is: # Integrate - Spark\n", "\n", "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", + "\n", "- Use Spark ML estimators for AutoML.\n", "- Use Spark to run training in parallel spark jobs.\n", "\n", @@ -838,6 +887,7 @@ "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", "\n", "This function also accepts optional arguments `index_col` and `default_index_type`.\n", + "\n", "- `index_col` is the column name to use as the index, default is None.\n", "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", "\n", @@ -846,10 +896,13 @@ "```python\n", "import pandas as pd\n", "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "\n", "# Creating a dictionary\n", - "data = {\"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", - " \"Age_Years\": [20, 15, 10, 7, 25],\n", - " \"Price\": [100000, 200000, 300000, 240000, 120000]}\n", + "data = {\n", + " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", + " \"Age_Years\": [20, 15, 10, 7, 25],\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000],\n", + "}\n", "\n", "# Creating a pandas DataFrame\n", "dataframe = pd.DataFrame(data)\n", @@ -862,8 +915,10 @@ "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", "\n", "Here is an example of how to use it:\n", + "\n", "```python\n", "from pyspark.ml.feature import VectorAssembler\n", + "\n", "columns = psdf.columns\n", "feature_cols = [col for col in columns if col != label]\n", "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", @@ -873,10 +928,13 @@ "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", "\n", "### Estimators\n", + "\n", "#### Model List\n", + "\n", "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", "\n", "#### Usage\n", + "\n", "First, prepare your data in the required format as described in the previous section.\n", "\n", "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", @@ -885,6 +943,7 @@ "\n", "```python\n", "import flaml\n", + "\n", "# prepare your data in pandas-on-spark format as we previously mentioned\n", "\n", "automl = flaml.AutoML()\n", @@ -902,24 +961,25 @@ ")\n", "```\n", "\n", - "\n", "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", "\n", "## Parallel Spark Jobs\n", + "\n", "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", "\n", "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", "\n", "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", "\n", - "\n", "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performes parallel tuning.\n", "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", "\n", "An example code snippet for using parallel Spark jobs:\n", + "\n", "```python\n", "import flaml\n", + "\n", "automl_experiment = flaml.AutoML()\n", "automl_settings = {\n", " \"time_budget\": 30,\n", @@ -927,7 +987,7 @@ " \"task\": \"regression\",\n", " \"n_concurrent_trials\": 2,\n", " \"use_spark\": True,\n", - " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", "}\n", "\n", "automl.fit(\n", @@ -937,41 +997,50 @@ ")\n", "```\n", "\n", - "\n", "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", "\n", - "2684,4/26/2011,2,0,4,17,0,2,1,1,0.68,0.6364,0.61,0.3582,521\n", - "2685,4/26/2011,2,0,4,18,0,2,1,1,0.68,0.6364,0.65,0.4478,528\n", - "2686,4/26/2011,2,0,4,19,0,2,1,1,0.64,0.6061,0.73,0.4179,328\n", - "2687,4/26/2011,2,0,4,20,0,2,1,1,0.64,0.6061,0.73,0.3582,234\n", - "2688,4/26/2011,2,0,4,21,0,2,1,1,0.62,0.5909,0.78,0.2836,195\n", - "2689,4/26/2011,2,0,4,22,0,2,1,2,0.6,0.5606,0.83,0.194,148\n", - "2690,4/26/2011,2,0,4,23,0,2,1,2,0.6,0.5606,0.83,0.2239,78\n", - "2691,4/27/2011,2,0,4,0,0,3,1,1,0.6,0.5606,0.83,0.2239,27\n", - "2692,4/27/2011,2,0,4,1,0,3,1,1,0.6,0.5606,0.83,0.2537,17\n", - "2693,4/27/2011,2,0,4,2,0,3,1,1,0.58,0.5455,0.88,0.2537,5\n", - "2694,4/27/2011,2,0,4,3,0,3,1,2,0.58,0.5455,0.88,0.2836,7\n", - "2695,4/27/2011,2,0,4,4,0,3,1,1,0.56,0.5303,0.94,0.2239,6\n", - "2696,4/27/2011,2,0,4,5,0,3,1,2,0.56,0.5303,0.94,0.2537,17\n", - "2697,4/27/2011,2,0,4,6,0,3,1,1,0.56,0.5303,0.94,0.2537,84\n", - "2698,4/27/2011,2,0,4,7,0,3,1,2,0.58,0.5455,0.88,0.2836,246\n", - "2699,4/27/2011,2,0,4,8,0,3,1,2,0.58,0.5455,0.88,0.3284,444\n", - "2700,4/27/2011,2,0,4,9,0,3,1,2,0.6,0.5455,0.88,0.4179,181\n", - "2701,4/27/2011,2,0,4,10,0,3,1,2,0.62,0.5758,0.83,0.2836,92\n", - "2702,4/27/2011,2,0,4,11,0,3,1,2,0.64,0.5909,0.78,0.2836,156\n", - "2703,4/27/2011,2,0,4,12,0,3,1,1,0.66,0.6061,0.78,0.3284,173\n", - "2704,4/27/2011,2,0,4,13,0,3,1,1,0.64,0.5909,0.78,0.2985,150\n", - "2705,4/27/2011,2,0,4,14,0,3,1,1,0.68,0.6364,0.74,0.2836,148\n", - "\n", "\n", "\u001b[32m*************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33mProduct_Manager\u001b[0m (to chat_manager):\n", + "\u001b[33mBoss\u001b[0m (to chat_manager):\n", + "\n", + "\u001b[32m***** Response from calling function (retrieve_content) *****\u001b[0m\n", + "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "For code generation, you must obey the following rules:\n", + "Rule 1. You MUST NOT install any packages because all the packages needed are already installed.\n", + "Rule 2. You must follow the formats below to write your code:\n", + "```language\n", + "# your code\n", + "```\n", + "\n", + "User's question is: using Apache Spark for parallel training in FLAML with sample code\n", + "\n", + "Context is: # Integrate - Spark\n", + "\n", + "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", + "\n", + "- Use Spark ML estimators for AutoML.\n", + "- Use Spark to run training in parallel spark jobs.\n", + "\n", + "## Spark ML Estimators\n", + "\n", + "FLAML integrates estimators based on Spark ML models. These models are trained in parallel using Spark, so we called them Spark estimators. To use these models, you first need to organize your data in the required format.\n", + "\n", + "### Data\n", + "\n", + "For Spark estimators, AutoML only consumes Spark data. FLAML provides a convenient function `to_pandas_on_spark` in the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark (`pyspark.pandas`) dataframe/series, which Spark estimators require.\n", + "\n", + "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", "\n", - "To use Spark for parallel training in FLAML, you can follow these steps:\n", + "This function also accepts optional arguments `index_col` and `default_index_type`.\n", "\n", - "1. Prepare your data in the required format using Spark data. You can use the `to_pandas_on_spark` function from the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark dataframe.\n", + "- `index_col` is the column name to use as the index, default is None.\n", + "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", + "\n", + "Here is an example code snippet for Spark Data:\n", "\n", "```python\n", "import pandas as pd\n", @@ -981,7 +1050,7 @@ "data = {\n", " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", " \"Age_Years\": [20, 15, 10, 7, 25],\n", - " \"Price\": [100000, 200000, 300000, 240000, 120000]\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000],\n", "}\n", "\n", "# Creating a pandas DataFrame\n", @@ -992,16 +1061,45 @@ "psdf = to_pandas_on_spark(dataframe)\n", "```\n", "\n", - "2. Use the Spark ML estimators provided by FLAML. You can include the models you want to try in the `estimator_list` argument of the `flaml.AutoML` class. FLAML will start trying configurations for these models.\n", + "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", + "\n", + "Here is an example of how to use it:\n", + "\n", + "```python\n", + "from pyspark.ml.feature import VectorAssembler\n", + "\n", + "columns = psdf.columns\n", + "feature_cols = [col for col in columns if col != label]\n", + "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "```\n", + "\n", + "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", + "\n", + "### Estimators\n", + "\n", + "#### Model List\n", + "\n", + "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", + "\n", + "#### Usage\n", + "\n", + "First, prepare your data in the required format as described in the previous section.\n", + "\n", + "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", + "\n", + "Here is an example code snippet using SparkML models in AutoML:\n", "\n", "```python\n", "import flaml\n", "\n", + "# prepare your data in pandas-on-spark format as we previously mentioned\n", + "\n", "automl = flaml.AutoML()\n", "settings = {\n", " \"time_budget\": 30,\n", " \"metric\": \"r2\",\n", - " \"estimator_list\": [\"lgbm_spark\"], # Optional: specify the Spark estimator\n", + " \"estimator_list\": [\"lgbm_spark\"], # this setting is optional\n", " \"task\": \"regression\",\n", "}\n", "\n", @@ -1012,22 +1110,109 @@ ")\n", "```\n", "\n", - "3. Enable parallel Spark jobs by setting the `use_spark` parameter to `True` in the `fit` method. This will dispatch the job to the distributed Spark backend using `joblib-spark`.\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", + "\n", + "## Parallel Spark Jobs\n", + "\n", + "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", + "\n", + "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", + "\n", + "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", + "\n", + "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", + "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performes parallel tuning.\n", + "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", + "\n", + "An example code snippet for using parallel Spark jobs:\n", "\n", "```python\n", + "import flaml\n", + "\n", + "automl_experiment = flaml.AutoML()\n", + "automl_settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"task\": \"regression\",\n", + " \"n_concurrent_trials\": 2,\n", + " \"use_spark\": True,\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", + "}\n", + "\n", "automl.fit(\n", - " dataframe=psdf,\n", + " dataframe=dataframe,\n", " label=label,\n", - " use_spark=True,\n", + " **automl_settings,\n", ")\n", "```\n", "\n", - "Note: Make sure you have Spark installed and configured properly before running the code.\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", + "\n", "\n", - "Please let me know if you need any further assistance.\n", + "\u001b[32m*************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33mSenior_Python_Engineer\u001b[0m (to chat_manager):\n", + "\u001b[33mProduct_Manager\u001b[0m (to chat_manager):\n", + "\n", + "To use Apache Spark for parallel training in FLAML, you can follow these steps:\n", + "\n", + "1. Ensure your data is in the required pandas-on-spark format.\n", + "2. Use Spark ML estimators by including them in the `estimator_list`.\n", + "3. Set `use_spark` to `True` for parallel tuning.\n", + "\n", + "Here's a sample code demonstrating how to use Spark for parallel training in FLAML:\n", + "\n", + "```python\n", + "import flaml\n", + "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "import pandas as pd\n", + "from pyspark.ml.feature import VectorAssembler\n", + "\n", + "# Sample data in a pandas DataFrame\n", + "data = {\n", + " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", + " \"Age_Years\": [20, 15, 10, 7, 25],\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000],\n", + "}\n", + "label = \"Price\"\n", + "\n", + "# Creating a pandas DataFrame\n", + "dataframe = pd.DataFrame(data)\n", + "\n", + "# Convert to pandas-on-spark dataframe\n", + "psdf = to_pandas_on_spark(dataframe)\n", + "\n", + "# Prepare features using VectorAssembler\n", + "columns = psdf.columns\n", + "feature_cols = [col for col in columns if col != label]\n", + "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "\n", + "# Initialize AutoML\n", + "automl = flaml.AutoML()\n", + "\n", + "# Configure settings for AutoML\n", + "settings = {\n", + " \"time_budget\": 30, # time budget in seconds\n", + " \"metric\": \"r2\",\n", + " \"estimator_list\": [\"lgbm_spark\"], # using Spark ML estimators\n", + " \"task\": \"regression\",\n", + " \"n_concurrent_trials\": 2, # number of parallel trials\n", + " \"use_spark\": True, # enable parallel training using Spark\n", + " \"force_cancel\": True, # force cancel Spark jobs if time_budget is exceeded\n", + "}\n", + "\n", + "# Start the training\n", + "automl.fit(dataframe=psdf, label=label, **settings)\n", + "```\n", + "\n", + "In this code snippet:\n", + "- The `to_pandas_on_spark` function is used to convert the pandas DataFrame to a pandas-on-spark DataFrame.\n", + "- `VectorAssembler` is used to transform feature columns into a single vector column.\n", + "- The `AutoML` object is created, and settings are configured for the AutoML run, including setting `use_spark` to `True` for parallel training.\n", + "- The `fit` method is called to start the automated machine learning process.\n", + "\n", + "By using these settings, FLAML will train the models in parallel using Spark, which can accelerate the training process on large models and datasets.\n", "\n", "TERMINATE\n", "\n", diff --git a/notebook/agentchat_groupchat_finite_state_machine.ipynb b/notebook/agentchat_groupchat_finite_state_machine.ipynb index b5724159e46..8ef101f7d91 100644 --- a/notebook/agentchat_groupchat_finite_state_machine.ipynb +++ b/notebook/agentchat_groupchat_finite_state_machine.ipynb @@ -32,18 +32,7 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.0\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], + "outputs": [], "source": [ "%%capture --no-stderr\n", "%pip install pyautogen[graph]>=0.2.11" @@ -76,7 +65,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.2.14\n" + "0.2.25\n" ] } ], @@ -96,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -105,7 +94,7 @@ " \"cache_seed\": 44, # change the seed for different trials\n", " \"config_list\": autogen.config_list_from_json(\n", " \"OAI_CONFIG_LIST\",\n", - " filter_dict={\"model\": [\"gpt-4\", \"gpt-4-0613\", \"gpt-4-32k\", \"gpt-4-32k-0613\", \"gpt-4-1106-preview\"]},\n", + " filter_dict={\"tags\": [\"gpt-4\", \"gpt-4-32k\"]}, # comment out to get all\n", " ),\n", " \"temperature\": 0,\n", "}" @@ -113,12 +102,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjF0lEQVR4nOzdd1yV5f/H8dc57CEqKgoCoogbFUVQQcQ9KnNrbstyVDZcbU3LHGXLHJXlzr1KDbeiAgIuxAkoMgQURAVknvv3hz/PV8JKE7gZn+fj0eOL59znvt/HL8LnXPd1fS6NoigKQgghhBBC/EdatQMIIYQQQojSTQpKIYQQQgjxTKSgFEIIIYQQz0QKSiGEEEII8UykoBRCCCGEEM9ECkohhBBCCPFMpKAUQgghhBDPRApKIYQQQgjxTKSgFEIIIYQQz0QKSiGEEEII8UykoBRCCCGEEM9ECkohhBBCCPFMpKAUQgghhBDPRApKIYQQQgjxTKSgFEIIIYQQz0QKSiGEEEII8UykoBRCCCGEEM9ECkohhBBCCPFMpKAUQgghhBDPRApKIYQQQgjxTKSgFEIIIYQQz0QKSiGEEEII8UykoBRCCCGEEM9ECkohhBBCCPFMpKAUQgghhBDPRApKIYQQQgjxTKSgFEIIIYQQz0QKSiFUMn78eKZNm8bNmzfVjiKEEEI8E42iKIraIYQojypUqEBaWhqmpqZMnDiRyZMnU61aNbVjCSGEEE9NCkohVPKwoAQwMDDAyMiIN954g3fffZfq1auTk5ODsbExGo1G5aRCCCHEP5OCUggVpKamYmdnx/379ws8Z2RkRJ8+fdiwYQMAFStWxNXVFTc3N5o3b46bmxvNmjVDq5UZK0IIIUoGKSiFKEbnz5/n22+/ZeXKlWRmZuof12g0KIpCjRo1mDJlCs899xwnTpwgMzOTW7ducebMGU6fPs3ly5dRFIU6deowbtw4Xn75ZapUqaLiOxJCCCGkoBSiWJw7d47Jkyfj5+eHra0tr7/+OrNnzyYjIwOAevXqMWvWLPr37/+PI49paWkEBwfzyy+/sGHDBjQaDYMHD+aLL77A1ta2uN6OEEIIkY8UlEIUIUVR+PHHH3n77bepXbs2H3zwAQMHDsTY2BgXFxe0Wu0TFZKPc/PmTX799VcWLFhAbm4uS5YsoX///kX0ToQQQoi/JwWlEEUkLS2Nl19+mY0bNzJ+/Hi++uorzMzM9M9nZ2djaGj4zHMhb926xbhx49i8eTNDhw5lyZIlWFpaPmt8IYQQ4olJQSlEEcjNzaVXr174+/vz66+/FvnIoaIorF69mgkTJuDp6ckff/yBqalpkV5TCCGEeEgKSiEKmaIovPbaayxfvpxdu3bRpUuXYrv24cOH6d69O926dWPjxo0YGRkV27WFEEKUX9J3RIhCtmDBAn7++Wd+/vnnYi0mAdq3b8/mzZvZuXMn48ePL9ZrCyGEKL9khFKIQhQbG0v9+vUZO3YsCxYsUC3HTz/9xGuvvcaePXuKvagVQghR/khBKUQhGjFiBH5+fly5cgUrKyvVciiKQocOHYiPj+fs2bMyn1IIIUSRklveQhSS0NBQVq1axWeffaZqMQkPGqUvXryYa9eu8eWXX6qaRQghRNknI5RCFJJx48bx559/EhkZiYGBgdpxAHj99dfZsmULMTExGBoaqh1HCCFEGSUjlEIUgpycHDZt2sSgQYNKTDEJ8Morr5CQkMCePXvUjiKEEKIMk4JSiEKwf/9+kpOTGTx4sNpR8nFzc6Np06YsX75c7ShCCCHKMCkohSgEe/fupVatWjRv3lztKPloNBqGDBnCH3/8QV5entpxhBBClFFSUApRCC5evIirqysajUbtKAW4u7tz//59IiMj1Y4ihBCijJKCUohCcPHiRerXr692jMdq2rQpAGfPnlU5iRBCiLJKCkohnlF2djbXrl2jXr16akd5rGrVqlGjRg3CwsLUjiKEEKKMkoJSiGeUm5uLTqfD0tJS7Sh/y9ramnv37qkdQwghRBklBaUQz8jIyAh40DpICCGEKI+koBTiGT1sGJ6dna1yEiGEEEIdUlAK8Yw0Gg2Wlpbcvn1b7Sh/Ky0tDRMTE7VjCCGEKKOkoBSiELi6unLmzBm1YzzWnTt3uH79Oo0bN1Y7ihBCiDJKCkohCkGLFi04efKk2jEe69y5c8D/2gcJIYQQhU0KSiEKQYsWLbh06RJ37txRO0oBp06dwtDQkAYNGqgdRQghRBklBaUQhaBLly4AbNy4UeUkBW3atIn27dtjbGysdhQhhBBllEZRFEXtEEKUBT179iQlJYXAwMBnOk96Vi7XktPJztVhbKjFqYoFFiaG/+lcUVFRODs7s3r1aoYOHfpMuYQQQoi/899+SwkhCnjllVfo378/YWFhuLq6PtVrryTeY03QdQ5eSuJ6SgaPfsrTAI7W5nSob8NQT0dcqld44vMuX76cChUq0KdPn6fKI4QQQjwNGaEUopBkZ2dTt25dXF1d+eOPP9BoNP/6mpiUDD7YGoZ/xC0MtBrydH//z/Hh8+3qVmV2H1ccrM3/8dwJCQnUr1+f4cOHs3Dhwqd+P0IIIcSTkoJSiEK0fft2evfuzYYNGxgwYMA/Hrsu+DrTd4STq1P+sZD8KwOtBkOthk97NWZwK8e/PW7o0KHs2bOHixcvUqVKlSc+vxBCCPG0pKAUopD16dOHwMBAzp8/T+XKlR97zMKDV/hyz+VnvtbkrvV4o4NLgcf37t1L165dWb58OSNHjnzm6wghhBD/RApKIQpZbGwsTZs2pVGjRvj5+WFhYZHv+XXB13lvS1ihXW9uX1cGPTJSGRYWRvv27XFzc2Pfvn1PdOtdCCGEeBbSNkiIfzFu3Dg0Go3+vzlz5vzj8fb29uzevZszZ87Qp08fMjMz9c/FpGQwfUd4oeb7ZEc4MSkZAERERODr64uxsTGtWrXi8OHDj33N3bt3mTZtGs7OzpiYmFC9enWGDRtGZGRkoWYTQghRPsgIpRD/ICcnB1tbW5KTk/WPNWvWjNOnT//raw8dOkSPHj1o3749K1euxMbGhuHLgjgelfxUcyb/jYFWQ9s6VZjYVEv//v3Jzs4mISEBgOnTpzNjxox8x9+9e5d27dpx9uzZAueqXLkyhw8ffupV6kIIIco3GaEU4h/s3bs3XzEJcObMGS5evPivr/X19WXHjh2Ehobi6urK0t+24x9xq1CLSYA8nYJ/xC3aPTeAatWqMWXKlH88fsaMGfpi0sfHh23btjF27FgAbt++zSuvvFKo+YQQQpR9MkIpxD8YMWIEq1atAmDw4MGsW7cOePzI36ZNm5gxYwYRERHUrVuXTz75hPPnz/Ppp58CYN6oPdVemASaB5/jspOucidgI1nXw8i7fw8DcyvM6rhT0XsIhlZV9edN9V/DnWO/AVCl51vosjK4F/oHufduYmRtT+VOr2Lq2IRGRre4sHom0dHRj30v06dP54MPPqB69eqkpqai0WiIi4vD1tYWRVFo1KiRvlAOCQmhZcuWhfcXKYQQokyTEUoh/kZmZibbtm0DoFq1anzzzTcYGj7YC+BhYfnQli1bGDhwIOHh4WRlZREeHs6gQYP0rweoUrepvpi8HxnCjRXvknHhCHnpt0GXS15aCmln95Cw4h1yUhMem+nO8fXc3v8Tuak3IC+XnJvXuLnlM3TZ98moVPtf39O5c+dITU0FwMnJCVtbWwA0Gg1t2rTRH+fv7/9Ef0dCCCEESEEpxN/6448/uHfvHgC9e/emevXq+Pr6AnDp0iVOnToFQF5eHm+//TYPB/sHDBjAzp07mThxImfOnNGfLyPXAABdTia3dn4NeTmgNaCSzwhsBs3CyrPfg/Ol3yZlz+LHZspNTcCqdX+q9fsYI5sHBaSSfZ+M8ENcT85g1dp1fPDBB/rjR48ezd69e9m1axcvv/wy165d0z9XvXr1fOe2sbHRf3316tWn/vsSQghRfklBKcTfeHQUsn///vn+99HnQ0NDiYmJAaBGjRqsWbOGnj178u2339K6desC5828egpdxh0ATJ2aY+LQGI2hMWZ1PTCo+KDIy4w6Sd7/H/MoM5fWVPYdhbmLJxXb/K9xes7tGyiAtVNDXFz+15cyMDCQF154gUmTJuHo6Eh6err+OWNj43znfvTPjx4nhBBC/BspKIV4jHv37rFz504ArK2t6dixIwB9+/bFwODBSOP69etRFIWoqCj961q0aIGRkZH+z4/eRn4oJyVO/3VmVCiJa6bp/8u7k/j/zyjkJMcWeK2pQxP911ozK/3XuqwHBeCceV/y5Zdf6h+/ePEimZmZVKjwYP/vR3tiZmVl5Tt3dna2/uu/9s4UQggh/omh2gGEKIm2bdum7x+ZkpKSr0h8KDo6moCAgHyPFWYTcSUns8BjWlPLR671yOfB/7/dvv63NeQkXX3k4QeP37lzh19//ZWqVf+32CcxMZFHPWw1BFC79r/PxxRCCCEekoJSiMf47bffnui4devWMXz4cP2fT506RV5enn4U868FJ4CRdU391xZNOlH1+XcKHKPLyURrZPpUmTXAoOc6smb5L/y1ecOlS5d4+eWX8z127do1vL29adGiBS1btuTo0aP659q1a/dU1xZCCFG+SUEpxF8kJyezd+9eACpUqMDs2bPzPZ+dnc2kSZMA2LhxI19//TUODg7ExMQQHx/PiBEjGDp0KH5+fgQGBupfV8XSmCzA1MkNrXlFdBl3SD93AK2ZJWZObiiKjtw7iWTFXiAn6Sp2rz5+Yc7fcaxizqovfqZ1SzfeeOONfM+9++671K9fn/DwcLZu3aqf83ns2DGOHTuW71itVsugQYOoXbs2TZo0wcPDg/bt22NnZ/dUeYQQQpQf0odSiL9YunQp48aNA6Bfv35s2rSpwDFubm763XL27dvHnTt36N+/f4GRQVdXV8LCHuzb/eLEzwizdCNPp3A/MpikLbMfrPR+DAMrG+wn/AL8tQ/l21g27QxAZvRZEn97sKLb0rUTkz77lhm9GnPr1i3s7e0LzJE8ePAgvr6+/7hTjqGhob5PZUZGRr73o9VqsbS0pHr16vpi09PTk/bt2xdYMS6EEKJ8kUU5QvzFo7e7e/Xq9dhjXnjhBf3X69ato2/fvmzYsIFGjRphbGxMw4YNWbt2LZ06ddIf16GxvX6XHDPnVtiO+hqLxh0wqFAVtIZozawwsqlDhVa9qdbnvafKrCgwrLUjAFWrVmXbtm24ublhYmJS4FgrKyv8/f2ZMmUKtWvXxtjYGBsbG4YMGcKFCxeIjY0lLS0NnU5HREQEP//8M+PGjcPb25vKlSsTHx/P3r17WbBgAYMGDaJGjRoYGBhQqVIl6tevT48ePZg6dSqbN2/m1q1bT/U+hBDlW0ZGBsOGDeO3334jLy9P7TjiKcgIpRCFQFGUxy7Iad26NUFBQQCcPHmSBSezC30vb60GvJyrsuoVz0I757/R6XRcuXKFw4cPExISwoULF7h+/Tq3bt0iIyMjfz6tFisrK2rUqEGdOnVo2rQprVu3pn379lSqVKnYMgshSr6wsDCaNm0KQN26dZk5cyYDBw7Uz0sXJZcUlEIUgiNHjrB48WJGjRpFgwYNSE1N5ccff2TRokUA1K9fn/PnzxOXmknnrw+TlasrnAsrCrrcbAz3fMHLA1+kZcuWtGzZMl+T8uKm0+m4cOECR44cITQ0VF9sJicnc//+/XzHGhgY6ItNZ2dnmjZtSps2bfDx8cHKyupvriCEKKseLSg1Gg2KokhhWUpIQSlEITh06BAdOnR47HMVKlRgz549+ibn64Kv896WsEK79u0/F3L39J/5HrOxsaFNmzZ8//33ODg4FNq1npVOp+PcuXP6YvPixYvExMSQnJysb9P0kKGhIVZWVtja2lK3bl19sdmuXTssLS3/5gpCiNLs2LFjeHt7P/a5pk2bcv/+feLi4jA1NcXGxobmzZvTvHlz3NzcaNGiRb7WaKJ4SUEpRCG4fv06H374IQEBAdy4cYO8vDwcHBzo0qWLfq4iPCiovvjiC77cfY6K7YY983WndK2PadRhxowZU+A5rVbLmTNnaNKkyWNeWfLodDpOnz6Nv78/J0+e1BebKSkpBRYYGRoaUrFiRezs7Khbty7NmjWjbdu2eHl5YW5urtI7EEL8VyEhIXz99desX78+39zJh6OUjo6OzJ07FwsLC6KiosjMzCQ2NpZTp05x5swZ0tLS0Gg09OzZk/Hjx9O9e3cZzSxmUlAKUQwyMzNZs2YNn3/+uX6f7F8OX2TO3ihydcpTzak00Gow1GqY2asxg1o5kpOTg5OTE/Hx8fmOmz9/PpMnTy7U96GW3NxcTp06pS82L126RGxsLLdv3y5QbBoZGVGpUiXs7OxwcXHRF5tt27bF1PTpensKIYrWoUOH+Oijjzh27Bi1a9emf//+zJ8/X19Iuru789lnn9G1a9e/3ThCp9MRGRnJoUOHWLJkCSdPnsTJyYm33nqLN954A0ND6ZBYHKSgFKII3b59m8WLF7NgwQKSk5P1j7u6unL27FliUjL4YGsY/hG3MNBq/rGwfPh8u7pVmd3HFQfr/43E/fDDD7z55pv52vz07NmT33//Ha22bDdzyM3NJTg4mKNHj3Lq1CkuX76sLzYf3U4SHhSblStXpmbNmri4uNC8eXO8vLxo3bp1gb3NhRBFJzc3lxkzZjB79mw8PT2ZNm0aL7zwAnFxcTg5OdGyZct/LSQfR1EUTpw4waJFi1i9ejUeHh6sXLkSFxeXInw3AqSgFKLIKIpCvXr1iIiIyPe4Vqvl/fff57PPPtM/diXxHmuCrnPwchLXkzNQ8p+IWlUt6FDPhmGtHalrU6HAte7fv4+DgwPJycnUrl2bKlWqEBISgp2dHYGBgSVqHmVxys7OJigoiGPHjnH69GkuX75MXFwct2/fJicnfw9QY2NjKleujL29PS4uLri5ueHl5YWnp6eMcAhRiGJjYxk8eDCBgYHMmjWLadOm5fvge/PmTapWrfrMW9keP36cESNGcOPGDRYsWMDYsWOfNbr4B1JQClGEfvrpJ8aPH49Op8s3evj777/z/PPPP/Y16Vm5XEtO535WDl5tPMlJiefw/j3/uh3id999p5/H2aRJE95//33mzJmDkZER69evp0+fPoX63kq7zMxMAgICOH78OKdPn+bKlSvEx8eTmppaoNg0MTHRF5v169fHzc2Ndu3a0aJFCyk2hXgKycnJeHl5kZ6ezrp16/Dy8irS66WlpTF58mSWLl3K3LlzmTp1apFerzyTglKIIjZr1iw++eSTfI8lJSVRrVq1f3zdgQMH9I3R7ezsCA8P/9e+jRkZGfkWpezbt48XXniBzMxMJkyYwA8//PDf3kQ5k5GRwbFjxwgICOD06dNEREQQHx/PnTt3yM3NzXesiYkJ1tbWODg40KBBA1q0aIG3tzdubm5lfrqBEE8jMzOTzp07c+nSJQICAqhbt26xXfvjjz/ms88+Y/Hixfqd0EThkoJSiCIUGRlJgwYNMDAwwNnZmfPnz+Po6Eh0dPS/vvb1119n8eLFKIqCVqtlwIAB/Pbbb099G+jWrVt4enoSFRWFq6srx48fl7Y7zyAtLQ1/f38CAgI4e/YsERER3Lhxg7t37xYoNk1NTalSpYq+2GzZsiXt2rXD1dVVik1R7gwdOpStW7dy4MABfRu14qIoCm+99RYLFy5k48aN9OvXr1ivXx5IQSlEEcnMzKRmzZrcvn2bw4cP4+7uzrvvvouzs/O/rr7W6XTY2dmRmJiY7/FVq1YxbNjTtxvS6XQMHTqUdevWYWlpyf79+/Hw8Hjq84h/dvfuXY4cOUJAQABhYWFERkbqi82/biNnZmZGlSpVcHR0pGHDhvpis1GjRlJsijJnz549dOvWjdWrVzN06FBVMuh0OgYMGMCRI0e4dOkS1tbWquQoq6SgFKKIuLu7ExoaypdffsmkSZOe6rVBQUGP/QRvbm7OtWvX/vV2+d/59ddfefXVV9HpdMydO5cpU6b8p/OIp3f79m2OHDlCYGAgZ8+eJSoqioSEBO7du1eg2DQ3N6dKlSrUqlWLhg0b4u7uTvv27XFxcZFiU5Q6ubm5NG/eHGtraw4fPvzMi22exY0bN2jQoAGDBw9m6dKlquUoi6SgFKIITJgwgcWLF9OnTx+2bNny1K+fMWMGn376ab7H7O3tadGiBb/88gtVqlT5z9kuXbpE27ZtSUlJoWvXruzcuVMWlqjs1q1bHD58mKCgIMLCwoiKiiIxMZF79+6h0/1vm06NRoOZmRnVqlWjVq1aNGrUCHd3d3x9fXF2dlbxHQjx95YsWcKECRMIDg6mZcuWasfhhx9+4I033iAwMBBPT0+145QZUlAKUchWr17N8OHDcXZ25vLly/9pROnMmTP8/vvv1KtXj3HjxmFoaEhSUlKhZczOzqZTp04cPXqU6tWrExQURK1atQrt/KLwJCUlcejQIYKCgjh37hxXr14lMTGRtLS0AsWmubk51apVw8nJiUaNGuHh4YGvr6/8fytU1axZM1xcXNi0aZPaUQDIy8ujcePGtGjRgrVr16odp8yQglKIQhQeHk6zZs0wNTUlNjb2X1dlPwl3d3fOnj1boEl3YZgxYwYzZ87EwMCA1atXM2jQoEK/hig6cXFxHDlyhBMnTuiLzaSkJNLS0vK1qdJoNFhYWGBjY4OTkxNNmjShVatW+Pr6Ym9vr+I7EGXdhQsXaNSoEVu3bqV3795qx9GbN28e06dP58aNG4Xyc1pIQSlEoUlLS6NmzZqkpaURGBhIq1atCuW8I0aMYNWqVaSmplKxYsVCOeejDh8+TI8ePbh//z5jxozhp59+KvRriOJ3/fp1Dh8+THBwMOHh4Vy7do2kpCTS09MLFJuWlpbY2NhQu3ZtmjRpgqenJ+3bt8fW1lbFdyDKghkzZvD111+TmJhYorY+vXHjBvb29ixatEganhcSKSiFKCRNmjQhPDycJUuWFOoPqIfzfYryE35KSgqtW7fmypUrNGzYkICAgCIpXkXJcPXqVX2xef78ea5du8bNmzfJyMjIV2xqtVosLS2pXr06derUyVds2tjYqPgORGnh6emJs7Nziby13LVrV7RaLX/++afaUcoEmYkvRCEYMWIE4eHhDB8+vNA/7T5sbn706NEiKyitra25fPkyI0eOZOXKldjZ2bFnz54i38VCqKN27drUrl2bUaNGFXguIiJCX2xeuHCB6Oho4uLiuHLlCn5+fvrjtFotFSpUoEaNGtSpUwdXV1c8PT3x9fWVdiwCeND78eLFiyV2ly4PDw9++eUXtWOUGTJCKcQzWrp0KePGjaNRo0aEh4cX+vkVRcHAwICOHTuyb9++Qj//X61evZrRo0eTl5fHrFmz+PDDD4v8mqLk0+l0XL58mSNHjhASEsL58+e5fv06t27d4v79+/mONTAw0Bebzs7OuLq60qZNG3x8fGS+WjmSkJCAra0tW7ZsKZFF5YYNGxg0aNAT7Vwm/p0UlEI8g5CQEDw9PbG0tCQuLq7IdqCxsrKiSpUqXL16tUjO/1eRkZG0adOGmzdv0qFDB/bs2SOthcTf0ul0nD9/niNHjhAaGsrFixe5fv06ycnJjy02rayssLW1pW7dujRt2pTWrVvj4+NDhQoVVHoHoigcOXKE9u3bEx4eTqNGjdSOU8DFixdp2LAh+/fvp2PHjmrHKfXkN4QQ/1Fqaiq+vr5oNBqOHTtWpNsZ2traEhsbW2Tn/ytnZ2fi4+Pp2rUrBw8exM7OjoCAAOl1KB5Lq9XSpEkTmjRpUuA5nU7H2bNn8ff35+TJk/piMyoqivPnz7Njxw79sYaGhlhZWWFnZ0fdunVp1qwZbdq0wdvbGwsLi+J8S6IQpKenAw8+EJdED0cl7969q3KSskEKSiH+A51Oh7u7O+np6axateqxv0gLk4uLC5cvX0an0xXbTimGhoYcOHCAzz//nI8//pj69euzYsUK1bZNE6WTVqulefPmNG/evMBzOp2OkydPcvToUU6ePMmlS5eIiYnhypUrnDt3jm3btumPNTQ0pFKlStja2uLi4kKzZs3w8vLCy8urRK0eFv9jbGwMQE5OjspJRHGQglKI/2DAgAFERkYybty4/7S39tNq0aIFO3fuJDQ0tNDaET2pDz/8EF9fX7p27cqwYcPYs2cPK1asKNYMomzSarW4u7vj7u5e4Lnc3FxCQ0PzFZtxcXFcunSJsLCwfDtQGRkZUalSJWrWrEndunVp3rw5Xl5etGnTBhMTk+J8S+IRRkZGgBSU5YUUlEI8pa+++ootW7bQsmVLFi9eXCzXbN++PbNmzeLAgQPFXlACeHl5ER8fT5s2bVi5ciUBAQEEBgbKal5RZAwNDfH09Hzs1njZ2dkEBwdz7NgxTp06xeXLl4mLi+P8+fOcPn06344sxsbG+mKzXr16NG/eHG9vbzw8PPQjaKJoPJymkJqaqm6Qv5GRkQH8r/AVz0YW5QjxFPz9/Wnfvj2VK1cmLi6u2G61ZWZmYmZmRv/+/dm4cWOxXPPvjBkzhmXLlmFmZsauXbvw9fVVNY8Qj8rOziYwMFBfbF65coW4uDhSU1MLjJQZGxtjbW1NzZo1qV+/vr7YbNWqlSxCKwQZGRlUqFCBpUuXMmbMGLXjFPDnn3/So0cPIiMjqVOnjtpxSj0pKIV4QklJSdSqVYvc3FwuXrxY7AtUTE1NcXFxISwsrFiv+zjr169n2LBh5OXl8dFHHzFz5ky1IwnxrzIzMzl+/DjHjx/n9OnTXLlyhfj4eFJTU8nNzc13rImJCdbW1tjb21O/fn1atGiBt7c3bm5uUmw+hSZNmuDj48OiRYvUjlLAvHnzmDVrFnfu3Cm2uellmRSUQjwBnU6Hk5MTMTExbN68mb59+xZ7Bnt7ezIyMkhJSSn2az9OdHQ0np6eJCYm4u3tzf79++UWoii1MjIyOHr0KAEBAZw5c4aIiAji4+O5c+dOgWLT1NQUa2trHBwcaNCggb7YbN68uRQmfzFixAguXrzIiRMn1I5SwJAhQ7h27RrHjx9XO0qZIAWlEE+ge/fu+Pn5MXnyZObPn69KBm9vbwICAsjLy1Pl+o+Tm5vLc889x549e7C2tub48ePUr19f7VhCFKp79+7pi82zZ88SERHBjRs3uHPnToF/j6amplSpUgVHR0caNGhAy5YtadeuHU2aNCmXxebKlSsZOXJkibutfP/+fWxtbXnjjTf47LPP1I5TJkhBKcS/+PTTT5kxYwbe3t74+/urlmP8+PEsWbKEmJgY7O3tVcvxOPPmzeO9995Dq9Xy008/MXr0aLUjCVEsUlNTOXLkCEFBQZw9e5bIyEgSEhK4e/dugWLTzMyMqlWr4ujoSMOGDXF3d6ddu3Y0aNCgzBabGRkZ2NraMnHiRGbNmvVM50rPyuVacjrZuTqMDbU4VbHAwuS/TT/47bffGDJkCJcvX8bFxeWZcokHpKAU4h/4+fnRvXt3qlevTmxsrKpzp1avXs3w4cNZvnw5I0eOVC3H3zlx4gSdOnUiLS2NwYMHs2bNmjL7S1KIJ5GSksLhw4cJCgoiLCyMqKgofbGp0+nyHWtubk7VqlWpVasWjRo1wt3dnfbt25eJYmfChAls376d6Ojop/4ZeiXxHmuCrnPwUhLXUzJ4tGDRAI7W5nSob8NQT0dcqj/5TkvdunUjIyND1UGCskYKSiH+RmxsrH7hTWRkpOqjgg/3xR07dixLlixRNcvfSUtLo23btoSFhVGnTh2CgoKoWrWq2rGEKHGSkpL0I5vnzp0jKiqKxMRE7t27l6/Y1Gg0+mLTycmJRo0a0apVK3x9faldu7aK7+DJnTlzBjc3N7799lvefPPNJ3pNTEoGH2wNwz/iFgZaDXm6vy9VHj7frm5VZvdxxcHa/B/P/XBLyBUrVjBixIinei/i70lBKcRj5ObmYm9vT2JiIrt376Z79+5qRwL+15vv2LFjakf5RxMmTGDx4sWYmpqyY8cOunTponYkIUqNhIQE/cjmuXPnuHr1KklJSaSlpRUoNi0sLKhWrRpOTk40btxYX2w6Ojqq+A4KGj9+PGvWrOH8+fP/+uF8XfB1pu8IJ1en/GMh+VcGWg2GWg2f9mrM4FaPf//Z2dm4ublhZWXFsWPH5C5KIZKCUojH8PHxwd/fnxkzZjB9+nS14+hVqVIFU1NT4uLi1I7yr7Zs2cLgwYPJycnh/fffZ/bs2WpHEqLUi42N5fDhw5w4cYLw8HCuXr3KzZs3SUtL49Ff5xqNBktLS6pVq0bt2rVp3LgxHh4edOjQATs7u2LPnZqaSoMGDWjbti2bN29Go9E89riFB6/w5Z7Lz3y9yV3r8UaHgtMF5syZw0cffURoaCjNmjV75uuI/5GCUoi/mDp1KvPnz6dr1674+fmpHSefpk2bcunSJbKystSO8kRiYmJo3bo18fHxeHp6cujQIdl3WYgiEh0dzeHDhwkODiY8PJxr165x8+ZN0tPT8xWbWq0WS0tLqlevjpOTE02aNMHT05P27dtTo0aNIsu3adMmBgwYwCeffMKnn35a4Pl1wdd5b0vh9dmd29eVQY+MVO7YsYO+ffvyzjvvqNatoyyTglKIR2zdupW+fftib29PdHR0ibsdMmjQIDZs2EBGRgZmZmZqx3kiOp2OXr16sXPnTipVqoS/vz9NmjRRO5YQ5UpUVJS+2Dx//jzXrl3j1q1bZGRkFCg2K1SoQPXq1alduzaurq54enri6+tbYD70uHHjWLp0qf7PX3zxBe+9916Baz8cTR05ciTz58/nvffeY/78+UyePFl/TExKBp2/PkxWrq7A6/8rE0Mt+95pj4O1Ofv376dHjx7UrVuX/v3707FjxwK7fF27do3vvvuO48ePc+rUKbKzswGYPn06M2bMKLRcZZUUlEL8v8jISBo0aIChoSHR0dHY2NioHamAL7/8kilTpvDnn3/SrVs3teM8lW+++YZJkyYBsGjRIsaOHatyIiGETqcjMjKSw4cPExISwvnz54mOjtYXm4/SarVYWVlRo0YNnJycOHz4MPfv39c/36xZM06fPl3gGr1792b79u34+PiwatUqfvzxRz7//HM+//xzpk2bhoGBAcOXBXE8Kvmp5kz+GwOthrZ1qjCo+k0GDx6Mk5MT4eHhwOOLxG3bttGnT58C55GC8smUrOEXIVSSmZmJh4cHeXl5+Pn5lchiEqBDhw7Ag1WKpc3bb79NcHAwFhYWjBs3jv79+xdonSKEKF5arRYXFxfGjBnDkiVLOHLkCNHR0aSnp5OXl8f58+dZsmQJY8aMoU2bNlSoUIHo6Gj+/PPPfMUkPFjN7ezszAsvvMCHH37Ijh07uHv3LhcuXADg+PHjNGrUiHr16vHhhx/y0Ucf0aFDBw6evIh/xK1CLSYB8nQK/hG36DNqPB06dPjXFeYWFhZ06dKF6dOn8+KLLxZqlvJARiiFAFq1akVISAhffvmlfhStJNLpdBgYGNCjRw927dqldpz/JCMjA29vb06dOkWtWrUIDAws0nlbQojCN3z4cFavXg1A7dq1uXr1KgAGBgZPtJuXvb09sbGxAFRw7UiV595B4cFCneykq9wJ2EjW9TDy7t/DwNwKszruVPQegqHV/267p/qv4c6x3wCo0vMtdFkZ3Av9g9x7NzGytqdyp1cxdWxCq0r3CVk6jejo6MdmedwI5HvvvcfcuXP/9nlRkIxQinJvwoQJhISE0KdPnxJdTMKD0QQLCwsiIiLUjvKfmZubc/LkSd566y2io6NxcnIqtcWxEOVRZmYm27dvB6BatWoEBAToG5bXrVuXvLw8QkND+fbbb2nduvVjz/GwmAQwt3PRF5P3I0O4seJdMi4cIS/9NuhyyUtLIe3sHhJWvENOasJjz3fn+Hpu7/+J3NQbkJdLzs1r3NzyGbrs+9w0Kpl3nMoaKShFubZ69WoWL16Ms7MzmzZtUjvOE6levTo3btxQO8Yz++abb9ixYweKovDcc8+V+GJeCPHAH3/8wb1794AH8yOrV6+uX+By6dIlzpw5Q4sWLXj99deJjIzUv+5hqyAjI6N858s1eLDAUJeTya2dX0NeDmgNqOQzAptBs7Dy7AdAXvptUvYsfmym3NQErFr3p1q/jzGyedDwXcm+T0b4Ia4nZ7Bq7To++OAD/fGjR4/G398ff39/Xn755UL4WxFSUIpyKzw8nFGjRmFhYUFISEiJW9H9d5ydnUlPTy8T8w9feOEFrl69ir29PQsWLMDd3b3AQgAhRMmybt06/df9+/fP97+PPh8aGsrNmzeBB8Xk6NGj2bNnD+np6Y8ducy8egpdxh0ATJ2aY+LQGI2hMWZ1PTCoWP3BMVEnyfv/Yx5l5tKayr6jMHfxpGKbAfrHc27fQAGsnRrm28bS0dERb29vvL29S1wT+NKqdPwGFaKQpaen07ZtWxRF4eDBg1SqVEntSE+sefPmKIqin+he2tnZ2REdHU3v3r0JDQ3F1tb2sStFhRDqu3fvHjt37gTA2tqajh07AtC3b18MDAwAWL9+PYqiEBUVpX9d9+7dWbZsGV26dMHIyIg2bdoUOHdOyv82bMiMCiVxzTT9f3l3Ev//GYWc5NgCrzV1+F8rMq2Zlf5rXVY6ANmF2I5IPJ4UlKJc8vT05O7duyxatIhWrVqpHeepeHt7A7B//36VkxQerVbL1q1b+eGHH0hLS6Nly5YsXLhQ7VhCiL/Ytm0bmZmZAKSkpGBkZIRGo8HGxka/GCc6OpqAgIB8ryvMO0BKTmaBx7SmlvqvNZpHrvX/646NDaXcKWqGagcQoriNGDGC8PBwhg8fXip7IT5sHXTixAmVkxS+CRMm4O3tjY+PD2+++SZ79+5l69atpWY6ghBl3W+//fZEx61bt47hw4fr/7xnzx5GjBhBo0aNqF+/PgcOHCjwGiPrmvqvLZp0ourz7xQ4RpeTidbo6Xbb0gBOVSwIfeTnSFmYMlTSSEEpypWlS5eyatUqGjVqxMqVK9WO859UqFABIyMjzp8/r3aUItG0aVMSEhLw8fFhx44dODo6cuLECVX2HxZC/E9ycjJ79+4FHvwcmj17dr7ns7Oz9YvrNm7cyNdff42DgwMxMTHk5OSwevVqNBpNgWLOMO/BiKOpkxta84roMu6Qfu4AWjNLzJzcUBQduXcSyYq9QE7SVexeffzCnL/jWMUcCxNDKleurH/szz//xMfHB1NTU1xdXalYsSI3b97k8OHDwIPFRQ+dP39ev2izffv2VKtW7amuX15IQSnKjZCQECZMmICVlRVBQUFqx3km1tbWxMTEqB2jyJiamnLixAn9vuq1a9dm48aN9OrVS+1oQpRbmzZtIjc3F4CuXbvyxhtvFDhm1apVnD59moSEBA4dOsQ333xDv34PVmkrisLjWl971q/JOa0GjE2p+tzbJG2ZDXk53Avezr3g7fmONbB6uhZAGg10qPfgNW3atMHExISsrCyCg4Pp0qULAAcPHsTX15fw8HAGDBhQ4BwbN25k48aN+Y4VBcl9JFEupKam4uvri0aj4dixY1haWv77i0qwWrVqkZqaqnaMIjdv3jz+/PNPNBoNL774IhMnTlQ7khDl1qO3u//uw90LL7yg/3rChAmMHz++wDEajYYqVaro/9yxsYN+lxwz51bYjvoai8YdMKhQFbSGaM2sMLKpQ4VWvanWp+Be4f9EUWBY6weruKtWrcq2bdtwc3PDzMzsqc4j/p3slCPKPJ1OR7169YiMjGTVqlUMGzZM7UjP7OWXX+bXX3/l5s2bVK1a9d9fUMolJSXh4eFBdHQ0zZo14+jRo6X+Q4EQZU1ISAjz5s1j37593L59G3hwa7x9+/bs2bOH7OxsDAwMaNq0KVqtltDQUABOnjzJgpPZRbaX96pXPAvtnOLvyQilKPMGDBhAZGQk48aNKxPFJKDv4fa4ie1lkY2NDVFRUQwYMIAzZ85gZ2dHSEiI2rGEKPcOHDjAc889R4UKFWjVqhUbN25Eq9UyZMgQzpw5wx9//IGlpSUeHh4ANGzYkJYtW+qLyfr169OsWTNm93HFUKsp1GyGWg2z+7gW6jnF35OCUpRpX331FVu2bKFly5YsXvx0E7lLsk6dOgFw7NgxlZMUH61Wy4YNG/jpp5/IyMjAw8ODBQsWqB1LiHJFp9OxefNmOnTogJmZGZ06dWLXrl1UqFCBsWPHEhUVxa1bt1izZg1NmzZFp9Oxbt06jh49CsC5c+f4+eefgQejl8uXL0er1eJgbc6nvRoXataZvRrjYG1eqOcUf09ueYsyy9/fn/bt21O5cmXi4uIwNX26VhMlnVarpX379hw8eFDtKMXuwoULeHl5cfv2bbp3787OnTultZAQRSQ3N5cVK1bw448/curUKXJycoAHc7kHDBjAlClTsLF5/GKZ69ev8+GHHxIQEMCNGzfIy8vDwcGBLl26MGXKFGrXrq2/xrhx49h4/h6V24945sxTutbn9Q51n/k84slJQSnKpKSkJGrVqkVubi4XL17E2dlZ7UiFrlKlSlSsWJHo6Gi1o6giOzubDh06cPz4cWxtbQkMDJQt1IQoJJmZmSxatIjly5cTHh6OTqdDo9FQr149hgwZwttvv42VldW/n+hfpKen8+uvvzJz5kxu3ryJiYkJvxy+yKd/XCBXpzzVnEoDrQZDrYaZvRozqJX8LChu0jZIlDk6nQ53d3cyMzPZtGlTmSwmAWxtbbl27ZraMVRjbGzMsWPH+PDDD5k9ezZ169Zl7dq1+fYUFkI8ubt377JgwQLWrl1LREQEiqJgYGCAq6sro0ePZuzYsYV2pycpKYmFCxfy3XffcefO//bmHjNmDEM8nWjnYsMHW8Pwj7iFgVbzj4Xlw+fb1qnC7D6ucptbJTJCKcqc7t274+fnx+TJk5k/f77acYpM79692b59Ozk5ORgalu/Phg8XBmRmZjJu3LgyNV9WiKKUkJDAvHnz2Lx5M9evXwfAyMiIli1bMm7cOIYPH17o00lu3LiBs7MzmZmZBfpS7tixI1/roSuJ91gTdJ2Dl5O4npxBvqMVhVpVLehQz4ZhrR2pa1OhUHOKpyMFpShTZs6cyfTp0/H29sbf31/tOEVq1qxZfPLJJ/j7++v39y7Pbt26RevWrYmMjKRx48YcP368UG7JCVHWREZGMmfOHP744w8SEhIAMDMzo02bNkycOJEXXnihSOck5+XlMWjQIDZv3lzgucTExL+dj5melcu15HQuR0QxaEA/tOnJJMRGU6lSpSLLKp6czGIXZYafnx/Tp0+nevXq5WKhysM9vQ8dOqRukBKiatWqXL58maFDhxIeHo6dnR0BAQFqxxKiRDh9+jQvvfQSVapUoW7duvz888+kp6fz/PPPc/DgQTIyMti/fz8vvvhikS9wMzAwYOPGjQV2nHFwcPjbYhLAwsSQxnYVOe+/i5ykq2Sl32XcuHGP3X1HFD8pKEWZEBsbS69evTA2NiY4OLhc3AJ+2IvyYT838WDl++rVq1m+fDmZmZl4eXkxZ84ctWMJoYojR47wwgsvYGVlhZubG+vWrQNg8ODBhIaGcvfuXX7//XdVthLcvXs3hw4donLlyvpNCp70TsvDbRAB1q9fz5o1a4oko3g6cstblHq5ubnY29uTmJjIrl276NGjh9qRio2ZmRm1a9fm/Pnzakcpca5cuUKbNm1ITk6mc+fO7N69u1x80BDll06n448//uDbb78lICCA+/fvA1CjRg2ef/553nvvvRKxSDE6OhoXFxe0Wi1RUVGkpaXxyiuvMGXKlL/d0vHR1zo5OeV7zNzcnHPnzulbEAl1yE9XUep17NiRxMREZsyYUa6KSYBq1aoRHx+vdowSycXFhfj4eLp06cK+ffuoWbMmgYGB8ktHlCk6nY7Vq1ezZMkSQkNDyc7OBsDR0ZF+/foxdepUatSooXLK/8nOzqZVq1bk5uayd+9e7OzsAJ54zvu2bdvQarXodDr9YxkZGQwfPlzfPF2oQ255i1Jt6tSp+Pv707VrV6ZPn652nGJXp04d7t27p3aMEsvY2JjDhw8zY8YMbt68Sb169fjtt9/UjiXEM8nOzua7777Dzc0NY2NjRo4cSWBgILVq1WL69Oncvn2b6OhoFixYUKKKSXgw9/vmzZvMnDlTv+PX09ixY0e+YhIefLD+66ilKH5yy1uUWlu3bqVv377Y29sTHR1dLndKmThxIt9//z1RUVEy8vYvjhw5Qvfu3bl//z6jR4/ml19+UTuSEE/s7t27fPPNN6xdu5bLly+jKAparZbGjRszatQoJkyYUOJ3A5s0aRILFiygR48e7Nq16z+dY82aNYSHh+Pi4sLLL79M9+7d2b17dyEnFf+FFJSiVIqMjKRBgwYYGhoSHR39jysDy7L169czePBgfvzxR1599VW145R4qamptG7dmkuXLtGgQQMCAgKk5YgosZKSkpg/fz4bN27U74hlaGhIixYteO211xg5cmSpmRe8adMmBgwYgKOjI1evXi2UAQBzc3McHR25ePFiISQUz6r8DemIUi8zMxMPDw/y8vLw8/Mrt8UkoL9lJO1xnkylSpW4ePEio0aN4uLFi9SsWVPmXYkSJTo6mvHjx2NnZ0f16tX58ssvSUxMxNfXl02bNpGVlUVQUBCvvPJKqSkmr1y5wksvvYSZmRmhoaGFdjfJxsaGGzduFMq5xLOTglKUOu3atSMlJYX58+fj4+OjdhxVVa1aFQMDA8LDw9WOUqr8+uuvrF27luzsbHx8fJg5c6bakUQ5du7cOYYNG0bVqlVxcnJiyZIl3Lt3j549e7Jv3z7u37/PwYMH6devX6mb2pOZmUnr1q3Jy8tjz549VK1atdDO7ezsLHPIS5DS9Z0pyr0JEyYQEhJCnz59mDRpktpxSoTKlSvrt0wTT+6ll17i8uXLVKtWjenTp+Pr60tubq7asUQ5cezYMfr06UPFihVxdXVlzZo16HQ6BgwYQHBwMPfu3WPnzp3/aeFKSeLt7U1KSgpffvlloe/o1bx5cxRF4dKlS4V6XvHfSEEpSo3Vq1ezePFinJ2d2bRpk9pxSgwHBweSk5PVjlEq1a5dm7i4ODp16sThw4extbXlypUrascSZdSuXbvo2rUrFhYWeHt7s23bNkxNTRk9ejQXL14kJSWFDRs24O7urnbUQjF+/HhCQ0Pp27cv7777bqGf38vLC4D9+/cX+rnF05OCUpQK4eHhjBo1CgsLC0JCQkrdbZ+i1LBhQ3JyckhLS1M7SqlkaGjIvn37mD17NsnJyTRs2JCVK1eqHUuUATqdjjVr1uDt7Y2JiQnPPfcce/fupUqVKkycOJGYmBgSExP55ZdfqF+/vtpxC9XD3pjOzs75drYpTB07dgQgKCioSM4vno78VhYlXnp6Om3btkVRFA4ePCircv/Cw8MDkD29n9X777/PsWPHMDU1ZeTIkQwbNqxAvzsh/k12djaLFi2iZcuWGBsbM2zYMI4fP46joyMfffQRycnJXL9+nW+//RZ7e3u14xaJc+fOFcsAQKVKlTA0NJSdwkqI0rFETJRrrVu35u7duyxatIhWrVqpHafEeTjHyt/fn+eff17lNKVbmzZtiI+Pp23btqxZs4agoCCCgoKwtrZWO5oowdLS0vj+++9ZtWoVly5dQqfTodVqadSoESNGjOD111/H3Nxc7ZjFIiMjAy8vr2IbALC2tpY55CWEjFCKEm3kyJGcO3eOoUOHMn78eLXjlEiNGjVCo9Fw+vRptaOUCVZWVpw7d46xY8cSERFBzZo1OXDggNqxRAlz69Yt3n//fZydnbGysuKDDz7gypUrtGjRgqVLl5KVlUVYWBhTpkwpN8UkgKenJ3fv3mXhwoXFMgDg4OBASkpKkV9H/DspKEWJtXTpUlauXEmjRo1YvXq12nFKLK1Wi4WFBREREWpHKVOWLFnCxo0bycvLo1OnTnz88cdqRxIqu379Oq+//jr29vZUq1aNOXPmEBcXh7e3N+vWrSMrK4vg4GBee+21UtMjsjCpMQDQuHFjcnNzSU1NLZbrib8nO+WIEikkJARPT08sLS2Ji4vD0tJS7UglmouLCzdu3JCFOUUgOjqa1q1bk5CQQNu2bTl48CDGxsZqxxLFJDw8nHnz5rF7925u3rwJgIWFBe3ateOtt96ie/fuKicsGX788UfGjh1Lw4YNi3VO46JFi3j99dfZsmULffr0KbbrioJkhFKUOKmpqfj6+qLRaDh27JgUk0/AxcWF9PR0WURSBGrVqkVMTAzdu3fn+PHj2NracuHCBbVjiSIUFBREv379qFSpEk2aNGHlypVkZ2fTr18/AgICSEtLY/fu3VJM/r+TJ08yfvx4KlSowIkTJ4r12p07dwaQHa9KACkoRYmi0+lo1aoV6enp/PLLLzRp0kTtSKWCm5sbgMyjLCKGhobs3r2bL7/8ktu3b+Pq6sqyZcvUjiUKkZ+fH927d8fS0pLWrVuzZcsWjI2NGTFiBOHh4aSmprJp0yZat26tdtQS5c6dO/ody44ePVrsAwD16tWTOeQlhBSUokQZMGAAERERjBs3jhEjRqgdp9R4+AP94MGDKicp2yZNmsSJEycwMzNjzJgxDBo0SEaFSymdTsf69evx8fHB1NSU7t274+fnR6VKlZgwYQLR0dEkJSWxYsUKGjVqpHbcEumvAwBNmzZVJUeFChWIiopS5drif8rfrGFRYn311Vds2bKFli1bsnjxYrXjlCrt2rUDIDg4WOUkZZ+7uzs3btzAy8uLDRs2cOLECYKCgrCxsVE7mvgXubm5LFu2jJ9++okzZ86Qm5uLRqOhdu3aDBw4kEmTJhXqXtNl3eDBg7ly5QqvvvoqI0eOVC2Hra0tMTExql1fPCCLckSJcPToUXx8fKhcuTJxcXGYmpqqHanUMTExoUGDBpw5c0btKOXGm2++ycKFCzExMWH79u1069ZN7UjiLzIyMli4cCErV67kwoUL+h6RDRo0YNiwYUycOBELCwu1Y5Y63377LW+//TbNmzfn1KlTqmZ54YUX+OOPP8jJySmXq+tLCrnlLVSXlJREly5dMDAwIDAwUIrJ/6hKlSrExsaqHaNc+f7779m2bRs6nY7u3bszbdo0tSMJICUlhQ8//JC6detiaWnJtGnTuHjxIs2bN+eHH37g/v37hIeH8/7770sx+R8EBATwzjvvULlyZQICAtSOQ8uWLQEIDQ1VOUn5JgWlUJVOp8Pd3Z3MzEzWrVuHi4uL2pFKLScnJ+7cuaN2jHLnxRdfJCoqipo1azJv3jw8PT3JzMxUO1a5Exsby8SJE3FwcKBKlSrMnj2bmJgY/a5H2dnZhIaGMmHCBGn79Axu3bpFp06dMDAwICAgoEQMAMgc8pJBCkqhqp49exITE8PkyZPp16+f2nFKtSZNmpCXl0dCQoLaUcode3t7rl+/zvPPP8+JEyeoUaMGYWFhascq8y5dusTo0aOpXr06Dg4OfP/996SkpNClSxd+//13srKyOHr0KEOGDCmy/aTLk4cDAPfv32fNmjXUr19f7UgAeHt7Aw/6Fwv1yL8woZqZM2fi5+eHt7c38+fPVztOqdemTRsA9u3bp3KS8kmr1fL777/z3Xffce/ePZo3by6Ly4pAcHAwAwYMoHLlyjRo0IDly5eTmZlJ7969OXr0KOnp6ezZs0f2tS8CL774ItHR0UycOJGBAweqHUfP2NgYExMTLl68qHaUck0W5QhVPOz5ZmNjQ1xcnEykLgSxsbE4ODgwfvx4Fi1apHaccu306dO0b9+eu3fv0rt3bzZv3iwjZM9g//79fPXVVxw5coT09HTgwZzh7t27895770m/2mLwxRdf8MEHH9C6desSMW/yrxwcHEhLS+P27dtqRym3pKAUxS42NhZnZ2cArly5gqOjo8qJyg4DAwPatm2Lv7+/2lHKvYyMDHx8fAgNDcXBwYGgoCBsbW3VjlUq6HQ6tmzZwsKFCwkKCtLPSbW1teXFF19k2rRpODk5qRuyHDlw4ACdO3emSpUqxMXFlcg5qD4+Phw7doy8vDy1o5Rb8pFZFKvc3Fzc3d3Jzs5m27ZtUkwWsooVK3L16lW1YwjA3NyckJAQ3nnnHWJiYnBycmLnzp1qxyqxcnNz+fnnn/Hw8MDExIQBAwZw+PBhatSowZQpU0hMTCQ+Pp7FixdLMVmMEhIS6NmzJ4aGhpw4caJEFpMArq6u6HQ6rl+/rnaUcksKSlGsOnbsSGJiItOnT6dHjx5qxylzatasya1bt9SOIR6xYMECfSH5/PPP884776icqOTIzMzkq6++omnTppiYmPDqq68SEhJC3bp1mTVrFvfu3ePq1avMmzdPGserQKfT0bJlS7Kysti0aRO1a9dWO9Lfatu2LfBgeoRQhxSUothMnToVf39/unbtyowZM9SOUybVr1+frKwssrOz1Y4iHtGzZ0+io6NxcHDgm2++oUWLFmRkZKgdSxWpqal88skn1KtXD3NzcyZPnsz58+dp2rQp3333HZmZmVy4cIGPPvqo2PeFFvl17dqV+Ph43n//fXr16qV2nH/UqVMngBI5v7O8kIJSFIutW7cyf/587O3t2b17t9pxyix3d3fgwc5DomSpUaMG165do2/fvpw6dQpbW1vVdxgpLvHx8bzzzjs4OjpSuXJlZs2axbVr12jdujUrVqwgOzubU6dO8eabb5bYW6rlzSeffML+/fvx9fVl9uzZasf5VzVq1MDAwIBz586pHaXckoJSFLnIyEgGDhyIqakpoaGhstq1CHXo0AGAI0eOqJxEPI5Wq2Xz5s0sWrSItLQ03N3d+e6779SOVSSuXLnCmDFjqFGjBjVr1uSbb77RN8Xevn07mZmZHD9+nBEjRsjPhBJm165dzJo1ixo1arB371614zyxSpUqce3aNbVjlFuyylsUqczMTGrWrMnt27c5dOiQfkcDUTRyc3MxMjLi+eef5/fff1c7jvgH586do127dqSmpvLcc8+xY8eOUl9YnTx5knnz5rFnzx59+5YKFSrQoUMHJk2aJP/+S4Hr16/rdyx7uANUadG8eXMuXLhAVlaW2lHKpdL900uUeO3atSMlJYW5c+fKL5NiYGhoiJmZGZcvX1Y7ivgXTZo04caNG3h6erJz504cHBxK5V7shw4d4vnnn6dChQq0bNmS9evXo9FoeOmllzh16hR3795l+/bt8u+/FMjNzaVVq1ZkZ2fzxx9/lKpiEqBhw4ZkZ2eX2/nJapOCUhSZCRMmEBISQu/evZkyZYraccqN6tWrc+PGDbVjiCdgampKYGAg7733HvHx8dSpU4dt27apHesf6XQ6tm3bRseOHTEzM6NDhw7s3LkTS0tLXn31VSIiIkhOTmbt2rU0b95c7bjiKfj6+pKUlMSsWbPo0qWL2nGeWqtWrQCZ8qMWKShFkVi9ejWLFy/G2dmZzZs3qx2nXHF2diYtLU3tGOIpfPHFF+zZswetVkufPn1444031I6Uj06nY/ny5bRp0wZTU1P69OnDwYMHqV69Ou+++y43btzgxo0b/Pjjj/pNC0TpMnnyZI4dO0b37t356KOP1I7zn3Ts2BGQglItModSFLrw8HCaNWuGqakpsbGxVKpUSe1I5cqkSZNYsGABFy9epH79+mrHEU8hKSmJ1q1bc/XqVVxdXTl+/LhqrXMyMzNZsmQJy5cv59y5c+Tl5aHRaHBxcWHIkCG88847WFlZqZJNFK7NmzfTv39/HBwcuHbtWqmdy6vT6TAwMKB79+7STUQFpfO7RpRYGRkZtG3bFkVROHjwoBSTKvD29gakwW9pZGNjQ0REBIMHDyYsLAxbW1uCg4OL7fp3797l008/pX79+pibm/POO+8QFhZG48aN+frrr8nIyODSpUtMnz5diskyIjIyksGDB2NqakpISEipLSbhQRcFCwsLIiIi1I5SLpXe7xxRInl6enL37l0WLlyon88iitfD1kFBQUEqJxH/hVar5bfffuPnn3/m/v37eHp68uWXXxbZ9RITE5k8eTJOTk5UrFiRGTNmcPXqVTw8PPjll1/IysrizJkzvP3225iamhZZDlH8MjMz8fDwIC8vj71795aJ3YiqV69OQkKC2jHKJSkoRaEZOXIk586dY+jQoYwfP17tOOVWpUqVMDQ0JDw8XO0o4hm88sornDt3jsqVKzNlyhS6d+9Obm5uoZz76tWrjB07FltbW2rUqMFXX31FYmIiHTp0YMuWLWRmZhIYGMjo0aMxNDQslGuKkudhF4758+fr72yUdnXr1iUtLQ2dTqd2lHJHCkpRKJYuXcrKlStp1KgRq1evVjtOuWdtbU1MTIzaMcQzatCgATdu3MDLyws/Pz8cHByIjo7+T+c6e/YsQ4cOpWrVqtSpU4cff/yRtLQ0nnvuOfbv38/9+/c5cOAAffr0KdW3PcWTediFo0+fPkyaNEntOIXGzc0NQD5Qq0B+aohnFhISwoQJE7CyspLbrCWEg4MDKSkpascQhcDY2JijR4/yySefkJiYSN26ddm4ceMTvdbf358XX3yRihUr0qxZM9auXYtOp2PgwIGEhIRw7949/vjjD/3qWFE+rFmzRt+FY9OmTWrHKVQP+53KHPLiJwWleCapqan4+vqi0Wg4duyYaitSRX6NGzcmNzeX1NRUtaOIQvLpp59y4MABjIyMGDhwIK+99tpjj/v999/p3Lkz5ubm+Pj4sGPHDszMzHj55Ze5dOkSKSkprF+/npYtWxbzOxAlQXh4OCNHjsTCwqLUL8J5HF9fX4BiXcwmHihb30miWOl0Olq1akV6ejq//PILTZo0UTuS+H+enp6AfEova3x9fYmNjcXFxYWffvqJxo0bk5qayurVq/Hy8sLExIRevXqxf/9+qlatyltvvUVcXBwJCQksW7aMevXqqf0WhIoyMjLw8vIq0104zM3NMTY25vz582pHKXdktrX4zwYMGEBERATjxo1jxIgRascRj3i4y8WxY8fo16+fymlEYbK2tiYsLIx27doRHBxM5cqVAdBoNDg7O/PSSy/x7rvvlsliQTyb1q1bc+fOHX744Ycy3YVD5pCrQ0YoxX/y1VdfsWXLFlq2bMnixYvVjiP+wsXFBY1Gw5kzZ9SOIgpJWloan3/+OQ0bNsTMzIzg4GA0Go3++RkzZnDlyhVmzpwpxaQoYPTo0YSFhTFkyBAmTJigdpwiVatWLZnuowIpKMVTO3r0KFOmTMHa2pqjR4+qHUf8jQoVKhAZGal2DPEMbt68ybRp06hduzYVKlTgo48+IiIiAnd3d3788Ueys7O5cuUKVatWZfr06XTs2LHQWguJsuPnn39m+fLlNGjQgDVr1qgdp8g1adKEvLw8bt68qXaUckUKSvFUkpKS6NKlCwYGBgQGBkqj4xLM1taWpKQktWOIpxQdHc348eOpWbMmNjY2zJs3jxs3buDj48OGDRvIysrixIkTvPrqqxgaGlK3bl1u3LiBr68vBw8exM7OTj5ICL2TJ08yduxYKlSoUG4WqrRu3RqQOeTFTQpK8cR0Oh3u7u5kZmaybt06XFxc1I4k/oGLiwv379+XEatSIDw8nBEjRlCtWjWcnJxYsmQJd+7coUePHvj5+ZGZmcnhw4cZMGDAY1flGhoacvDgQWbNmsWtW7fKzUiU+Gd3796lffv2wIM7S+WlC8ejc8hF8ZGCUjyxnj17EhMTw+TJk2WhRynwsC1MaGioyknE4wQEBNC3b18qVapEkyZNWLVqFbm5ufTv35+goCDS0tLYtWsXXbt2feJzfvTRRxw5cgRjY2OGDRvGqFGjiu4NiBLtYReOtLQ0li1bRtOmTdWOVGxq1aqFVqvl7NmzakcpV6SgFE9k5syZ+Pn54eXlxfz589WOI57Awwa/Bw4cUDmJeGj37t1069YNCwsL2rZty9atWzE2NmbUqFGcP3+e27dvs3HjRjw8PP7zNby9vYmLi6NBgwasWLGCevXqSZP7cmjIkCFcvnyZV155pVx+sLCysuLq1atqxyhXNIqiKGqHECWbn58f3bt3x8bGhri4ONnbt5TIzs7GxMSEvn37snnzZrXjlEs6nY7169ezaNEigoODycrKAsDe3p7evXszdepUHBwciuz6Y8aMYdmyZZiZmbFr1y5902dRtn3//fdMnDiRZs2acfr0abXjqKJx48ZERUVx//59taOUG1JQin8UGxuLs7MzAFeuXMHR0VHlROJpmJqaUrduXc6dO6d2lHIjNzeXn376iWXLlnHmzBlyc3PRaDTUqVOHQYMGMWnSJKytrYstz/r16xk2bBh5eXl88sknzJgxo9iuLYpfQEAAXl5eVKxYkbi4OMzNzdWOpIq+ffuydetWsrKyMDY2VjtOuSC3vMXfys3Nxd3dnezsbLZt2ybFZClUrVo14uLi1I5R5mVkZDBnzhwaN26MiYkJEyZM4NSpU9SrV485c+aQlpZGREQEn3/+ebEWkwCDBg3iypUr2NjY8Omnn+Lj40N2dnaxZhDFIzk5mU6dOqHVagkMDCy3xST8bw55QECAyknKDykoxd/q1KkTiYmJTJ8+nR49eqgdR/wHtWvX5u7du2rHKJNSUlL44IMPcHZ2xtLSkvfff5/Lly/j5ubG4sWLyczMJDw8nGnTpqn+i93JyYnY2Fi6dOmCv78/dnZ2XLp0SdVMonA97MJx//591qxZQ/369dWOpKqH0zsOHz6sbpByRApK8VhTp07lyJEjdOnSRW6RlWKurq7odDquX7+udpQyITY2ljfffBN7e3uqVKnCF198QVxcHF5eXvz2229kZWUREhLCuHHjMDIyUjtuPoaGhuzZs4e5c+eSkpJC48aN+fXXX9WOJQpJnz59uHbtGhMnTmTQoEFqx1Gdp6cnIF0uipMUlKKArVu3Mn/+fOzt7fnzzz/VjiOeQdu2bQFp8PssLly4wKhRo7CxscHBwYGFCxdy+/ZtunXrxq5du8jMzMTf35/Bgwc/tkdkSTN16lQCAgIwNTXl5ZdfZsiQIeh0OrVjiWcwd+5cduzYgaenJ99++63acUoEQ0NDzMzMuHz5stpRyg1ZlCPyiYyMpEGDBhgaGhIdHY2NjY3akcQzSEhIwNbWlldffZUff/xR7TilxokTJ5g3bx779+/X7wlcsWJFOnbsyOTJk/WFeml279492rZty7lz56hTpw5BQUFUrVpV7VjiKR06dIiOHTtibW1NfHy8LEB5hJOTE7dv3+bOnTtqRykXSv7HaVFsMjMz8fDwIC8vDz8/Pykmy4AaNWpgYGAgq7yfwJ49e+jRoweWlpZ4enqyefNmDA0NGT58OGFhYaSmprJly5YyUUzCg73ew8LCGDduHFFRUTg4OMhIdimTkJBA9+7dMTQ0JDg4WIrJv6hTpw737t1TO0a5IQWl0GvXrh0pKSnMnTtX3xRblH4VK1bk2rVrascocXQ6HRs2bKB9+/aYmprSrVs3/vzzTypWrMj48eO5du0aN2/eZOXKlTRp0kTtuEVm8eLFbNq0iby8PDp37swHH3ygdiTxBB4uwsnKymLjxo3Url1b7UglTrNmzVAUhStXrqgdpVyQglIAMGHCBEJCQujduzdTpkxRO44oRA4ODiQnJ6sdo0TIzc3lxx9/pFWrVpiYmDBo0CCOHDmCnZ0dU6dO5ebNm8TFxbFo0SJq1aqldtxi069fPyIiIrC1teWLL76gTZs2ZGZmqh1L/IPu3bsTFxfHtGnTePHFF9WOUyJ5eXkBsltYcZGCUrB69WoWL16Ms7Oz7KhSBjVo0IDs7GwyMjLUjqKKjIwM5s+fj6urKyYmJowdO5bQ0FBcXFz4/PPPuXfvHlFRUcydO7dczyF0dHQkNjaWnj17EhgYiJ2dHeHh4WrHEo8xY8YM9u7di4+PD3PmzFE7TonVsWNHAAIDA1VOUj5IQVnOhYeHM2rUKMzNzQkODi4Vq1TF03m4L3R56seWmprKxx9/jIuLC5aWlkydOpULFy7QrFkzFi5cSGZmJufPn+eDDz7A0tJS7bglhlarZefOnXz99dekpqbStGlTWcxVwuzevZtPP/2UGjVqyJzXf2FtbY2hoaF8MComssq7HMvIyMDW1pa0tDQCAwNp1aqV2pFEETh9+jRubm68//77zJ49W+04RSY+Pp65c+eydetWYmJiADA2Nsbd3Z3x48czZMgQ+cD0FEJDQ+nQoQP37t2jX79+bNiwQf7+VHb9+nVcXFyABx057O3tVU5U8tnY2KDVaklISFA7SplnqHYAoR5PT0/u3r3LokWLpJgsw5o2bQrAqVOnVE5S+K5cucIXX3zBzp07SUpKAsDMzIzOnTszceJEXnjhBZUTll4tW7YkISEBLy8vNm/eTJ06dThx4oR0f1BJbm4uHh4eZGdn8+eff0ox+YQcHR05e/as2jHKBfm4WU6NHDmSc+fOMXToUMaPH692HFGEtFotFhYWREREqB2lUISEhDBw4ECsra2pV68ev/76K5mZmbz44ov4+/uTkZHB3r17pZgsBObm5pw6dYqJEycSHR2No6Mju3fvVjtWudShQwcSExOZMWMG3bp1UztOqdGoUSNycnJkC9piIAVlObR06VJWrlxJo0aNWL16tdpxRDGoXr16qb7ls3//fp5//nkqVKhAq1at2LhxI1qtliFDhnDmzBnu3LnDtm3b8Pb2VjtqmfTtt9+yfft2FEWhZ8+e0gmimE2ZMoWjR4/SrVs3pk+frnacUuXhHPKDBw+qnKTskzmU5UxISAienp5YWloSFxcnCxLKiW7durF3715yc3NLxTw4nU7Htm3b+P777wkMDNS3sLG1taVXr15MmzZN+u6pID4+Hk9PT2JjY2nZsiVHjx7F1NRU7Vhl2tatW+nbty/29vZER0eXin+/JcmFCxdo1KgRkydPZv78+WrHKdPkO7McSU1NxdfXF41Gw7Fjx6SYLEeaN2+OoiglerVjbm4uy5Ytw9PTE1NTU/r168ehQ4eoXr06kydPJjExkfj4eJYsWSLFpErs7OyIjo6md+/ehIaGUqNGDZmfVoQiIyMZOHAgpqamhIaGSjH5H9SvXx+NRlMm55CXNPLdWU7odDpatWpFeno6v/zyS5ne+UMU9HDno5LWZiQzM5MFCxbQtGlTTExMGDNmDMHBwdSpU4dPP/2UO3fucO3aNebPny+LQUoIrVbL1q1b+eGHH7h37x5ubm4sXLhQ7VhlTmZmJp6enrIV7jPSarVYWloSGRmpdpQyT1Z5lxMDBw4kIiKCsWPHMmLECLXjiGLm6+sLwIkTJ9QNAty9e5cFCxawdu1aIiIiUBQFAwMDXF1dGT16NOPGjcPExETtmOJfTJgwAW9vb3x8fHjzzTfZt28fW7ZskVG0QuLj40NycjLz5s2TrXCfUY0aNYiLi1M7RpknBWU58NVXX7F582ZatGjBkiVL1I4jVGBhYYGRkREXLlxQ5foJCQnMnz+fTZs2cf36dQCMjIzw9PRk3LhxDB8+XAqRUqhp06YkJCTQrl07tm/fTq1atQgKCsLOzk7taKXa66+/TnBwsGyFW0jq1avHlStX0Ol08nOmCMnfbBl39OhRpkyZgrW1NceOHVM7jlBRlSpV9A2/i0NkZCSvvfYatra22NrasmDBAm7evEnHjh3Ztm0bmZmZBAQEMHLkSPkhX4qZmpoSHBzMlClTiI2NpXbt2uzYsUPtWKXWmjVrWLRoEXXq1JGtcAtJixYtgAfN+kXRkZ/iZVhSUhJdunTBwMCAwMBAWY1ZztWqVYvU1NQivcbp06d56aWXqFKlCnXr1uWnn34iPT2d559/noMHD5KRkcH+/ft58cUXpYgsY+bNm8euXbvQaDS8+OKLvPXWW2pHKnXOnz/PyJEjZSvcQta+fXtAWgcVNfluLaN0Oh3u7u5kZmaybt06/XZdovxq0qQJeXl53Lp1q1DPe+TIEXr16oWVlRVubm6sW7cOgEGDBhEaGsrdu3f5/fff9fM4RdnVo0cPrl+/Tq1atfjuu+9wc3MjLS1N7VilQkZGBm3btkWn03HgwAGsra3VjlRmeHl5ARAcHKxykrJNCsoy6rnnniMmJoZJkybRr18/teOIEqB169bAs6/01ul07Nixg06dOmFubk779u35/fffMTc355VXXuHKlSskJyezbt06/a0mUX7Y2NgQFRVF//79OX36NHZ2doSEhKgdq8Rr06YNd+7c4bvvvsPT01PtOGWKqakpJiYmXLp0Se0oZZoUlGXQzJkz+fPPP/Hy8uLLL79UO44oITp16gTwn+bS6nQ6VqxYQdu2bTE1NeXFF1/kwIEDVKtWjbfffpv4+HgSEhL4+eefqVu3bmFHF6WMVqtl48aNLF26lPT0dDw8PFiwYIHasUqsl19+mbNnz/LSSy/xxhtvqB2nTKpatSqxsbFqxyjTZKecMsbPz4/u3btjY2NDXFwchoaykF/8j4GBAd7e3hw+fPhfj83OzmbJkiX8+uuvhIWFkZeXh0ajoW7dugwZMoS3336bSpUqFX1oUaqFh4fTrl07bt++TY8ePfjjjz9kbuAjli1bxpgxY2jQoAHh4eHyd1NEvL29CQgIIC8vT+0oZZYUlGVIbGwszs7OAFy5cgVHR0eVE4mSplKlSlhZWelb9/zVvXv3+Oabb1izZg2XL19GURS0Wi2NGzdm5MiRvP7667K4Szy17OxsfH19CQgIwNbWlsDAQPn5xINFbC1btsTCwoLY2FisrKzUjlRmjR8/niVLlhAbG0vNmjXVjlMmyUehMiI3Nxd3d3eys7PZtm2b/LAWj1WzZk1u3ryZ77GkpCSmTJlC7dq1sbKy4pNPPiEyMpJWrVrx888/k5WVxdmzZ5k0aZIUk+I/MTY25vjx47z//vvcuHGDunXrlvuWOHfv3qVdu3bAg4VtUkwWrbZt2wKwb98+lZOUXVJQlhGdOnUiMTGR6dOn06NHD7XjiBKqXr16ZGZmcuXKFcaPH4+dnR3Vq1fnyy+/JCEhgfbt27Np0yaysrIICgrilVdekWkTotDMnj2bffv2YWBgQP/+/Rk/frzakVSh0+nw8PAgLS2Nn376iebNm6sdqczr0qULAAEBASonKbvklncZMHXqVObPn0+XLl3Ys2eP2nFECXXu3DmGDRvGmTNn9I9ZWlri4+PDO++8Q+fOnVVMJ8qTW7du4enpSVRUFE2aNOHYsWPlaoTupZdeYt26dYwePZpffvlF7TjlhqGhIZ6enrLJRxGRgrKU27p1K3379sXe3p7o6GiZ0C3yOXbsGF9++SUHDhzg7t27+scbNWrE8uXLadWqlYrpRHmm0+kYPnw4a9euxcLCgv3795eLdjnff/89EydOpGnTpvk+3ImiV6VKFUxNTWVf7yIi1UcpFhkZycCBAzE1NSU0NFSKSQHArl276Nq1KxYWFnh7e7Nt2zZMTU0ZPXo0586dA8DFxUWKSaEqrVbLmjVrWL58OZmZmbRp04Z58+apHatIBQUF8dZbb1GpUiW59aqCmjVrFvrGDuJ/ZISylMrMzMTe3p6UlBQOHTqEj4+P2pGESnQ6Hb/99huLFy8mODiY7OxsAOzt7enbty9TpkzB3t5ef7y5uTm1atXiwoULakUWIp9Lly7h5eVFcnIynTt3Zvfu3WVu7m5KSgoODg5kZWURFhZGw4YN1Y5U7gwcOJCNGzeSkZGBmZmZ2nHKHBnSKqXatWtHcnIyc+fOlWKyHMrOzmbRokW0bNkSY2Njhg0bxvHjx3FwcODDDz8kOTmZmJgYvv3223zFJEC1atW4ceOGSsmFKKh+/frEx8fj4+PDvn37sLe35+rVq2rHKjQPt8LNyMhg1apVUkyq5OFdGX9/f5WTlE1SUJZCr7/+OiEhIfTu3ZspU6aoHUcUk7S0NL744gsaNWqEmZkZr7/+OqdPn6ZBgwbMnTuXtLQ0IiIi+Oyzz/5xH+A6derkm08pRElgbGzM4cOHmTFjBklJSdSrV4/169erHatQ9O3bl6tXr/LGG2/w0ksvqR2n3OrYsSPwoE2TKAKKKFVWr16tAIqzs7OSl5endhxRxG7evKm89957Sp06dRSNRqMAiqGhoeLu7q4sXbpUycnJeepzvvXWWwqgXLlypQgSC/HsDh8+rJiZmSmA8sorr6gd55nMnTtXARQPDw+1o5R7eXl5CqD07NlT7ShlksyhLEXCw8Np1qwZJiYmxMbGUrlyZbUjiSJw/fp15s6dy/bt2/WrEU1MTPDw8OD1119nwIABz7QAa+PGjQwcOJAlS5YwduzYwootRKFKTU3F09OTy5cv06BBAwICAkrdVp+HDh2iY8eOWFtbEx8fj7GxsdqRyj1LS0vs7Oy4fPmy2lHKHLnlXUpkZGTQtm1bFEXh0KFDUkyWMefPn2fkyJHY2NhQq1YtFi1aRGpqKt27d2f37t1kZmZy5MgRBg0a9Myr+R/e9gkMDCyM6EIUiUqVKnHp0iVGjhzJxYsXqVmzJkePHlU71hNLTEykR48eGBgYEBwcLMVkCVG9enWZQ15EpKAsJTw9Pbl79y4LFy6Udi9lRFBQEP369aNSpUo0btyYlStXkp2dTb9+/QgICCAtLY3du3fTvXv3Qr1ulSpVMDQ0JDw8vFDPK0RRWL58OatXryY7OxsfHx8+++wztSP9q4eLcDIzM9m0aRO1a9dWO5L4f87OzqSnp6PT6dSOUuZIQVkKjBw5knPnzjF06NByu1VZWeHn50f37t2xtLSkdevWbNmyBWNjY0aMGEF4eDipqals2rSJ1q1bF2mOypUrc/369SK9hhCFZejQoVy8eJGqVavy8ccf06FDB3Jzc9WO9bd69OhBbGwsU6dO5cUXX1Q7jnhE8+bNURSF8+fPqx2lzJGCsoT78ccfWblyJY0aNWL16tVqxxFPSafTsX79enx8fDA1NaV79+74+flRqVIlJkyYQHR0NElJSaxYsYJGjRoVWy4HBwdSUlKK7XpCPCtnZ2fi4+Pp2LEjhw4dwtbWlitXrqgdq4AZM2awZ88e2rVrx9y5c9WOI/7C29sbgAMHDqicpOyRgrIECwkJYfz48VhZWREUFKR2HPGEcnNzWbp0Ke7u7piYmDB48GD8/f2pWbMm7733Hjdv3iQ2NpYffvgBR0dHVTI2bNiQnJwcaR8kShVDQ0P279/P7NmzSU5OpmHDhiXqg/aff/7Jp59+SvXq1aVgKaE6dOgAwIkTJ1ROUvZIQVlCpaam4uvri0aj4dixY1haWqodSfyDjIwM5s2bR5MmTTAxMWHcuHGcOnUKFxcXZs+ezb1794iMjOSLL76gatWqasfV75l86NAhdYMI8R+8//77+Pv7Y2pqyvDhwxkxYoTqc+JiY2N58cUXMTY2JiQkpMzt9FNWVKhQASMjI7nlXQTkO74E0ul0tGrVivT0dFasWEGTJk3UjiQeIyUlha+++or169cTFRWFoigYGBjQvHlzXnnlFcaMGVNiV3Z26tQJeLBjRK9evVROI8TT8/LyIj4+njZt2rBq1SoCAgIICgr6x6b+RSU3Nxd3d3eys7P5888/C+xOJUoWa2trYmJi1I5R5sgIZQk0cOBAIiIiGDt2LCNGjFA7jnhEbGwsEydOxMHBgSpVqjB79mxiYmJo27Yta9asITs7m9DQUCZMmFBii0mABg0aoNFoOH36tNpRhPjPrKysCA8P59VXXyUiIoKaNWty8ODBYs/RqVMnEhMTmTFjBt26dSv264unU6tWLVJTU9WOUeZIQVnCfPXVV2zevJkWLVqwZMkSteMI4NKlS4wePZrq1avj4ODA999/T0pKCl26dOH3338nKyuLo0ePMmTIkGfuEVlctFotlpaWREZGqh1FiGf2448/sn79enJzc+nYsSOffPJJsV172rRpHDlyhK5duzJ9+vRiu6747xo3bkxubi63bt1SO0qZIjvllCBHjx7Fx8eHypUrExcXh6mpqdqRyq3g4GDmzZvHvn379J9krays6NixI5MnT8bLy0vdgIWgXr16xMXFkZ6ernYUIQpFdHQ0rVu3JiEhgbZt23Lw4MEivVOwbds2+vTpg729PdHR0aXmA2V59+OPPzJ27FjWrVvHoEGD1I5TZsh3fwlx8+ZNunTpgoGBAYGBgVJMqmD//v307NkTS0tLPDw82LRpEwYGBgwdOpSwsDDu3LnD1q1by0QxCeDi4kJGRobqixmEKCy1atUiJiaGbt26cfz4cWxtbblw4UKRXCsqKooBAwZgampKSEiIFJOlyMM55MePH1c5SdlSbv4FZGdnqx3hb+l0Olq2bElmZibr1q3DxcVF7Ujlgk6nY9OmTfj6+mJmZkbnzp3ZvXs3VlZWjBs3jqtXr3Lr1i1Wr15dJhdGtWjRAoCTJ0+qnESIwmNoaMiff/7JvHnzuH37Nq6urixbtqxQr5GdnY2Hhwd5eXns3r2b6tWrF+r5RdFydnZGo9Fw5swZtaOUKeWioDx79iympqb079+fc+fOqR2ngOeee46YmBgmTZpEv3791I5TpuXm5vLzzz/j4eGBiYkJAwYM4PDhw9SoUYMpU6aQmJhIfHw8ixcvxsnJSe24RcrHxwdAlUUMQhS1KVOmEBQUhJmZGWPGjGHw4MGFNhrfrl07kpOTmTNnDr6+voVyTlG8rKysiIqKUjtG2aKUA3v37lUARavVKoDSr18/JSwsTO1YiqIoyqeffqoAipeXl9pRyqz79+8rX375peLq6qr/HtBoNEqDBg2UWbNmKffu3VM7oiru37+vAMqAAQPUjiJEkbl3757StGlTBVBq166tJCUlPdP53njjDQVQXnzxxcIJKFTRsGFDxdTUVO0YZUq5WJSzb98+unTpov+zgYEBeXl5eHp68t1335GWlsbdu3cxMTHBzs6Ohg0bFkvLlz179tCtWzdsbGyIi4uTRriFKDU1la+//prffvuNiIgIfY9IV1dXXn75ZcaOHVui2/oUF1NTU+rVq8fZs2fVjiJEkXr99ddZtGgRJiYm7Nixg65duz71OX777TeGDBlC7dq1iYiIkHmTpVjv3r3Zvn07OTk58ru3sKhc0Ba5mzdvKhMmTFCAx/7n6empWFlZ5XvM2NhYcXNzU0aPHq0sXrxYSUlJKfRcMTExirGxsWJsbKxER0cX+vnLo/j4eOXtt99WHB0d9f9fGhkZKW3atFFWrFih5OXlqR2xxLGzs1Osra3VjiFEsdiyZYtiZGSkAMq0adOe6rXnz59XDAwMFHNzcyU5ObmIEoriMmvWLAVQ/P391Y5SZpTZgvLcuXPKq6++qpiamiqGhoYFCkl7e3tl0aJFSnZ2tnL//n3l1q1bSkxMjHL06FHl+++/V1555RWlRYsWiqGhoWJmZqa8/PLLSkhISKFky8nJUapXr64Ayq5duwrlnOXV5cuXlVdeeUX/9wkoZmZmSqdOnZTt27dLEfkv2rZtq2i1WrVjCFFsYmJiFDs7OwVQPDw8lPv37//ra9LT05VKlSopGo1GCQwMLIaUoqj5+/srgDJr1iy1o5QZZa6gTElJUQYOHKgAiq2trfL5558rmzdv1hcbtWrVUpYvX67k5OQ80fkSEhKUzz//XD/q1b59eyUiIuKZMrZr104BlOnTpz/Tecqr0NBQZdCgQUrlypX1/79WqFBB6dWrl3L48GG145UqY8eOVQAlLi5O7ShCFJu8vDzl+eefVwClUqVK/zqnvlmzZgqgfP/998WUUBS1nJwcmQtbyMpUQXns2DHF0dFRqVSpkvLrr78qWVlZiqIoSlxcnNKlS5enKiT/Kjc3V9m2bZtSp04dxcLCQlm6dKmi0+me+jxTp05VAKVLly7/KUd5dfDgQeW5555TLC0t9UWktbW18tJLLymnTp1SO16ptXz5cgVQVqxYoXYUIYrdt99+q2i1WkWr1SqLFy9+7DGjR49WAGXw4MHFnE4UNVNTU6Vhw4ZqxygzykxBuXjxYsXAwEBp27atcu3atSK7zt27d5VXX31VAZRevXopGRkZT/zarVu36m+3y63Yf5aXl6ds27ZN6dixo2JmZqYvImvUqKG8+uqrzzxKLB6IjY1VAGXcuHFqRxFCFSdPntTPo+/Tp0++n80///yzAij169eXn9llkIODg1KxYkW1Y5QZZaKg3Lhxo6LRaJTXX39dyc7OLpZrbt++XTEzM1NeeOGFJ7pmRESEYmhoqJiamioJCQnFkLD0ycvLU5YvX660bt1aP3H+4TSFd999V7lx44baEcskrVYrbatEuZaenq60aNFCARRHR0flxo0byunTpxWtVqtYWloqd+7cUTuiKALt27eXOeSFqNQXlP7+/oqJiYkyePDgYv8EuXv3bsXIyEgZMmTIP177/v37SpUqVRSNRiNz/P4iKytL+eabb5RmzZopBgYG+h6R9erVU2bMmCE/yItB5cqVlZo1a6odQwjVvfPOO/pOH2ZmZopWq5UpNWXYxIkTFUCJjIxUO0qZUKqbaKWkpNCnTx9at27N8uXLi70nWPfu3Vm7di3r1q1j1qxZf3ucj48PycnJzJ07V787SXl29+5dZs6cSYMGDTA1NeXtt98mLCyMxo0b8/XXX5ORkcGlS5eYPn06VlZWasct8+zt7bl165baMYRQ3YIFC/j999/Jzs7m/v37dOrUiebNm6sdSxQRLy8v4EGvavHsSnVBOXPmTLKysli3bh0mJiaqZOjfvz/vv/8+s2fP5vLlywWef/311wkODqZ3795MmTJFhYQlQ1JSElOmTMHJyYmKFSsyffp0oqKi8PDw4JdffiErK4szZ87w9ttvY2pqqnbccqV+/fpkZWWRmZmpdhQhVLd27VoAzM3N2bt3Ly1btiQjI0PlVKIodOzYEYDAwECVk5QRag+R/lcXLlxQDA0NlTlz5qgdRcnIyFDq1KmjdO7cOd/K79WrVyuAUqdOnXI5oTsqKkoZO3asYmtrq58PaWpqqnTo0EHZsmVLufw7KYnmzp2rAMrevXvVjiKEqr7//nsFUFxdXZW8vDylT58+CqBYWVnJre8yytDQUPHw8FA7RplQagvK/v37K7Vr136iprTFYdeuXQqgbN++XVGUB43VH+6qUBQ77ZRUZ86cUYYMGaJUqVJFX0RaWloqzz33nLJ//36144nHOHHihAIoH3/8sdpRhFBNUFCQotFolIoVKyrp6en6xxctWqRvLfTdd9+pmFAUhapVqyrVq1dXO0aZUCr38r5z5w42NjbMmTOHd955R+04eh4eHtSoUYN169Zha2tLWloagYGBtGrVSu1oRero0aN8+eWXHDx4kLt37wJQuXJlunTpwpQpU3B3d1c5ofgnOp0OAwMDevbsyc6dO9WOI0SxS0lJwcHBgaysLMLCwmjYsGG+58+dO0e7du1ITU3lueeeY8eOHbKPdxnRokULzp07R3Z2ttpRSr1S+S9i27Zt5OTkMHDgQLWj5DNq1Ch27dpFixYtuHv3LgsXLiyzxeQff/xBly5dMDc3p127dmzfvh0zMzNefvllLl26REpKCuvXr5dishTQarWYm5tz5coVtaMIUex0Oh2tWrUiIyODlStXFigmAZo0acKNGzfw9PRk586dODo6Ehsbq0JaUdgaNmxITk4O9+7dUztKqVcqC8oNGzbg7e1NzZo11Y6Sz0svvYSiKFy6dImhQ4cyfvx4tSMVGp1Ox+rVq/Hy8sLExIQXXniBffv2UbVqVd566y3i4uJISEhg2bJl1KtXT+244inZ2NiQkJCgdgwhil2/fv2IiopiwoQJDBky5G+PMzU1JTAwkGnTphEXF0edOnXYvn17MSYVRcHT0xOAQ4cOqRukDCh1BaWiKBw/fpxu3bqpHaWAjRs3otPpsLS0ZPXq1WrHeWbZ2dksXLiQFi1aYGxszPDhwwkICKBWrVp8/PHH3L59m+vXr/PNN99gZ2endlzxDJydnUlLS0On06kdRYhiM3/+fLZt24a7uzs//PDDE71mzpw5+Pn5odVq6d27N2+++WYRpxRF6eFKb39/f5WTlH6lrqC8efMmqampNGjQQO0o+YSGhjJ+/HiMjY2pUqWK2nH+s7S0ND7//HMaNmyIqakpb775JmfOnKFRo0Z8+eWXZGRkcPnyZWbOnEmlSpXUjisKiZubm350XYjy4MiRI0ybNo0qVapw7Nixp3pt165duX79Ok5OTixcuJCmTZuSlpZWRElFUWrUqBEajYbTp0+rHaXUK3UF5cNfeCWpoExNTaV9+/ZoNBpmzJhBdHQ0d+7cUTvWE7t16xbTpk2jTp06VKhQgY8++oiIiAhatmzJ0qVLycrK4uzZs0yaNEl6RJZR3t7eAOzfv1/lJEIUvaSkJLp164aBgQFBQUEYGxs/9TlsbGyIjIxk0KBBhIWFYWtrS3BwcBGkFUVJq9ViYWFBZGSk2lFKvVJXUF69ehWAOnXqqJzkgYcTutPT0/nll1/0t+If1+S8JImOjmbChAnUrFmTatWqMW/ePOLj4/Hx8WH9+vVkZWURHBzMa6+9hqGhodpxRRHr0KEDAEFBQSonEaJo6XQ6WrZsSWZmJhs2bMDZ2fk/n0ur1bJu3Tp+/vln7t+/j6enJ1999VUhphXFwdbWVuaQF4JSV1A+VFJaNgwcOJCIiAjGjh3LiBEj9CN4ubm5KicrKDw8nBEjRlCtWjWcnJxYvHgxd+7coUePHvj5+ZGZmcnhw4cZOHBgifn7FcXDysoKIyMjzp8/r3YUIYpUz549iY2NZcqUKfTp06dQzvnKK68QFhZG5cqVmTx5Mt27dy+RvwPE49WtW5eMjAyZQ/6MSl3V8PDWRE5OjspJHuz7unnzZlq0aMGSJUvUjvNYAQEB9O3bl0qVKtGkSRNWrVpFbm4u/fv3JygoiLS0NHbt2kXXrl3VjipUZm1tTUxMjNoxhCgyM2fOxM/PD29vb+bNm1eo527YsCE3btzAy8sLPz8/HBwciI6OLtRriKLh5uYGwKlTp1ROUrqVuoLSyMgIQJUmpI9+4jx69CiTJ0/G2tr6qSd0F7Xdu3fTrVs3LCwsaNu2LVu3bsXY2JiRI0dy/vx5bt++zcaNG/Hw8FA7qihBHB0duX37ttoxhCgSfn5+TJ8+HRsbGw4ePFgk1zA2Nubo0aN8/PHHJCYmUrduXTZt2lQk1xKFp3379gBF9n1RXpS6gtLGxgaAuLi4Yr3u0aNHsbCwYPHixSQlJdGlSxcMDAwIDAzMt1AlMTEReLBTTHHR6XT89ttvtGvXDlNTU3r27MmePXuoXLkyb7zxBtHR0SQlJbF8+fLHNu0VAqBx48bk5uaSkpKidhQhClVsbCy9evXC2NiY4ODgIp8XPnPmTA4cOICRkREDBgzgtddeK9LriWfTrl07AFlU9YxKXUHZvHlzAE6ePFms1/Xz8yM7O5sJEyZQp04dMjMzWbduHS4uLvmOO3v2LKamptStW7dI8+Tm5rJ48WLc3d0xMTFhyJAhHDt2jJo1a/L++++TnJxMbGws33//PY6OjkWaRZQNDxv8ykpvUZbk5ubSqlUrsrOz2bZtW7H9PPT19SU2NhYXFxd++uknGjdurN+aVpQsZmZmGBsbc+HCBbWjlGqlrqCsUKEC9erVK/aC8tHb2unp6dSoUYO2bdsWOO7s2bM0bty4SD4BZ2RkMGfOHBo3boyJiQkTJkzg1KlT1KtXjy+++IK0tDQiIyOZPXs21tbWhX59UbZ16tQJoMRN4RDiWXTu3JmEhASmT59Ojx49ivXa1tbWXLx4keHDh3P+/Hns7OwICAgo1gziyVStWrXY73yWNaWuoARo2bJlsXa1z8vLK9BO5ebNmzRv3pxr167pH1MUhcDAQJo1a1Zo105JSeGDDz7A2dkZS0tL3n//fS5fvoybmxuLFi3i/v37hIeH895772Fubl5o1xXlj4uLCxqNhrNnz6odRYhC8d5773H48GE6d+7MjBkzVMmg1WpZuXIlK1asIDMzEy8vL7744gtVsoi/5+TkVKr6R5dEpbKgHDBgAKdOnSqUX3zpWbmEx9/h1PXbhMffIT2rYKuHCxcukJGRke+xvLw8cnJy8t3COHXqFOfPn6dv377PlCk2NpY333wTe3t7qlSpwhdffEFcXBxeXl6sXbuWrKwsQkJC9DvzCFFYKlSoQFRUlNoxhHhm27dvZ+7cudSsWRM/Pz+14zBixAguXLhAlSpV+OCDD+jUqZO0FipBXF1dycvLIz4+Xu0opVap7Fj9/PPPY2Njw7Jly/j222+f+vVXEu+xJug6By8lcT0lA+WR5zSAo7U5HerbMNTTEZfqFdi1a1e+19euXZtp06YxYsQIzMzM9I8vX76cGjVq/Kd9xi9cuMDcuXPZtWsXN2/eBMDc3JyuXbvy1ltv0bNnz6c+pxBPy87OTlqdiFLv6tWrDBgwAFNTU0JCQkpMX10XFxdu3LhBly5dOHDggP4W+LM0VxeFo02bNixdupT9+/czfPhwteOUSiXjX9lTMjIyYuTIkaxatYp79+498etiUjIYviyILt8cYVVQNNF/KSYBFCA6JYNVQdF0+eYIw5YFMveHZQDUq1ePLVu2cOXKFcaOHZuvmExLS2PNmjUMHz78iedPBgcH079/fypXrkyjRo1YsWIF2dnZ9OnTh+PHj5Oeno6fn58Uk6LY1KtXj/v378vIiSi1srOz8fDwIDc3l927d1OjRg21I+VjaGjIwYMHmTVrFrdu3aJBgwasWbNG7Vjl3sM55MePH1c5SelVKgtKgDfeeIOsrCw+/vjjJzp+XfB1On99mONRyQDk6f5aSub38PljEbewGPAFgz/8jkuXLtGnTx8MDAwKHP/pp5+SkZHBhAkT/vG8e/fupUePHlhaWuLh4cHmzZsxNDRk+PDhhIWFkZqaypYtW2jTps0TvS8hClPLli0BOHHihMpJhPhvfHx8uHXrFnPmzMHX11ftOH/ro48+4siRIxgbGzNs2DBGjRqldqRyzd7eHq1WS1hYmNpRSq1SW1A6Ojry6aef8v333xMSEvKPxy48eIX3toSRlav710LyrxQ0aI2MCcirw8KDVx57zNGjR/nqq6/w9fXFyckp33M6nY4NGzbQvn17TE1N6dq1K3/++ScVK1Zk/PjxXLt2jZs3b7Jy5UqaNGnyVNmEKGzS4FeUZm+99RZBQUH06tWLqVOnqh3nX3l7exMXF0eDBg1YsWIF9evXJzU1Ve1Y5VbFihXzLbQVT0ejKMrTVVglSE5ODq1atQIetDqxsLAocMy64Ou8t6XwPnHM7evKoFb/62MWHx+Pi4sLGRkZ1KhRg/j4ePLy8vjll1/46aefOH36tP72Ye3atRkwYABTpkyhatWqhZZJiMKSnZ2NiYkJffr0YcuWLWrHEeKJrV+/nsGDB+Pk5ERkZGSJmTf5pMaMGcOyZcswMzPjzz//xMfHR+1I5U7Tpk25fPkymZmZakcplUrcv7hx48ah0Wj0/82ZM+dvjzUyMuLXX38lMjKS3r17F/gmiEnJYPqO8ELN98mOcGJSHqz4vnHjhr6YBEhISMDFxQUTExPGjh1LaGgodnZ2tGnTBjc3NzIyMvj6669xdXVl0KBB0p5FlDjGxsaYmppy6dIltaMI8cQuXrzI0KFDMTMzIzQ0tNQVkwA///wz69atIycnB19fXz799FO1I5U79evXJysrSwrK/6hE/avLyckpsO/punXr/vE1bm5u/P777xw9epTBgweTk5Ojf+6DrWHkPuUt7n+Tq1P4YGsYCQkJ1K9fv0A7oaioKJo1a8b3339PZmYmDRs2JCAggFOnTpGYmEhOTg4JCQls2LABT09PaXIrSpyqVatK6wxRamRkZNCmTRt0Oh379+8v1Zs6DBo0iMuXL1OtWjVmzJiBj48P2dnZascqNx7e8Tx69KjKSUqnElVQ7t27l+Tk5HyPnTlzhosXL/7j63x9fdm8eTO7du2iS5cuXLt2jSuJ9/CPuPXUcyb/TZ5OwT/iFo6uHo9dYV67dm1OnjzJG2+8oe8RWadOHWbPns2ePXv4+eefsbW1BSAzM5P33nuvUPMJ8azq1KkjW8SJUsPLy4vU1FS+/fbbMrGYsXbt2sTFxdGlSxf8/f2xs7OTOwbFpEOHDgAcOXJE5SSlU4kqKB8djRw8ePBjH39o06ZNNGnSBFNTU5o0aUJaWhpDhgzh8OHD1K5dm6FvvIeBVqM/PjvpKje3zyP2++FEz+tN7MIRJO/6jty7t/KdN9V/DdFznid6zvOknd3L3eDtxC15lej5vYlf9gb3r51B0eVh2fzxW3hFRUWh0Wj0uzJMnTqVS5cu8f7779OlSxdeeeUVFi9erD9eNqMXJU3Tpk3R6XTSj1KUeGPGjOH06dMMGjSIN998U+04hcbQ0JA9e/Ywd+5cUlJSaNy4MStWrFA7Vpn3sMtFcW/tXFaUmIIyMzOTbdu2AVCtWjW++eYbfT/HvxaUW7ZsYeDAgYSHh5OVlUV4eDiDBg3i9OnT+mOu3MrQj07ejwzhxop3ybhwhLz026DLJS8thbSze0hY8Q45qQmPzXTn+Hpu7/+J3NQbkJdLzs1r3NzyGbrs+zTuPIBatWr96/vq2LFjgb6ULi4u+q8ft5BICDU93KN+3759KicR4u/9+uuvLFu2jHr16rF27Vq14xSJqVOnEhAQgKmpKaNGjWLo0KHodDq1Y5VZWq0Wc3Nzrlx5fEcX8c9KTEH5xx9/6G8h9+7dm+rVq+t7iF26dIlTp04BD7Y8fPvtt3m4OH3AgAHs3LmTiRMncubMGf35DMwrAaDLyeTWzq8hLwe0BlTyGYHNoFlYefZ7cL7026Ts+d+I4aNyUxOwat2fav0+xsimNgBK9n0ywg8Rm5rFqrXr+OCDD/THjx49Gn9/f/z9/Xn55Zf/9r1u3rxZ/3WPHo8f6RRCLZ07dwaQ+b2ixDp79ixjxozB0tKS4ODgUrkI50l5enoSHx9PkyZNWLt2LS4uLty6devfXyj+ExsbG27cuKF2jFKpxPwrfHQUsn///vn+99HnQ0NDiYmJAaBGjRqsWbOGnj178u2339K6desC5828egpdxoMN302dmmPi0BiNoTFmdT0wqFj9wTFRJ8nLKLgpvJlLayr7jsLcxZOKbQboH8+5fQMFsHZqmG+00cbGhvj4eBwdHXF0dCxwPoBdu3bx2WefAWBtbc2sWbP+/S9HiGJUrVo1DAwMCA8v3A4JQhSGtLQ0vL29ATh8+DBWVlYqJyp6VlZWhIWFMW7cOKKionBwcGD//v1qxyqTnJ2dSUtLk5Hg/6BEFJT37t1j586dwIMiq2PHjgD07dtXvyvN+vXrURSFqKgo/etatGiBkZGR/s+Pm5CdkxKn/zozKpTENdP0/+XdSfz/ZxRykmMLvNbU4X+NxrVm//uhpctKByA7V0daWpr+8Xnz5jFo0CB+/vnnx77PzZs306dPH7Kzs7G0tOSPP/54otvmQhS3SpUqSYNfUSJ5eDxYELl06VJatGihdpxitXjxYjZt2kReXh6dO3fmww8/VDtSmePm5oaiKLIQ6j8oEQXltm3b9H2fUlJSMDIyQqPRYGNjQ15eHgDR0dEFbsFpNJoC5/qvlJyCfae0ppaPXOuRv6r/v93evWvnfBPBH96Gd3BwKHCuFStWMGjQILKzs6lUqRJ79uwpEysSRdnk4OBASkqK2jGEyGfo0KFcuHCBUaNGMWbMGLXjqKJfv35ERERga2vL7Nmzadu2rfRNLEQPR79lBPjpGf77IUXvt99+e6Lj1q1bx/Dhw/V/PnXqFHl5efpRzMfN+TKyrqn/2qJJJ6o+/06BY3Q5mWiNTJ8qs6Io3Iw6/9jn5s2bx/79+3Fzc8Pb25vQ0FD9vE8bGxv27NlDs2bNnup6QhSnBg0acPr0aTIyMjA3N1c7jhAsWrSItWvX4urqyq+//qp2HFU5OjoSGxvL888/z+7du7Gzs8Pf35/GjRurHa3Ue9g6KCgoiDfeeEPlNKWL6gVlcnIye/fuBaBChQrMnj073/PZ2dlMmjQJgI0bN/L111/j4OBATEwM8fHxjBgxgqFDh+Ln50dgYKD+dVUsjckCTJ3c0JpXRJdxh/RzB9CaWWLm5Iai6Mi9k0hW7AVykq5i9+rjF+b8HaeqFkz9+kvefvtt/daKD129epWIiAjWr19f4HUWFhZMmzaN+vXr07x5c5ydnWWLLVHieHp6sm7dOg4dOkTPnj3VjiPKueDgYN58800qVqyY7+d8eabVatm1axfffPMN7777Lk2bNmXJkiW8+uqrakcr1aysrDAyMuL8+ccPGIm/p3pBuWnTJn1B1rVr18d+Ili1ahWnT58mISGBQ4cO8c0339C/f38URWHt2rX6lhGurq6EhT3Yt7thDSvCtBowNqXqc2+TtGU25OVwL3g794K35zu/gZXNU2XWaKBDPRte79WBli1b0rZtWx7dEj0vLw8/Pz8MDAwYM2ZMvrloV69e5erVq/j5+ekfMzMzo2rVqjg6OtKoUSNatWqFr69vvgU/QhSnh/OY/f39paAUqkpNTcXX1xeNRsOxY8dkxPwv3n77bby9venYsSOvvfYae/bsYf369WV65XtRs7a21i/+FU9O9e+4R2939+rV67HHvPDCC/qv161bR9++fdmwYQONGjXC2NiYhg0bsnbtWjp16qQ/rkNje30fSjPnVtiO+hqLxh0wqFAVtIZozawwsqlDhVa9qdbn6XarURQY1vrBKu7WrVuzY8cOatSoke8YY2NjOnXq9ESLbmrVqsW9e/cICAjgp59+4rXXXqNevXpotVosLS2pU6cOnTp1YuLEiaxZs4a4uLh/PacQz6JJkwcL0h626xJCDTqdDnd3dzIyMlixYoXc0v0b7u7uJCQk0Lx5czZt2kSdOnVISkpSO1ap5ejoyO3bt9WOUepolEeH1koJRVEeuyCndevWBAUFAQ863S84mc3xqORC3X7RQKuhbZ0qrHrFs8BzZ8+eRVGUZ5ofmZiYyKFDhwgKCiIsLIyrV6+SlJREWlpavlHQh8VmjRo1qFOnDk2bNsXT0xNfX99SvZetKDkefn9FRESoHUWUU3379mXr1q2MHz+eRYsWqR2nVJg4cSLff/89JiYmbNu2je7du6sdqdQZPXo0y5cvJzk5WX6fPoVSWVAeOXKExYsXM2rUKBo0aEBqaio//vij/gdO/fr1OX/+PHGpmXT++jBZuYXUT0pRMDLQsP9dXxyrFP8ON1evXuXQoUMEBwcTHh5OdHQ0N2/eJCMjI99xBgYGWFlZYWtri4uLC82aNaNNmza0a9dOduYRT6xu3bokJCTka40lRHH56quvmDx5Mi1btiQkJETtOKXKjh07GDBgANnZ2UyePJn58+erHalUWbp0KePGjWPjxo35+mGLf1YqC8pDhw7pV2L9VYUKFdizZ4++yfm64Ou8tyWs0K6dvOtbsi4cwsfHh/9r777ja7zfP46/crKXGSEkESNIYwQhUwaKotSo0aLVUqqqRlWH6taqKqoo1VZrlNpq14oMiYg9YyYhiQgiIvPk3L8/fJ2fNKjIuDOu5+Ph0eSce7xP1Ml17vtzfT5t2rShVatWtG7dmnr16hXpNEYFodPpOH36NEFBQRw8eJDTp08TFxfHjRs38k0nYWxsTJUqVahTpw7Ozs60bNmSdu3a0bZtW0xMTFTJL0qn5557jm3btpGbmyvjsUSJCg4Oxt/fn6pVq3L16lXMzAo2C4eA+Ph42rZty9WrV3F3dyc4OFh+jk/o3LlzNGrUiLFjxzJz5ky145QZZbKgjI2N5aOPPmL//v0kJCSQm5uLg4MDzz77LBMnTqRevXp5tv9xzzm+2xFd6PO+5m7Dpy966W89GxkZ6RuKGjZsSHR0tGpF5aNotVoOHz7Mvn37OHToEGfPnuXKlSvcunWL7OzsPNuamJhQrVo1HBwcaNKkCa1atcLPzw83NzcpKCqgDz74gG+++YbDhw/j5uamdhxRQSQlJVG3bl20Wi1nzpyhQYMGakcqs3Q6Hb1792bDhg1UrlyZffv20bx5c7VjlQkajQZ/f3/27NmjdpQyo0wWlE9jRWQsn2w8iVanFGhMpaHGACONAZ/3cKV/G0fGjh3LDz/8wL9/bC+++CJ//fVXUccuVpmZmYSHhxMSEsKRI0eIjo4mPj6e27dv55sKydzcnOrVq+fpRPf398fZ2VmKzXJq69atdO3alRkzZjB+/Hi144gKQKfT4eTkRFxcHKtXr6ZPnz5qRyoX5s6dy5gxYwD44YcfeOutt1ROVPpVrlyZKlWqEBMTo3aUMqPCFJQAcTfT+XDdcYLPJ2OoMXhsYXn/+XYNbZjaqxkO1e5NVXH16lWcnJzyFFxVq1YlJiYGa2vrYn8NJSU1NZWQkBBCQ0M5duwY58+fJzExkdTU1DxrnBoYGGBhYUGNGjVwcnKiadOmtG3bloCAgIeuGCTKjvT0dCwtLRkwYMATLz4gRGHcH2Yh4/6K3rFjx/Dz8+P27dv07NmTtWvXysWAx3BxcSEmJiZfj4J4tApVUN537todlkXEsic6idgb6Tz4AzAAHKtbENjIlkGejjS0zV8kvvHGG/z666/6ZSEBfHx82L17d4UYh5iUlERQUBDh4eGcOHGCixcvcu3atUd2otesWZP69evTrFkzPD09CQgIoHr16iq+AvGkTE1NcXFx4ciRI2pHEeXcF198wZQpU/Dx8SEkJETtOOVSRkYGfn5+HDx4EHt7eyIiIqhdu7basUqlnj17snHjRnJycjAyUn3K7jKhQhaUD7qbpeXyjbtka3WYGGlwqm6Jpenj/+e5ePEizs7O6HQ6li5dypIlS9i+fTvVqlUjJCQEFxeXEkpf+sTExLB3714OHDjAqVOnuHTpEsnJydy9ezfPdg92ojds2JDmzZvj7e1Nu3btsLKyesTRRUmrXbs22dnZJCcnqx1FlGP//PMPnTp1wtbWlqtXr8ov8GI2ceJEvvvuO0xMTFi9enWeuZ7FPZ9//jmffPIJoaGheHt7qx2nTKjwBeXT+uyzzzA2NubDDz8E7k1xMXHiRDQaDQsWLOD1119XOWHpotPpOHv2LHv37iUqKorTp08TExPz0E50IyOjfJ3ovr6+eHp6VogrwKWJl5cXkZGR+cbUClFUrl69Sv369YF73bWOjo4qJ6oYtm7dSq9evcjKyuKdd95h1qxZakcqVYKCgggICODLL7/ko48+UjtOmSAFZRE6ePAggYGBpKWl0a9fP/78808Zo/IEdDodhw4dyteJfvPmzUd2otvb29O4cWNat25Nu3btaNWqlfysi8Hw4cNZtGgR165dw9a2YEuUCvFftFotDg4OJCYmsmXLFp577jm1I1Uo165dw8PDg5iYGNzc3AgJCZG5iv8nOzsbU1NTevXqxdq1a9WOUyZIQVnE0tLS8PX15ejRozg5ORERESG/iAshOzub8PBwgoOD83Sip6Sk5LtqZmZmRvXq1albty4uLi64u7vj7+9P48aNpdh8Sr/88gvDhg1j2bJlvPTSS2rHEeVMYGAge/fu5eOPP+bzzz9XO06FpNPp6N+/P6tXr8ba2po9e/bQunVrtWOVCubm5tSvX5+TJ0+qHaVMkIKymDy4/NWGDRvo3Lmz2pHKnbS0NIKDgwkLC+PYsWOcO3dO34n+YMMUgKWlJTY2Njg5OeHq6qrvRH+StdYrspiYGJycnBg1ahRz585VO44oR+7Pc9qhQwd27typdpwKb+HChbz55psoisKMGTMYN26c2pFU5+joSGpqKikpKWpHKROkoCxGGzZsoF+/frL8lQqSk5P1nejHjx/P04n+72mPHuxEb9q0qb4TvUaNGiq+gtLD0NAQHx8f9u3bp3YUUU5s3LiRnj17UqdOHWJjY+UOQilx8uRJfH19SUlJoWvXrvz9998V+u/G39+fkJCQfBcoxMNJQVnMZPmr0icuLo6goCAiIiI4efIkly5d0q+J/uA/B0NDQ6ytrbGzs6NBgwb6TnQ/P79yNefof6latSpWVlbExcWpHUWUA5cvX6ZRo0ZoNBouX75MrVq11I4kHpCVlUVgYCD79+/Hzs6O8PDwCtso9fbbb/Pjjz9y6dIlnJyc1I5T6klBWQJ0Oh19+vRh/fr1VK5cmaCgIFq0aKF2LPEvOp2Oc+fOERQURGRkZJ5O9IyMjDzbGhkZUblyZX0nupubG76+vnh7e5e7TnRXV1cuXryY72cgREFlZ2dTp04dbty4wc6dO2nfvr3akcQjfPjhh3z99dcYGxvz559/VshVi1asWMHAgQNZtGiRzNzyBKSgLEHz5s3j7bffBmD27NmMHj1a5UTiSel0Oo4cOaLvRD9z5gxxcXHcunWLrKysPNuamJhQtWpVfSf6/TXRW7ZsWSbn1+vTpw9r164lKyur3BXLomR5eXkRHh7O1KlT+eCDD9SOI/7Drl276N69O5mZmYwcOZL58+erHalEXb9+HVtbW15//XUWLVqkdpxSTwrKEvbg8lc9evRg3bp1FXqMSnmQnZ3NgQMHCA4O5vDhw5w7d46rV6+SkpJCTk5Onm3vd6I7OjrSpEkTfSe6i4tLqf3/4Ouvv+bDDz9kz549BAQEqB1HlFFjx45l9uzZdO/enb///lvtOOIJJScn4+HhwcWLF2natCmhoaFUqlRJ7VglxsjICHd3d8LDw9WOUupJQamCzMxM/Pz8iIyMpE6dOoSHh2Nvb692LFEM7t69S0hICGFhYRw9epRz586RkJDw0E70+2ui161bV9+JHhgYqHon+v79+/H29ubTTz/lk08+UTWLKJv++usv+vfvT926dbl48WKp/fAkHk6n0zF48GCWL1+OpaUlu3btwsPDQ+1YJcLGxgZjY2MSEhLUjlLqSUGpovfee4/p06djYmLCX3/9Rc+ePdWOJErQzZs3CQoKYv/+/fpO9MTExEd2otva2uo70T08PAgMDCyROU61Wi3Gxsb06NGDDRs2FPv5RPly9uxZXF1dMTExITY2FhsbG7Ujiae0ePFihg0bhk6n45tvvuG9995TO1Kxa9myJadOnco3tEnkJwWlyrZv307Pnj3Jyspi9OjRzJkzR+1IohS4cuVKvk70pKSkfJ3oGo2GSpUqUatWLX0nupeXF/7+/kV6W8rCwgJHR0fOnDlTZMcU5V9mZiZ2dnbcvn2b0NBQvLy81I4kCuns2bP4+Phw48YNOnbsyNatW8vk2PAn9dJLL/Hnn3+SlpYmqwj9BykoS4GkpCQ8PT25dOkSzZo1IywsDCsrK7VjiVLqfif6gQMH9J3oycnJj+xEr127Ns7OzrRo0ULfiV7QqaucnJy4desWt2/fLsqXIsq5li1bcuTIEWbNmsU777yjdhxRRLKzs+nYsSPBwcHUrFmT/fv3U69ePbVjFYtZs2Yxbtw4Nm3aRLdu3dSOU6pJQVlK6HQ6Xn75ZVasWIGVlRW7d++mTZs2ascSZYhOp+PYsWPs27ePqKgofSf6zZs3892uMTY2ztOJ3rJlS/z8/GjduvVDrza0b9+evXv35rkVL8TjvPHGG/z888+8+OKL/PXXX2rHEcXg008/5fPPP8fQ0JClS5fSv39/tSMVuePHj9O8eXMmTZrEN998o3acUk0KylLml19+YcSIEeh0OqZNm8bEiRPVjiTKgZycHA4cOEBISAiHDx8mOjqaK1euPLQT3dTUNF8nenh4OEuXLuXMmTM0btxYpVchyorff/+dV199FWdnZ86cOSNNOOXYvn376NKlCxkZGeVyeh2dToehoSGdO3dm27Ztascp1aSgLIXOnj2Lt7c3N2/epFOnTmzevLlcj1ER6kpPTyc0NJTQ0FCOHj3K+fPniY+P5/bt2/k60Y2NjbGzs9N3ordp04bAwMBye7tLFNzx48dxc3PD3Nyc+Pj4CjXFTEV169YtPD09iY6OpkmTJuzfv58qVaqoHavIWFtbY2try4ULF9SOUqpJQVlKVaQxKqL0SklJISgoiD179jB79mwqVaqEgYEBd+7cydeJbmlpia2tLfXq1aNZs2Z4eHgQEBAgS+tVIGlpadSpU4e0tDQiIyNp1aqV2pFECXr11Vf5/fffsbCwYPv27fj6+qodqUg4OzuTkJBAWlqa2lFKNSkoS7mKMEZFlA3Gxsa4ubkRGRkJ3Fun/n4n+okTJ/Sd6Hfv3s3XiW5tbZ2vE93Pz69cXcUQ95bpPHXqFAsWLOCNN95QO45QwbJly3j11VfJzc3l888/Z/LkyWpHKrTnnnuObdu2kZubK8M3HkMKyjKgvI9REWWDra0tBgYGXLt27T+3vXDhAnv37iUyMpJTp04RExPD9evX83WiGxoaPrQT3cfHp8Cd6EJdgwYNYtmyZQwZMoTff/9d7ThCRRcuXMDLy4vr168TEBDAP//8U6aHbd1f1/zQoUO0bNlS7TillhSUZURKSgoeHh7ldoyKKP3c3d05duwY2dnZT30MnU7HyZMnCQoKIioqitOnTxMXF8eNGzce2Ylep04dfSd6u3btaNOmTZn+5VQezZ8/n1GjRtG0aVOOHz+udhxRCmi1Wjp37szu3buxsbEhLCwMZ2dntWM9la1bt9K1a1e+++47JkyYoHacUksKyjJm6NChLF68GHNzc7Zt24afn5/akUQFMWTIEJYsWUJKSgqVK1cu8uNrtVoOHjzIvn378nSi37p166Gd6NWqVdN3ordu3Rp/f3+aNm0qt6RKWGRkJJ6enlhbWxMfH4+FhYXakUQp8vXXX/PRRx+h0WhYvHgxgwYNUjtSgaWnp2NpaUn//v1ZsWKF2nFKLSkoy6A///yTIUOGkJuby6effsqUKVPUjiQqgLlz5zJ69GjWrl1Lr169SvTcGRkZhIWFERoaypEjR/J0omu12jzbmpubY2Njo+9Ed3d3JzAwkAYNGpRo5oogJSUFe3t7MjMzOXr0KK6urmpHEqVQaGgonTt35u7duwwePJjFixeXuQ9+pqamuLi4cOTIEbWjlFpSUJZRly5dwtPTk6SkJNq1a8fOnTsxMTFRO5Yox86cOYOLiwvjx49nxowZasfRu337Nvv27SMsLIzjx49z/vx5EhMTH9uJ7uTkpF8TPSAggNq1a6v4CsomnU5Ho0aNuHDhAkuWLCmTV55EyUlNTcXLy4tTp07h7OxMeHg41apVUzvWE7l48SKurq4YGRmRmpqKgYGB2pFKJSkoyzCtVstzzz3Hzp07qV69OqGhoTLptCg2iqJgaGhI+/bt2blzp9pxnkhiYiJBQUGEh4fn6URPS0t7aCd6zZo1adCgAc2aNdOviV61alUVX0Hp1bdvX9asWcPIkSOZP3++2nFEGXF/BSVzc3O2bNlCQECA2pH+08qVKxkwYAAArVu35ssvv6Rz585SWP6LFJTlwLRp0/jggw/QaDQsWrSIV199Ve1IopyqVKkS1atX59KlS2pHKbRLly6xd+9eDhw4wKlTp7h8+TLJycmkp6fn2e5+J7qdnR0NGzbEzc0Nb29vfH19K+x4wRkzZvDuu+/SunVrDh48qHYcUcb89ddfvPzyy+Tm5jJ58mQ+//xztSM91oMFpUajQafTSWH5EFJQlhMRERF06NCBu3fvMnDgQJYuXVrmxqiI0q9x48ZcuXKFu3fvqh2l2Oh0Ok6dOsW+ffs4ePAgp0+fJjY2lps3b5KZmZlnW2NjY6pUqaLvRHdzc6Ndu3Z4eHiU2070kJAQ/Pz8qFq1KlevXpXpncRTiYmJwdPTk8TERHx8fNi9e3epHbZ1fxaDh+nSpQsRERGkp6djZmaGvb09LVu2xM3NjZYtW9KqVasKMyOLFJTlyJ07d/Dx8eH48ePUr1+fiIgIbGxs1I4lypHu3buzefPmCjvBr1ar5dChQwQHB3Po0CHOnj2r70T/93RK9zvR7e3tcXFxoVWrVvj7+9O8efMy+7NLTk7GwcEBrVarHwsnxNPSarV0796d7du3U61aNUJCQnBxcVE7FnDvg+XWrVuZNWtWviE+BgYGKIpC8+bNWbBgATExMSQlJZGZmcnFixc5cuQIR48eJSMjA2NjY/r06cOoUaPw9fUt31czFVHuvPnmmwqgmJmZKTt27FA7jihHPv74YwVQDhw4oHaUUicjI0PZvXu38sUXXyh9+vRRmjVrplSvXl0xMjJSgDx/zM3NFQcHB8XHx0cZPny4smDBAiU6Olrtl/BYubm5iqOjowIoq1atUjuOKEe+/fZbxcDAQDE0NFQWLVqkahadTqcsWbJEady4sQIo7u7uyqhRo/L8++3Zs6dy+PDhxx5Hq9Uqp06dUr7//nvF2dlZARRXV1fljz/+UHQ6Xcm8mBImBWU5tWbNGsXY2FgBlPfff1/tOKKc2LlzpwIo06ZNUztKmXL79m1l06ZNyocffqh0795dadKkiVKlShVFo9Hk+UVlYGCgWFpaKvXq1VMCAwOVt99+W1myZIkSFxen9ktQunbtqgDK+PHj1Y4iyqEDBw4oVlZWCqD0799fyc3NLfEMt2/fVgYOHKgAygsvvKCEhIQoOp1O+eeffxRAMTIyUmxtbQt83NzcXOWff/5RevTooQBKjx49lMTExGJ4BeqSW97l2JUrV/Dw8CA+Pp62bdsSFBQk451EoWRmZmJubk7fvn1ZtWqV2nHKhaSkpDyd6BcvXuTatWsP7US3srKiZs2a1K9fn+bNm+Ph4UFgYGCxT7/y1VdfMXnyZLy9vQkNDS3Wc4mKKy0tDR8fH44dO0a9evWIiIigRo0aJXLuQ4cO8eKLL3L9+nUWLlyob8KBezNcpKSk0K5dO86fP59vLHVBbNiwgeHDhwPwyy+/8Pzzzxc6e2khBWU5p9Pp6NmzJ5s2baJKlSoEBwfTtGlTtWOJMszMzAxnZ2dZYq8ExMTE6DvRT548yeXLl7l+/fpDO9ErVaqk70Rv0aIFXl5etGvXDisrq0Jl2LlzJ506daJGjRrExcWV2sYJUX689dZbzJs3D1NTUzZu3EinTp2K9XynT5/G29ubBg0a8Ndff1G/fv2Hbnd/qqysrKxC/TtISkpi+PDhbNq0iZUrV9K3b9+nPlZpIgVlBTF79mzGjx8PwI8//sibb76pciJRVtnb25Oens7NmzfVjlJh6XQ6zpw5Q1BQEAcPHuTMmTPExMRw48aNfFdPjIyM9J3ojRo1omXLlvj4+ODp6fmfvxTj4+OpX78+Op2Oc+fOUbdu3eJ8WULorVu3jv79+5OTk8OkSZP45ptviuU8CQkJeHl5YW1tTUhIyGOXlf3mm2/44IMP2LVrF+3bty/UeXNzcxkyZAirVq1i48aNdOnSpVDHKw2koKxAjhw5gr+/P6mpqbzwwgusWbOmzHabCvX4+vqyf/9+cnNz1Y4iHiI3NzdfJ3pcXNxDO9FNTEz0nej310T39fWlVatW6HQ6HB0dSUhIYNOmTXTr1k2lVyQqquIetpWdnY23tzeJiYns378fBweHx24fERGBp6cnn3zyCZ9++mmhz5+Tk0OfPn3YuXMn+/btw93dvdDHVJMUlBVMeno6fn5+REVF4eDgQHh4uCw7Jwpk1KhRzJ8/n7i4OOzt7dWOIwogKyuL8PBwQkJCOHLkCNHR0cTHx5OSkpJvTfT7Ezjb29vTuXNn2rRpg5+fH40bN5YPoqLEFOewrZkzZ/Luu+9y4MABWrdu/Z/ba7VajI2N6d69O3///XeRZMjMzMTHxwetVktUVFSZnr9WCsoKasKECXz//feYmJiwZs0aunfvrnYkUUYsXbqUwYMHs3jxYl555RW144gikpaWRnBwMGFhYaxYsYLz589jZGSEoih5rkYbGBhgYWFBjRo1cHJywtXVlbZt2xIQEICjo6OKr0CUZw8O25o7dy4jR44s1PGSk5Np2LAhL730EvPmzXvi/SwsLHBwcODs2bOFOv+DoqKiaNu2LdOnT9e/xrJICsoKbOvWrfTq1YusrCzeeecdZs2apXYkUQYkJiZiZ2fHiBEj+Omnn9SOI4rY33//TY8ePahduzYxMTEYGRmRnJys70Q/fvy4vhP9zp07eTrRDQwMsLKyolatWtSrV49mzZrh6elJQECALLIgCu3QoUMEBgaSmppKr169WL169VNfLR89ejRLly7l3LlzBeokr1evHjdv3uT27dtPdd5Hefvtt/ntt9+Ijo4us3cNpaCs4BITE/H09CQmJgY3NzeCg4ML3RUqyj8jIyM8PDxkCplyJiYmBmdnZzQaDRcvXnyiX2yxsbEEBQVx4MABTpw4kacT/cFfL4aGhlhbW2NnZ0eDBg1o0aIF3t7e+Pn5yXuOeGLp6em0a9eOQ4cO4ejoSEREBLVq1SrwMWrWrMmECRMKPBayQ4cO7NmzB51OV6D9/svt27ext7dn4sSJTJkypUiPXVKkoBTodDr69+/P6tWrsba2Zvfu3WV+cLAoXtWrV8fMzIyrV6+qHUUUkezsbOzt7UlOTmbnzp2F7mK93xm+d+9eDh48yKlTp4iNjSU5OfmhneiVK1emTp06ODs76zvRvb29ZZoi8VDjx49n5syZmJiYsG7dOrp27frE+65evZoXX3yR6OjoAi8fen+42JkzZ2jcuHFBYz/Wa6+9xt69ezl//nyZHKcsBaXQW7hwIW+++SaKovDdd9+V6bEcong1b96c6OjoQk3wK0oXb29v9u/fz5dffslHH31UrOfS6XQcPnxY34l+5swZ4uLiuHnz5kM70atWrYq9vT2NGzemdevWtGvXjpYtW5bpBgZReJs2baJPnz5kZ2czfvx4ZsyY8UT7vfjii1y8eJGoqKgCn3Pt2rX06dOHuXPnMmrUqALv/zj79u3D39+fvXv34u/vX6THLglSUIo8Tp48Sbt27bh16xZdunRh8+bNZfKTkihe/fr1Y9WqVWRkZMjqS+XAuHHjmDVrFl27dmXz5s2qZsnOziYiIoKQkBAOHz6cpxM9Jycnz7ZmZmZUr14dR0dHmjRpou9Ed3FxkfetCiIxMZG2bdsSFxdHq1atCA4OxsLC4pHbK4pC5cqVmTRp0lN9cEpJSaFq1aoMGTKE33//vTDRH5qtbt269O3bl++//75Ij10SpKAU+WRnZxMYGEhYWBi1atUiIiJCujdFHt999x0TJ05k27ZtdO7cWe04ohBWrVpFv379qFu3LhcvXizVhVhaWhohISGEhYVx7Ngxzp07R0JCAqmpqfnmRX2wE/2ZZ57Bw8ODgIAAmZy9HNLpdPTt25d169ZRqVIlgoKCcHNze+i2V69exd7eno0bNz71sofGxsa0aNGCgwcPFiL1w/Xp04fbt2+zc+fOIj92cZOCUjzS5MmT+eqrrzA2Nmb58uXlZnkoUXhRUVG4u7vz4Ycf8tVXX6kdRzyl6OhoXF1dMTY2JjY2tkx3Yt+4cSNPJ/qFCxf0a6I/2EBxvxPd1taW+vXr07RpU30nuq2trYqvQBTW/PnzGT16NACzZs3i7bffzrfNrl276NixI2fPnqVRo0ZPdZ6aNWuiKApJSUmFyvswn332GT/++CNJSUkYGBgU+fGLkxSU4rF2795Nt27dyMzM5I033mDBggVqRxKlgE6nw9DQkOeee44tW7aoHUc8hczMTGrXrk1KSgrBwcH4+PioHanYXLlyhaCgICIiIvSd6ElJSfk60TUaDZUqVaJWrVr6TnQvLy/8/PyoVKmSiq9APKkTJ07Qrl07UlJS6N69Oxs2bMhz1X3+/PmMGTOG9PR0jI2Nn+oc7u7uHD16NN8QjKKwbt06evfuTUJCQoG719UmI5rFY7Vv356rV6/i4eHBwoULCQkJYf/+/fLmWsFpNBosLS05f/682lHEU/Lx8eHWrVvMnDmzXBeTcG/9+ZdffpmXX34533Pnzp1jz549eTrRY2JiOHPmTJ7xpPc70WvXro2zszNubm76TnQZR1x6NG3alISEBAICAti0aROOjo6Eh4frV/XKyMjA3Nz8qYtJAFdXV6KiotizZw/x8fFUr169yNbivn+XIDU1tcwVlHKFUjwRnU7Hq6++ypIlS7CwsGDHjh3l/peQeLwGDRqQlJTEnTt31I4iCmjEiBEsXLiQvn37smrVKrXjlEo6nY5jx44RFBSUrxM9Kysrz7YmJiZUqVJF34neqlUr2rVrR+vWraUTXUXvv/8+06ZNw9jYmFWrVtGzZ0/mzJnDe++9R0ZGRoGP9+OPP7J+/XoOHDiQ533P2dmZ6OjoIskcHByMn59foW7Jq0UKSlEgS5YsYejQoeh0Or744otin15ElF6dOnVi586daLXaUt3IIfL6448/eOWVV3B2dubMmTPyd/cUsrOziYyMJDg4mCNHjnD27FmuXr36yE70atWq6TvR3d3d8ff355lnnpGffQnYsWMHPXr0ICsri9GjR+Pq6sro0aPzrV3/JAICAggKCsrzmKGhIaNGjeKHH34okrxSUIoK5fz583h5eZGcnExgYCA7duyQT+EV0Hvvvcf06dM5ceIErq6uascRT+DEiRO4ublhZmbGlStXqFKlitqRyp309HRCQ0MJDQ3l6NGj+k7027dvP7QT3cbGhrp16+Lq6kqbNm0IDAykXr16KqUvn5KSkvDw8ODy5cs4ODgQFxfHnTt3CrxCU3R0NC1atMg3/+6ePXsICAgokqzbt2+nS5cuXLp0CScnpyI5ZkmRglI8Fa1WS6dOndizZw81atQgLCyMhg0bqh1LlKCNGzfSs2dPfvjhh4d2U4rSJS0tjTp16pCWlkZERISshqWClJQUgoKCCAsLy9OJfufOnXyd6JaWlnk60e9Pe1TWxtWVFjqdjpdeeomVK1cC8PPPPzNs2LACH2fRokUMHz5c/32VKlW4fv16kV1U+f777/n4449JTU3F0NCwSI5ZUqSgFIXy1Vdf8fHHH6PRaFi8eDGDBg1SO5IoIXfu3KFSpUq89NJLLFu2TO044j+4urpy6tQpfvrpJ0aMGKF2HPEv8fHx+mmPTp48yaVLl0hKSuLu3bv5OtGtra31nejNmzfXd6LLFef/tmDBAkaOHAncm093woQJeZ7X6XSPHYqgKAq9e/dm/fr1AAwdOpRff/21yPK9+uqrnD59moiIiCI7ZkmRglIUWmhoKJ06dSI9PZ3BgwezePFiGRtUQZiYmNC0aVMOHTqkdhTxGIMHD2bp0qUMHjyYP/74Q+04ooAuXLjA3r17iYyM5NSpU1y+fJnk5OR8jSWGhoZ5OtFbtGiBj48PPj4+mJubq5S+9GnatCnnzp0jOzubLl26sGnTJgB69eqFTqfTf/8oN2/exM7OjuzsbNavX0/Pnj2LLJubmxtt2rTh559/LrJjlhQpKEWRSE1NxcvLi1OnTtGwYUMiIiKoVq2a2rFEMatVqxa5ublcv35d7SjiEe5fkXF1deXEiRNqxxFFSKfTceLECYKCgoiKiuLMmTPExsY+tBPd2NiYqlWrUqdOHRo3bkzLli3x9fWlbdu2FW4M/Icffsi8efNwcXEhPDycWrVq0a9fP31jTVhYGF5eXo89xrvvvsuMGTOKtHnm3LlzNGrUiOXLlzNw4MAiOWZJkoJSFKn705GYmZmxefNm2rdvr3YkUYw8PDw4dOhQsUzwKwrv4MGDeHh4YGVlxdWrVwvchCDKLq1Wq+9Ev78m+pUrV7h161a+f6+mpqZ5OtFbt26Nv78/TZs2LZd3m86fP4+zszNLliwhOjqaL774Qv+coaEhnTp1+s8FGy5fvkz9Ri4s3bAdF9dmmBhpcKpuiaXp0xfnkydP5scffyQhIaFMXlGWglIUuVWrVvHyyy+Tk5PDRx99xJdffql2JFFMXnvtNX777TeuX79eppftK49SUlKwt7cnMzOTI0eO0LRpU7UjiVIiIyODsLAwQkNDOXLkCOfOnSM+Pp7U1NR80+mYm5vn6UR3d3cnMDCQBg0aqJS+aAQGBqIoCr/99htNmzYlPT09z/OHDx9+6Hrg567dYVlELHvOJhFzM+8+BoBjNQsCG9vysocjzjWtnzhPbm4uTk5OdOvWjZ9++ulpXpLqpKAUxSImJgZPT08SExPx9vZm9+7dmJqaqh1LFLGFCxcyYsQIVq5cSb9+/dSOI/5Hp9PRuHFjzp8/z++//86QIUPUjiTKiJSUFPbt28f+/fs5duwYFy5cIDEx8bGd6E5OTnk60WvXrq3iK3gyq1atol+/fjg7O3Pu3Ll8z/fs2VPfeAMQdzOdD9cdJ/h8MoYaA3J1jy6d7j/frqENU3s1w6GaxX/m+emnn3jzzTc5ePAgrVu3fqrXpDYpKEWxyc3N5fnnn2fr1q1UrVqV4OBgma+wnLlw4QINGzZkzJgxzJ49W+044n9efPFFVq9ezYgRI8rs1Q5R+iQmJuo70U+cOMGlS5e4du3aQzvRrays9J3ozZo1w8vLC39/f6pWrariK/h/iqLQoUMHIiMjMTIyIiUlBbhXKN9/LevWreOFF15gRWQsn2w8iVanPLaQ/DdDjQFGGgM+6+HKgDaOj9zu2rVrNGnShD59+rBo0aJCvS41SUEpit3MmTOZMGECBgYG/PTTT3nm8BJln0ajwd/fnz179qgdRQCzZs1i3LhxtGrViqioKLXjiAri0qVL7N27lwMHDuTpRP/3reT7neh2dnY0bNgQNzc3vL298fX1xcLiv6/kFaXo6GiaNWvGuHHjeOutt4iKiuLQoUOsX7+e48ePY2lpyVtzN7LyTMGXafy3dzs1YnSg80OfGzx4MFu3buXs2bNUr1690OdSixSUokQcPHiQ9u3bc+fOHfr27cvKlSvL5WDviqhKlSpUrlyZmJgYtaNUeKGhobRr144qVaoQHx+PmZmZ2pFEBafT6Th16hT79u0jMjIyTyf6v1ecMTY2pkqVKtSpU4dGjRrpO9E9PDwwNjYulnxfffUVkydP5o8//mDw4MH6x2/cuMGL78/ioo1nkZ1rWu9m9P/Xlcpvv/2WSZMmlYuhKVJQihKTnp6Oj48PR44coW7dukRERFCzZk21Y4lCcnFx4fLly/nmxBMlKzk5GUdHR3Jycjh16hTOzg+/GiJEaaHVaomKiiI4OJhDhw7l6UTPzs7Os+39TnR7e3t9J7qfnx8tWrTIc3Fi5MiRLFiwQP/9119/zfvvv5/v3KtXryY9PZ1BgwbxxhtvsHjxYlatWkWvXr2Ae2MmO84MIkury7fv0zI10rBznL9+TOX9cZN+fn4EBgYSEBDw2CUcc3JycHd359ixY/rHMjIySs0HRykoRYkbO3Yss2fPxtTUlHXr1vHcc8+pHUkUwgsvvMCGDRvIycmpcPPZlRY6nY569eoRGxvLqlWr6Nu3r9qRhCiUzMzMh3ai3759+6Gd6NWrV8fBwYFDhw7lmYOzRYsWHDlyJN/xGzZsyIULF+jatSs///wz48ePZ+3atfzyyy8MGjSIIb8eIOzijQKNmfwvhhoDvOtX5/ehbZgzZw7jxo2jQ4cO7Ny5E4BPPvmETz/99JH737+a+iApKEWF9/fff9O3b1+ys7MZP348M2bMUDuSeEpffvklH3/8McHBwfj6+qodp0Lq3r07mzdvZty4cXz//fdqxxGiWKWmpuo70Y8eParvRL99+zYPK2nu30J3dXXFw8MDX19fnJ2d0Wq1GBoaUqlSJRYtWsSGDRv4448/6DbwdU7U7VVs+eue/IN9f//F2LFjadasGa+//jrw+ILy7NmztGjRAgMDgzxDBaSgFIJ7a9d6enoSFxdH69at2bdvX4kPyhaFFxISQrt27fjiiy/yfXoWxe/+VQsvLy/CwsLUjiOEaoYMGcKSJUsAaNy4MWfPngXuLRGbk5Pz0GLzQU5OTly+fBmAas+NwbpFJ/1z2UmXuL1/FVmxx8nNuIOhRSXM67tT2fcljCr9/xy8KcHLuB36JwDVu76DLiudO1Gb0N65jnE1e6q2fx2TzJv8MqoLb7zxxiPHnj9YXCqKgr+/P8HBwUydOpUPP/xQv11pKiilK0Kopnbt2ly+fJkXXniBqKgo7OzsHnprQpRunp73Bq1LR3HJ27VrFx9//DE1atRg7969ascRQjWZmZn6eSNr1KhBUFCQfghOvXr10Ol0XL58mcWLF9OqVauHHuN+MQlgYPD/5VHGhYMk/D6e9NP7yL17C3RactNuknZsB4m/jyMnJfGhx7sdtpJbu35Gm5IAuVpyrl/m+rqp2Lfwo1OnTg/d52EWLFhAcHAwLVq0YOLEiU+8X0mTglKoSqPRsG7dOubOnUtaWhqtW7fWr6cqygYjIyPMzMz0VwNEyYiPj6dbt24YGRkRGRmJiYmJ2pGEUM2mTZu4c+cOcG9cd82aNfUNLmfPnuXw4cPUrVuXQYMGcenSJf1+BgYGAI9cllSXk0ny5pmQmwMaQ6r4DcG2/xdU8ugDQO7dW9zcMf+h+2pTEqnk2ZcafT7G2LYeAEp2BtH7t3M3S8vq1avzXG0cOnQowcHBBAcH89prrwFw9epVJk2ahKGhIb/88kupHqcuBaUoFUaNGsXRo0epVKkS77zzDt27d8+zKoMo3WrUqEF8fLzaMSoMrVaLu7s7WVlZrF27lrp166odSQhVrVixQv/1/aa0B5vT7j8fFRXFrVu3gHtzYk6ePJkTJ05w584d/d2WB2VeOowu/TYAZk5umDq4YmBkgnnDthhWvjdLSebFQ+T+b5sHmTt7UjXgVSycPajs9aL+8ZxbCVy+cRd3d/c8szE4Ojri6+uLr68vjo73phcaNWoUqampjB8/vtSvoCMFpSg1mjZtSkJCAh4eHmzevBkHBwfi4uLUjiWeQP369fVXB0Tx69y5MwkJCXz44Yd0795d7ThCqOrOnTts3rwZgGrVqtG+fXsAevfujaGhIQArV65EURQuXryo369z5858/vnn+hXcvLy88h075+ZV/deZF6O4tmyS/k/u7Wv/e0Yh58aVfPuaOTTVf60xr6T/Wpd1l+wnmI5ox44dbNy4kQYNGvDZZ5/95/Zqk4JSlCpmZmaEh4fz/vvvEx8fT4MGDVi3bp3ascR/aN68OTqdLs+tJFE8Jk+ezO7duwkMDOSrr75SO44Qqlu/fr2+8/nmzZsYGxtjYGCAra0tubm5AMTExLB///48+92/3V0UlJzMfI9pzP7/NvqDYzJRFEyM/rv8un/X58KFC1hYWGBgYJAvs7m5OS+88MLThS5ipfdmvKjQvv76azp06MDzzz9P7969efPNN5k3b57ascQj+Pj4MGfOHP755x/eeOMNteOUW5s3b+arr77Czs6OHTt2qB1HiFLhzz//fKLtVqxYkWc1nO3bt9OvXz+eeeYZXFxc2LVrV759jKvV0X9t2bQDNt3H5dtGl5OJxrhgndZO1S0B8kzKXtaHeUlBKUqtjh07EhcXh4eHB/Pnzyc4OJiwsDCsra3Vjib+pUOHDgCEh4dLQVlMYmJi6NWrF6amphw8eLBUD84XoqTcuHGDf/75BwBra2umTp2a5/ns7GwmTJgAwKpVq5g5cya1a9cmPj4erVbLqlWr0Gg0jyzmzJxaorGojC79NndP7EZjboW5U0sURYf29jWyrpwmJ+kStYc/vDHnYaxMjbA0vffvt2rVqvrHt23bhp+fH2ZmZjRr1oy2bdsyc+bMfPuPG/f/Re306dNp3LjxE5+7OMk7kijVbGxsOHfuHIMHD2b58uXY2dmxa9cuPDw81I4mHmBjY4ORkREnT55UO0q5lJ2dTZs2bdBqtfzzzz/Url1b7UhClAqrV6/Wr5zTqVMnRo8enW+bJUuWcOTIERITE9m7dy9z5syhT58++ucfVkzev3CoMTHDpttYktZOhdwc7kRu4E7khjzbGlayLVDmWpX//2qml5cXpqamZGVlERkZybPPPgvAnj17CAgI4Jlnnsm3/4MF5ejRo2UeSiGelEajYdmyZfz2229kZmbi5eXFtGnT1I4l/qVKlSrExsaqHaNcCgwM5Pr163zxxRf6q8FCiLy3u3v06PHQbZ5//nn914MGDeLll19+6HYPXulTDE31X5s3aIPdqzOxdA3E0NoGNEZozCthbFsf6zYvUKNX/rXCH6d+DUv91zY2Nqxfv56WLVtibm5eoOOUNrJSjihToqOj8fb25saNG3Ts2JGtW7fKrb9SolWrVpw4cYLs7Gy1o5QrEyZM4Pvvv+e5555jy5YtascRoszQarX8/PPP/PLLLxw9elR/JbNu3bp07NiRX375Rb/t0KFDOXnyJAcOHACg65TfOaO1KZa1vJe8Xj7vsMkVSlGmNGrUiPj4ePz8/Ni5cyd16tSRzuJSwsXFhZycHNLS0tSOUm6sXr2a77//HkdHRzZt2qR2HCFKvbS0NL766iueeeYZTE1NGTVqFIcPH8bZ2Zkvv/ySO3fu8Mcff3D37l3s7e2Be/NVmpmZ6YvJxo0bM+/t3hhpiq4LHMBIY8DUXs2K9JiliRSUoswxMTEhKCiIzz77jOvXr9OoUSOWLVumdqwKr23btgCyBGAROXfuHAMHDsTc3JyoqKg83aBCiP+XlJTExIkTqVevHtbW1kyePJlz587RsmVL5s2bR0ZGBqdOneKjjz7CysoKnU7HihUruHLl3tyRq1evZv78e0011tbWLF68mLo2VnzWw7VIc37ewxWHahZFeszSRN6hRJk1ZcoU9u3bh4mJCYMGDWLo0KFqR6rQ7o/tCw4OVjlJ2ZeZmYmnpye5ubns2LEDGxsbtSMJUapcuHCB4cOHY2dnR82aNfnuu+9ITEzE39+flStXkpWVxcGDB3nzzTfzLUtav359Bg0aRIMGDbCwsMDU1JSGDRvy5ptvcvToUf2KOQPaOPJup0ZFkndip8b0b+NYJMcqrWQMpSjzUlJS8PLy4syZMzRq1Ijw8PA8UzGIkqHT6TAyMuLZZ59l+/btascp09zd3YmKimLGjBmMHz9e7ThClAoHDx7k22+/ZefOnfrlE62srPD392fcuHHF1rC2IjKWTzaeRKtTCjSm0lBjgJHGgM97uJb7YhKkoBTlyOuvv86vv/6Kubk5W7duxd/fX+1IFY61tTW2trZcuHBB7Shl1siRI1mwYAG9e/dmzZo1ascRQlXbt29n1qxZBAcHc/fuXeDe8oqdO3fmvffew83NrURyxN1M58N1xwk+n4yhxuCxheX959s1tGFqr2bl+jb3g6SgFOXK/ZUQcnNzmTJlCp9++qnakSoUZ2dnEhISpDHnKS1ZsoQhQ4bQsGFDzp49K+MmRYWj0+lYuXIl8+bNIzIykqysLADs7Ozo2bMn7733HvXq1VMt37lrd1gWEcue6CRib6TzYAFlADhWtyCwkS2DPB1paFuxFuGQglKUO5cvX8bT05Nr167h6+vLrl278o2hEcWja9eubN26ldzcXCmGCujEiRO4ublhZmbGlStXqFKlitqRhCgR2dnZLFiwgN9++41jx46Rm5uLgYEB9erV48UXX+Tdd98tleOI72ZpuXzjLtlaHSZGGpyqW+pXwKmIKu4rF+WWk5MTV65coVu3buzYsQM7OzvCwsJKzfJU5VnLli3ZunUrR44coVWrVmrHKTPu3r2Lj48PiqKwZ88eKSZFuZeamsrMmTP5888/iY6ORlEUNBoNLi4uDBkyhNGjR2NhUbpvFVuaGuFau7LaMUoNuYQgyiUjIyO2b9/OtGnTuHXrFq6urnkmsRXFw8/PD7i3bJh4ch4eHqSmpjJ37lzatGmjdhwhikVCQgLjxo2jbt26VK5cmU8//ZSLFy/i7u7Ozz//TFZWFidOnOC9994r9cWkyE9ueYty78CBA3To0IG0tDT69+/P8uXL5XZsMUlPT8fS0pL+/fuzYsUKteOUCUOGDGHJkiUMGjSIJUuWqB1HiCJ19uxZpk2bxubNm0lKSgLA3NwcT09PRo8ezQsvvCDvx+WEFJSiQkhLS8PHx4djx45Rr149wsPDsbW1VTtWuWRqakqTJk04evSo2lFKvYULFzJixAieeeYZTp48qXYcIYpEREQE06dPZ9euXaSkpABQqVIlAgICmDBhgv5OhihfpKAUFcro0aOZO3cupqambNiwgc6dO6sdqdypXbs2WVlZ3LhxQ+0opVpUVBRt27bFysqKq1evYmVlpXYkIZ7ali1bmD17NiEhIaSnpwNgY2ND586def/992natKnKCUVxk4JSVDjr16+nX79+5OTk8N577zFt2jS1I5Ur3t7eHDhwAK1Wq3aUUuv27dvUqVOHjIwMjhw5QrNm5Xd9X1E+6XQ6li5dyoIFCzh48CDZ2dkA1KlTh549ezJp0iQcHcv/ZN7i/8nABVHhvPDCC1y8eJE6derw7bff0rZtWzIzM9WOVW40bdqU3NxcEhIS1I5SKul0Otq0acPdu3f59ddfpZgUZUZmZiazZs3Czc0NExMTXnnlFfbv34+joyMffvghN27c4MqVK8ydO1eKyQpICkpRIdnb2xMbG0uPHj2IjIykVq1aHDt2TO1Y5YKXlxcAu3btUjlJ6TRgwADOnTvH8OHDeeWVV9SOI8RjpaSkMGXKFBo1aoSFhQXjxo3j+PHjPPPMM3z33Xekp6dz7tw5vvrqK6pVq6Z2XKEiKShFhaXRaNiwYQNz5szhzp07tGzZknnz5qkdq8zr2LEjAGFhYSonKX1mzZrFqlWraNmyJQsXLlQ7jhAPdeXKFcaMGYOjoyNVq1bliy++4PLly3h4ePDrr7+SlZXFsWPHmDBhAmZmZmrHFaWEjKEUAjh69Ch+fn6kpqbSs2dP1q5dK1NZFIKhoSHe3t4EBwerHaXUCAsLw9fXlypVqhAfHy+/iEWpcvLkSb799lu2bt3K9evXgXvT+/j4+PD222/TvXt3eU8UjyUFpRD/k5GRgZ+fHwcPHsTe3p6IiAhq166tdqwyqVq1alhYWHDlyhW1o5QKycnJODo6kpOTw4kTJ2TVJlEqhIaG8t1337Fnzx5u374NQOXKlWnfvj0TJkzAx8dH5YSiLJGPG0L8j7m5OZGRkbz77rtcuXKFevXqsXHjRrVjlUl16tQhOTlZ7Rilgk6nw93dnYyMDJYtWybFpFCNTqdj48aNdOzYEQsLC3x9fVm/fr2+webUqVOkpKSwdu1aKSZFgUlBKcS/TJ8+na1bt2JgYEDPnj15++231Y5U5jRu3JisrCz9VCIVWc+ePYmJieGdd96hX79+ascRFYxWq+WXX37B09MTMzMzevbsya5du7CxsWHMmDHExcWRlJTE4sWLcXFxUTuuKMOkoBTiIbp06UJsbCxOTk78+OOPuLm5kZaWpnasMsPd3R2AkJAQlZOoa+rUqWzatAlPT09mzZqldhxRQaSnpzN9+nSaN2+Oqakpw4YN48CBAzg5OfHJJ59w69YtYmNjmT17Nvb29mrHFeWEkdoBhCitbG1tuXDhAgMHDuSvv/7Czs6O3bt306ZNG7WjlXqBgYEABAUF0b59e5XTqGPXrl1MnjyZGjVqEBQUpHYcUc7dvHmTGTNmsHLlSi5evIiiKBgaGtKsWTOGDh3KiBEjpBFMFCtpyhHiCfzyyy+MGDECnU7H9OnTmTBhgtqRSrXc3FyMjIzo3r07f//9t9pxSlxiYiJOTk7odDrOnTtH3bp11Y4kyqHY2FimTZvGhg0buHr1KgAmJia4u7szcuRIXn75ZenMFiVGCkohntDp06fx9fXl5s2bdO7cmU2bNmFkJBf5H8XS0hJ7e3vOnj2rdpQSlZubi6OjI/Hx8WzYsIEePXqoHUmUIydOnOCbb75h27Zt3LhxA7j3b83Hx4d33nmHrl27qpxQVFTy21CIJ+Ti4kJCQgLt27dn+/btODg4EB4eLlefHsHW1rZCLr/YuXNn4uPj+eCDD6SYFEVi3759zJgxgz179nDnzh0AqlSpQp8+fZg4cSIeHh4qJxRCmnKEKBATExNCQkKYMmUK165do2HDhqxcuVLtWKVSgwYNKlwj05QpU9i1axcBAQFMnTpV7TiijNLpdKxZs4b27dtjbm6Ov78/GzduxMLCgqFDh3LmzBlu3brF6tWrpZgUpYbc8hbiKe3du5euXbuSkZHBsGHD+Pnnn9WOVKpMmDCB77//njNnzlSIuRe3bNlCt27dsLOzIzY2VoZDiALRarX8+uuvLFq0iMOHD6PVagGoW7cuvXv35t1335WFFkSpJgWlEIVw8+ZNPD09OXfuHE2aNGH//v1UqVJF7Vilwrp16+jduzdz585l1KhRascpVrGxsTRs2BCNRsPFixflF794Iunp6fzwww8sXbqU06dPo9PpMDAwoHHjxgwcOJCxY8dSqVIltWMK8UTklrcQhVCtWjWio6N55ZVXOHPmDHXq1Knwcy/ed3/qoIiICJWTFK+cnBzatGmDVqvl77//lmJSPFZycjKTJk2iQYMGWFlZ8cEHH3DmzBnc3NyYM2cOmZmZnD59milTpkgxKcoUKSiFKAKLFy9m6dKlZGdn4+fnx5dffql2JNVVqVIFIyMjTp48qXaUYhUYGEhSUhKff/45zz77rNpxRCl06dIlRo4cSe3atalRowbffvstV69exdfXl+XLl5OdnU1UVBSjR4/GxMRE7bhCPBW55S1EEbpw4QJeXl5cv34df39/du7cWaHH0tWsWRNFUUhKSlI7SrF49913mTFjBl26dGHr1q1qxxGlyJEjR5g2bRo7duzg5s2bwL3pffz8/Bg3bpx8+BDljhSUQhQxrVZL586d2b17NzY2NoSFheHs7Kx2LFW4u7tz9OhRcnJy1I5S5NasWUPfvn1xcHDg8uXLMoG0YNeuXXz//ffs27dPP8NB1apV6dSpE++++65+SVIhyiN5BxSiiBkZGbFr1y6mTp3KjRs3cHFx4ffff1c7lipcXV3RarWkpKSoHaVInT9/ngEDBmBmZsbBgwelmKygdDodK1euxN/fH3Nzczp27MiWLVuwsrJi+PDhnD9/nps3b7JixQopJkW5J++CQhSTDz74gNDQUMzMzHj11Vd5+eWX0el0ascqUffnyNu1a5fKSYpOZmYmHh4e5Obm8s8//2Bra6t2JFGCcnJymDdvHu7u7piamjJgwAD27dtHrVq1mDhxIteuXSMhIYGFCxfSoEEDteMKUWIq7uAuIUqAl5cX8fHxeHt7s3z5csLDw4mIiMDGxkbtaCXi/jix0NBQ+vTpo3KaotGuXTtu3rzJd999h6+vr9pxRAlIS0tj9uzZLF26lOjoaHQ6HRqNhsaNGzN48GDefvttrKys1I4phKpkDKUQJWTkyJEsWLAAMzMzNm3aRIcOHdSOVCI0Gg2BgYHl4irlqFGjmD9/Pr169WLt2rVqxxHFKCkpienTp7Nq1SpiYmKAe8NZWrRowbBhw3j99dcxNjZWOaUQpYcUlEKUoDVr1jBw4EBycnL44IMPKsTyfJUrV6Zq1apcvnxZ7SiFsmzZMgYNGkSDBg2Ijo6WcZPl0IULF/jmm2/YtGkTiYmJAJiZmeHh4cGoUaPo27ev/L0L8QhSUApRwmJjY/H09CQhIQFPT0/27NmDmZmZ2rGKTZMmTYiNjSU9PV3tKE/t5MmTtGjRAjMzM65cuSKrIZUjBw8e5Ntvv2Xnzp3cunULAGtra/z8/Bg/fjzt27dXOaEQZYN81BKihDk6OnLlyhW6detGeHg4dnZ2nDhxQu1YxcbZ2ZmMjAz92sRlTXp6Ot7e3iiKwp49e6SYLAe2b9/Oc889h5WVFW3atGHVqlVoNBoGDhzI4cOHSU1NZdOmTVJMClEAUlAKoQKNRsOmTZuYOXMmqamptGjRggULFqgdq1i0bt0auHclqCzy9PQkNTWVH3/8kTZt2qgdRzwFnU7HsmXLaNeuHWZmZnTp0oVt27ZRuXJlRo4cycWLF0lOTmb58uW4ubmpHVeIMkkKSiFUNHbsWCIjI7GysmLkyJH06dOn3E0t5OfnB8CePXtUTlJwQ4cO5fjx47z00ku8+eabascRBZCdnc2cOXNo1aoVJiYmDBo0iNDQUOrUqcP777/P9evXuXr1KvPnz6devXpqxxWizJMxlEKUAunp6bRr145Dhw7h4ODAgQMHqFWrltqxikR2djampqb07t2bNWvWqB3nif3888+88cYbuLi4cOrUKbXjiCeQmprKzJkz+fPPP4mOjkZRFDQaDS4uLgwZMoTRo0djYWGhdkwhyiUpKIUoRcaPH8/MmTMxMTFh7dq1dOvWTe1IRcLMzIyGDRuWmbGihw4dok2bNlhaWhIfHy9zDJZi8fHxTJ8+nbVr1xIbGwuAsbExLVu2ZPjw4bz66qsYGcmUy0IUNykohShlNm/eTO/evcnOzmbs2LHMnDlT7UiF5uDgQFpamr6LtjRLTU2lTp06pKenc/jwYZo3b652JPEvZ8+e5ZtvvmHLli0kJSUBYG5ujpeXF6NHj6Znz54yvY8QJUwKSiFKocTERDw8PIiNjaVly5aEhISU6Vt1fn5+hIaGkpubq3aUx9LpdLi4uBAdHc3ixYt55ZVX1I4k/iciIoJvv/2W3bt369eGr1SpEgEBAUyYMEE/VlcIoQ75CCdEKVSrVi0uXbpEnz59OHz4MLVq1eLQoUNqx3pqzZo1Q6fT6W9JllYDBw4kOjqa4cOHSzFZCmzevJlOnTphaWmJp6cna9euxcjIiMGDB3P8+HFu377Nhg0bpJgUohSQglKIUkqj0bB69Wp++ukn7t69i7u7O7NmzVI71lPx9vYGKNXLL/7www/89ddfuLm5sXDhQrXjVEg6nY4//vgDb29vTE1N6d69O//88w9Vq1Zl9OjRxMTEcP36df744w+aNm2qdlwhxAPklrcQZcDJkyfx9fUlJSWFrl278vfff5epMWIJCQnUrl2b4cOHl8pibf/+/fj4+FC5cmWuXr1apocXlDWZmZn89NNP/Pbbb5w8eZLc3FwMDAxo0KABAwYMYNy4cVSrVk3tmEKI/yCtb0KUAa6uriQkJNC+fXu2bNmCvb094eHhODo6qh3tidyftH3btm2kpqZSqVIllRP9vxs3btChQwc0Gg3h4eFSTJaAlJQUvv/+e1asWMH58+f10/u4urryyiuv8NZbb5Xr5UiFKI/KziUOISo4MzMzwsLC+OCDD0hISKBhw4asXr1a7VhPJCEhAYC4uDgcHBz46quvSE1NVTnVvVus7u7uZGRksGzZMho3bqx2pHLrypUrjBkzBgcHB6pWrcoXX3xBTEwMHh4e/Prrr2RlZXHs2DEmTJggxaQQZZDc8haiDNq1axfdu3cnMzOTESNG8NNPP6kd6bFGjBiR51a3gYEB5ubm9O3bl1mzZhESEoKRkRHm5uY0atQIOzs7DAwMij1Xjx49+PvvvxkzZgyzZ88u9vNVNCdPnuTbb79l69atXL9+HQALCwu8vb1555136N69u8oJhRBFRQpKIcqo5ORkPD09uXDhAs888wz79+8vVbeS7ztx4gRDhw595FreQ4cO5bfffsvzWI0aNWjZsiVubm60b9+eZ599tsjHjE6bNo33338fDw8PwsPDi/TYFVloaCjfffcdu3fv1l+Frly5Mu3bt2fChAn4+PionFAIURykoBSiDNPpdAwZMoRly5ZhaWnJP//8g5eXl9qx0Ol0bN26lVmzZrFz505MTEzIzs4G7l2dVBQFHx8fPv74Yzp37szNmzfJyMggLS2N06dPc/jwYY4cOcKhQ4e4cuUK9erVY+TIkbz22mvY2NgUOt+ePXvo0KED1atX5+rVq5iYmBT6mBWVTqfj77//Zs6cOYSFhZGRkQGAra0tzz33HJMmTcLFxUXllEKIYqcIIcq833//XTE0NFQMDAyUqVOnqpolKipKcXV1VQDF3d1dWbZsmTJs2DAFUAClbt26SkhIyBMdS6fTKfv371cGDx6smJqaKqampsqkSZOUzMzMp86XkJCgmJqaKsbGxsrFixef+jgVWU5OjrJo0SLFw8NDMTY21v/dOjg4KGPGjFHi4uLUjiiEKGFSUApRTkRHRys2NjYKoLRv317Jyckp0fPrdDpl9uzZiomJidKqVSslJCRE0el0iqIoyvLly5Xnn39eAZQuXbo81fGvX7+ufPLJJ4qxsbHSvHlz5ejRowU+Rm5urlKnTh0FUNavX/9UOSqqu3fvKt9++63SrFkzRaPRKIBiYGCgNGrUSPnkk0+UW7duqR1RCKEiKSiFKEeys7OVgIAABVBq1KihnD9/vkTOm5WVpfTp00cBlLFjxz7yCqKlpaXSsGHDQp3r8OHDStOmTRUTExNl4cKFBdq3Y8eOCqC8//77hcpQUdy4cUP54IMPlAYNGigGBgYKoBgaGipubm7KrFmzlIyMDLUjCiFKCSkohSiHvvjiC8XAwEAxMjJSli5dWqzn0ul0ypAhQxQTExNl3bp1j922fv36ipWVVaHPmZGRoYwcOVIBlMWLFz/RPlOmTFEAxd/fv9DnL88uX76svPnmm/oruYBiYmKi+Pj4KEuWLFFyc3PVjiiEKIWkoBSinAoODlYsLCwUQBkyZEixnWfy5MkKoCxfvvw/t+3UqZMCFElRotPplGHDhikajUZZs2bNY7fdsmWLAii1atUq8aEAZcHRo0eVl156Salevbq+iLS0tFQ6d+6sbNmyRe14QogyQApKIcqxW7duKS4uLgqgODs7Kzdu3CjS42/YsEEBlGnTpj3R9pMmTVIA5dixY0Vyfq1Wq/Tv318xMTF55DFjYmIUExMTxcTERJpFHrBnzx6le/fuirW1tb6IrFKlitK3b18lPDxc7XhCiDJGpg0SogIYPnw4ixYtwtzcnC1bthAQEFDoY2ZlZeHq6krDhg3ZunXrE01EvnnzZrp3787MmTMZO3ZsoTMAZGdn4+bmRrVq1di3b1+e+Sq1Wi329vZcu3aNbdu20blz5yI5Z1mk0+lYt24dP/74I+Hh4WRmZgJQs2ZNunfvzqRJk3B2dlY5pRCirJKlF4WoAH7++WdWrlxJTk4O7du3Z8qUKYU+5g8//MDly5f5/vvvn3hVm/uF7IEDBwp9/vtMTEyYP38+oaGh+SZIDwwM5Nq1a3z22WcVspjUarUsXLiQNm3aYGpqSt++fdm7dy81a9Zk/PjxJCQkkJiYyKJFi6SYFEIUilyhFKICiYmJwdPTk8TERLy9vdmzZ89TTeqdlpZGnTp1GDx4MD/++GOB9jUxMcHV1ZXDhw8X+LyP88orr7Bp0ybi4uKwsLBg4sSJfPfdd3Tu3Jlt27YV6blKs/T0dH744QeWLFnCmTNn0Ol0GBgY0LhxYwYOHMjYsWNL5YpKQoiyTQpKISoYrVbL888/z7Zt26hWrRohISEFXslk+fLlvPzyy1y6dAknJ6cC7WtnZ0dOTg7JyckF2u+/XLx4kQYNGrBkyRIsLCzo06cPDg4OXL58uciXbSxtkpOTmT59OqtWreLy5csoioKRkRHNmzdn6NChvPHGG7IakBCiWElBKUQFNWPGDCZOnIhGo+Gnn35i2LBhT7xvz549SUpKYv/+/QU+r6enJwcPHkSr1RZ43/8SEBBATk4OBw4cwMjIiJiYGGxtbYv8PKXBpUuXmDZtGhs3biQhIQEAU1NT2rZty6hRo+jXr1+5L6SFEKWHvNsIUUFNmDCBAwcOYG5uzvDhw+nXrx86ne4/90tJSWHr1q3079//qc7btGlTcnNzi/wKJcCgQYMICwtDq9WyY8eOcldMHjlyhIEDB1K9enXq16/PggULuHPnDs899xw7duwgMzOTffv2MWDAACkmhRAlSt5xhKjA3N3dSUhIoEWLFqxatYr69euTlJT02H2ioqLIycmhS5cuT3VOT09PAHbt2vVU+z/OvHnzABgwYADt2rUr8uOrYdeuXXTr1g1ra2tatmzJihUrAOjfvz+RkZHcuXOHLVu28Oyzz6qcVAhRkUlBKUQFZ2VlxZEjR3j77beJiYnB0dGRrVu3PnL7s2fPYmRkRIMGDZ7qfB07dgQgJCTkqfZ/lLfeeovDhw9jYWGBg4NDkR67JOl0OlauXIm/vz/m5uZ07NiRLVu2YG1tzfDhwzl//jw3btxgxYoVuLu7qx1XCCEAKSiFEP/zww8/sGHDBhRFoWvXrkycOPGh2509e5aGDRtibGz8VOdxcnJCo9Fw7NixwsTNY9myZcybN4/69evTvn37Ij12ScjOzmbevHm4u7tjamrKgAED2LdvH3Z2dkycOJFr164RHx/PwoULn7qQF0KI4iRNOUKIPOLj4/Hw8ODKlSu0bt2affv2YWFhoX++R48e6HQ6Nm3a9NTnqFKlCpUqVSI2NrbQeU+dOkXz5s0xNTUlLi6Ob7/9lhUrVnD58uVCH7s4paWlMWvWLJYtW0Z0dDQ6nQ6NRkOTJk0YNGgQb7/9NlZWVmrHFEKIJ2KkdgAhROlSu3ZtYmJi6NOnD+vXr8fOzo6goCDc3Nz02zxtw4eiKCQlJVGlShWuXr3KuHHjOH36NIMGDWLQoEEFPl56ejre3t7odDr27NlDtWrVMDc3Jycn56nyFbdr164xffp0Vq9eTUxMDABGRka0atWKYcOG8frrr2NkJG/LQoiyR255CyHy0Wg0rFu3jrlz55KWlkbr1q2ZM2cOAMbGxk9VsN26dQt7e3tq1apFTEwMWq2WOXPmsH37dk6ePPlUOb28vLh9+zZz5syhbdu2T3WM4nb+/HmGDRuGnZ0dtWrVYsaMGVy7dg1/f39WrVpFVlYWkZGRjBgxQopJIUSZJQWlEOKRRo0axeHDh7G2tmbMmDE8//zzGBkZPVVBaWVlRdWqVfMs05ibmwtAr169/nN/nU7HgyN0XnvtNY4dO8bAgQN56623CpynOEVGRvLiiy9SrVo1nJ2d+eWXX7h79y7du3dn165dZGRksHfvXvr27SvT+wghygUZQymE+E+ZmZn4+/tz4MABLC0tqVWrFufPny/wcU6dOkXLli3Jzs7WP1azZk3i4+P/s7AaM2YMmzZtYuPGjURERDBs2DCaNGnCqVOn8hSpb731FkFBQZw4caLA+Qpj+/btzJo1i+DgYO7evQtA9erV6dy5M5MmTaJ58+YlmkcIIUqSfDQWQvwnMzMzIiIieO+997h79y4XLlzQz4dYEM888wwzZ87Uf29gYPDEV+k2btzIpUuXcHd3Z/jw4VhbW3PgwIE8xSTAsWPHSqR40+l0LFu2jHbt2mFmZkaXLl3Ytm0blStXZuTIkVy6dInk5GSWLVsmxaQQotyTglII8cSmTZumnzz8YbeaDx8+TFpa2mOP8eabb9K1a1fgXpNO7969//O8ycnJ+iaWrKwsFEVhwIABWFpa5tlOURSOHz9Os2bNnvg1FUR2djZz5syhVatWmJiYMGjQIEJDQ6lTpw7vv/8+169f5+rVq8yfP7/Aa5wLIURZJre8hRAFkpOTQ6VKlTA3N+fWrVs0a9aMsLAwDh48SIcOHXj55Zf5448/HnuMpKQk7Ozs0Ol05OTk/GczypYtW+jWrVu+x3v37s2aNWv03585cwYXFxc2b96sL1oLKzU1lZkzZ7J8+XLOnTuHoihoNBqeeeYZBg8ezOjRo/NMqySEEBWRtBQKIQrE2NiYF154gaNHj9KpUydWrlxJrVq1MDQ01N8G/uyzz6hXr94jj2Fra0v//v35e9sOzibdJVurw8RIg1N1SyxN878thYeHY2BgoG/KMTQ0JDc3l8TERHJzczE0NARg6dKlVK5cmcDAwEK9xvj4eKZPn87atWv1c2UaGxvTpk0b3njjDV555RXpyBZCiAfIFUohRIHt3LmTZ599ltDQUE6dOsXw4cP1zxkaGjJs2DB++umnh+577todlkXEsuVIDNfSdXnGQBoAjtUsCGxsy8sejjjXtAagcePGREdH67d79tlnef/99wkMDNTvn5ubi5OTE927d2f+/PkFfk1nz57lm2++YcuWLfr1zM3NzfHy8mL06NH07NlTOrKFEOIRpKAUQhSYTqejQYMGtGvXjqpVq/LDDz/ked7Q0JDY2Fhq166tfyzuZjofrjtO8PlkDDUG5Ooe/dZz//l2DW0Y7WmDZ9OGwL1xmx988MFDx0jevy0eHh6Oh4fHE72O8PBwpk+fzu7du0lJSQGgUqVKBAYGMn78ePz8/J7oOEIIUdFJQSmEeCpz585l9OjRAHluR9/32muv8csvvwCwIjKWTzaeRKtTHltI/puhxgCdNofM0D9YPW08Pj4+D90uOzubFi1aUL16dYKDg/N1fj9o06ZN/PDDD4SGhpKeng5AjRo16NKlC++99x5NmzZ94nxCCCHukYJSCPFUcnNz8fT05OrVq/j6+hIZGZlv/eygoCCO5drx3Y7ohx/kiSiAAe92asToQOeHbjFmzBjmzJnD2rVr802SrtPpWLJkCQsWLCAqKko/B6a9vT0vvPACEydOxNHRsRD5hBBCyIAgIcRTMTQ05OeffyYpKYkmTZpw6dIlbt++zd69exk1ahRWVla8MP7bQhaTcG9kJXy3I5qVkbH5nl29erV+WciQkBDg3kTsM2fOpEWLFpiYmPDqq68SHh5O3bp1mTx5Mjdu3CAuLo45c+ZIMSmEEEVArlAKIfIYOXIkCxYs0H//9ddf8/777z9y+y+//JKPP/6YuXPnMmrUKP3j5xNu0fmHEHKL8HOrqZGGneP8cah2b5qe9evX57kiaWFhQe3atblw4QKKomBoaEjdunWxsrIiLS2N69evk5GRQfXq1WndujVvv/02Xbp0KbJ8QghRUckVSiGEXk5ODqtXr87z2H+tiPPRRx/xzjvv8NZbb7FkyRL9459tiQaNYZHm0+oUPlx3HIANGzbkmxQ9PT2dy5cv4+HhweLFi8nOzmbo0KEcO3aMixcvcufOHbRaLdeuXWPLli0899xzLF++vEgzCiFERSRXKIUQeo+aQPz06dM0adLkkfvpdDqGDx/O4sWL+eijjxgwYhxdfwwrtpyNzq3knzVLHvrclClT+Oyzz/Tf//bbbxw9ehRPT09sbW2Jj49n6tSpnD59GgBPT0/2799fbFmFEKIikIJSCKE3ZMgQ/VXGAQMG6K9OfvLJJ3z66ad5tl29ejWffvop58+fp2HDhkyePJkFCxawd+9eAGy6jcWyWUf99tlJl7i9fxVZscfJzbiDoUUlzOu7U9n3JYwq2ei3Swlexu3QPwGo3vUddFnp3InahPbOdYyr2VO1/evk3Ijj1s6Fj30tD8t834O3yl1dXTlx4sQT/4yEEELkJ7e8hRDAvUaW9evXA/em0Zk1a5Z+NZh/3/Zeu3Yt/fr14+TJk2RlZXHy5EkGDhzIrVu39Ns8+FE148JBEn4fT/rpfeTevQU6LblpN0k7toPE38eRk5L40Ey3w1Zya9fPaFMSIFdLzvXLXF83lVpNvdBqtQVuqMnNzeXSpUv8/vvv+scKu6qOEEIIKSiFEP+zadMm7ty5A8ALL7xAzZo1CQgIAO6tInP48GHgXlE2duxY/byTL774Ips3b2bMmDEcPXo033F1OZkkb54JuTmgMaSK3xBs+39BJY8+94539xY3dzx8ZRttSiKVPPtSo8/HGNveW8pRyc7g2skIMrUKa9as4cMPP9RvP3ToUIKDgwkODua1117Lc6xatWphZGRE/fr1Wb9+PUZGRgwePJivv/66ED81IYQQIAWlEOJ/HrwK2bdv3zz/ffD5qKgo4uLigHtF2rJly+jatSuzZ8/G09Mz33EzLx1Gl34bADMnN0wdXDEwMsG8YVsMK9e8t83FQ+T+b5sHmTt7UjXgVSycPajs9aL+8ZxbCVy+cRd3d3ecnf9/bkpHR0d8fX3x9fX9z6uXhoaGGBoa5puQXQghRMFJQSmE4M6dO2zevBmAatWq0b59ewB69+6NoeG9Tu2VK1eiKAoXL17U79eqVSuMjY3133t5eeU7ds7Nq/qvMy9GcW3ZJP2f3NvX/veMQs6NK/n2NXP4/1VrNOaV9F/rsu6SrdUV6DVu3LiR3bt3s2jRIlxdXcnKymLx4sUMHTq0QMcRQgiRn5HaAYQQ6lu/fj2ZmZkA3Lx5M0+ReF9MTEy+bujHLXFYUEpOZr7HNGZWD5zrgc+/ioKJUcE+D7dt2xa4N2ayffv21K9fH7g3HjQzMxMzM7OnSC2EEAKkoBRCAH/++ecTbbdixQoGDx6s//7w4cPk5ubqr2I+bPod42p19F9bNu2ATfdx+bbR5WSiMS5YQedU3RIAjeb/C0udLv9Vy4yMDMzNzfM89mAhrCgKqampUlAKIUQhSEEpRAV348YN/vnnHwCsra2ZOnVqnuezs7OZMGECAKtWrWLmzJk4ODgQFxdHfHw8Q4YM4eWXX2b79u2Eh4fnO76ZU0s0FpXRpd/m7ondaMytMHdqiaLo0N6+RtaV0+QkXaL28Ic35jyMlakRlqb33r6qVq2qf3zbtm34+flhZmZGs2bNqFy5MnXq1GHQoEG0bdsWOzs74uLimDFjhn4fBwcHatSo8eQ/MCGEEPlIQSlEBbd69Wq0Wi0AnTp1YvTo0fm2WbJkCUeOHCExMZG9e/cya9Ys+vbti6IoLF++XL/aTLNmzTh+/N5KNvcvHGpMzLDpNpaktVMhN4c7kRu4E7khz/ENK9kWKHOtyv9/NdHLywtTU1OysrKIjIzk2WefBWDPnj0EBARw69Yt/Vrf/2ZsbMyPP/5YpLfuhRCiIpKmHCEquAdvd/fo0eOh2zz//PP6r1esWEHv3r3566+/eOaZZzAxMcHFxYXly5fToUMH/XaKoan+a/MGbbB7dSaWroEYWtuAxgiNeSWMbetj3eYFavR69FrhD1O/hqX+axsbG9avX0/Lli3z3dqGexOc+/v7Y2dnh7GxMebm5jg7O/P6669z8ODBR75mIYQQT05WyhFCFJiiKA+9qufp6UlERAQAXaf8zhmtDbm6onuLMdQY4F2/Okte9yiyYwohhCg8uUIphCiw4OBgBg4cyPbt24mJieHo0aO89dZb+mKycePGzHu7N0aaor2VbKQxYGqvZkV6TCGEEIUnVyiFEAW2d+/eRy5ZaG1tzY4dO/D09GRFZCzvrz1eZOed1rsZ/dsUbLlFIYQQxU+uUAohCqx+/foMGjSIBg0aYGFhgampKQ0bNuTNN9/k6NGj+hVzBrRx5N1OjYrknBM7NZZiUgghSim5QimEKHYrImP5ZONJtDqlQGMqDTUGGGkM+LyHqxSTQghRiklBKYQoEXE30/lw3XGCzydjqDF4bGF5//l2DW2Y2qsZDtUsSjCpEEKIgpKCUghRos5du8OyiFj2RCcReyOdB9+ADADH6hYENrJlkKcjDW2t1YophBCiAKSgFEKo5m6Wlss37pKt1WFipMGpuqV+BRwhhBBlhxSUQgghhBCiUKTLWwghhBBCFIoUlEIIIYQQolCkoBRCCCGEEIUiBaUQQgghhCgUKSiFEEIIIUShSEEphBBCCCEKRQpKIYQQQghRKFJQCiGEEEKIQpGCUgghhBBCFIoUlEIIIYQQolCkoBRCCCGEEIUiBaUQQgghhCgUKSiFEEIIIUShSEEphBBCCCEKRQpKIYQQQghRKFJQCiGEEEKIQpGCUgghhBBCFIoUlEIIIYQQolCkoBRCCCGEEIUiBaUQQgghhCgUKSiFEEIIIUShSEEphBBCCCEKRQpKIYQQQghRKFJQCiGEEEKIQpGCUgghhBBCFIoUlEIIIYQQolCkoBRCCCGEEIUiBaUQQgghhCgUKSiFEEIIIUShSEEphBBCCCEKRQpKIYQQQghRKFJQCiGEEEKIQpGCUgghhBBCFIoUlEIIIYQQolCkoBRCCCGEEIUiBaUQQgghhCiU/wP613h1NlxjvAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxS0lEQVR4nOzdd1yV5f/H8dc57CGgICAq4sAFuLe498i9U9Osb46ybPgty9KWo9LKrd8sM01z5N4bFfcAERUFQUAk2cjmnN8f/jiJ4OTAfYDP8/HgER7uc9+fYwjvc1339blUWq1WixBCCCGEEC9JrXQBQgghhBCieJNAKYQQQgghCkQCpRBCCCGEKBAJlEIIIYQQokAkUAohhBBCiAKRQCmEEEIIIQpEAqUQQgghhCgQCZRCCCGEEKJAJFAKIYQQQogCkUAphBBCCCEKRAKlEEIIIYQoEAmUQgghhBCiQCRQCiGEEEKIApFAKYQQQgghCkQCpRBCCCGEKBAJlEIIIYQQokAkUAohhBBCiAKRQCmEEEIIIQpEAqUQQgghhCgQCZRCCCGEEKJAJFAKIYQQQogCkUAphBBCCCEKRAKlEEIIIYQoEAmUQgghhBCiQCRQCiGEEEKIApFAKYQQQgghCkQCpRBCCCGEKBAJlEIIg3Hnzh06dOjAypUryczMVLocIYQQz0kCpRDCYFy9epUjR44wbtw4qlevLsFSCCGKCQmUQgiDFB4ezrhx46hWrRqLFi0iIyOD1NRUUlJSyM7OVro8IYQQj1BptVqt0kUIIQTAypUrGTduXL5fa9asGQEBATx48AAAJycnGjZsqPto3rw5rq6uRVmuEEKI/yeBUgihqOzsbHbs2MG8efM4duxYrq+p1Wq0Wi2tWrVi0aJFxMXFERkZSWpqKrdv3+bixYtcvHiRyMhIALp06cLEiRPp3bs3xsbGSrwcIYQolSRQCiEUs27dOqZPn87Nmzdp1aoV7du359tvv9UFyWHDhvH5559Tu3btp54nOjqaPXv2sGTJEk6dOkXlypX56KOPmDRpEmq13NkjhBCFTX7SCiGK3IMHDxg3bhzDhw/H09OTU6dOceLECYYMGYJarWbo0KFcvXqVtWvXPjNMAjg6OjJ69Gh8fX05f/48nTp1YvLkyXTu3JmwsLAieEVCCFG6yQilEKJIXb9+nQEDBnD79m0WL17Ma6+9luvr2dnZGBkZFfg6hw4dYsyYMSQmJrJs2TKGDh1a4HMKIYTIn9xkJIQoMhEREXTu3JkyZcpw7tw56tSpk+cYfYRJgI4dO+Ln58eECRMYPnw42dnZjBgxQi/nFkIIkZsESiFEkUhMTKRXr16oVCoOHDiAi4tLoV/Tzs6ONWvWYG5uzujRo7GxsaF3796Ffl0hhChtZMpbCFHotFotffv25ejRo5w4cQJPT88ivX5WVhZDhgxh9+7dHDt2jKZNmxbp9YUQoqSTQCmEKHTbtm2jb9++bNmyhb59+ypSQ3p6Oq1atUKr1XLmzBlpKySEEHokgVIIUagyMjLw8PCgatWq7N27F5VKpVgtZ8+epXnz5vz4449MnjxZsTqEEKKkkbZBQohCtWzZMoKDg5k3b56iYRKgadOmjB8/ns8++4zo6GhFaxFCiJJEAqUQolCtWLGCwYMHF/l9k0/y1VdfkZGRwe+//650KUIIUWJIoBRCFJrAwED8/f0ZPny40qXo2Nvb069fP3777Tfkjh8hhNAPCZRCiEKzfv16bGxs6Natm9Kl5DJmzBgCAgI4f/680qUIIUSJIIFSCFFoDhw4QPfu3TE3N1e6lFy6dOlCuXLl2LFjh9KlCCFEiSCBUghRaK5du2Yw904+ysjIiIYNG+Lv7690KUIIUSJIoBRCFIqYmBhiYmKoVauW0qXkq169evj5+SldhhBClAgSKIUQhSIoKAiAmjVrKlxJ/ry8vLh16xapqalKlyKEEMWeBEohRKFIT08HwMrKSuFK8le2bFm0Wi0pKSlKlyKEEMWeBEohRKEwMTEBHu6UI4QQomSTQCmEKBSmpqYAZGZmKlyJEEKIwiaBUghRKMqUKQNAXFycwpXkLzk5GQAzMzOFKxFCiOJPAqUQolBUr14dc3NzLl26pHQp+bpy5Qqurq5YW1srXYoQQhR7EiiFEIXC2NiY+vXrc/HiRaVLyZefnx/16tVTugwhhCgRJFAKIQpNw4YNOXv2rNJl5KHVarl06RJeXl5KlyKEECWCBEohRKHp0aMH165dM7hp7xMnTnD37l26dOmidClCCFEiSKAUQhSanj174uzszC+//FLgcz1IzyIgMoGLYXEERCbwID3rpc/122+/UaVKFdq1a1fguoQQQoBKq9VqlS5CCFFyffzxxyxfvpyIiAgsLCxe6LlB95JYczqMw9ejCYtN4dEfVirAtZwlHWo58mpzV9ydyjzXOR88eECFChWYMmUKM2fOfKF6hBBC5E8CpRCiUN26dYs6derw6aef8sUXXzzXc+7EpjDtb398bt7HSK0iW/PkH1M5X29Tw4Fv+3tRuZzlU8/9+eefM2fOHK5fv46bm9uLvBQhhBBPIIFSCFHoPv30U77//nv8/f2fubf3urNhfLEtgCyN9qlB8nFGahXGahUz+3gwrKlrvsfcuHEDLy8v/vvf//Lll1++0GsQQgjxZBIohRCFLjU1FU9PT9zc3Ni/fz9qdf63by88HMT3+24U+Hofdq3J2x3ccz2m0Wjo1q0bwcHBXLly5YWn34UQQjyZLMoRQhQ6CwsLli1bxpEjR3j77bfJ733surNhegmTAN/vu8H6s2G6P2u1Wt577z0OHjzI4sWLJUwKIYSeSaAUQryU8ePHo1KpdB+zZ89+6vGdO3dmxYoVLFmyhGnTpuX62p3YFL7YFqDX+j7fFsCd2BQAZsyYwYIFC+jZsye+vr4cOXIkz/G3b9/m/fffp0WLFpiZmele14wZM/RalxBClETGShcghCh+MjMz2bhxY67H1q1bx8cff/zU573++uskJCTw/vvvk5GRwbfffouZmRnT/vYn6wXul3weWRotH2/2w/XWVmbPns2gQYPYuHEjO3fuBKB9+/a5jr906RLz58/Xaw1CCFFaSKAUQryw/fv3ExMTk+uxy5cvc+3aNWrXrv3U506ZMgWVSsXUqVM5cOAA3y76FZ+b9/VeY7ZGy4lbMWxeuY45c+bg6OiYJwQ/ysrKii5dutCqVSsuXbrE1q1b9V6TEEKUVDLlLYR4YevWrdN9PmzYsHwfz7Fx40Y8PT0xNzfH09OTv/76i/j4eDIzM/Hz82PYhA9RPdJhMiM6hH+2ziV8wShC5/YjfOFoYnb9TFZi7tAZ77OG0Nm9CZ3dm2S//SSe3UrE0jcJ/a4fkb+8Terty6DJZsw3v7B48WLGjh2re+7MmTPzTGl36dKFffv2MWPGjGeGYiGEELlJoBRCvJC0tDS2bNkCQPny5fnxxx8xNn442fF4oNy8eTNDhgwhICCA9PR0AgICGDp0qO75ADauddCiAiD11jnurnqflMBjZD+IA00W2cmxJPvtI2rVFDLjo/KtKeHkeuIOriAr/i5kZ5H5z23+2fw12RmpXI1X6f8vQQghRC4SKIUQL2THjh0kJSUB0K9fP5ycnHT3I16/fp2LFy8CkJ2dzXvvvadb0T148GB27tzJ5MmTuXz5su586ZgCoMlM4/7O+ZCdCWoj7NqOxnHoV9g0H/jwfA/iiN23JN+asuKjsGkxiPIDp2PiWBUAbUYqKQFHCItJYfXadbkWAo0dOxYfHx98fHx4/fXX9fi3I4QQpZMESiHEC3l0FHLQoEG5/vvo18+fP8+dO3cAcHZ2Zs2aNfTs2ZOffvqJFi1a5DlvWshFNCkJAJi7NcCssgcqY1MsajTDyNbp4THBF8j+/2MeZeHegrLtx2Dp3hzbloN1j2fG3UULlHOrg7v7v30pXV1d8fb2xtvbG1fX/JugCyGEeH4SKIUQzy0pKUm3SrpcuXJ07NgRgAEDBmBkZATA+vXr0Wq1BAcH657XqFEjTExMdH9u2bJlnnNnxkboPk8LPs+9Nf/VfWQn3Pv/r2jJjAnP81zzyp66z9UWNrrPNekPAMjI0rzoSxVCCPECZJW3EOK5bdmyhbS0NABiY2NzhcQcoaGh+Pr65npMpdLffYzazLQ8j6nNrR+51iPvk/9/ut3UWN47CyFEYZJAKYR4bn/++edzHbdu3TpGjRql+/PFixfJzs7WjWI+HjgBTMpV1H1u5dkJh95T8hyjyUxDbWL+QjWrADd7K84/st2jRiMjlkIIoU8SKIUQzyUmJob9+/cDUKZMGb799ttcX8/IyOCDDz4AYMOGDcyfP5/KlStz584dIiMjGT16NK+++ip79+7l1KlTuufZW5uSDpi7NURtaYsmJYEHVw6htrDGwq0hWq2GrIR7pIcHkhkdgsub+S/MeRJXe0uszIwpW7as7rE9e/bQtm1bzM3N8fLywtbWln/++YejR48CDxcX5bh69aquf2W7du0oX778C11fCCFKAwmUQojnsnHjRrKysgDo2rUrb7/9dp5jVq9ezaVLl4iKiuLIkSP8+OOPDBo0CK1Wy9q1a1m7di0AXl5e+Pv7A1DH2QZ/tQpMzXHo9R7Rm7+F7EySzm4l6Wzu5uJGNo4vVLNKBR1qPnxOy5YtMTMzIz09nbNnz9KlSxcADh8+TPv27QkICGDw4MF5zrFhwwY2bNiQ61ghhBC5yY1FQojn8uh0d58+ffI95pVXXtF9vm7dOgYMGMBff/1F3bp1MTU1pU6dOqxdu5ZOnTrpjuvgUYns/9920aJ6UyqMmY+VRweMyjiA2hi1hQ0mjtUo07Qf5fs/fWvHx2m18Pf37/Paa6/x2Wef0aNHD5ycnPK991MIIcTLU2lzmsQJIYSeabXafBfktGjRgtOnTwMP+1p+tDOUVFtXXYNzfVCj5UHIRaLXfw6AkZERarWa7OxsNBoNp0+fplmzZnq7nhBClGYyQimEKDQ+Pj4MHz6cvXv3Ehoaio+PD/3799eFSSMjI3r37k30rp8wMdLvjyMTYyM+7VJN9+fs7GwyMzNRqVR4e3vTtGlTvV5PCCFKM7mHUghRaDQaDevWrct3j294GPIA9m5aS5CmPB9v9tfbtb/s48HQpq6c2LeNTZs26a6VnZ1NcnIyd+/excXFRW/XE0KI0kxGKIUQhaZatWqMHDmS6tWro1bn/+Nm8uTJNG7cmGFNXfmwa029XPejrrUY2vThDjhLlizBwcEBtVqNkZERZcuW5dKlS1SqVIlhw4aRkpKil2sKIURpJvdQCiGKRHh4OO7u7rrG6AAmJibcvn0710jhurNhfLEtgCyNVrdY53kYqVUYq1W6kclHHThwgC5dumBkZMS1a9f4559/GDlyJMHBwZiYmPDuu+8yZ86cJ4ZeIYQQTyeBUghR6NLS0ujcuTMnTpzQPWZkZMSECRNYsGBBnuPvxKYw7W9/fG7ex0itemqwzPl6mxoOfNvfi8rlLPM97ocffsDY2Jh3331X99hff/3FpEmTuH//PtbW1syaNSvfdkhCCCGeTgKlEKJQXbp0ifbt25OQkEDXrl1p1KgRs2fPxtjYmNu3b1OxYsUnPjfoXhJrTodx+EY0YTEp5PphpdWSGXeXoW09mdjFkxqOZV66xu+++44vvviC1NRUnJ2dWbFiBb17937p8wkhRGkjgVIIUWi+++47/vvf/6JSqZg/fz6TJ08mKyuLIUOG0KBBAz7//PPnPpfv2Qu06z0IqzK2HD96hF7tmxF68wbOzs74+fkVeAebrKws3n33XZYvX05WVha1a9dmzZo1NGrUqEDnFUKI0kACpRBC7zIyMujWrRtHjhyhXLlyHD16FE9PzwKdc8iQIbodazZv3syYMWNITExEpVLRsGFDjh07hpWVVYFrT0xMZPTo0Wzbtg2tVou3tzd//vknlSpVKvC5hRCipJJAKYTQqytXrtCuXTtiY2Np3749e/fuxdTUtEDnvHHjBrVr1ybnx1W1atUIDg7Wfd3IyIiOHTuyc+dOve2CExoayrBhwzh16hQqlYoBAwbw22+/YW1trZfzCyFESSJLGoUQevPTTz9Rv3594uLimDt3LocPHy5wmATyrMB+NEzCw96S+/fv5z//+U+Br5WjSpUq+Pr6curUKWrUqMGmTZsoW7YsU6ZMQaPR6O06QghREsgIpRCiwLKysujZsyf79+/H1taWI0eO0KBBA72cOzw8nKpVq5KVlfXMY5s3b86pU6f0ct3Hbdq0iQkTJvDPP/9gZWXFN998k2vFuBBClGYyQimEKJDr169ToUIF9u/fT+vWrYmKitJbmARYu3btE8NkzvS2m5sbN27cwNfXV2/XfdzAgQOJjo7mhx9+QKvV8t577+Hk5MTWrVsL7ZpCCFFcyAilEOKlLVmyhHfeeQeNRsNXX33Fp59+qvdr3Lt3j927d2NsbMwbb7xBuXLlmDlzJklJSUyYMAEPDw+ioqKKdMebrKwsPvjgAxYvXkxWVhbu7u6sXbuWJk2aFFkNQghhSCRQCiFemEajoU+fPuzcuRMbGxsOHDhA06ZNC/26NjY2ODo6cvPmTd1jEyZMYOnSpfj7+xd4JfmLSk5O5rXXXuPvv/9Gq9XSsmVL1q1bh6ur67OfLIQQJYhMeQshXsitW7dwcXFh586dNGvWjLt37xZJmARQq9V5pr9zdrZZuHBhkdTwKGtrazZt2sTt27dp1aoVvr6+uLm5MWDAAJKTk4u8HiGEUIoESiHEc/vll1+oVasW0dHRTJ8+ndOnT2Npmf9Wh4XByMiI7OzsXI95eHhgYWHB3r17i6yOx7m6unLixAnOnj2Lu7s7f//9N2XLltU1chdCiJJOAqUQ4pk0Gg0DBgzgjTfewMLCghMnTvDll18WeR35BUqABg0aEBoaqnh4a9KkCdevX2fLli3Y29uzYMECbG1tmTdvnqJ1CSFEYZNAKYR4qtDQUCpXrszff/9No0aNuHv3Li1btlSklicFyqFDh6LValm3bp0CVeXVt29foqKi+Pnnn1GpVHzwwQc4OjqyadMmpUsTQohCIYFSCPFEa9asoUaNGkRGRvLxxx9z/vx5RXeKeVKgHDduHAC///57UZf0VO+88w6JiYlMmTKF+Ph4Bg0ahLu7O6dPn1a6NCGE0CtZ5S2EyEOj0TBixAjWr1+PpaUlO3fupH379kqXRZUqVUhMTCQuLi7P1ypUqEBKSgoJCQkKVPZsycnJjB07lk2bNqHVamnevDnr16+nSpUqSpcmhBAFJiOUQohcwsPDcXNzY/369Xh5eXH37l2DCJMAxsbGT9z2sH379iQmJhIeHl7EVT0fa2trNmzYQFhYGN7e3pw+fZqqVavSr18/EhMTlS5PCCEKRAKlEELnr7/+olq1aty5c4cpU6bg5+eHjY2N0mXpGBkZPTFQvvXWWwAsWrSoKEt6YZUqVcLHx4eLFy9Sq1Yttm7dir29PRMnTlR8UZEQQrwsCZRCCDQaDaNHj2bo0KEYGxuzb98+g1yZ/KwRShMTE7Zt21bEVb2cBg0aEBgYyPbt23FwcGDJkiXY2Ngwd+5cpUsTQogXJoFSiFIuKiqKGjVqsHr1aurUqUNkZCRdunRRuqx8PS1QAtSuXZsbN2489RhD07t3b+7evcuiRYswMjLiv//9Lw4ODvz1119KlyaEEM9NAqUQpdjWrVupUqUKISEhTJw4katXr2JnZ6d0WU9kYmLy1LDYr18/srKyOHDgQBFWpR8TJ04kISGBjz76iMTERIYOHUr16tXx9fVVujQhhHgmCZRClFJvvvkm/fr1Q6VSsXPnToO/9xAejlA+rTHFxIkTAVixYkVRlaRXarWauXPnEh8fz7BhwwgJCaFVq1Y0bdqUkJAQpcsTQognkrZBQpQy9+/fp1WrVgQFBeHu7s7JkydxcHBQuqzn4u3tzalTp566eKVs2bKYmppy7969IqyscERGRjJixAiOHj2KSqWiZ8+e/PHHHwY9iiyEKJ1khFKIUmTXrl1UqlSJoKAg3njjDW7cuFFswiQ8nPJ+1nvgFi1aEB0dXSJa8bi4uHDkyBEuX75MnTp12LlzJw4ODowfP15WhAshDIoESiFKiUmTJtGrVy+0Wi2bN28ultPCzxMox4wZA8Dy5cuLoKKiUa9ePQICAti1axeOjo4sW7YMGxsbZs2apXRpQggBSKAUosSLj4+nTp06LF68mKpVqxIaGkr//v2VLuulPE+gHDx4MGq1mg0bNhRRVUWnR48eREZGsnTpUoyNjZk2bRr29vb8+eefSpcmhCjlJFAKUYIdPHgQFxcXrl27xujRo7l58ybOzs5Kl/XSTE1Nn3mMWq3Gzc0NPz+/IqhIGW+99Rbx8fF8/PHHJCcnM2LECKpWrcrx48eVLk0IUUpJoBSihHr//ffp3LkzWVlZrF+/nlWrVqFWF+9/8iYmJs91XPfu3UlLS+PixYuFXJFy1Go1s2bNIiEhgREjRhAWFkabNm1o0qQJt27dUro8IUQpU7x/uwgh8khMTKRevXrMnz+fypUrExwczJAhQ5QuSy9yRiifNe399ttvA4a/DaM+mJubs2bNGiIiIujQoQPnz5/H3d2dnj17Ehsbq3R5QohSQgKlECXIsWPHqFChAv7+/gwdOpTbt29TqVIlpcvSm5xAmZGR8dTj6tSpg6WlJfv37y+KsgyCs7Mzhw4dwt/fH09PT3bv3o2joyNvvPHGM/++hBCioCRQClFCfPLJJ7Rr146MjAxWr17NunXriv0U9+PMzMwASElJeeaxDRs25M6dO6UuTHl6euLn58e+fftwdnbml19+wdbWlq+++qpYbUkphCheStZvGyFKoeTkZBo3bszs2bOpUKECN2/eZOTIkUqXVShyRiifJ1AOGzYMrVZbaldAd+nShfDwcFasWIGpqSmff/45Dg4O/PHHH0qXJoQogSRQClGM+fr64uzszIULF+jfvz/h4eFUqVJF6bIKTU6gTE1Nfeaxr7/+OgCrV68u1JoM3RtvvEFcXByfffYZDx48YNSoUbi5uXHs2DGlSxNClCASKIUopmbMmEHr1q1JS0tj5cqVbN68ucRNcT8uZ8o7LS3tmcdaWlpSoUIFzp49W9hlGTy1Ws1XX31FQkICo0eP5s6dO7Rr145GjRpx/fp1pcsTQpQAJfu3jxAlUEpKCs2bN2fmzJk4Ojpy/fp1xo4dq3RZRSInUD7PCCVAhw4dSExMJCwsrDDLKjbMzc1ZtWoVd+/epXPnzly8eJHatWvTrVs37t+/r3R5QohiTAKlEMXIuXPnqFChAmfOnKFXr15ERkZSvXp1pcsqMi8aKCdMmADAwoULC62m4sjR0ZH9+/dz9epV6tWrx759+3BycmLs2LGlbhGTEEI/JFAKUUx88803NGvWjOTkZBYvXsyOHTtK/BT34140UHp7e2NiYsL27dsLs6xiq06dOly+fJkDBw5QsWJFfvvtN2xsbJgxY4asCBdCvJDS9dtIiGIoIyODNm3a8Nlnn2Fvb8/Vq1d1I2+ljbm5OfB891DmqFOnDkFBQRKQnqJTp06EhYXx66+/Ym5uzsyZM7G3t2fVqlVKlyaEKCYkUAphwC5duoSTkxPHjx+na9eu3L17l1q1aildlmJeJlAOGDCA7Oxs9u7dW1hllRhjxowhNjaWL774gtTUVMaMGYOrqyuHDh1SujQhhIGTQCmEgfrhhx9o3LgxiYmJ/Pjjj+zduxdjY2Oly1LUywTKnNHcFStWFEpNJY1arWbGjBkkJiYyduxYIiIi6NSpE/Xr1ycwMFDp8oQQBkoCpRAGJiMjg44dO/Lhhx9iZ2fH5cuXeffdd5UuyyDkBMr09PTnfo6joyNly5bl+PHjhVVWiWRqasrKlSu5d+8e3bp1w8/Pj7p169KlSxdZES6EyEMCpRAGJCAggAoVKnD48GHat2/P3bt38fT0VLosg/EyI5QALVu25J9//iE+Pr4QqirZHBwc2LNnD9euXaNhw4YcOHAAJycnXnvttRf+/yCEKLkkUAphIBYsWEC9evWIi4tj7ty5HD58WLczjHjIwsICePFAmbNrzrJly/ReU2lRq1YtLly4wOHDh6lcuTK///47tra2fPbZZ7LgSQghgVIIpWVlZdGtWzcmT55MmTJluHDhAh999JHSZRmknED5IlPeAP3790etVrNhw4bCKKtUad++Pbdv32b16tVYWVnxzTffULZsWX755RelSxNCKEgCpRAKun79Oi4uLuzbt4/WrVsTFRVFgwYNlC7LYL1soFSr1VSrVo0rV64URlml0siRI7l//z5fffUVGRkZvPHGG1SqVIn9+/crXZoQQgESKIVQyLJly/Dw8ND9Uj5+/LjuHkGRv5cNlAA9evQgPT2dc+fO6busUkutVvPZZ5+RkJDAG2+8QVRUFF27dqVevXoEBAQoXZ4QoghJoBSiiGk0Gnr37s348eOxtLTk9OnTfPbZZ0qXVSzkBMqX2R7wnXfeAWDx4sV6rUk8XBG+YsUKoqOj6dGjB/7+/nh6etKxY0eioqKULk8IUQQkUApRhEJCQqhYsSI7d+6kWbNmREVF0bRpU6XLKjYsLS2BlxuhdHd3x8rKigMHDui7LPH/ypUrx65duwgKCqJx48YcPnyYihUr8uqrr8qKcCFKOAmUQhSRX3/9FXd3d+7du8f06dM5ffq0LiCJ55Pz9/UyI5QAjRo1Ijw8/KWfL55PjRo1OHfuHD4+Pri6urJ27VpsbW355JNPZEW4ECWUBEohCplGo2HgwIG8/vrrmJub4+Pjw5dffql0WcVSThullw2Ew4cPR6vVsnr1an2WJZ7A29ubkJAQ1q5di7W1NbNnz8bOzo7ly5crXZoQQs8kUApRiMLCwnB1dWXz5s00bNiQqKgoWrdurXRZxd7LBsqxY8cCsGbNGn2WI55h+PDhxMTE8O2335KZmclbb71FxYoV2b17t9KlCSH0RAKlEIVkzZo1VK9enYiICKZOncqFCxewtrZWuqwS4WUDpbm5OS4uLrLSWyGffPIJSUlJjB8/nnv37tGzZ088PDzw8/NTujQhRAFJoBRCzzQaDcOHD2fkyJGYmppy+PBh5syZo3RZJYZKpSIzM/Oln9+pUyeSkpIICQnRY1XieRkbG7NkyRLu379P7969CQwMpH79+rRv315WhAtRjEmgFEKPIiMjcXNzY926dXh5eXH37l3at2+vdFklTkEW1UyYMAGAhQsX6qsc8RLs7OzYvn07t27domnTphw9epSKFSsyfPhwUlJSlC5PCPGCJFAKoScbN27Ezc2NO3fu8N577+Hn54eNjY3SZZU4BR2hbNmyJaampuzcuVOPVYmXVbVqVc6cOcPJkyd1b8bs7OyYOnWqrAgXohiRQClEAWk0Gl577TUGDx6MkZER+/btY/78+UqXVWIVNFAC1K1bl5s3b0pgMSAtW7bk1q1brF+/HhsbG7777jtsbW2lEb0QxYQESiEKIDo6Gnd3d37//Xdq165NREQEXbp0UbqsEk2tVpOVlVWgcwwcOJDs7Gx27Nihp6qEvgwZMoT79+8zZ84csrOzmTRpEhUqVJARZSEMnARKIV7S1q1bqVy5MsHBwUyYMIHAwEDKlSundFklnkqlKnCgHD9+PAArV67UR0miEEydOpXExEQmTpyoW8BTp04dLl26pHRpQoh8SKAU4iW8+eab9OvXD5VKxc6dO2Vargip1eoCT3k7ODhQrlw5jh8/rqeqRGEwNjZm0aJFxMTE0LdvX65fv07Dhg1p27YtkZGRSpcnhHiEBEohXsD9+/epWbMm//vf/3B3dyc8PJyePXsqXVapoo8RSoBWrVoRExNDbGysHqoShcnGxoYtW7YQEhJCixYt8PHxoVKlSgwePJjk5GSlyxNCIIFSiOe2e/duKlWqRFBQEOPGjePGjRs4ODgoXVapo497KAHGjRsHwNKlSwt8LlE0qlSpgq+vL6dOnaJGjRps3LiRcuXK8f7778sCKyEUJoFSiOcwadIkevbsiVarZfPmzfzvf/9TuqRSy8jIiOzs7AKfp0+fPqjVajZt2qSHqkRRat68OTdu3GDjxo3Y2dkxf/58bGxsWLBggdKlCVFqqbRarVbpIoQwVPHx8bRq1YrAwEDc3Nzw9fXF2dlZ6bJKtbJly2JjY0NoaGiBz1WzZk3CwsJIS0vTQ2VCKfPmzWP69OmkpKTg5OTE8uXL6dOnj9JlCVGqyAilEE9w8OBBXFxcCAwMZNSoUdy6dUvCpAHQ1wglQK9evUhPT+f06dN6OZ9Qxvvvv09CQgKTJ0/WLeCpXbs2Fy5cULo0IUoNCZRC5OODDz6gc+fOZGVlsW7dOn7//XfUavnnYgj0GSjffvttAFmlXwIYGxvz008/ERcXx4ABA7hx4waNGzemdevWhIWFKV2eECWeTHkL8YjExES8vb3x9/encuXKnDx5kkqVKildlniEi4sLWVlZREdH6+V8ZcqUwdbWlvDwcL2cTxiGsLAwhg8fzsmTJ1GpVPTv359Vq1ZhbW2tdGlClEgy5CLE/zt27BgVKlTA39+foUOHcvv2bQmTBkifI5QAjRs3JjIyUu6jLGFcXV05ceIEZ8+exd3dnc2bN1O2bFneffddvX7/CCEekkApBDBt2jTat29PRkYGq1evZt26dTLFbaD0HShHjBiBVqvl999/19s5heFo0qQJ169fZ8uWLdjb2/Pzzz9jY2PD/PnzlS5NiBJFprxFqZaSkkLbtm05f/48FSpUwNfXlypVqihdlniKGjVqEB0dTWJiol7Ol5aWhqWlJW3atOHo0aN6OacwXD///DPTpk3jwYMHlC9fnqVLlzJgwAClyxKi2JMhGFFq+fr64uTkxPnz5+nXrx/h4eESJosBY2NjvTaxNjc3p2LFipw/f15v5xSGa/LkySQmJjJlyhTi4+MZOHAgNWvW5OzZs0qXJkSxJoFSlEozZsygdevWpKam8r///Y+///5bpriLCX0HSoBOnTrx4MEDbt26pdfzCsOkVquZN28esbGxDBo0iJs3b9KsWTNatmypl/6mQpRG8htUlCppaWm0aNGCmTNnUr58ea5fv67bgk8UD4URKCdNmgTAwoUL9XpeYdisra3ZsGEDYWFheHt7c+rUKapWrUr//v31dkuFEKWFBEpRapw7dw4nJydOnz5Nz549iYiIoHr16kqXJV5QYQTKpk2bYmZmxs6dO/V6XlE8VKpUCR8fHy5evEitWrV0C3gmTZqkl33jhSgNJFCKUmHWrFk0a9aM5ORkFi9ezM6dOzE2Nla6LPESTExMKIy1hB4eHty6dUvvYVUUHw0aNCAwMJDt27fj4ODA4sWLsbGx4bvvvlO6NCEMngRKUaJlZGTQpk0bpk2bRrly5bhy5QoTJkxQuixRAIUVKAcOHIhGo2Hr1q16P7coXnr37s3du3dZtGgRRkZGTJ06lfLly7Nx40alSxPCYEmgFCWWn58fTk5OHD9+nC5duhAVFUWdOnWULksUUGEFyvHjxwOwcuVKvZ9bFE8TJ04kISGBDz/8kISEBAYPHkyNGjXw9fVVujQhDI4ESlEi/fDDDzRs2JDExETmz5/Pvn37ZIq7hCisQFmuXDns7e05efKk3s8tii+1Ws13331HfHw8w4YNIzg4mFatWtG8eXNCQkKULk8IgyGBUpQoGRkZdOrUiQ8//BBbW1suX77Me++9p3RZQo8KK1ACeHt7Exsby/379wvl/KL4srS05M8//yQ8PJx27dpx5swZqlevziuvvEJ8fLzS5QmhOAmUosQICAigQoUKHDp0iHbt2hEVFYWnp6fSZQk9MzExKbRz57SQWrx4caFdQxRvLi4uHDlyhMuXL1OnTh127NiBg4MDEyZMkBXholSTQClKhAULFlCvXj3i4uKYM2cOR44cwdTUVOmyRCEozP+vvXr1wsjIiL///rvQriFKhnr16hEQEMCuXbtwdHRk6dKl2NjYMHv2bKVLE0IREihFsZaVlUX37t2ZPHkyZcqU4dy5c0ydOlXpskQhygmUhdHeR61WU6NGDa5evar3c4uSqUePHkRGRrJkyRKMjY355JNPsLe3588//1S6NCGKlARKUWwFBQXh4uLC3r17adWqFVFRUTRq1EjpskQhywmUaWlphXL+Xr16kZGRwYkTJwrl/KJkGj9+PPHx8Xz88cckJyczYsQIqlWrJt9HotSQQCmKpWXLllGnTh3u37/PV199xYkTJzA3N1e6LFEEcgJlSkpKoZz/7bffBmDJkiWFcn5RcqnVambNmkVCQgIjRowgNDQUb29vmjRpIvvEixJPAqUoVjQaDa+88grjx4/H0tISX19fPvvsM6XLEkXIzMwMgNTU1EI5f9WqVSlTpgyHDx8ulPOLks/c3Jw1a9YQERFBhw4dOH/+PO7u7vTq1Yu4uDilyxOiUEigFMVGSEgIFStWZMeOHTRt2pSoqCiaN2+udFmiiOWMUBZWoARo0qQJkZGRhTatLkoHZ2dnDh06hL+/P56enuzatYvy5cvzn//8h4yMDKXLE0KvJFCKYmHVqlXUrFmTe/fu8dlnn3HmzBksLS2VLksooLBHKAFeffVVAH799ddCu4YoPTw9PfHz82Pfvn04OzuzYsUKbG1t+frrr2XveFFiSKAUBk2j0TBw4EDGjBmDmZkZPj4+fPXVV0qXJRRUFIFy1KhRqFQq1q5dW2jXEKVPly5dCA8PZ8WKFZiamjJ9+nQcHBz4448/lC5NiAKTQCkMVlhYGK6urmzevJmGDRsSFRVF69atlS5LKCxn8VVhBkpTU1MqVarExYsXC+0aovR64403iIuLY9q0aTx48IBRo0bh5ubGsWPHlC5NiJcmgVIYpDVr1lC9enUiIiL46KOPuHDhAtbW1kqXJQxAzghlYd/f2LlzZx48eMD169cL9TqidFKr1XzzzTckJCQwatQo7ty5Q7t27WjUqBFBQUFKlyfEC5NAKQyKRqNhxIgRjBw5EhMTEw4fPszcuXOVLksYkKIYoQSYOHEiAIsWLSrU64jSzdzcnN9//527d+/SuXNnLl68SM2aNenevTuxsbFKlyfEc5NAKQxGZGQkVatW5c8//8TT05PIyEjat2+vdFnCwOQEysIeoWzSpAlmZmbs2rWrUK8jBICjoyP79+/n6tWr1KtXj71791K+fHlef/11WREuigUJlMIgbNy4ETc3N8LCwpg8eTL+/v7Y2dkpXZYwQEUVKAG8vLwICQmRlbiiyNSpU4fLly9z4MABKlasyK+//oqNjQ0zZ86U70Nh0CRQCkVpNBrGjBnD4MGDMTIyYs+ePfz0009KlyUMWFEGykGDBqHRaNi8eXOhX0uIR3Xq1ImwsDBWrlyJubk5M2bMwN7enlWrVildmhD5kkApFBMdHY27uzurVq2idu3aRERE0K1bN6XLEgbOwsICgPT09EK/1ltvvQVIP0qhnLFjxxIbG8sXX3xBamoqY8aMwdXVlUOHDildmhC5SKAUiti2bRuurq4EBwczfvx4AgMDKVeunNJliWKgKEco7ezsKF++PL6+voV+LSGeRK1WM2PGDBITExkzZgwRERF06tSJ+vXrExgYqHR5QgASKIUC/vOf/9C3b18Atm/fzpIlSxSuSBQnRTlCCeDt7U1cXBzR0dFFcj0hnsTU1JRff/2Ve/fu0bVrV/z8/Khbty5dunTh/v37SpcnSjkJlKLIxMbGUqtWLVasWEGNGjUICwujd+/eSpclipmiDpRvvvkmAIsXLy6S6wnxLA4ODuzdu5dr167RoEEDDhw4gJOTE6+99prsPy8UI4FSFIndu3dTsWJFbty4wdixYwkKCsLR0VHpskQxlLOHe1G1UunWrRtGRkb8/fffRXI9IZ5XrVq1uHjxIocPH6Zy5cr8/vvv2NnZMX36dFkRLoqcBEpR6N555x169uypWy27cuVKpUsSxVhRj1Cq1Wrc3d3lXjVhsNq3b8/t27dZtWoVFhYWfP3115QtW5ZffvlF6dJEKSKBUhSa+Ph4PDw8WLhwIVWqVCE0NJT+/fsrXZYo5nICZVE2e37llVfIzMyUvZaFQRs9ejQxMTF8+eWXZGRk8MYbb1CpUiX279+vdGmiFJBAKQrFwYMHcXFx4erVq7z66qsEBwfj7OysdFmiBMiZ8i6qEUqAt99+G4ClS5cW2TWFeBlqtZrp06eTkJDAuHHjiIqKomvXrtSrV4+AgAClyxMlmARKoXcfffQRnTt3Jisri3Xr1vHHH3+gVsu3mtAPIyMjADIzM4vsmq6urtjY2HDkyJEiu6YQBWFqasr//vc/oqOj6dGjB/7+/nh6etKpUyfpWCAKhfyWF3qTmJhI/fr1+f7776lUqRLBwcEMHTpU6bJECVXU+xs3bdqUu3fvkpKSUqTXFaIgypUrx65du7hx4waNGzfm0KFDVKhQgZEjR8qKcKFXEiiFXhw7dgwXFxf8/PwYPHgwoaGhVKpUSemyRAlWlCOUAKNGjQKQRWWiWHJ3d+fcuXP4+Pjg6urKmjVrsLW15ZNPPpEV4UIvJFCKAps2bRrt27cnPT2dVatW8ddff8kUtyhUKpWqyEcohw8fjkql4s8//yzS6wqhT97e3oSEhPDHH39gbW3N7NmzsbOzY/ny5UqXJoo5+a0vXlpKSgpNmjRh1qxZODs7c/PmTUaPHq10WaKUKOoRSlNTUypXrsylS5eK9LpCFIZXX32VmJgYvv32WzIzM3nrrbeoWLEiu3fvVro0UUxJoBQv5fTp0zg5OXH+/Hn69etHeHg4VapUUbosUUqoVKoiD5QAXbt2JSUlRXpSihLjk08+ISkpibfeeot79+7Rs2dPPDw88PPzU7o0UcxIoBQvbObMmbRs2ZLU1FRWrFjB33//LVPcokip1WqysrKK/LqTJk0CYOHChUV+bSEKi7GxMUuXLuX+/fv06tWLwMBA6tevT/v27YmKilK6PMUFBwczaNAgdu/ejVarVbocgyUpQDy3tLQ0WrZsyYwZMyhfvjzXr1/njTfeULosUQopNULZoEEDzM3N2bNnT5FfW4jCZmdnx44dOwgKCqJJkyYcPXqUihUrMnz48FLd3eDs2bNs2rSJnj170qRJEwmWTyCBUjyXc+fO4eTkxKlTp+jRowcRERFUr15d6bJEKaVWqxUJlABeXl7cvn1bkRFSIYpC9erVOXv2LMePH8fNzY1169ZhZ2fH1KlTS/2K8MuXL9OzZ0+aNm3Knj17JFg+QgKleKZZs2bRrFkzkpOTWbRoEbt27cLY2FjpskQpplKpFAt0Q4YMQaPRsGnTJkWuL0RRad26Nbdu3WL9+vXY2Njw3XffYWtry+LFi5UurUjFxcXpPs/Ozgbg/Pnz9OjRg549e1KuXDnMzc2xs7PDy8uL0aNHM3/+fI4cOUJiYqJSZRc5lVbitXiCjIwMOnfujI+PD/b29vj4+FCnTh2lyxICKysrXF1dFVkck5iYiK2tLd27d5cVsaJUmTt3LjNmzCA1NRVnZ2dWrFhB7969lS6rUGi1Wg4ePMi8efPy/DtXqVRotVrq1avH8uXLCQ0NJTo6mtTUVG7dusXFixfx8/MjLS0NU1NThg4dyqRJk2jWrBkqlUqhV1QEtELk4/Lly1o7OzstoO3cubM2MzNT6ZKE0LG2ttbWqFFDses7Ojpq7ezsFLu+EErJzMzUTpw4UWtsbKwFtLVr19ZevHhR6bL0avPmzVovLy8toK1fv752/PjxWkBrZGSkBbR9+/Z95mvOzMzUXrlyRTtnzhxt1apVtYC2UaNG2k2bNhXNi1CATHmLPObNm0fDhg1JTExk/vz57N+/X6a4hUExMjJS9B7GNm3aEB8fLytgRaljbGzMokWLiImJoW/fvly/fp2GDRvStm1bIiMjlS6vQFJTUxk/fjwDBgzAxcWFQ4cOcfHiRQYOHAhA7969uXjxIlu2bKFBgwZPPZexsTEeHh5MnTqVoKAgdu7ciYODAwMHDmTUqFHEx8cX/gsqakonWmE4MjMztR07dtQC2rJly2r9/f2VLkmIfJUtW1ZbuXJlxa6/Z88eLaCdPn26YjUIYQhu376tbd68uRbQqlQq7aBBg7RJSUlKl/XCrl+/rvXy8tKam5trly9frtVoNLqvaTQabWxsbIGvodFotKtXr9ba2NhoK1eurD169GiBz2lI5B5KAUBgYCBt2rQhJiaGdu3asW/fPkxNTZUuS4h8lS9fHlNTUyIiIhS5vkajwczMjDp16kgDaCF4uNnFyJEjuXnzJiYmJrz99tt8//33xaJHcUREBM2bN8fKyoqNGzfi5eVVqNcLCwtj9OjRnDp1ij179tC+fftCvV5RMfz/06LQLVy4EE9PT2JjY5k1axZHjhyRMCkMmpGRkW61pRLUajU1a9bk2rVritUghCFp3rw5QUFBbNiwATs7O+bPn4+NjQ0LFixQurSnSkxMpFevXqjVag4fPlzoYRLA1dWVvXv30rZtW1555RXOnj1b6NcsChIoS7GsrCx69OjBO++8Q5kyZTh37hwff/yx0mUJ8UxKB0qAPn36kJmZyeHDhxWtQwhDMmjQIKKjo/n+++/RarVMnjwZZ2dntm3bpnRpeWi1WoYPH87t27fZvXs3Li4uRXZtMzMzNm/ejKenJ927dyc4OLjIrl1YJFCWUkFBQbi4uLBnzx5atmxJVFQUjRo1UrosIZ6LIQTKnG0Yly1bpmgdQhiiDz74gISEBN555x3dAp7atWtz4cIFpUvT2bhxI7t27WLNmjV4eHgU+fWtra3ZtWsXZcqUYeLEicW+SboEylJo+fLl1KlTh/v37zNz5kxOnjyJubm50mUJ8dyMjY0VD5SVKlXCxsaGo0ePKlqHEIbK2NiYn3/+mZiYGPr378+NGzdo3LgxrVu3JiwsTNHa0tLSmDp1Kr169aJXr16K1VG2bFl+/vln9u7dy+bNmxWrQx8kUJYiGo2Gvn378tZbb2FpaYmvry+ff/650mUJ8cKMjY0NYgu45s2bExUVRXJystKlCGGwbGxs2Lx5M7dv36Zly5acPHkSNzc3Bg4cqNi/nQULFhAeHs7333+vyPUf1adPH/r06cO7775brPdMl0BZSoSEhFCxYkW2bdtGkyZNiIqKonnz5kqXJcRLMTIyMohAOXr0aAB++eUXhSsRwvC5urpy8uRJzpw5g7u7O5s3b6Zs2bK8++67RdpXVqvVsmzZMkaOHEnt2rWL7LpP88MPPxAREVGst3SVQFkKrFq1ipo1a3Lv3j0+++wzzp49i6WlpdJlCfHSDGWEctiwYahUKtavX690KUIUG02bNuX69ev8/ffflCtXjp9//hlbW1vmzZtXJNe/cOECt27dYsSIEUVyvedRo0YN2rdvz2+//aZ0KS9NAmUJptFoGDRoEGPGjMHMzIxjx47x1VdfKV2WEAVmKIHS2NgYV1dXLl26pHQpQhQ7/fr14969e/z444+oVCo++OADHB0dC32Ubv369ZQvX54OHToU6nVe1JgxYzh06BChoaFKl/JSSkWgzM7OZteuXaSmpipdSpEJCwvD1dWVTZs20aBBA6KiovD29la6LCH0wsTExGBWRHbv3p3U1FSuXLmidClCFEvvvvsuiYmJTJkyhbi4OAYNGkTNmjULrT/j3r17eeWVVwxuS+GBAwdiamrK9u3blS7lpZSKQHnixAl69eqFq6srP/74Y4kPln/++SfVq1cnIiKCDz/8kIsXL2Jtba10WULojSEFyrfffhuARYsWKVyJEMWXWq1m3rx5ukB58+ZNmjVrRsuWLfU6YqfRaLhx4wb16tXT2zn1xdramrp16xbb3bdKRaDMyMgA4P79+7z//vslNlhqNBpGjBjBiBEjMDEx4eDBg3z33XdKlyWE3hnKlDeAp6cnFhYW7N27V+lShCj2rK2t2bBhA2FhYXh7e3Pq1CmqVq1K//79SUxMLPD5w8LCSEtLo1atWnqoVv+8vLyKbaA0rPHeIqDVarl//z5Tpkzhk08+4fPPPychIYHExETMzc1xcXGhQYMGNGzYEHt7e6XLfW6RkZG0atWK0NBQPD098fHxwc7OTumyhCgUhjRCCVCvXj3OnDlDVlaWwU2jCVEcVapUCR8fHy5cuMCrr77Kli1bsLe35z//+Q8//fTTS/87u3HjBgA1a9bUZ7l6U69ePTZt2oRWq0WlUildzgsp0SOUGo2GnTt3PrHXYlpaGkFBQVy9epXTp0+zZ88eZsyYQZcuXXBwcMDV1ZUhQ4awd+9egxkNyc+mTZtwc3MjNDSUyZMn4+/vL2FSlGgmJiZKl5DL0KFD0Wq1/PXXX0qXIkSJ0qhRIwIDA9m6dSsODg4sXrwYGxubl559y5mZLFOmjD7L1BsHBwdSUlIMOnM8SYkMlKmpqSxdupS6devSu3dvYmJidF8zMjLCyMiIN998k5CQEFauXMm2bds4f/48V69eJSEhgWvXrvHnn38yfPhwbty4Qffu3alZsyY//PADcXFxCr6y3DQaDWPHjmXQoEEYGRmxZ88efvrpJ6XLEqLQmZqaGtQI5Ztvvgk8bNElhNC/Pn36cPfuXRYsWIBarWbq1Kk4ODi88Ju4nDejmZmZhVFmqVbiAuWlS5do0KABkyZNwtPTkxMnTuhuljcyMuL111/n5s2bLF++HDc3tzzPNzIyolatWgwbNow5c+Zw8eJFTpw4QYsWLZg2bRq1atVi69atRfyq8oqOjsbd3Z3ffvuNWrVqERERQbdu3ZQuS4giYWgjlNbW1jg5OXH69GmlSxGiRHv77bdJTEzkww8/JDExkaFDh1K9enV8fX2f6/kSKAtPiQmUWq2WRYsW0aJFCywtLQkICGDjxo20atWK1q1b8/333z81SD6JSqWiVatW/PHHH7pto/r168cbb7xBUlJS4b2gp9i2bRuurq4EBwczfvx4rl27Rrly5RSpRQglmJqaKl1CHm3btiUhIYHIyEilSxGiRFOr1Xz33XfEx8czdOhQQkJCaNWqFc2aNSMkJOSpz7WysgIgPj6+CCp9cSkpKRgZGRW7+yehhARKrVbL5MmTefvtt3nzzTfx9fXNtZ2ShYUFH3zwwQsFyfxUqFCBLVu28Msvv7B+/XqaNWtGdHR0Aat/MePHj6dv374AbN26lSVLlhTp9YUwBDmBMjs7W+FK/vXWW28B0j5IiKJiaWnJunXrCA8Pp23btpw9e5bq1avzyiuvPDEwenh4AHD58uUirPT5BQQEULt2bdTq4hfPil/F+fj+++9ZuHAhS5YsYcGCBZibmxfatVQqFa+//jrnz58nPj6ebt26Fck7ndjYWGrVqsWyZcuoXr06YWFh9OnTp9CvK4QhygmUKSkpClfyr06dOmFsbGwQt8QIUZq4uLhw9OhRLl++TJ06ddixYwcODg5MmDAhzx7htra21KhRg4sXLypU7dP5+fnh5eWldBkvpdgHyr/++oupU6fy6aefMn78+CK7bs2aNdm/fz+hoaH07t27UH+x7d27l4oVK3Ljxg3Gjh3LzZs3cXR0LLTrCWHozMzMAMMKlAC1a9fm+vXrSpchRKlUr149AgIC2LVrF46OjixduhQbGxtmz56d67hGjRoV2i48BZGdnY2/v79BNl1/HsU6UEZFRTFu3DiGDx+uyB7Vnp6e7N69mwsXLvDpp58WyjUmT55M9+7d0Wg0bNy4kZUrVxbKdYQoTnJGKA1tc4I+ffqQlZXFwYMHlS5FiFKrR48eREZGsnjxYoyNjfnkk0+wt7fnzz//BKBLly6cPHmSO3fuKFxpbocOHSIhIYGOHTsqXcpLKdaBcvr06ZiamrJo0SLFbmBt3rw5M2bMYMGCBXq9JyM+Ph5PT08WLFhAlSpVCAkJYeDAgXo7vxDFmaGOUE6aNAmAZcuWKVyJEGLChAnEx8fz8ccfk5yczIgRI6hWrRqVK1fGwsJC1+Zr5cqVL9Xy60F6FgGRCVwMiyMgMoEH6VnPftJT/Pbbb9SuXZtmzZoV6DxKUWkNqZnbC7h8+TINGzbkp59+4p133lG0loyMDBo2bIitrS3Hjx8v8M20hw4donfv3qSmpjJixAhWr15dLG/QFaKwzJw5kxkzZnDu3DkaN26sdDm52NnZYW5uTlRUlNKlCCH+X1paGuPGjWPdunVoNBrs7e2xtLTkyJEj1KpVC41Gg6+v7zPDXNC9JNacDuPw9WjCYlN4NECpANdylnSo5cirzV1xd3r+5ukJCQk4OzszY8YM/vvf/77ci1RYsU0ps2fPpnr16kV63+ST5IyS+vr6smvXrgKd66OPPqJTp05kZWWxdu1a1qxZI2FSiMfkjFAa2pQ3QIsWLbh37x7JyclKlyKE+H/m5uasWbOGiIgIOnToQExMDHfu3KFRo0ZoNBpUKhXDhg3jwYMH+T7/TmwKo345TZcfj7H6dCihj4VJAC0QGpvC6tOhdPnxGKN+Oc2d2OebRZk9ezZarZZRo0YV7IUqqFgmlQcPHrBt2zbGjh1rMA2O27dvT/369fntt99e6vnJyck0aNCA77//nooVK3Lz5k2GDx+u3yKFKCFyOjmkpaUpXEler732GgDLly9XuBIhxOOcnZ05dOgQ/v7+lClThoSEBDQaDdnZ2dy+fZsPP/wwz3PWnQ2j8/yjnAx+uOtetubpE7s5Xz8ZHEPn+UdZdzbsqcdfvXqV77//nmnTpuHi4vKSr0x5xTJQ7ty5k5SUFIYOHap0KbmMGTOG7du359rq8XkcP34cZ2dnLl++zKBBgwgLC8PV1bWQqhSi+DPkEcrBgwejUqlkX28hDJinpyf169fP9ZhWq2Xp0qXs3LlT99jCw0F8vNmf9CzNM4Pk47I1WtKzNHy82Z+Fh4PyPUaj0TBp0iSqVq3K1KlTX/yFGJBiGSg3b95M48aNqV69utKl5DJixAjdauzn9emnn9K2bVvS09NZtWoVGzZskCluIZ7BkEcojY2NcXNzM9jGyUIIOHv2LMePH893Qe8rr7zCwYMHWXc2jO/33dDL9b7fd4P1j41UarVapkyZwtGjR1m8eHGh9tAuCsUyuVy+fJnWrVsrXUYejo6OeHl5PVd/q5SUFJo0acK3336Lk5MTN27cYPTo0UVQpRDFnyEHSoDu3buTlpaGn5+f0qUIUaqMHz8elUql+3i8B2UONzc3pk6dyptvvqnr++jh4YGrqytqtZruA1/ls7/1++/3820Bue6pnDlzJj///DM9e/bk+PHjHDly5KnPz8zMpH79+rlenyH9DCx2gTIrK4tbt25Rq1YtpUvJV7169fD393/qMadPn8bJyYnz58/Tt29fIiIiqFq1ahFVKETxZ+iBMqd90MKFCxWuRIjSIzMzM88M4bp16/I9tnz58syZM4dly5Zx6dIl3nnnHa5evcqUKVNISUmh/dRlaNFvO8IsjZZpf/uTlZXF559/zsyZMxk0aBA7d+5k5syZzwyUc+fONeg3qcUuUIaEhJCZmUnNmjWVLiVf9erV48qVK0/cY/jLL7+kZcuWpKamsmLFCrZs2SJT3EK8IEMPlB4eHlhYWLBv3z6lSxGi1Ni/f3+eNQyXL1/m2rVrT32eSqXixx9/5L333mPKlCl0GTSaoCRjsvXcVDFbo8Xn5n1adu/PN998wzfffEOvXr2e67nXr1/nq6++Muhp8WKXZO7evQtApUqVFK4kf9WqVSMlJSXPN3VaWhotW7bkiy++oHz58gQGBvLGG28oVKUQxVvOD9X09HSFK3myBg0aEBYWlmcvYSFE4Xh0NHLYsGH5Pg4Pfx///PPPeHp6Ym5ujqenJxs3bsTGxgaAY9vXk3Q595vBjOgQ/tk6l/AFowid24/whaOJ2fUzWYn3cx0X77OG0Nm9CZ3dm2S//SSe3UrE0jcJ/a4fkb+8TWrIRe7b1eH48eMsX76csWPH6p47c+ZM3VT2jBkzdI9rtVrefPNN0tPT+fzzzwv891RYil2gzGkT9KQRQKUZGRnleez8+fM4OTlx6tQpevToQUREBO7u7gpUJ0TJYGFhARh2oBw2bBharVa33ZsQovCkpaWxZcsW4OF09o8//oixsTGQN1C+9957vPvuuwQEBJCenk5AQABDhw7VPR9Apfo3HqXeOsfdVe+TEniM7AdxoMkiOzmWZL99RK2aQmZ8/psYJJxcT9zBFWTF34XsLDL/uc0/f3+Ls2crWrZs+dyvbdmyZfj4+FC/fn0++uij535eUSu2gTIzM1PhSp7PrFmzaNq0KcnJySxatIhdu3bpvsmFEC+nOATKcePGAfD7778rXIkQJd+OHTtISkoCoF+/fjg5OdG+fXvg4XTxxYsXgYeDUY+39KpQoQKdOnXKtzODJjON+zvnQ3YmqI2wazsax6FfYdP84VbI2Q/iiN23JN+asuKjsGkxiPIDp2Pi+HCdhDYjlRsn9/IgPYuNGzcybdo03fFjx47Fx8cHHx8fXn/9dQAiIiL473//i5GREb/88otB5wfDrewJTE1NAcO9d0qj0QAPt2Ns27YtPj4+2Nvb4+PjQ506dRSuToiSoThMeVtZWeHs7MyZM2eULkWIEikjI4P4+HgSEhJYsuTfUGdra8vChQuxsrLSPTZmzBg8PT2JiIggLi4u13nu3r2ru53ucWkhF9GkJABg7tYAs8oeAFjUaMaDa8fJTrhHWvAFslMSMLK0zfVcC/cWlG0/BgBtVjr3t84FIDPuLrdjHtCkSROuXLmiO97V1RVvb+9c55g4cSKJiYl89NFHBrfN7OOKXaCsUqUKAEFBQbRo0ULhavIKDg7GzMwMT09PEhIS6NSpE3v27DHodxVCFDc5I5QZGRkKV/J07du3Z926dYSHhxvsfd9CFIRGoyElJYX4+HhduEtISCApKYnExESSkpJITk4mOTmZBw8e8ODBA1JSUkhNTSU1NZW0tDTS0tJIT08nPT2djIwMMjIyyMzMJCsrS/eRs5uNRqNBq336apnvv/8+z2N+fn4vtUI6MzZC93la8HnSgs/nc5SWzJjwPIHSvLKn7nO1hY3uc036AzKyNM+89r59+9i2bRvVq1dn5syZL1x7USt2KcfW1pYaNWpw4cIFg9zz8s8//yQ9PZ3MzEzmzZvHlClTlC5JiBLH0tISMPxA+dZbb7Fu3ToWLVrErFmzlC5HlGBZWVm6QJfz36SkJBISEkhOTiYxMVEX6JKTk0lJSdEFu7S0NFJTU0lPTyctLS1XqHs02GVnZ+cKdc8Kds+iVqtRqVQYGRnpPoyNjTExMcHU1BQrKyvMzMx0H+bm5pibm2NpaYmFhQWWlpZYWVkREhKSa3ebJzl+/Dh37tx54rbGxsbGL72ITpuZd9ZUbW6t+/zRezLRajE1fvYdh5GRkQDcunVL9zPvcRYWFvTt2zfX/Z9KKXaBEqBRo0ZcuHBB0Rpu3bpFSEgInTt3Bh7+Y+7WrRtnz57F1NSUc+fO4eXlpWiNQpRUOT9cDXnKGx6OUJqYmLBt2zYJlKWAVqslNTWV+Ph44uLiSExMJCEhQTdSlzNal5SUREpKSq7RupSUlDyjdTmDE48Gu5xQl52djVar1d1m9bJyVhWr1epcoS4n2FlaWmJqaoqpqSnm5ua6YGdhYaELdTnBztraGisrK2xsbLC2tsbW1pYyZcpga2uLnZ2d7r/6nrHr2bPncx23Zs0a3Nzcnvj1/MKkSbmKus+tPDvh0DvvIJEmMw21yYu183Gzfzgd/2jbwIL+v1RasQyULVq04JNPPiE+Ph47O7siv75Wq2Xw4MFcvnyZw4cPU758edq0aUNMTAwqlYrvv/9ewqQQhSjnHkpDH6EEqF27NoGBgWg0GtRqNdevX6dbt26MGjWKKVOmUK5cOaVLLHE0Gk2ukbr4+HhdqHt0GvbRKdicj0dH6x6dhn002GVnZ+umYXM+CjpalxPqHg12JiYmeYLdoyN2OaHu0dG6nGCX85ET6mxsbHShrmzZslhaWpaIHsgxMTHs378fgDJlyvDtt98CkJiYiJ+fH9euXdMttnn0PsvnZe7WELWlLZqUBB5cOYTawhoLt4ZotRqyEu6RHh5IZnQILm8+/7mtzYyxMnsYv8qWLat7fM+ePbRt2xZzc3O8vLxo1qwZ8+fPz/P8R2c+v/vuO4PZ6KVYBsphw4bx0UcfsXbtWiZOnFigcz1Iz+J2zMP7GUyN1bjZW+n+Rz/Jnj17uHjxIiqVil69epGSkoJWq+WVV15h9+7dufpfCSH0L+cXYXEIlP369cPf35/9+/fTrVs3QkJCCA0N5ZtvvmHevHm8//77JTZYpqWl5bm37tFg9+i9dTkjdjn31j16f11GRoZutC4jIyPXvXU5U7D6mIbNb7Tu0WlYc3NzbGxs8kzDPj5aZ2lpmSvU2djY6EbqbGxsco3YmZmZ6fFvvPTZuHGjbmTRwsKCuXPnEhUVlasTjEql0n1fTJo0CS8vL8aPH5/nXF5eXrqd7nKyttrUHIde7xG9+VvIziTp7FaSzm7N9TwjG8cXqtnZ9t/RzJYtW2JmZkZ6ejpnz56lS5cuABw+fJj27dtTt27dPM9/NFC+/fbbBtPsvFgGygoVKtCzZ09Wrlz5UoEy6F4Sa06Hcfh6NGGxKTz640cFuJazpEMtR15t7oq7U5lcz9VqtUyfPh21Wo1GoyE5ORkjIyNOnTrF+PHj6d27N+XLly/YCxRCPJfiECgnTpzIV199xYoVK+jWrZvuca1WS0pKCt9++y3ff/89o0aN4uuvvyY1NZUHDx5gbm6Os7PzE++del4ajYakpKRcoe7RYJczBfv4vXWPTsE+GuzyWzTx6L11hTVa9+g0rIWFRa5p2Ec/Hg91OSN2ZcqU0Y3U2dra6j7s7OwoU6ZMiRitK+mysrI4ePAge/bs4dSpU9y8eZP79/9tLB4dHY2trS0eHh40btyYLl260KtXL+bOnctXX30FPLxN5q233mLDhg0cPHgQlUqFu7s7M2bM4MyZM7pAqTX6N+hbVG9KhTHzSTy1ibQwf7IfxKM2s8SojAPmVephVbftC72OauX/XX3u4ODAli1bmDZtGteuXSM1NbUgf0WKUmkL+i9fIVu3bqVfv34cPXqUtm2f73/mndgUpv3tj8/N+xipVWRrnvzSc77epoYD3/b3onK5hz/U9+7dS/fu3fMcP27cOH755Re2bNlC3759X+5FCSGem0qlonfv3mzfvl3pUp6pbNmyGBkZ4e/vz9y5c/nxxx/zPc7Z2ZmoqNxNkq2srLC0tMTc3BxTU1OMjY3zXTTx6L11+lw08Wiwywl1xsbGmJqa6hZPPLpg4lnTsDmh7tFgZ2dnh52dncGMtAjlxcfHs23bNg4ePMiFCxcIDQ3V9ZmEh5uI2NvbU6tWLVq0aEHPnj1p27btc70x0Gq13Lx5k5MnTzJq1Cjdc1q0aMHp06cB6DrtF65nlweV/t5oGKlVtKpmz+pxzfV2TkNSbAOlRqOhVatWJCUlcfHiRV1/yidZdzaML7YFkKXRPjVIPs5IrcJYrWJmHw+GNqlMtWrVuH37tu7rjw6lN2rUiDNnzuS7W44QQr/UajVdu3Zlz549z/2cnBYncXFxue6ty/nImYJ9UouT/O6te1Kw09do3eNUKpXu/jkzM7Ncoe7REbvHp2AfDXaPjtY9OgWbM1onbc5EUbp16xZbtmzh2LFj+Pv7ExkZmWvBnZmZGc7Oznh6etK2bVteeeWVAvV1PnbsGEuWLGHMmDHUrl2buLg4fvzxR1atWqW7Xpa5HRXfXILK+OnZ4kWYGas5MKWdboCqpCm2gRIebvreuHFjvvrqKz755JMnHrfwcBDf77tR4OtVSw7g8ML/6v7s4OBAo0aNyMrK4vDhw5w9e9bgG48KYQjya3HyaKh7vHfdoy1Ocu6tO336NJaWljg7Oyve4iTn49F763JG7SIiIrhx4wYajQYHBwfq1avHoUOHgIc7f73yyisMGzaMihUr6oJd2bJlsbCwQKVS6a6fnZ3NiRMnWLx4MZs2bcLExIQJEybw1VdfFXhaXIiioNFo8PX1ZceOHfj6+nL9+nX++eefXFspW1tb4+rqSsOGDenUqROvvPIKDg4Oeq3jyJEjdOjQ4ZnHfbZyF6tv6G/l9ZwBXgxt6qq38xmaYh0oAT788EMWLVrEoUOH8t0bc93ZMD7e7K+361n4beK7CQNo3rw55cuX58KFC7Rt25YxY8awcOFCvV1HiML2vC1O8hutM4QWJ1lZWajVaqytrXMFu+dtcfK00bpHF03kbPf6ou7evcvIkSM5fPgw77zzDgsXLqRx48asXr2arl27Mnr06JdejBMVFcXSpUuZM2cObm5u/PHHH/JmVhiUlJQUdu/ezd69ezl//jzBwcEkJCTo3tipVCrKlStH9erVad68Od27d6dz587PnG3Uh7CwMD799FN8fX0JDg7O983mqFGj+P333/U2IPVR11pM6lCjwOcxZAYXKMePH8+yZct0f541axYff/zxE49PTU2lW7du+Pv7c+TIEerXr6/72p3YFDrPP0r6c3Skf16PDllfu3aNli1bYmlpyWuvvUbXrl11e4fmOHr0KJs3b+bEiROEh4cTGxuLvb09bdu25dNPP6VevXp6q00UTxqNhsTExDzTsI+uhM1ZNJFfi5P8dpp4vMVJUS2aeDzUPRrsnqfFSU6oe7TFiZ2dHVZWVnnujTIxMaFJkyb4+voW6LUUhuPHjzNw4EDUajVr1qyhY8eOVK9encjISL3edH/16lVGjRqFn58fs2bN4sMPP9TbuYV4XpGRkWzdupVDhw7h5+fHnTt3cn2fGxsb4+TkRJ06dfD29uaVV16hQYMGBrEQ6vLlyzRp0iRXD0q1Ws2NGzeoXr06UPBb5r7s41GiRyZzGFSgzMzMpEKFCsTExOgeq1+/PpcuXXrq8xITE+nYsSN37tzhyJEjunsrRv1ympPBMS/0DfAsOTfVftnRkbZt26LRaHTd7L/44gtmzJiR6/ju3buzd+/efM9lbm7+xJFVUfTS09Ofem9dzk4TOSth82tx8rR764q6xcnT7q17PNg9Hupy+tc9PlpnSC1OzMzM8PLy4ty5c0qXkktAQACtW7emfv36bNiwAUfHhy1F3n77bRYtWsSFCxdo2LCh3q6XkZHB559/zpw5c5g7dy4fffSR3s4txOMuXbrEtm3bOH78OIGBgdy7dy9Xix4LCwsqVapEvXr16NChA3379jXobUffeustli9frvuzkZERI0aM4Pfff891nD4W9ZZ0BhUod+3aRa9evfI8HhgYSO3atZ/63Pv379O+fXtu377NvHnzaN9nGF1/8imsUkn88yPKGWcwadIk3n//feBhoPzoo49ybUjfvXt3goKCeOONN2jSpAlhYWFMnz5dtxF927ZtOXr0aKHVWdzktGLK6V2XmJhIfHy8bgr2ZfaFfbx3XVG3OMlvtO5JiyYeXQn7tEUThvDOXmnm5ubUrl37mW84i9Ldu3dp0aIFdnZ2+Pj4YGPz7/69165do06dOowbN47//e9/er/29OnT+frrr1m+fDlvvvmm3s8vSpeMjAxdi57Tp09z8+ZN4uLict22YmtrS7Vq1XQtenr27Im1tfVTzmo44uPjadmyJdeuXaN69eo0adKE9evXo1KpCAwMfGKzcF3bwRvRhMXk03bQ3pIONR0Z2cKVGo5l8j1HSWVQgXL06NGsXr0aeNi8fN26dUD+I38bN25kxowZ3Lx5kxo1avD5559z6dIl3fZmrm0HYtx6LNn//+oyokNI8N1Aepg/2alJGFnaYFGtCbbeIzC2+feG33ifNSSc+BMA+57voklPIen8DrKS/sGkXCXKdnoTc1dPXB7cJGLbj9y5cyff15JT86FDh2jbtm2uVZM5LY/g4bu5lJSUAv/d6VtmZqZutO7RvnWP965LSUl56r6wj47W5YS6/KZhlWpx8niwe1KLkzJlymBnZ6ebii1btqy0OFGYpaUlVatWJSAgQOlSgIeLZlq3bk1ERASnTp2iYsWKeY6xsrLCwcGB0NBQvV9fq9UyefJkFi1axJ49e+jataveryFKptjYWLZv356rRU9ycrLu60ZGRjg4OOha9PTq1Qtvb+9i+8b20KFD9O7dm9TUVMaMGcPKlStJTU2ldevWNGzYkJUrVz7XeV5mY5SSzGACZVpaGo6OjiQlJVG+fHn8/f2pVKkSWVlZ1KpVi2vXrumO3bx5M4MGDcoTQOrXr6/bYqlcx7GUaTYQgNRb54je/A1kZ/I4I6uyOI36DhM7ZyB3oDS2cyYrPndPOJWpBRUn/kq1io6ELhz7xF8M+YXgHFevXsXDwwN4uFL8n3/+yfe4nBYnj28f9vj9dflNw+aEuvymYXNCXc6InUajyRXsCiJnGtbIyAi1Wo2xsbFuC7HH76/Lr3fdo6HuSYsmbGxsKFu2rG7XCWlxUjpZW1tTsWJFrl+/rnQpAKxcuZJx48Zx4sQJWrVqle8x3t7enDx5krS0tEJZfKDRaOjSpQu3b9/mypUrWFhY6P0aongLCgrStei5cuUKd+/ezdOip0KFCroWPX369DGYrf304eOPP2bOnDmYmJiwevVqhg4dqvtazuhrcQ3KSjOY38Q7duzQNS3t168fTk5OtG/fngMHDnD9+nUuXrxIw4YNyc7O5r333tMFn8GDBzNmzBj27t3Lzz//rDufytwWeLhp+/2d8x+GSbURdt6vYlrBnbTbl0g8vYnsB3HE7luC05CZeWrKio/CpsUgzCrWId7nDzKjQ9BmpJIScIRQ895UqVaDO3fu5Fm5Wr16dU6fPk2PHj3yXTTxaGf/hIQErKysirzFSc6+sDnNknNCnbm5OVZWVlhYWGBtba3bbaJMmTJ5thDL+ShXrhzm5ubyj1AUKbVanavdiJKSkpL49NNPGT58+BPDJMDw4cM5ceIEa9euZcyYMXqvQ61Ws3jxYry8vJg9ezYzZ+b9uSZKB41Gw8mTJ9m+fTunTp3i+vXr3L9/P0+Lnho1atCoUSNdi56SuAUoPFx13rZtW86fP4+Liwu+vr64uuZeKCO/wwrGYAJlzvQ2wKBBg3T/PXDggO7rDRs25Pz587ppZmdnZ9asWYOJiQk9e/bkzJkznDp1Ktd500IuoklJAMDcrQFmlR+ODFrUaMaDa8fJTrhHWvAFslMSMLK0zfVcC/cWlG0/BgBtVjr3t84FIDPu4f2PvgHB+bZBuXXrFrdu3cp30UROqxZ4+M3r7OyMlZXVE3eaeHSkLue/j+8Lm3NvnY2NTZG0XBDCEBgZGeVamamk+fPnEx8fz+zZs5963NixY3n77bdZvXp1oQRKgFq1ajF16lRmz57N66+/TpUqVQrlOsJwpKSksGvXrjwtenLktOhp0qSJrkVPp06dSs3vi7Nnz9KpUyeSkpLo168fmzZtkvBYCAwiUCYlJbFz504AypUrR8eOHQEYMGAAkyZNIjs7m/Xr1zN79myCg4N1z2vUqFGuHnEtW7bMEygzYyN0n6cFnyct+Hw+FWjJjAnPEyjNK3vqPldb/HtzvSb9AQBmFlbknUSHESNGsGbNmjyPb9q0iREjRgAP3xnu27dPVngL8ZIMZYRSq9Xy22+/MXLkyDwjHo+ztLSkQoUKhb4y/ZNPPuGnn37it99+44svvijUa4miFR4ezrZt23QtesLDw3O16DExMcHJyYlmzZrh7e1Nnz59qFevXqkNULNnz2batGmo1WqWLVvGf/7zH6VLKrEMIlBu2bKFtLQ04OHNwfk1Eg4NDc3Tb+7RXSQKSpuZlucxtfm/q9VUj+7n+f/T0empD/I9159//sm2bdsoU6YMZcuWxdHRkfT0dE6dOoVWq6VMmTJs2rRJwqQQBWAoI5Tnzp0jJCSEYcOGPdfxHTp0YO3atYSFhT0zgL4sKysrhgwZwqpVq5g+fXqpDRPFmUaj4dKlS2zfvj1Xi55Hv+ctLCyoXLky9erVo2PHjvTt2xcXFxcFqzYcGRkZdO3alaNHj2Jvb8+JEydK1L2ghsggAuWff/75XMetW7eOUaNG6f588eJFsrOzdXtn59fg2KTcvystrTw74dB7Sp5jNJlpqE1ebMWuCvhtwXe8NW5MrtVwAFWrVkWtVhMfH09ISAiBgYG57olMSkqia9euqFQq3f2Mtra22Nvb4+TkRKVKlahatSru7u7UrVuXmjVrysITIR5jZGRkECOU69evx9HRkXbt2j3X8RMmTGDt2rUsXLiQuXPnFlpdOatXfXx8nrs2oYyMjAwOHDiga9Fz69YtYmNjc+0qY2trS7169WjcuDHdunWjR48esuXmEwQGBtKmTRtiYmLo2LEje/fuld+hRUDxv+GYmBj2798PQJkyZfj2229zfT0jI4MPPvgAgA0bNjB//nwqV67MnTt3iIyMZPTo0bz66qvs3bs313S3vbUp6YC5W0PUlrZoUhJ4cOUQagtrLNwaotVqyEq4R3p4IJnRIbi8ueSF6na1t2TEkF4Yk51rlRjAnDlz6NKlC7a2tsyfP1/Xp9LU1JTXX3+drKwsoqKi+Oeff4iNjSU9PZ2EhATu3r3LhQsX8r2eWq3GzMwMa2tr7OzsKF++PBUqVKBy5cpUq1aNWrVq4eHhQYUKFWQ0QpQKRkZGuRoqK+Xo0aP06NHjuX9heXt7Y2Jiwvbt2ws1UHp7e+Ps7My+ffskUBqQmJgYtm3bxsGDB7l48SJhYWF5WvSUL1+etm3b0rJlS3r37k3Lli3l5/pzWrp0KZMmTUKr1TJnzhymTp2qdEmlhuKBcuPGjboh/K5du/L222/nOWb16tVcunSJqKgojhw5wo8//qhrG7R27VrWrl0LgJeXF/7+D/ftruNsg79aBabmOPR6j+jN30J2Jklnt5J0dmuu8xvZOL5QzSoVdKj58DkdO3bEzMwsV9uFwYMHc/jwYdq3b8/Wrf9eKyMjg6VLl+Y53+MruuPi4ggICOD69evcvHmTsLAwIiIidAH07t27BAcHP3F0xtjYGAsLC8qUKUO5cuVwdHSkYsWKVKlShRo1alC7dm08PDyKTQNaIfJjCCOUWq2W69ev6xYSPq+6dety5coVNBpNoQUFlUpFgwYNdD8TRdG7fv06W7du1bXoiYqKytOix8XFhY4dO9K2bVv69u1LjRole7/nwqLRaOjfvz/btm3DxsaGQ4cOyf72RUzxQPnodHefPn3yPeaVV17R7Yaxbt06VqxYwV9//cUXX3zBzZs3qV69OtOnT+fMmTO6H54dPCpxKeRhULOo3pQKY+aTeGoTaWH+ZD+IR21miVEZB8yr1MOqbtsXqlmrhZEtHt775ODgwJYtW5g2bRrXrl3Tyz69ZcuWxdvbG29v76cep9FouHPnDlevXuX69esEBwdz584d7t69y/3794mPj+fmzZtcvXo139XoKpUKU1PTXFPuzs7Oeabca9SoIdMFwuAYGxvn+31dlKKiokhKSnrhe7P69+/P5cuX2bNnDz179iyk6h6+yf7rr78K7fziIY1Gw/Hjx9mxY4euRU9MTEyuNzxlypTB3d1d16Knd+/eJbZFT1ELDQ2lZcuW3L17l6ZNm3LkyBG5HUABBtPY/EVotdp8F+S0aNGC06dPA3DhwgXmXcgotL28V49rrrdzFoW0tDSuX79OYGAgQUFB3L59m4iICO7du0dMTAyJiYmkpKQ8cQpRrVbrelSWLVtWN+Xu6upK9erVdVPuzs7ORfzKRGlVs2ZN7t69q+tfq4Tjx4/Tpk0brly5otus4HlER0fj5ORE//792bx5c6HV9/vvv/Paa6+RnJyca0tY8fKSk5PZtWsX+/bt4/z584SEhORq0aNWqylXrhw1atSgRYsWdO/enQ4dOpSaFj1FLWdtRVZWFtOmTeObb75RuqRSq1gOO/n4+LBkyRLGjBlD7dq1iY+PZ/ny5bowWatWLerXr8+3VdLoPP+o/gKlVouxWs23/b30c74iZG5uTv369alfv/4zj42JieHq1atcu3aNW7duERoaSmRkJNHR0cTHxxMREcGtW7eeOeVuY2OTa8rdzc1NN+Vet25d+QUnCsQQRihz/g28aFhwdHSkXLlyHD9+nLt377J//37c3d313vmhTJmHewmnp6fLv7eXEB4ezpYtWzh8+DD+/v75tuhxdnamefPmtGnTRteiRxQ+jUbDmDFjWL16NRYWFuzfv5/27dsrXVapViwDpUajYd26dbmaoecoU6YMv/32G2q1msrlLJnZx4OPN+vpHiKVisht8xmw53N69+6Nt7c3zZs3L3H3Itrb29OmTRvatGnz1OM0Gg2hoaEEBARw48YNQkJCCAsLIyoqivv375OQkEBQUBBXrlzJd+efnCl3KysrbGxscHBwwNnZmcqVK1O1alVq1qxJ3bp1qV69utyQLvIwhECZ0+LsRRYHpaenc+LECezs7AgODta1eenTp0+ue65F0dFoNFy4cIEdO3Zw/Phxrl27lqdFj6WlJa6urtSrV48OHTpIix4FRUdH07JlS4KDg6lbt67u35NQVrEMlNWqVWPkyJH4+vpy9+5dsrOzqVy5Ml26dOGjjz6iatWqumOHNXXlfnI63++7UeDruqcGEuq3n3M8nFLPuaHey8uL6dOnM3DgwAJfozhRq9VUrVo119/3k6SmpnLt2jUCAwO5efMmt2/fJjw8nHv37hEbG0tsbCwRERFPbPhsZGSkW+X+6JR7lSpVck25Ozq+2AIrUXyZmJgYTKDMyMh47uc0b96cy5cv69qdwcPvb09Pz6c8S+hLRkYG+/btY+/evboWPXFxcfm26GnatCldunSRFj0GZNeuXQwYMID09HTGjx/PkiUv1qFFFJ5iGShdXV1ZvXr1cx//dgd3HKzN+GJbAFka7QtNgRupVRirVXzZx4M+nh1xWvklSUlJul9kGo2Gy5cvc+3atRd+HaWJhYUFDRs2pGHDhs88Njo6WrfQ6NatW4SFhREZGck///xDXFwcd+7c4ebNm0+ccjcxMckz5V6pUiXdlHudOnWoU6cOFhYW+n6ZoggZGxsXeM/7gipbtiwA//zzz3M/Z8iQIVy+fDnX9292djaNGjXSe31xcXGoVKpS+71+//59tm7dyqFDh3Qteh48+HdDikdb9LRq1YpevXpJix4DNnnyZBYsWICpqSlbt2594kJeoYxiGShfxrCmrrSu7sC0v/3xuXkfI7XqqcEy5+utqtnzbX8vKpd7+O70nXfeYc6cObl+GXTp0oWPP/640F9DaeHo6Iijo+Mz74fJzs4mJCSEq1ev6qbc79y5k2vK/Z9//sHf3/+JU+5mZmZYWlpiZ2eHvb09FSpUoFKlSlSrVg13d3c8PDx0jeqFYTGEEcpq1aphbW3NxYsX6dKly3M955NPPiEiIoIlS5bk+r4sjEDp7+9PjRo1SkWgDAwMZOvWrfj4+BAQEMDdu3dzjRybm5vj4uKCp6cn7dq1o2/fvlSvXl3BisXzSkxMxNvbG39/f6pUqcKpU6dkAagBKparvAsq6F4Sa06HcfhGNGExKTz6F6DiYdPyDjUdGdnClRqOZXI9NzIyEldXV7Kzs1GpVGi1WpycnLh06ZJ8gxuwlJQU3UKjnCn3nFXusbGxJCUlkZqa+sR74YyMjDA3N8815e7i4pJnyt3BwaGIX1np1aFDB44dO6Z4L8q2bdvi4uKS7z3dT5Kdnc2QIUP4+++/0Wq1WFpakpycrNftZAE6deqEnZ0dmzZt0ut5laTRaDhy5Ai7d+/m1KlT3Lhxg/v37+d6c1GmTBnc3Nxo2LAhXbp0oXfv3nKPXTF1/PhxunfvzoMHDxg+fDh//PGHvME3UKUyUD7qQXoWt2MekJGlwdRYjZu9FVZmTx+4ffXVV1m7di22traMHDmSRYsWYW5uzqFDh2R/7hIgKipK11g+ODg415R7fHw8ycnJpKWlPXF0LGc7zZwpdycnJ90qd3d3d+rUqUPt2rUxN3+x7T5Fbl27duXAgQOKj1K+9957bNmyhZCQkBcKhGlpabRp04Zz587h5OREVFSUXuvKysrCycmJyZMn88UXX+j13EUlOTmZ7du3s3//fi5cuEBISAiJiYm6r+e06HF3d6d58+b07NmTDh06SN/cEuKLL77gq6++wsjIiJUrV+baelkYnlIfKF/G5cuX6d27N7///jsdOnTg77//ZsiQIWRnZ7N06VL+85//KF2iKAJZWVncunWLq1evEhQURHBwMOHh4URFRRETE0NCQgIpKSlkZGQ8dcrdysoKW1tbHBwccm2nWbNmTTw8PHB1dZV35Pno1asXu3btUvw+yoMHD9K5c2d8fHyeuRnB4xISEnT/38PCwl7qDe6T7N69m549e3Lu3LlisWNIWFgYf//9N0ePHtW16ElLS9N9PadFT926dfH29pYWPSVYWloaHTt2xNfXF2dnZ06ePPlciz+FsiRQvqTHm6sHBgbSokULEhMT+c9//sOyZcsUrE4YmuTkZAIDA3Otco+IiCA6OjrXlPujbUoelTPlXqZMGcqWLYujo2OuKfec3p6laeeN/v37s2XLFsUDpUajoUaNGrRr145ff/31hZ//7uez2Oz3D9Vav0JYbD634JSzpEMtR15t7oq7U5knnSaPoUOHcvXqVfz8/PQ+lV4QGo2G8+fPs337dk6cOMG1a9eIjo7O06KncuXKNGjQQNeiR24pKh0uXbpE+/btSUhIoGfPnmzfvl3eUBcTEij1KDk5mcaNG3Pjxg2aN2/OsWPHZHcE8UI0Gk2+U+53797NNeWenp7+xKleU1NT3Sp3e3t7nJycdKvcH51yL+7fm0OGDGHDhg2KB0qAr776itmzZxMREfHc9+rdiU3RLRJUo0XDk0NfziLBNjUcci0SfJKYmBgqVqzIN998wwcffPAiL0Wv0tLSdC16zpw5Q3BwcJ4WPXZ2dlSrVo2mTZvStWtXunXrJi16Sqkff/xR9/36448/8s477yhckXgREij1TKPRMGDAALZu3YqTkxMXLlyQ5reiUGRlZREUFKSbcr99+zZ37tzh3r173L9/X7ed5pOm3NVqNaamplhbW2Nra6vr7fn4lHulSpUMcoRg5MiRrFmzBo1Go/gIXGRkJDVr1mTs2LEsWLDgmcevOxtWoDZmM/t4MKyp6xOPmzBhAmvWrOHmzZtF1ps1Ojqabdu26Vr03LlzJ0+LHkdHR2rVqkWrVq3o3bs3zZs3N8jvLVG0srKy6NWrF/v27aNs2bIcO3ZM+rIWQxIoC8mXX37JF198gZmZGQcOHHjhe6uE0KfExMQ8q9xzttPMmXJPS0t74pS7sbHxM6fcPTw8inQl7euvv86vv/5KWloaZmZmRXbdJ5k3bx4ffvghp0+fpmnTpk88buHhIL1stPBh15q83cE9z+NnzpyhRYsW/Pjjj0yePLnA18lPYGAgW7Zs0bXoiYqKyrdFj5eXF23btqV///5yD5zI182bN2nVqhX//PMP3t7eHDx4sNjPnpRWEigL0fbt2xkwYADZ2dksWLCASZMmKV2SEE+l0WiIjIzUbaf56JT7/fv3nznlrlKpcq1yf3TKPae3Z506dXB3dy/wL40JEyawdOlSYmNjdQ3GlZSVlUXTpk1RqVScPHky31X8686G6W8rWGDOAC+GPjJSmZ6eTqtWrdBqtZw5c6bAq52zsrI4duwYO3fu5PTp09y4cYOYmJh8W/Q0atSIzp07S4se8dx+/fVX3nzzTTQaDTNnzmT69OlKlyQKQAJlIQsKCqJZs2bEx8czduxYVq5cqXRJQuhFRkYGQUFBBAYGEhQUREhIiG47zUen3DMzM5845Z6znaadnZ1utbOrq2uuKXcXF5d8p0Xfffddfv75Z8LDw6lYsWKhvMbx48fnWmA3a9asp25icO7cOdq0aUPXrl3ZuHGjbmtGeHjPZOf5R0nP0l+bIzNjNQemtKNyOUuysrLo2rUrx44d47XXXsPCwoKJEydSt27dXM9JTEzkm2++YePGjYSHh2NnZ0eXLl348MMPCQwMZN++fVy4cIHbt2/nadFjb2+va9HTo0cPadEjXopGo2Ho0KFs3LgRa2tr9u/fT4sWLZQuSxSQBMoikJKSQpMmTQgMDKRx48acPHlShvRFqRIfH09AQADXrl3j1q1bhIaG6qbc4+LiXmjKPWc7zaioKAIDA5k1axbt2rXDw8MDGxsbvdWcmZlJhQoViImJ0T1Wv359Ll269NTn7dq1i759+zJ06FB+//13XRge9ctpTgbHvNA9k89ipFbRqpo9q8Y25fXXX2f16tW5Rg/feustli5dqvtzYmIibdq0wc/P76nnNTU1xcnJibp169KmTRv69u0r97QJvYiMjKRFixbcuXOHBg0a4OPjg7W1tdJlCT2QQFlENBoNQ4YMYdOmTZQvX55z587h6vrkm+qFKI00Gg3h4eG5ptzv3LmTa8r9wYMHz5xyt7KywsbGBgcHB5ycnKhcubJulXvdunVxd3d/5sjarl276NWrV57HAwMDqV27dq7HBg4cSO3atfnss8+wsLBgw4YNDBs2jP79+7N8+XJiMk3o8uOxgv3lPEX9iG1s/2MFPXr0YNeuXbrHGzVqxOLFi9mxYwcnTpzgzJkzuRbKwMOwnhPk3dzcdL3/hNC3TZs2MXz4cDIzM3n//ff54YcflC5J6JEEyiI2a9Yspk2bhqmpKbt376Zjx45KlyREsTRjxgxmzpzJ119/jVar5fbt27op95iYGBITE0lNTc21WORRj0+556xyz5ly37p1KwcOHABg2LBhuq0Vv/jiC2bMmKE7T0pKClZWVro/V6lShblz57Jp0yb++usvAFq/+h53q3TRjU5mRIeQ4LuB9DB/slOTMLK0waJaE2y9R2Bs8+/2nfE+a0g48ScA9j3fRZOeQtL5HWQl/YNJuUqU7fQm5q6epF/ZT+LhX0hNTX3q31nOdrEAK1euZPjw4ZiZmVG3bl2uXbsGUGwaoYvi5c033+R///sf5ubmbN26la5duypdktAzufmliH3yySc0aNCAvn370rlzZ+bNm8d7772ndFlCFDs5vQq9vb1p167dU4+NjY3VrXLPb8o9MjKS4ODgJ+4LvmHDBt3ns2bNwsfHR7edZlhYWK5jQ0NDGTp0KB4eHrrHAiLisa38MMil3jpH9OZvIPvffeOzk2NJ9ttH6q2zOI36DhO7vCOECSfXkxX/7/aMmf/c5p/NX1Nx4q8YV67/1DA5btw4xo8fr1t9XrVqVcaOHav7esuWLXWB0sfHRwKl0JvY2FhatmzJjRs3cHd3x9fXF3t7e6XLEoVAAqUCevTowbVr12jatClTpkzh/PnzrF69WumyhChWclZRP2tUDqBcuXJ4e3s/s32XRqPhzp07LFu2jFmzZgEPRxydnZ3x8/PTjXgeOnTomdcMCAjQfW5kafvw/Jlp3N85/2GYVBth5/0qphXcSbt9icTTm8h+EEfsviU4DZmZ53xZ8VHYtBiEWcU6xPv8QWZ0CNqMVFICjlCmUS9sytqTGBeT53mff/4548aN49y5c7rHnJycch3zaK/KkJCQZ742IZ7HgQMHeOWVV0hLS5NFqaWAdJRVSLVq1bhz5w5eXl788ccfNGjQINe+tUKIp8sJlOnp6Xo7p1qtpkqVKty48W+fyOXLl3Pq1Cnmz5+ve2zq1Kmkpqa+wBvBh43X00IuoklJAMDcrQFmlT1QGZtiUaMZRrYPQ15a8AWy//+YR1m4t6Bs+zFYujfHtuVg3eOZcXdBpeLklVssWrRI93jONHyZMmVwdXXNde/k44sCH/3z4/dYCvEypk6dSpcuXcjOzmbDhg0SJksBCZQKsrS0xM/Pj2HDhnH58mUqVapEaGio0mUJUSzkNDPX9xuxpKQkdu7cCTwc2cy5z3nAgAEYGRkBsH79eszMzHIt7MnZradOnTr89NNPjB8/Ps+5M2MjdJ+nBZ/n3pr/6j6yE+79/1e0ZMaE53mueeV/V1mrLf5dza5JfxgAM7I0ubYs/OCDD7hx4wZvv/02QK77PB8P4Y/eZ/rocUK8qAcPHtCoUSO+++47KlWqRHBwMIMGDVK6LFEEJFAagD///JPvv/+e2NhYatasyf79+5UuSQiDlzNCqe9AuWXLFt05Y2NjMTExQaVS4ejoqLvHMjQ0FF9f31zPq1y5MmfOnCEgIIDJkydjYWHx0jVoM/O+JrX5v61VVKpHfnT//yIbU+PcP85VKhXu7u66vyc3Nzfd1+7du5fr2Kiof+/NlB1txMs6ffo0zs7OXLx4kQEDBhAaGkqlSpWULksUEbmH0kB88MEH1K9fn169etGtWzfmzJnDRx99pHRZQhiswpjyhodv8J7HunXrGDVqlO7PWVlZNGrUSDdS+XjgBDAp928DdivPTjj0npLnGE1mGmqTvLvsPI0KcLO34vwjDeAfb6vk6emJra0tCQkJhIaGEhERQcWKFdFqtZw6dUp3XJs2bV7o2kIAfPPNN0yfPh21Ws3//vc/xo0bp3RJoohJoDQgnTt35saNGzRu3JipU6dy/vx5XasSIURuhTFCGRMTo5shKFOmDN9++22ur2dkZPDBBx8AD1d+z58/n8qVK3Pnzh0iIyMZPXo0r776Knv37s0V0uytTUkHzN0aora0RZOSwIMrh1BbWGPh1hCtVkNWwj3SwwPJjA7B5c0lL1S3q70lVmbGubag3LNnD23btsXc3BwvLy9sbW15/fXXmT9/PlqtluHDh/Phhx+yc+dOrl+/DkCTJk1khbd4IRkZGXTp0oVjx47h4ODAyZMncXfPu8e8KPkkUBqYKlWqEB4eTsuWLVm/fj1XrlzhzJkzue6NEkKgm1LWZ6DcuHGjrsl3165ddfcfPmr16tVcunSJqKgojhw5wo8//sigQYPQarWsXbuWtWvXAuDl5YW//8N9u+s42+CvVoGpOQ693iN687eQnUnS2a0knd2a6/xGNo55rvk0KhV0qPnwOS1btsTMzIz09HTOnj1Lly5dADh8+DDt27dnxowZHDx4ED8/P3x8fPDx8dGdx87OThZOiBcSEBBA27ZtiY2NpXPnzuzevVu24izF5B5KA2Rubs7FixcZNWoUAQEBVKpUiVu3bildlhAGJSdQ6nPK+9Hp7j59+uR7zCuvvKL7fN26dQwYMIC//vqLunXrYmpqSp06dVi7di2dOnXSHdfBo5KuqblF9aZUGDMfK48OGJVxALUxagsbTByrUaZpP8r3f/Je4fnRamFki4e7bjk4OLBlyxYaNmyY7z2cNjY2+Pj48NFHH1G1alVMTU1xdHRkxIgRnD17Fi8vrxe6tii9Fi9eTL169YiLi+P7779n//79EiZLOdkpx8D99NNPTJkyBWNjY7Zs2ULPnj2VLkkIg3DlyhW8vLz49NNP+frrrxWrQ6vV6u6bfFSLFi04ffo0ABcuXGDehYxC28t79bjmejunEE+j0Wjo27cvO3bswMbGhsOHD9OoUSOlyxIGQEYoDdy7777LoUOHUKvV9OrVS9dsWYjSrjBGKF+Gj48Pw4cPZ+/evYSGhnL58mUmTZqkC5O1atWifv36fNvfC2N13uBZEMZqFd/2l1FFUTRyVm3v2LGD5s2bc+/ePQmTQkcCZTHQvn17bt68Sfny5Zk2bRoDBw7Ms4JTiNImJ1A+aa/uoqLRaFi3bh3du3fHzc2NBg0asHjxYuDhwp7ffvsNtVpN5XKWzOzj8YyzvZgv+3hQuZzcXy0K35o1a6hRowZRUVF8+umnnDp1SrcwTgiQQFlsVKpUifDwcBo3bszmzZvx8PCQHS1EqZazUE3pEcpq1aoxcuRIqlevjqWlJWZmZtSoUYMJEyZw+fJlWrRooTt2WFNXPuxaUy/X/ahrLYY2ddXLuYR4Eo1Gw8iRIxk5ciSmpqYcOXJE0VtMhOGSeyiLoddff51ff/0VW1tbzp49Ky0aRKmUkZGBmZlZsdwjeN3ZML7YFkCWRvtC91QaqVUYq1V82cdDwqQodNHR0bRo0YKQkBA8PDw4ceIEtra2SpclDJSMUBZDK1euZNGiRSQmJlK3bl22bdumdElCFLmc/aeVnvJ+GcOaunJgSjtaVbMHQMXTQ6XR/9972aqaPQemtJMwKQrdjh07cHV1JSQkhIkTJ3LlyhUJk+KpJFAWUxMnTuTYsWMYGRnRt29fZs6cqXRJQiiiOAZKgMrlLFk9rjmu/qswDztDFXtLHl+yowKq2FsyqnkVDkxpy+pxzeWeSVHo3nnnHV17rO3bt7No0SKFKxLFgUx5F3ORkZE0atSIe/fu0adPH/7++2/UanmfIEoHlUpF37592bJli9KlvJR9+/bRrVs3ateuTWBgIA/Ss7gd84CMLA2mxmrc7K2wMpPefqJoJCYm0qpVKwICAqhatSqnTp3C0fHFGu2L0kuSRzHn4uLCnTt3aNGiBdu2baN27dokJSUpXZYQRUKlUpGZmal0GS/l4sWLulGgnOl7KzNjPFxsaehaFg8XWwmTosgcO3aMChUqEBAQwKuvvsrNmzclTIoXIoGyBDAxMcHX15e33nqLoKAgKlWqRGBgoNJlCVEkiuOUd1BQEJ07d9bVfu/ePYUrEqXZ9OnTad++PRkZGfzxxx/88ccfMtMlXph8x5QgS5cuZdmyZSQlJeHl5cWmTZuULkmIQlUcRygjIyPp2LEjCQkJusfu3btHTEyMglWJ0igtLY3mzZvz9ddf4+TkxM2bN3n11VeVLksUUxIoS5j//Oc/nDhxAhMTEwYNGsT06dOVLkmIQlPcAqVWq6Vbt26Eh4eTnZ2d62uXLl1SpihRKl26dAlnZ2fOnDlD7969iYiIoEqVKkqXJYoxCZQlUMuWLbl9+zYVKlTg66+/pmfPnrKzjiiR1Go1WVlZSpfx3LKzs6lbty5mZmZ5viaBUhSVH374gUaNGpGUlMSiRYvYvn27THGLApPvoBLKycmJsLAwWrduze7du3F3d881xSZESVDcRiiNjY1Zv349cXFx2NvbY2xsTNWqVQG4e/euwtWJki4rK4vOnTvz4YcfUrZsWfz8/Jg4caLSZYkSQgJlCWZsbMzx48eZNGkSwcHBVKpUiStXrihdlhB6U9xGKHOoVCpiYmLw9vYmODiY0NBQ6SUrClVQUBAuLi4cPHiQtm3bcvfuXTw89Lu3vCjdJFCWAgsXLmTlypWkpKTQoEED1q9fr3RJQuhFcQ2U//vf/wAYPXo0AK6urlhZWSlZkijBfvnlF+rUqcP9+/f55ptvOHr0qK5VlRD6Io3NS5GzZ8/Srl07UlNTmTp1KnPmzFG6JCEKxNraGhcXF27cuKF0KS+kVatWnDp1ioyMDIyNpdekKBwajYbBgwezefNmrK2tOXDgAM2bN1e6LFFCSaAsZe7fv0/Dhg0JDw+nS5cu7NmzR27GFsWWra0tDg4O3Lp1S+lSXoilpSVOTk6EhIQoXYooocLDw2nZsiXh4eE0atSIY8eOySi4KFSSJEoZBwcHbt++Tbt27di/fz/VqlUjNjZW6bKEeCnFccr70qVLpKam0rNnT6VLESXUxo0bqVatGuHh4Xz44YecP39ewqQodBIoSyEjIyOOHDnCe++9R2hoKK6urtKyRBRLRkZGefo5Grqff/4ZgMmTJytciSiJXn/9dQYPHoyRkREHDhzgu+++U7okUUrIlHcp98cff/Daa6+hUqlYtWqV7JIgihUnJyfUanWxarlTuXJl4uLiSE5OVroUUYLExsbSokULgoKCqFWrFidPnqRcuXJKlyVKERmhLOVGjhzJ2bNnMTc3Z+TIkXzwwQdKlyTEcytuI5RpaWmEh4fTtGlTpUsRJcj+/fupWLEiQUFBvPHGG1y7dk3CpChyEigFjRo1IiwsDFdXV+bNm0fHjh1lZx1RLBS3QPl4uyAhCuqDDz6ga9euZGdns3HjRlasWKF0SaKUkilvoaPRaOjatSsHDx6kcuXKXLhwAQcHB6XLEuKJ3NzciI+PJz4+XulSnou0CxL6kpycTJs2bbh06RKVK1fm1KlTuLi4KF2WKMVkhFLoqNVqDhw4wEcffcSdO3eoUqUK586dU7osIZ7I2Ni4WI2mX7p0iSpVqkiYFAXi6+tLhQoVuHTpEoMGDeL27dsSJoXiJFCKPObOncu6detIT0+nefPmrFq1SumShMhXcQqU0i5I6MPXX39N69atSU1NZeXKlWzYsEF6CQuDIG+TRb6GDh1KnTp1aN26NWPGjOH8+fO6didCGIriFCilXZAoiIyMDDp16sTx48cpX748J06cwN3dXemyhNCReyjFU8XHx9OoUSNCQkLw9vbm8OHDMl0nDEaDBg24du0aaWlpSpfyTNIuSLysK1eu0LZtW+Li4ujatSs7d+6Un8PC4Mg4uXgqOzs7bt68Sffu3Tl+/Dhubm5ER0crXZYQQPEZoZR2QeJlLVy4kPr165OQkMC8efPYu3evhElhkCRQimdSq9Xs3r2badOmERERgZubG6dPn1a6LCEwMTGhOEyySLsg8aI0Gg09e/bknXfeoUyZMpw/f54pU6YoXZYQTySBUjy3b775hg0bNpCRkUGrVq345ZdflC5JlHLFJVCuXbsWlUrFqFGjlC5FFAMhISFUrFiR3bt307JlS6KiomjQoIHSZQnxVBIoxQsZNGgQly9fxsrKijfeeIMJEyYoXZIoxYpLoJR2QeJ5/fHHH9SsWZN79+4xffp0Tp48ibm5udJlCfFMEijFC/Pw8CA8PJwaNWqwdOlSWrVqRVZWltJliVKoOATKnHZBPXr0ULoUYcA0Gg3Dhw9n1KhRmJmZcezYMb788kulyxLiuUmgFC/FxsaG69ev07t3b3x9falcuTJRUVFKlyVKmeIQKHPaBb377rsKVyIMVVRUFNWqVWPdunV4eXkRGRmJt7e30mUJ8UIkUIqXplar2b59O1988QVRUVFUrVqVEydOKF2WKEVMTU2VLuGZ9u/fj5WVFbVq1VK6FGGAtm3bRpUqVQgNDWXy5Mn4+flhY2OjdFlCvDAJlKLAZsyYwZYtW8jKyqJNmzYsWbJE6ZJEKWFiYqJ0CU8l7YLE00ycOJG+ffuiUqnYuXMnP/30k9IlCfHSJFAKvejbty9XrlzBxsaGiRMn8sYbbyhdkigFckYoDbUXZU4nBGkXJB4VHx+Ph4cHS5YsoVq1aoSFhcmWnKLYk0Ap9KZWrVqEh4dTq1YtfvnlF5o1a0ZGRobSZYkSLCdQGupOOWvWrJF2QSKXI0eO4OLiwtWrVxk1ahRBQUE4OjoqXZYQBSaBUuiVtbU1V69epX///pw9e5bKlSsTHh6udFmihDIzMwMgJSVF4UryJ+2CxKM+/fRTOnToQGZmJmvXruX3339HrZZfw6JkkO9koXdqtZrNmzfz9ddfEx0dTY0aNThy5IjSZYkSKGeE0hADpbQLEjlSUlJo1qwZ3377LRUqVODWrVsMHz5c6bKE0CsJlKLQfPrpp+zYsQONRkPHjh1ZsGCB0iWJEiYnUKampipcSV7SLkgAnD9/ngoVKnD27Fn69OlDeHg4rq6uSpclhN5JoBSFqlevXly9ehU7OzsmT57MmDFjlC5JlCA5U96GeA+ltAsS3333HU2bNiU5OZnFixezdetWmeIWJZbc2CMKXY0aNXStU1atWoWfnx++vr66MCDEy8r5HjK0EcqcdkHt2rVTuhShgKysLLp168ahQ4ewt7fHx8eHOnXqKF2WEIVK3iqJImFpaUlAQACDBw/m4sWLVKpUibCwMKXLEsVczh7HhhYopV1Q6XX9+nWcnZ05dOgQ7du3JzIyUsKkKBUkUIoi9ddffzF79mxiYmJwd3fn4MGDSpckijFDnfJeu3attAsqhZYvX46HhwexsbHMmjWLw4cPF4vdnITQBwmUosj997//Zffu3Wi1Wrp06cK8efOULkkUU4Y6Qnnx4kWqVKli8Dv5CP3QaDQMGDCAt956C0tLS06fPs3HH3+sdFlCFCkJlEIR3bp14/r165QtW5YPPviAV199VemSRDGUEygNaYRS2gWVLmFhYbi6uvL333/TuHFjoqKiZKtNUSpJoBSKqVq1KhEREdSrV4+1a9dSv359gwoGwvAZYqCUdkGlx19//UWNGjWIiIhg6tSpnDt3DktLS6XLEkIREiiFoszNzbl8+TIjRozAz8+PihUrEhISonRZopgwxEAp7YJKh7FjxzJ06FCMjY05ePAgc+bMUbokIRQlgVIYhDVr1vDDDz8QFxdHrVq12Lt3r9IliWLAwsICgPT0dIUreSgtLY2IiAiaNGmidCmikNy/fx93d3d+++03ateuTWRkJB07dlS6LCEUJ4FSGIz333+f/fv3o1Kp6NGjB3PnzlW6JGHgDG2EcuXKlWi1WmkXVELt3buXypUrc/PmTd566y0CAwOxs7NTuiwhDIIESmFQOnXqRFBQEPb29vz3v/9lyJAhSpckDJihjVCuWbNG2gWVUFOmTKF79+5oNBq2bNnC0qVLlS5JCIMiO+UIg+Pq6kp4eDitWrViw4YNeHp6cubMGbnZXeRhaIFS2gWVPMnJybRu3Ro/Pz9cXV3x9fXFxcVF6bKEMDgyQikMkpmZGefPn+e1114jICCAihUrcvPmTaXLEgYm501GRkaGwpVIu6CS6OTJkzg7O+Pn58fQoUMJCQmRMCnEE0igFAbtt99+4+effyYhIYG6deuy4//au/OwqOr9D+DvWdgJl1zY90USF1AUFXFf0CwkUkvMjNvNzL3tp1aaGeX1WmpaWXbVFMXSFMMFVERQwYVFERVBkU3QFBWQdZj5/eFlrqQoMAOHGd6v5+nJZjnnPT5Pw5vvOedzwsOFjkQtSEtaoeS4IO2ydOlSeHt7o7y8HJs2bUJoaCjEYv7IJKoL/++gFm/WrFmIjo6GWCzGuHHjsGzZMqEjUQvRklYoOS5IO1RUVGDAgAFYvHgxOnbsiLS0NEydOlXoWEQtHgslaQQfHx9kZGSgU6dO+PTTT+Hv7w+5XC50LBJYTaEUeoWS44K0w/nz52FqaoqTJ09i9OjRyMvLg4ODg9CxiDQCCyVpDEtLS+Tk5MDT0xO7d+/GCy+8gJKSEqFjkYBqDkEKvULJcUGab82aNXB3d0dRURFWrVqFAwcOQCrldatE9cVCSRpFV1cXp0+fRlBQENLS0mBpaYm0tDShY5HAqqqqBN0/xwVpLplMBl9fX8yZMwcmJiZISkriebBEjcBCSRppw4YN+P7771FUVAQ3NzeEhYUJHYkEJHSh5LggzXTt2jVYWFjg4MGD6N+/P/Lz89G9e3ehYxFpJBZK0ljvvvsuYmNjIZVK4efnhyVLlggdiQQgEokEPeTNcUGa6ddff4WzszP++usvLFmyBCdOnFDeeYmIGo6FkjTagAEDkJmZCVNTU3z++ed48cUXebFOKyMSiQRdoeS4IM0il8sxadIkTJ06Ffr6+oiNjcXixYuFjkWk8VgoSeOZmpoiJycH/fr1w759+9ClSxcUFRUJHYuakZCFkuOCNEd+fj7s7OywY8cOdO/eHQUFBRgwYIDQsYi0AgslaQWpVIqTJ09i+vTpSE9Ph5WVFVJTU4WORc1ALBYLVig5LkhzhIWFwdbWFtnZ2Zg7dy7OnTsHY2NjoWMRaQ0WStIqP/zwA37++WeUlJSgR48e2Llzp9CRqImJRCLIZDJB9l0zLohXd7ds06dPh5+fH0QiEfbv349vv/1W6EhEWkekUCgUQocgUrdTp05hyJAhKCsrw4IFCxAcHCx0JGoi+vr6cHV1RVJSUrPve8CAAYiLi0N5eTl0dXWbff/0dPfu3UO/fv1w+fJlODg4ID4+Hh06dBA6FpFW4golaaW+ffvi+vXrMDc3x1dffYXRo0fzYh0tJeQKZc24IJbJlicqKgrm5ua4fPky3nzzTaSnp7NMEjUhFkrSWp06dUJWVha8vb0REREBR0dH3Lt3T+hYpGZisViQQnnu3DmUlZVh9OjRzb5veroFCxZg2LBhkMlkCA0NxcaNGyESiYSORaTVWChJq0mlUsTGxmLWrFnIzMyElZUVzp8/L3QsUiOhCiXHBbU8paWl6N27N77++muYm5sjIyMDEydOFDoWUavAQkmtwpo1a7Bp0yaUlpbCw8MDoaGhQkciNZFIJIIUysjISBgZGaFLly7Nvm963NmzZ2FqaoqEhAT4+fkhJycH1tbWQsciajVYKKnVmDp1Kk6dOgU9PT289tpr+Oijj4SORGogFotRXV3drPvkuKCWZfny5ejTpw9KS0uxfv167N69G2Ixf7wRNSep0AGImlPv3r2RlZUFDw8PrFixAomJiYiMjOQPHw0mkUiavVByXFDLUFlZiVGjRiE6OhrPP/88Tpw4wQHzRALh2CBqleRyOYYPH46jR4/CxsYGiYmJaN++vdCxqBFMTU0BAAUFBc22T44LEt6lS5cwcOBA3LlzB0OHDkVERASkUq6REAmFyzLUKonFYkRFRWH+/PnIysqCtbU1EhMThY5FjSDECiXHBQlr/fr1cHNzQ2FhIZYvX44jR46wTBIJjIWSWrWVK1di69atKCsrg6enJ7Zu3Sp0JGqg5i6UHBckHLlcjpdffhnTp0+HsbExTp8+zXOhiVoIFkpq9SZPnoyEhAQYGBhgypQpmDdvntCRqAGkUmmzFkqOCxJGdnY2rKyssHfvXnh6eiI/P58XRRG1ICyURAB69uyJ7Oxs2NjYYNWqVRg8eLBgd1+hhpFKpc16FySOC2p+O3bsgIODA27cuIEFCxbg9OnTMDQ0FDoWET2ChZLov9q3b49r165hxIgROHbsGOzs7HD79m2hY9EzSCSSZiuUHBfUvORyOaZOnYpJkyZBR0cHR48eRXBwsNCxiOgJWCiJHiEWixEZGYmPPvoIubm5sLa2xpkzZ4SORU+ho6PTbIWS44Kaz61bt+Dk5IRff/0Vrq6uuHHjBgYPHix0LCKqAwsl0RMsX74coaGhqKyshJeXFzZu3Ch0JKpDcx7yDgkJgUgkYqFsYgcOHIC1tTWuXbuG6dOn4+LFi2jbtq3QsYjoKVgoieowceJEJCcnw9DQEG+99RZmzpwpdCR6AqlUiuYap8txQU1vzpw5GDNmDBQKBcLCwvDDDz8IHYmI6oGDu4iews3NDXl5eXB3d8e6deuQnJyM6OhozrxrQZrrkDfHBTWtoqIieHt7IyUlBTY2NoiPj1cOrSeilo8rlETPYGJigvT0dPj6+uLEiROwtrZu1ruy0NM11wolxwU1nePHj8Pc3BwpKSl47bXXcO3aNZZJIg3DQklUD2KxGPv378fChQuRn58POzs7xMXFCR2L8HCFsjkKJccFNY0lS5bAx8cHFRUV+PXXX7Ft2zaIxfzRRKRp+H8tUQN8+eWX2LlzJ2QyGby9vfHTTz8JHanVa47zGTkuSP3Ky8vRv39/fP755+jUqROuXLnCi52INBgLJVEDvfLKKzh//jyMjY3xzjvvYPr06UJHatWaY4WS44LU69y5czA1NUVcXBzGjBmDvLw82NnZCR2LiFTAQknUCK6ursjLy4OTkxPWr18PLy8vVFVVCR2rVdLR0WnyfXBckPqsWrUKHh4eKC4uxpo1a7Bv3z5IJBKhYxGRinipKlEjGRsb4/Llyxg/fjz27t0LKysrJCYmwtzcXOhorUpzHPJOSkqCtbU1xwWpQCaTYezYsYiMjES7du0QExMDNzc3oWMRkZpwhZJIBWKxGGFhYViyZAlu3rwJBwcHHD9+XOhYrUpNyauurm6S7Z8/fx5lZWXw9fVtku23BlevXoW5uTkiIyPh7e2NgoIClkkiLcNCSaQGixcvRlhYGGQyGXx8fPD9998LHanVqCmUpaWlTbJ9jgtSzaZNm+Di4oLbt2/j888/R2xsLFd6ibQQCyWRmrz00ktITU2FiYkJ3nvvPQQFBQkdqVXQ09MD0HSFMiIiguOCGkEul+PVV1/FtGnToK+vjxMnTuCzzz4TOhYRNREWSiI1cnZ2Rm5uLrp06YL//Oc/6N27NyorK4WOpdVqVrvKysrUvm2OC2qcGzduwNbWFjt37kTPnj1RUFCAfv36CR2LiJoQCyWRmhkbGyM1NRX+/v5ISEiApaUlcnNzhY6ltZpyhZLjghpu9+7dsLOzQ05ODubPn4+kpCQYGxsLHYuImhgLJVETEIvF2LVrF4KDg/HXX3/B0dER0dHRQsfSSjWFsilWKDkuqGHefvtt+Pv7QywW4+DBg1i5cqXQkYiombBQEjWhBQsWYN++fZDL5Rg6dChWr14tdCSt05SFkuOC6qewsBAuLi7YsGEDnJyckJubi1GjRgkdi4iaEQslURMbM2YMLl26hLZt22Lu3Ll44403hI6kVfT19QE8PN9RnTguqH6OHDkCCwsLXLlyBdOmTcOVK1fw/PPPCx2LiJoZCyVRM3BwcEBubi7c3NywZcsWuLu7q70AtVZNtUJZMy5o9uzZat2uNvnoo48wfPhwVFdX47fffsN//vMfoSMRkUB4pxyiZmJoaIiUlBRMmjQJO3bsgKWlJRISEmBjYyN0NI3WVCuUkZGRMDIygqurq1q3qw1KS0sxcOBAJCYmwsLCAvHx8bC0tBQ6FhEJiCuURM0sNDQU//rXv1BYWAhnZ2ccOnRI6EgarSkKZXl5OXJzc9GrVy+1bVNbnD59GqampkhMTIS/vz+ys7NZJomIhZJICB9++CEiIiIAAKNGjeLVsCpoikJZMy6I57vWFhwcDC8vL5SWluLnn3/Grl27IBbzxwgR8ZA3kWBGjBiBK1euoFevXvjggw9w9uxZbN++XehYGqcpCiXHBdVWWVmJESNGICYmBh06dMCJEyfg7OwsdCwiakH4qyWRgGxsbJCbm4sePXogNDQU3bt3b5LxN9rMwMAAAFBRUaG2bXJc0P+kpqbCzMwMMTExGD58OPLz81kmiegxLJREAtPX10dycjImT56MlJQUWFpaIjMzU+hYGqNmhVJdhZLjgv7n+++/R/fu3XH37l38+9//xqFDhyCV8sAWET2OhZKohdi6dSu+/fZb3L17Fy4uLjhw4IDQkTSCulcoOS4IkMvlGDduHN577z0YGxvj7NmzeP/994WORUQtGAslUQsyd+5cHD58GCKRCGPGjMFXX30ldKQWT92FsrWPC8rKyoKlpSXCw8PRt29f3Lx5Ex4eHkLHIqIWjoWSqIUZOnQo0tPT0bFjRyxcuBABAQGQy+VCx2qxagplZWWlyttq7eOCtm3bBkdHRxQUFGDhwoWIj49XnlJARPQ0LJRELZC1tbWy2OzatQtubm4oLS0VOlaLZGhoCEA9K5StdVyQXC5HYGAgJk+eDF1dXURHR+PLL78UOhYRaRAWSqIWSldXF2fPnsWbb76JS5cuwcLCAunp6ULHanHUuULZGscF3bp1C46OjggJCUHXrl2Rl5cHHx8foWMRkYZhoSRq4TZu3IjvvvsO9+/fxwsvvIA///xT6EgtSs0hWXUUytY2Lig8PBzW1tbIzMzEjBkzcOHCBbRt21boWESkgVgoiTTAzJkzER0dDYlEgpdeeglLly4VOlKLUXOnFlULZWsbFzRr1iyMGzcOCoUCf/75J9atWyd0JCLSYCyURBrCx8cH165dQ+fOnbF48WL4+fnxYp1HqFooW8u4oKKiIri5uWHt2rWwtbVFdnY2XnzxRaFjEZGGY6Ek0iDm5ubIzs5Gnz59EBYWBldXV5SUlAgdq0WoqqpS6f2tYVxQbGwszMzMkJqaitdffx1Xr15F586dhY5FRFqAhZJIw+jq6uLUqVN4++23ceXKFVhYWODSpUtCxxKUSCRSqVC2hnFBn376KQYNGoTKykps3boVISEhytMFiIhUxW8TIg31008/4ccff0RxcTG6d++O3bt3Cx1JMCKRSKVD3hs3btTacUHl5eXw8vLCsmXL0LlzZ6Snp2Py5MlCxyIiLcNCSaTB3nnnHcTGxkIqlcLf3x+fffaZ0JEEoeoK5datW7VyXFBycjJMTU1x6tQpjB07Fnl5ebC1tRU6FhFpIRZKIg03YMAAZGZmwszMDF988QXGjh3b6i7WEYlEkMlkjX6/No4LWrlyJXr16oXi4mKsXbsW4eHhPMRNRE1GKnQAIlKdqakpsrOzMWjQIOzfvx/Ozs5ITEyEiYmJ0NGahVgsbvQKpbaNC5LJZPD19cXhw4fRrl07xMbGomvXrkLHIiItx19XibSEVCrFiRMnMGPGDFy9ehWWlpa4cOGC0LGahSorlNo0Lig9PR3m5uY4fPgwBg4ciIKCApZJImoWLJREWmbdunXYsGEDHjx4gJ49e+L3338XOlKTU2WFUlvGBf3yyy9wdXXF7du3sWzZMsTExGjVIXwiatlYKIm0UFBQEOLj46Grq4sJEyZgwYIFQkdqUmKxuFErlNowLkgulyMgIAD/+Mc/YGBggLi4OCxatEjoWETUyrBQEmkpT09PXL9+HRYWFvj6668xatQorb1YRywWo7q6usHvqxkXpKlXd+fm5sLGxga7du2Cu7s78vPz0bdvX6FjEVErxEJJpMU6deqE69evw8fHB5GRkXBwcMC9e/eEjqV2EomkUSuUISEhEIlEGjl/cteuXbC3t0dubi4++OADJCYmwtjYWOhYRNRKsVASaTmpVIpjx45h9uzZuH79OiwtLXH+/HmhY6lVY1coExMTNXJc0D/+8Q8EBARAIpHg0KFDWLFihdCRiKiVY6EkaiVWr16NzZs3o6ysDB4eHti2bZvQkdSmMSuUmjguqLCwEM7Ozvjll1/g7OyMvLw8DB8+XOhYREQslEStyRtvvIHTp09DT08PkydPxocffih0JLWQSCQNXqHUtHFBhw4dgoWFBdLT0xEUFIS0tDS0b99e6FhERAAAkUKhUAgdgoiaV2FhIdzd3ZGdnY0hQ4bg8OHDGn0XFUtLS5SXl+P27dv1fo+1tTUKCwtRUlLShMnU48MPP8S///1v6OjoYPv27XjllVeEjkREVAvvlEPUCrVv3x6ZmZkYMWIEoqKiYGtri+Tk5Ba/4iWXyyESiSASiWo93tAVyppxQQMHDlR3RLUqKSnBwIEDkZycDEtLS8TFxcHS0lLoWEREj9HcJQkiUolYLMaRI0fwwQcfICcnB1ZWVkhMTBQ61lM5OzujR48eCAsLw6MHV6RSaYNGImnCuKBTp07BzMwMycnJCAgIQFZWFsskEbVYLJRErdyKFSuwbds2VFRUwNPTE5s3bxY6Up3y8/ORkpICPz+/WsVSKpU2aIWypY8LWrZsGfr164eysjJs2LABv//+u0afkkBE2o/nUBIRAODcuXMYMGAAHjx4gNmzZ2P16tVCR3qMkZERSktLATxcYZXL5bCxsUFFRQXu3r2LHTt2QF9fH23btkXXrl3rnMtoaGionNHZklRWVmLYsGE4fvw4OnbsiBMnTsDJyUnoWEREz8RzKIkIANCjRw/k5ubC3d0da9asQVJSEqKioiCVCv81IZfLceDAAVRWVtZ6DACysrKU51X6+fkpnxeJRHB2doa7uzs8PDwQEBAAOzu7Fjsu6MKFC/Dx8cHdu3cxYsQI7N+/v0X83RMR1QdXKImoFrlcjjFjxiAiIgIWFhZITExEp06dBMlSUlKCTZs2YfXq1cjIyIBIJFKeOykWiyGVSvHWW28hNjYWV65cQW5uLioqKvDXX38hOTkZSUlJSEpKQnJyMkpLS+Hr6wuZTIbIyEhcvHgRrq6ugnyuv1u7di3mzJkD4OEpCPPnzxc4ERFRAymIiJ5gwYIFCgAKAwMDxenTp5t9/5s3b1a0a9dOIZFIFBMmTFDExcUpDA0NFQAUenp6ivnz5ysKCgoUCoVC0adPH4WOjk6d23rw4IHil19+UXh4eCgAKEQikSI6Orq5PkqdqqurFWPGjFEAULRp00aRlJQkdCQiokbhCiUR1em3337D66+/DoVCgZ9++glBQUFNvs+SkhLMnDkTmzdvxpQpU/DFF1/AxsYGADBt2jS0a9cOH3/8MTp37qx8j7e3N+Lj4595t5yysjIYGhqiTZs2KCoqwvvvv49ly5ZBT0+vST/Tk2RmZqJ///4oKCiAl5cXjh49Cn19/WbPQUSkDiyURPRUFy5cQP/+/VFcXIwZM2Zg3bp1TbavnJwcjBw5Ejk5Ofjhhx/qPdZnyJAhiImJeeaV3j/88ANmzJiB9evXo6ioCIsWLYKLiwv279/frCN5tm7dimnTpqG6uhqffPIJli5d2mz7JiJqCiyURPRMRUVF8PDwwNWrV9G/f38cO3ZM7ReM3Lt3D97e3igpKUFERARcXFzq/d6RI0fi8OHDz5xF6e3tjZMnT6K8vBy6uro4f/48xo0bByMjI8TExKBDhw6qfoynksvlCAwMxPbt22FoaIiDBw+2+OHqRET1wcFmRPRMJiYmuHLlCsaOHYuTJ0/C2toaBQUFatt+ZWUlXnnlFdy4cQMHDhxoUJkEAB0dHdTnd+PExERYW1tDV1cXANC9e3ccOnQId+7cwejRo1FUVNSo/PVRUFAAe3t7bN++HW5ubsjPz2eZJCKtwUJJRPUiFosRHh6OTz/9FPn5+bCzs8OJEyfUsu1Fixbh+PHj2LNnT6OuvK4piE9T17ggZ2dnREZGIiMjo8kGne/duxc2NjbIysrCzJkzkZKSAhMTkybZFxGREFgoiahBli5dij/++AMymQwDBw7E+vXrVdpeeno6Vq9ejcWLF8PHx6dR29DR0Xnma9asWQMAmD179mPP9ejRA7/88gvCwsIQFhbWqAx1mTFjBl5++WWIRCKEh4fju+++U+v2iYhaAp5DSUSNcunSJXh5eaGoqAhvv/02fvrpp0Ztx8/PD0lJSbh8+TIMDAwatY3AwECEhIRALpdDJBI98TXW1tYoLCxESUnJE59XKBQYO3YsUlNTcfHiRRgZGTUqS4179+5hwIABuHjxIuzt7REXFyfYPE8ioqbGFUoiahRXV1fk5eXB2dkZP//8M/r27VvrTjb1ER8fj7CwMCxfvrzRZRL43yHvuvZfXl6O3Nxc9OrVq85tiEQifPfdd7h16xa++eabRmcBgOjoaJibm+PixYuYMmUK0tPTWSaJSKuxUBJRoxkbG+PSpUvw8/PD6dOnYW1tjRs3btT7/Vu3boWFhQUmTJigUo6aOZI19/n+u40bN0KhUDxzDJGDgwOmTJmCDRs2PPOK8bosWrQIQ4YMQVVVFUJCQvDrr79CLOZXLRFpN37LEZFKxGIxdu/ejc8//xw3b96Evb09YmJinvm+6upq7Ny5ExMmTFC5cNWsUNZVKENCQiASiep10c3UqVORnZ2NY8eONShDaWkp+vTpg+DgYJiZmSEjIwOvv/56g7ZBRKSpWCiJSC0+++wz/Pnnn6iursbgwYOxdu3ap74+JiYGN2/exMSJE1Xed80KZVlZ2ROf//u4oKfp378/HB0dsWnTpnrvPyEhAWZmZjhz5gzGjRuH3Nxc5d19iIhaAxZKIlKbF198ERcvXkSbNm0wa9YsTJs2rc7XxsXFoW3btujTp4/K+31aoawZFzR69Oh6bUskEmH8+PH1XqFcsWIFPD09UVJSgnXr1mHv3r08xE1ErQ6/9YhIrZycnJCXlwdXV1ds2rQJvXr1euLFMmlpaXBxcanzquyGeFqhrBnTM2vWrHpvr3v37sjKysL9+/frfI1MJsOwYcPw0UcfoV27dkhJScGMGTMamJyISDuwUBKR2hkaGuLChQsICAhAYmIiLCwskJ2dXes1NYVSHZ5WKCMiImBkZISuXbvWe3vdu3cH8PA+5k+SlpYGMzMzREVFYdCgQcjPz8cLL7zQiORERNqBhZKImoRYLMbvv/+O4OBg3L59G05OToiKilI+n5mZCQcHB7Xsq65CWZ9xQU/SpUsXAMDly5cfe+7nn39G165dcefOHQQHByM6Orpe52YSEWkzqdABiEi7LViwAD179sTLL7+M4cOH45tvvsHcuXMBQOVzDTdu3IgLFy4gKSkJAPDNN99g69atyM/Pxz//+U/k5OTUa1zQ3+nq6kIikaCqqkr5mFwuR0BAAHbv3o3nnnsOR44cgaenp0r5iYi0BQslETU5X19fpKWloXfv3pg3bx7Onj0LXV3dWoWtMb7++mtcuXIFEokEAHDkyBHl/MhHV0Nzc3ORmJgId3f3Rp2zmZOTg379+iEvLw8eHh6IjY2FoaGhStmJiLQJD3kTUbOws7NDTk4OunXrhpCQENy6davOMT/1tWDBAgAPZ1oCUJbJv5fGZcuWoVevXti9e3eD9/Hbb7/BwcEBeXl5+PDDD5GQkMAySUT0N7yXNxE1u9deew2hoaHQ1dVFWloabG1tG7UdmUwGV1dXZGRkKB+ztbWFvr5+rfMfJRIJ7O3tER8fj/bt2z9zu3fu3EGHDh0waNAgHDt2DPr6+ggPD8ewYcMalZOISNtxhZKImt327dvh5eWFyspKODs7IyIiolHbkUql+Oqrr2o9tmjRIvTp00e5SikWi9GpUydERUXVq0wCQGxsLADg2LFjcHFxQV5eHsskEdFTsFASkSDefPNN5UU5vr6++Ne//gXg4WHrefPmYfPmzfXajr+/P+zt7QE8vLf4lClT0LNnT9QcfDExMUFUVBQsLS0fe69CocC1a9dqPRYREYFXX30VABAUFITLly/Xu4gSEbVWLJREJIhevXpBLpdjy5YtaN++PT7++GNMmjQJixcvxqpVqzBv3jyUl5c/cztisRjz588HAAwaNAh6enrKmZAikQiRkZHKMUB/t27dOjg4OCjPrZw/fz5Gjx4NuVwOW1tbbNiwQU2flohIu/EqbyIShIeHB+zs7BAREYHc3Fz069cPO3bsUD5/9+5dbNu2DW+99dYztzXmpfHQWboSwyYEIfXGfZTJHl6cs2jRojpH+1RUVGDZsmUAgMDAQFhZWSEtLQ2Wlpa4c+cOgoKC1PApiYhaB16UQ0SC+eKLL7B8+XLk5+fj8uXL6Nu3Lx79SnJ1dUVqauoTR/2k3yxGyKlsHE27hezCUtT+IlNAfv8W3hzliSletnDq/Nxj7//xxx/x7rvv1nrM398fL774IoKCgnD9+nVYW1ur6ZMSEWk3FkoiEkxOTg5sbGywfPlyrFixArdv38bfv5IOHz5c64KYnMJSLNydgtiM25CIRaiW1/0VVvP8QMcOCB7fDVbtH477qayshJ2dHW7cuKF8rUgkwrRp05CWlgY9PT0cOXJEzZ+WiEh7sVASkaACAwOxf/9+6Ojo4NatWwAejvmpmS3p7OyMtLQ0AEDomWws3psKmVzx1CL5dxKxCFKxCJ+/1BWTPK2xfv16TJ8+vc7Xh4eHY+zYsSp8KiKi1oWFkogEVVBQgC5dusDf3x+ffPIJjh8/jtjYWBw+fBjXr18HAKxYsQJ6Hi9j5aErKu/vnX7m+GR8b+UQdODhrRa7dOmCjIwMDBw4EAcPHlR5P0RErQkLJREJruZ8xoiICIwcOVL5eH5+PubMmYMDaffx/JjZatvf3YNr4dG2HEFBQejZsydcXFwwa9YsbNmyBZcuXeK5k0REDcSxQUSkdtOnT4dIJFL+8/XXXz/19f/85z8xatQo+Pv749SpU8rHzczMsPLHTTAbN0eN6RQwHTsLv+7ah8DAQLi5uWHevHlYv349hgwZ8thcSgCIiYnBq6++CkdHR5iYmEBHRwempqYYO3YsVzOJiMBCSURqVlVVhZ07d9Z6LDQ09KnvEYvF2LVrF3r27AlfX1+kpKQon1u4OwXVaj2OIoJM8XC7wMNZlOvWrQMA7Nu3D9HR0Y+9IyYmBjt37sTVq1dRXFwMmUyGmzdvYv/+/fD19cW2bdvUGZCISOOwUBKRWh06dAh37typ9di5c+dq3Vv7SYyMjBAeHg4bGxsMHjwYu3btQvrNYsRm3G7QBTj1US1XIDbjNqZ/tAQzZ87EqFGjnvp6CwsLzJkzB9u3b8eRI0ewZcsWuLq6Kp//7rvv1JqPiEjT8BxKIlKrN954A1u2bAEATJo0Sbk6uXjxYixZsqTWa3fu3IklS5YgIyMDjo6O+Oyzz5CQkKC8DaPDsElQ9AlUrlBW3srE/bjfUZGdguqyYkgMTWBg3xttvF+H1KSDcrv3YkNw/8R2AMDzY+ZAXlGK4oRwyIr/gk57S7Qb9jYMrN1QknwA8jM7cPfu3Sd+lidlrrFnzx6MHz8eANC1a1dcuHChUX9fRETagCuURKQ25eXl2LNnDwCgY8eOWLVqFaTShzfk+vth7z/++AMTJkxAamoqKioqkJqaiokTJyIiIkL5mkK5gbJMll09i/zN81F6KQbVD+4CchmqSwpRcj4SBZvnoepewRMz3T+5A3eP/AzZvXygWoaqv67jrz+WobqyDE4+L8PExKRBn7G6uhqZmZm17jU+ZMiQBm2DiEjbsFASkdqEh4ejuLgYAODn54fOnTtj8ODBAIC0tDQkJSUBeFjK5s6dqxxi/uqrr2Lfvn2YPXs2zp07p9ye2KANAEBeVY7b+74FqqsAsQRtfd5Ap4lfwKTvKw+39+AuCiN/eGIm2b0CmHgFoOMrn0Knkx0AQFFZhtLUaBSUVGPLtlAsXLhQ+fpp06YhNjYWsbGxj9320dTUFFKpFPb29tizZw+kUimmTJmCr776StW/OiIijcZCSURq8+gqZEBAQK1/P/p8QkICcnJyADwsaSEhIRgzZgxWr14NLy+vx7ZbnpkEeel9AIC+bU/oWXWFSKoLA8c+kLTp/PA11xJR/d/XPMrAyQvtBr8JQ6e+aNPvVeXjVXfzoQDQ3tYVTk5Oysetra3h7e0Nb2/vZ44PkkgkkEgkj93dh4iotWGhJCK1KC4uxr59+wAA7du3x9ChQwE8vD+2RCIBAOzYsQMKhaLWaB4PDw/o6Ogo/7tfv36PbbuqME/55/JrCbgZ8rHyn+r7N//7jAJVd3Ife6++lZvyz2KD/x3ellc8AABUyuSPvacue/fuRVRUFDZs2ICuXbuioqICmzZtwrRp0+q9DSIibSQVOgARaYc9e/agvLwcAFBYWFirJNbIyspCXFxcrcdEIpHaMiiqyh97TKxv/Mi+Hvkd+r+rirrS+v9e3adPHwAPz5kcOnQo7O3tATw8H7S8vBz6+vqNiU1EpPFYKIlILbZv316v14WGhmLKlCnK/05KSkJ1dbVyFfPvhRMAdNpbKP9s5DYMHV6c99hr5FXlEOs0rNCJANg+b4QE8f9K5aO3ZKxRVlYGAwOD2u99pAgrFAoUFRWxUBJRq8VCSUQqu3PnDg4dOgQAeO655xAcHFzr+crKSrz//vsAgN9//x3ffvstrKyskJOTgxs3buCNN97A5MmTERERgfj4eOX7njfWRQUAfVt3iA3bQF56Hw8uREFsYAwDW3coFHLI7t9ERe4lVN3KhPnbT74wpy7WzxvCSE+Kdu3aKR87ePAgfHx8oK+vj27duqFNmzawsLBAYGAg+vTpAzMzM+Tk5GDlypXK91hZWaFjx44N/WsjItIaLJREpLKdO3dCJpMBAEaOHImZM2c+9potW7YgOTkZBQUFiI6OxqpVqxAQEACFQoFt27Yp7zbTrVs35Z1yXE1NkCIWAbr66DB2Lm79EQxUV6H4TBiKz4TV2r7EpFODMotEwBDnh+/p168f9PT0UFFRgTNnzmDEiBEAgKNHj2Lw4MG4e/duncPLdXR0sHbtWrUeuici0jS8KIeIVPbo4e6XXnrpia8ZN26c8s+hoaHw9/fHb7/9hhdeeAG6urpwdXXFtm3bMGzYMOXrhnS1VN4lx8DBE2ZvfgujrkMgea4DIJZCbGACnU72eM7TDx3H/1+DMisUQKDXw6u4O3TogD179sDd3f2xQ9vAwwHngwYNgpmZGXR0dGBgYAAnJycEBQXh7NmzdX5mIqLWgnfKISJBKBSKJ67qeXl54dSpUwCAxMREfJNYiZPX7qj19osSsQj97Z/HlqC+atsmEVFrxhVKIhJEbGwsXnvtNURERCArKwvnzp3De++9pyyTLi4u6NGjB4LHd4NUrN7DyVKxCMHju6l1m0RErRlXKIlIENHR0XXesvC5555DZGSkcsh56Jls/N8fKWrb93L/bpjo+fSh5UREVH9coSQiQdjb2yMwMBAODg4wNDSEnp4eHB0d8e677+LcuXO17pgzydMaH4x0Vst+PxzpwjJJRKRmXKEkIo0ReiYbi/emQiZXNOicSolYBKlYhKUvdWWZJCJqAiyURKRRcgpLsXB3CmIzbkMiFj21WNY8P9CxA4LHd4NVe8NmTEpE1HqwUBKRRkq/WYyQU9k4euUWsu+U4tEvMhEeDi0f4twJgV7WcOz0nFAxiYhaBRZKItJ4DypkuH7nASplcuhKxbB93ghGerxvAxFRc2GhJCIiIiKV8CpvIiIiIlIJCyURERERqYSFkoiIiIhUwkJJRERERCphoSQiIiIilbBQEhEREZFKWCiJiIiISCUslERERESkEhZKIiIiIlIJCyURERERqYSFkoiIiIhUwkJJRERERCphoSQiIiIilbBQEhEREZFKWCiJiIiISCUslERERESkEhZKIiIiIlIJCyURERERqYSFkoiIiIhUwkJJRERERCphoSQiIiIilbBQEhEREZFKWCiJiIiISCUslERERESkEhZKIiIiIlIJCyURERERqYSFkoiIiIhUwkJJRERERCphoSQiIiIilbBQEhEREZFKWCiJiIiISCUslERERESkEhZKIiIiIlIJCyURERERqYSFkoiIiIhUwkJJRERERCr5f30zSbqx5HOxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -146,12 +135,12 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLcElEQVR4nO3de1yUdcL38e/McBhAwAMgIhCiQCpkaia2pija677basu1093h7rA9T7vbVlvbs728701tW+vew6PVPtvTvbvPbq9WozKzXtnm+UB5iFQITVGUo6gIyEFwgGHm+YOYIDDFGbhg5vN+vXw5XHPNb77DH+PX33Vdv8vkdDqdAgAAAC6T2egAAAAAGNwolAAAAHALhRIAAABuoVACAADALRRKAAAAuIVCCQAAALdQKAEAAOAWCiUAAADcQqEEAACAWyiUAAAAcAuFEgAAAG6hUAIAAMAtFEoAAAC4hUIJAAAAt1AoAQAA4BYKJQAAANxCoQQAAIBbKJQAAABwC4USAAAAbqFQAgAAwC0USgAAALiFQgkAAAC3UCgBAADgFgolAAAA3EKhBAAAgFsolAAAAHALhRIAAABuoVACAADALRRKAAAAuIVCCQAAALdQKAEAAOAWCiUAAADcQqEEAACAWyiUAAAAcAuFEgAAAG6hUAIAAMAtFEoAAAC4xc/oAADwXRqb7SqublSL3aEAP7MSRoQoJJCvLgAYSPhWBjDgHD3doJV7SrW1oFKlNU1ydnrOJCl+eLDmpETpnunxShoZalRMAMDXTE6n03nx3QCg75XVNGnR+/nKLqySxWxSm+PCX08dz18/LkLLbktT3PDgfkwKAOiMQglgQMjKKdXiDw/K7nB+Z5H8NovZJD+zSUtvmai7psX3YUIAwIVQKAEY7o9bj+r3G464Pc4vbkjWY3OSPJAIANAbXOUNwFBZOaUeKZOS9PsNR/R2TqlHxgIAXDoKJYBee/TRR2UymVx/Xnrppcsap6ymSYs/POjRbM99eFBlNU1dtuXm5mrJkiVasmSJtm3b1u0127dv1xNPPKFrrrlG0dHRCggI0KhRo3TnnXfqyy+/9Gg+APBGHPIG0Cutra0aNWqUqqurXdsmTZqk3NzcXo9131/3aOfx6l6dM3kxFrNJ1yWO0JsPT3dt+/vf/64HH3xQkrR48WItWbKky2v+5V/+RevXr+9xPKvVqi1btmjGjBkeywgA3oYZSgC9snHjxi5lUpLy8vJ0+PDhXo1z9HSDsgurPFomJanN4VR2YZUKKxt69brExEQtW7ZMGzZs0F/+8heNGjVKkmSz2fTss896NCMAeBtmKAH0yv33368333xTknTXXXcpKytLUs8zf6tXr9aSJUtUWFiocePG6bnnntNXX32lpUuXSpIib3pSwanzXPu3VBapbte7ai7NV9v5BlmCwxSUeI3CZ/6b/MIiXPvVZq9U3WdvSZJG3PiEHM1Natj7kewNZ+Q/PFYR8/+H/sedt2jJLROVkJCgkpKSHj9LR+YtW7Zo1qxZ8vP7ZmneDz74QLfeeqskKSgoSE1NTT2OAQBghhJAL9hsNq1du1aSFBkZqRUrVrhKWEex7LBmzRrdcccdOnjwoJqbm3Xw4EHdeeedrtdLksPxzf7nj32hk288paZDO9TWeFZy2NV2rkbnvtygU2/8XK21p3rMVLfzbZ3d/GfZa09KbXa1ninWqdW/1obcY5f8uebOndulTEpSUtI3V4uHhIRc8lgA4IsolAAu2UcffaSGhvZDybfeeqtGjhypjIwMSVJBQYH2798vSWpra9OTTz6pjgMgt99+u9atW6fHH39ceXl53cZ1tNpUtW651NYqmS0aOut+Rd35a4VN/2H7eI1nVbPhtR4z2WtPKSx9oSJ/+Cv5R42RJDlbzqvg03+qsdmu1atXa9GiRa79H3zwQWVnZys7O1sPPfTQBT/re++953r8r//6r5f6KwIAn0ShBHDJOs9CLly4sMvfnZ/fu3evysrKJEnR0dFauXKlbrzxRr388stKT0/vNq6taL8cTXWSJGvC1QqMmyiTX4CCxl0rS/jI9n2O71Pb1/t0FpSUrmEZDyg4abrCZ9zu2t569qSKqxt1zTXXdJltjI+P18yZMzVz5kzFx/e8EPrHH3+sF154QZI0fPhw/frXv76E3w4A+C4KJYBL0tDQoHXr1klqL1lz586VJC1YsEAWi0WS9Pbbb8vpdOr48eOu102ZMkX+/v6un3u6Wrq15oTrse34Xp1e+UvXn7a6018/41RrdXm311rjUl2PzUFhrseO5ka12B3d9r+Y9957T7fddptaWlo0ZMgQffTRR7riiit6PQ4A+BK/i+8CANLatWtls9kkSTU1NV1KYoeSkhLt2rWryzaTyeSxDM5WW7dtZuuQTu/V6f/ITqcC/Hr3f+Y33nhDDz/8sNra2jR06FB9/PHHLBcEAJeAQgngkrz11luXtF9WVpbuu+8+18/79+9XW1ubaxbz24VTkvyHj3Y9DknNVMRNP++2j6PVJrO/tVeZE0a0X0xjNn9TLB2Onmct/8//+T/62c9+JqfTqaioKG3YsEGTJk3q1fsBgK+iUAK4qOrqam3cuFGSFBoaqmXLlnV5vqWlRU8//bQk6d1339Xy5csVFxensrIyVVRU6P7779c999yj9evXa/fu3d3GtyZMljk4XI6mOjUe2CJz0BAFJUyW0+mQve60mssPqbWySDGP9HxhTk+GBPopJLD9K27YsGGu7Z988olmzZolq9WqtLQ0hYeHa/ny5XrqqackSYGBgXrxxRfV0NCgTz/91PW6mTNnXvJ7A4CvoVACuKjVq1fLbrdLkm644QY99thj3fZ58803lZubq1OnTmnbtm1asWKFFi5cKKfTqVWrVmnVqlWSpLS0NOXn50uSOiYOzQFWRXz/SVWuWSa1taoh5wM15HzQZXxLWFSvMkeHfzObOWPGDAUGBqq5uVk5OTmaP3++JGnr1q3KyMjQBx98817Nzc16+OGHu43Hkr0AcGFclAPgojof7r7lllt63Ofmm292Pc7KytKCBQv0zjvvaMKECQoICND48eO1atUqZWZmuvZzWgJdj4PGTtOoB5YrZOIcWUIjJLOfzEFh8o9KVOi0WxV5W+/uVpMY+c3akREREVq7dq0mT56soKCgXo0DALg47pQDoE84nc4eL8hJT0/Xnj17JEk3PveGDtsj+vxe3gCAvsUMJYA+kZ2drbvvvlvr169XSUmJ8vLy9NOf/tRVJlNSUvSnny2Qn9lzV4FLkp/ZpGW3pXl0TADAd2OGEkCf2LZtm+bMmdPjc6GhodqwYYPS09OVlVOqZ9fke+x9/2tBmu6c1vOC5QCAvsEMJYA+kZiYqHvvvVdjx45VcHCwAgMDNW7cOP34xz9WXl6e6445d02L1y9uSPbIez5zQwplEgAMwAwlgAEhK6dUiz88KLvD2atzKi1mk/zMJj1/y0TKJAAYhEIJYMAoq2nSovfzlV1YJYvZ9J3FsuP568dFaNltaYobHtyPSQEAnVEoAQw4R083aOWeUm09UqnS6iZ1/pJyOp1KiAjRnOQo3Zser3FRoYblBAC0o1ACGNAam+0qrm5Ui92hu++4XUf2faZfL/5P/cd//IfR0QAAX6NQAhgU2traFB4ersbGRlksFuXm5io1NdXoWAAAcZU3gEFi165damxslCQ5HA7dcccdstlsBqcCAEgUSgCDxJo1a+Tn5yep/TzKgoICPfts727HCADoGxzyBjDgOZ1OxcfHq7y8vNtzmzdv1ty5cw1IBQDowAwlgAEvPz9f5eXlMpu7fmVFRka6DoMDAIzjZ3QAALiYkSNH6qGHHtKoUaO0fv16ffHFFzpz5owiIiKMjgYAEIUSwCAwcuRI/fWvf5UkhYSE6IsvvtDBgwc1e/Zsg5MBACQOeQMYZDIyMiRJ27dvNzYIAMCFQglgUJk2bZokad++fQYnAQB0oFACGFT8/PwUFBSkgoICo6MAAL5GoQQw6ERGRurkyZNGxwAAfI1CCWDQSUxMVH19vdExAABfo1ACGHQmTZokp9OpY8eOGR0FACAKJYBB6LrrrpPUfpccAIDxKJQABp2OWy3u3r3b4CQAAIlCCWAQioiIkJ+fnw4ePGh0FACAKJQABqmhQ4eqtLTU6BgAAFEoAQxScXFxqq6uNjoGAEAUSgCD1Pjx49Xa2qrGxkajowCAz6NQAhiUrr32WknStm3bjA0CAKBQAhicMjMzJUmffvqpwUkAABRKAIPShAkTZDKZtH//fqOjAIDPo1ACGJTMZrNCQkJUWFhodBQA8HkUSgCD1siRI3Xq1CmjYwCAz6NQAhi0kpKS1NjYKIfDYXQUAPBpFEoAg9bVV18tSTpw4ICxQQDAx1EoAQxa119/vSRpy5YtBicBAN9GoQQwaGVkZEiSPv/8c2ODAICPo1ACGLSCg4MVEBCgQ4cOGR0FAHwahRLAoDZ8+HCVlZUZHQMAfBqFEsCgdsUVV6i2ttboGADg0yiUAAa11NRUtbW1qaqqyugoAOCzKJQABrX09HRJXOkNAEaiUAIY1DIzMyVJn332mcFJAMB3USgBDGpjxoyR2WzWl19+aXQUAPBZFEoAg15oaKiOHz9udAwA8FkUSgCDXkxMjM6cOWN0DADwWRRKAINecnKyzp8/L7vdbnQUAPBJFEoAg96UKVMkSXv27DE4CQD4JgolgEGv457e27ZtMzQHAPgqCiWAQa9jLcq9e/canAQAfBOFEsCgFxAQIKvVqoKCAqOjAIBPolAC8AqRkZGqqKgwOgYA+CQKJQCvMGbMGNXX1xsdAwB8EoUSgFe46qqr5HA4VFpaanQUAPA5FEoAXuG6666TJG3evNngJADgeyiUALxCZmamJGnXrl0GJwEA30OhBOAVoqKiZLFYdODAAaOjAIDPoVAC8Brh4eEqLi42OgYA+BwKJQCvERsbq+rqaqNjAIDPoVAC8Brjx49XS0uLmpqajI4CAD6FQgnAa0ybNk2SlJ2dbXASAPAtFEoAXmPOnDmSpB07dhicBAB8C4USgNe4+uqrJUn79+83NggA+BgKJQCvYTabFRISosLCQqOjAIBPoVAC8CojR47UyZMnjY4BAD6FQgnAq4wdO1aNjY1yOBxGRwEAn0GhBOBVrr76ajmdThUUFBgdBQB8BoUSgFeZOXOmJGnz5s0GJwEA30GhBOBVMjIyJEmff/65sUEAwIdQKAF4lbCwMPn7++urr74yOgoA+AwKJQCvM2zYMJWWlhodAwB8BoUSgNeJj4/X2bNnjY4BAD6DQgnA60ycOFF2u121tbVGRwEAn0ChBOB1pk+fLokrvQGgv1AoAXidefPmSZI+++wzg5MAgG+gUALwOklJSTKZTMrLyzM6CgD4BAolAK8UGhqqY8eOGR0DAHwChRKAVxo1apTOnDljdAwA8AkUSgBeKSkpSU1NTXI4HEZHAQCvR6EE4JWmTp0qSdq7d6/BSQDA+1EoAXilWbNmSZK2bt1qcBIA8H4USgBeaebMmZKknJwcg5MAgPejUALwSgEBAQoMDFRBQYHRUQDA61EoAXitiIgIlZeXGx0DALwehRKA10pISFBdXZ3RMQDA61EoAXittLQ0ORwOVVRUGB0FALwahRKA15oxY4YkadOmTQYnAQDvRqEE4LXmzZsnSdq1a5fBSQDAu1EoAXitmJgYmc1m5efnGx0FALwahRKAVwsPD1dxcbHRMQDAq1EoAXi12NhYVVVVGR0DALwahRKAV0tJSVFzc7NaWlqMjgIAXotCCcCrTZs2TZL06aefGpwEALwXhRKAV8vIyJAkbdu2zdAcAODNKJQAvNrUqVMlSfv37zc4CQB4LwolAK9msVgUHByso0ePGh0FALwWhRKA14uMjNTJkyeNjgEAXotCCcDrjR07Vg0NDUbHAACvRaEE4PUmTZokp9OpgoICo6MAgFeiUALwet/73vckSVu2bDE4CQB4JwolAK+XmZkpSdqzZ4/BSQDAO1EoAXi9oUOHys/PT1999ZXRUQDAK1EoAfiEYcOGqbS01OgYAOCVKJQAfEJ8fLxqamqMjgEAXolCCcAnTJgwQa2traqvrzc6CgB4HQolAJ9w7bXXSuKe3gDQFyiUAHzC3LlzJUmffvqpwUkAwPtQKAH4hCuvvFImk0m5ublGRwEAr0OhBOATzGazQkJCdOzYMaOjAIDXoVAC8BmjRo3S6dOnjY4BAF6HQgnAZ4wbN06NjY1yOBxGRwEAr0KhBOAzJk+eLEmcRwkAHkahBOAzZs2aJUnaunWrwUkAwLtQKAH4jOuvv16SlJOTY3ASAPAuFEoAPiM4OFgBAQE6fPiw0VEAwKtQKAH4lBEjRqi8vNzoGADgVSiUAHxKQkKCamtrjY4BAF6FQgnAp6SmpqqtrU2VlZVGRwEAr0GhBOBT0tPTJUmbN282OAkAeA8KJQCfkpmZKUnauXOnwUkAwHtQKAH4lCuuuEJms1lffvml0VEAwGtQKAH4nLCwMBUVFRkdAwC8BoUSgM+JiYnRmTNnjI4BAF6DQgnA56SkpMhms6mlpcXoKADgFSiUAHzO1KlTJUm7d+82OAkAeAcKJQCfk5GRIUnatm2boTkAwFtQKAH4nOnTp0uS9u3bZ3ASAPAOFEoAPsfPz09BQUE6cuSI0VEAwCtQKAH4pMjISFVUVBgdAwC8AoUSgE9KTExUQ0OD0TEAwCtQKAH4pKuuukoOh4MFzgHAAyiUAHzSddddJ0navHmzwUkAYPCjUALwSZmZmZJYixIAPIFCCcAnRUREyGKx6MCBA0ZHAYBBj0IJwGcNHTpUJSUlRscAgEGPQgnAZ8XFxammpsboGAAw6FEoAfis8ePHq6WlRU1NTUZHAYBBjUIJwGdde+21krinNwC4i0IJwGfNnTtXkpSdnW1wEgAY3CiUAHxWamqqJCk3N9fYIAAwyFEoAfgss9mskJAQFRYWGh0FAAY1CiUAnxYdHa1Tp04ZHQMABjUKJQCfNm7cODU2NsrhcBgdBQAGLQolAJ929dVXy+l06quvvjI6CgAMWhRKAD5t5syZkqTNmzcbnAQABi8KJQCflpGRIUn6/PPPjQ0CAIMYhRKATxsyZIj8/f116NAho6MAwKBFoQTg80aMGKGysjKjYwDAoEWhBODz4uPjVVtba3QMABi0KJQAfN7EiRNlt9tVVVVldBQAGJQolAB8Xnp6uiRpy5YtBicBgMGJQgnA52VmZkqSdu7caXASABicKJQAfN7YsWNlMpmUl5dndBQAGJQolAAgKSwsTEVFRUbHAIBBiUIJAJJGjRqlyspKo2MAwKBEoQQAScnJyTp//rzsdrvRUQBg0KFQAoCkqVOnSpJycnIMTgIAgw+FEgAkzZo1S5K0bds2Y4MAwCDkZ3QAABgIrrvuOknSF198YXASAINBY7NdxdWNarE7FOBnVsKIEIUE+m6t8t1PDgCdBAQEyGq1qqCgwOgoAAaoo6cbtHJPqbYWVKq0pknOTs+ZJMUPD9aclCjdMz1eSSNDjYppCJPT6XRefDcA8H5xcXE6d+6czp49a3QUAANIWU2TFr2fr+zCKlnMJrU5LlydOp6/flyElt2Wprjhwf2Y1DicQwkAXxszZozq6+uNjgFgAMnKKdW85du183i1JH1nmez8/M7j1Zq3fLuyckr7PONAQKEEgK+lpaXJ4XCorKzM6CgABoA/bj2qZ9fkq9nuuGiR/LY2h1PNdoeeXZOvP2492kcJBw4KJQB8rePCnM2bNxucBIDRsnJK9fsNRzwy1u83HNHbXj5TSaEEgK9lZmZKknbt2mVwEgCX49FHH5XJZHL9eemlly5rnLKaJi3+8KBHsz334UGV1TR12Zabm6slS5ZoyZIlF12yrLW1VZMmTery+Ww2m0czuoNCCQBfi46OlsVi0YEDB4yOAqCXWltbtXr16i7bsrKyLmusRe/ny97LQ9wXY3c4tej9/C7bcnNztXTpUi1duvSihfK3v/2tvvzyS49m8iQKJQB0Eh4eruLiYqNjAOiljRs3qrq6usu2vLw8HT58uFfjHD3doOzCql6fM3kxbQ6nsgurVFjZ0OvXFhQU6Ne//rWsVqtHM3kShRIAOomNje32jxKAga/zbORdd93V4/YOq1evVmpqqqxWq1JTU/XOO+9oyZIlMplMSo4OU9OBTV32b6ks0pkPfqvyV+9TyW9vVfkf71f1x6/IXl/VZb/a7JUqeekmlbx0k859uVH1OR/oxP99RCW/u1UVf31MLaVf6h+728+lTEhI0IMPPuh67dKlS12HspcsWeLa7nQ69cgjj6i5uVnPPfecW7+jvkShBIBOrrzySjU3Nw+oc5MAfDebzaa1a9dKkiIjI7VixQr5+bXfu+XbhfKNN97QHXfcoYMHD6q5uVkHDx7UnXfe6Xq9JDkc3+x//tgXOvnGU2o6tENtjWclh11t52p07ssNOvXGz9Vae6rHTHU739bZzX+Wvfak1GZX65linVr9a23IPdarz/b6668rOztbkyZN0jPPPNOr1/YnCiUAdDJt2jRJUnZ2tsFJAFyqjz76SA0N7YeSb731Vo0cOVIZGRmS2g8X79+/X5LU1tamJ554Qh33dLnqqqu0cuVKPf7448rLy+s2rqPVpqp1y6W2Vsls0dBZ9yvqzl8rbPoP28drPKuaDa/1mMlee0ph6QsV+cNfyT9qjCTJ2XJeBZ/+U43Ndq1evVqLFi1y7f/ggw8qOztb2dnZeuihhyRJJ06c0C9/+UtZLBb99a9/dZXkgYhCCQCddPwjtGPHDmODALhknWchFy5c2OXvzs/v3btXdXV1ru35+fn693//d1VUVOjKK6/sNq6taL8cTe37WxOuVmDcRJn8AhQ07lpZwke273N8n9qa6rq9NigpXcMyHlBw0nSFz7jdtb317EkVVzfqmmuuUVJSkmt7fHy8Zs6cqZkzZyo+Pl6S9JOf/ET19fV66qmnNHXq1N7/YvrRwK26AGCAKVOmSJL27dtncBIAl6KhoUHr1q2TJA0fPlxz586VJN10002yWCxqa2vTn//8ZzU3N2v37t1dXut0OmW327tdHd6hteaE67Ht+F7Zju/tYS+nWqvLZQkO77LVGpfqemwOCnM9djQ3qsXu0MVs2LBBH374ocaOHaulS5dedH+jUSgBoBOz2azg4GAdPXpU1dXVKiws1MSJEzVkyBCjowE+zW63q7i4WEeOHNGxY8dUWlqq8vJy5eXluc55rqmpkb+/f7fXnj17Vi+//PJ3jh8cHKympqbv3OdCnK3dz7k2W7/5zjCZOh0QdjoV4HfxA8QVFRWSpGPHjik4uOf7gQcFBekHP/hBl/M/jUKhBABJzc3Nev311/Xll1+qra1NR48eVUREhCTppZde0i9/+UuDEwLepeM2p4cPH9bx48dVXFysEydO6NSpU6qqqtLZs2fV0NCg8+fPq6WlRQ7HxWf1vssDDzygRx99VOnp6a5tJpNJERERevXVV7VixYpuM5j+w0e7HoekZiripp93/xytNpn9e7ecT8KIEEnt/4F1jePm5zMahRIA1H7i/hNPPCGTyeQ6Yb/D9OnTDUoFDB4Oh0MVFRUqKCjQsWPHVFJSovLycp06dUpnzpxRTU2NGhoa1NTU9J0F0WQyKSAgQEFBQQoNDVVsbKwiIiIUHR2t0aNH64orrtDYsWOVnJysIUOGKDY2Vna7XaGhoVq2bFmXsVpaWvT0009Lkj755BP95S9/UUxMjGv2Lzk5WS+88IKys7O7lUlJsiZMljk4XI6mOjUe2CJz0BAFJUyW0+mQve60mssPqbWySDGP9HxhTk+GBPopJLC9fg0bNsy1/ZNPPtGsWbNktVqVlpama6+9VsuXL+/2+p///JtS+7vf/U4pKSmX/N59yeT89jcnAPioH/3oR/rb3/7W5R+6oUOH6syZMwP66kqgLzgcDlVWVurIkSM6evSoSkpKVFZW5iqIZ8+eVV1dnasgtrW19TiOyWSSv7+/goKCNGTIEA0dOlQREREaOXKkRo8erfj4eCUmJio5OVmJiYkKCAi45Iyvv/66Hn30UUnSD3/4wx7PhZw8ebJyc3MlSZs2bVJtba1uv/32bv9xTEtLU35++51sIm96UsGp8yRJ54/lqHLNsvYrvXtgCYtS7E/+n6T2dSjrPntLkjTixic15Kr2MWwlX+r0W+1XdE+a+wPlbl4rSaqqqlJsbKyam5u7jLl161bXBYLfZjKZXI/Pnz8/YBY75xsSAL62YsUKbdmyRSUlJXI4HDKbzVqwYAFlEl6jpqZGhw4d0rFjx1RUVKTy8nJVVFS4ZhDr6+vV2Nio5ubm7yyIfn5+roIYFRWlESNGdCuISUlJGjduXJ8Wnrfeesv1+JZbbulxn5tvvtlVKLOysvTnP/9Z77zzjhYvXqzCwkKNHTtWv/rVr/T555+7CqXTEuh6fdDYaRr1wHLV735PttJ8tTXWyhwYLEtohKxXXKWQCbN6lTkxMsT1OCIiQmvXrtWiRYt0+PBhnT9/vldjDSTMUAJAJzk5OZoxY4brH9OPPvpI3//+9w1OBfSsrq5OBQUFOnr0qKsgnjhxwlUQ6+rqXAXRbrdfcBx/f39ZrVaFhIQoPDzcVRBjYmIUHx+vMWPGKCkpScnJyRe8QGSwcDqdXWb5OqSnp2vPnj2SpBufe0OH7REevf2ixWzSdYkj9ObD3nkKDYUSAL7lxRdf1KJFi2Q2m9XY2DhgDinB+507d851iLmoqEilpaU6efKkTp8+7SqI586dk81m+86C6Ofn16UgDh8+XFFRUYqJiVFcXJzGjBmjcePGKSUlRWFhYRccxxvt2LFDr732mh544AFdeeWVqq2t1X//93/rT3/6kyQpJSVF6z/9Qje8nK3mS1je51IF+pm16eezFTd8cBfyC6FQAsC3tLW1aciQIQoMDFRtba3RcTCI2Ww2V0E8fvy4SktLVVFRodOnT6u6urpbQbzQP8kWi0VWq1XBwcGughgZGamYmBjFxsZ2KYjDhw/v5085uGzbtk1z5szp8bnQ0FBt2LBB6enpysop1bNr8j32vv+1IE13Tov32HgDDScGAcC3WCwW/fSnP9UH6z7RwYo6tdgdCvAzK2FEiOvqTPimlpYWFRYWdimI5eXlqqysVFVVlerq6tTQ0CCbzabW1tbvLIiBgYEKDg5WZGSkqyCOGjWqS0FMTk5WVFRUP39K75aYmKh7771Xu3bt0smTJ9XW1qa4uDjNnz9fzzzzjMaMab9N4l3T4lV1rlm/33DE7fd85oYUry6TEjOUANDF0dMNWrmnVBsOnlBFfYukb861MkmKHx6sOSlRumd6vJJGhhqWE55ht9tVVFSkgoICFRUVqbi4WBUVFTp16pSqq6tdayHabDa1tLRcsCCazWZXQQwNDdWwYcMUFRWl6OhoxcbGKiEhQWPHjlVKSoqio6O7rD+IgS0rp1SLPzwou8PZq3MqLWaT/MwmPX/LRK8vkxKFEgAkSWU1TVr0fr6yC6tkMZu+8x+OjuevHxehZbelee05UYORw+FQSUmJ624qnddCrKqqUm1trWstxNbW1guuhWg2mxUQENClIHYsddO5ICYnJysuLo6C6OX4frg4CiUAn+fuDMTSWybqLh+YgTCCw+HQiRMnXAWxuLi4y2LZHTOIvV0su2MtxI7FshMSEpSYmKiUlBRdccUVslgs/fxJMRh0HMHYeqRSpdVN6vxtYZIUPyJYc5KjdG96vMZF+dYRDAolAJ/2x61HPXKO1C9uSNZjc5I8kMi7dSyWXVBQoMLCQtdi2SdPnlRVVZVrLcTeLJYdGhqq8PDwLjOI314su6f7OwPuaGy2q7i6kXOsv0ahBOCzuIrTM6qqqlwFsbi42FUQKysrdfbs2ctaLHvo0KHd1kLsWCw7KSlJgYGBPY4DwBgUSgCDxqOPPqrXX3/d9fOLL76oZ5999rLGKqtp0rzl2/t0nbnc3FytXbtWkpSRkdHjrdTq6+v1m9/8RqtXr1Z5ebmGDh2q+fPna+nSpRo7dqzHsvVGbW2tqyAWFRWprKysy91ULmex7KFDh2r48OHdFstOTk5WUlLSoF8sG/B1FEoAg0Jra6tGjRql6upq17ZJkya5bqnWW/f9dY92Hq/u0zth/P3vf9eDDz4oSVq8eLHuu+8+18yb1F4mr7/+en355Zfdxho2bJi2b9+utLQ0t3OdO3fOVRCPHz/uKoiVlZWqrq5WfX29RxbLTkxMdC1142uLZQO+zncP9gMYVDZu3NilTEpSXl6eDh8+rCuvvLJXYx093aDswipPxpMktTmcyi6sUmFlQ7cT8j/++GM9//zzevTRR1135FiyZImrTM6aNUtPPfWU/vnPf+r111/X2bNn9fDDD+vzzz/v9j69WSy7tbX1gnk7FssOCQlRdHS0qyCOGjWq291Uhg0b5sHfFABvQ6EEMChkZWW5Ht91112un7OysrRkyZIu+65evVpLlixRYWGhxo0bp+eee05fffWVli5dKkn6weMvyDJksmt2sqWySHW73lVzab7azjfIEhymoMRrFD7z3+QXFuEatzZ7peo+e0uSNOLGJ+RoblLD3o9kbzgj/+GxGpb5iIYkXq1/7C7V3x//vkpKSlyvzcnJkSS99tprioqK0qJFi/S3v/1NUvv5g88//7zOnj2rpKQkDRs2TGfPnlVOTo4SExPV3NzcpSBezmLZcXFxSkhIYLFsAH2CQ94ABjybzaaoqCg1NDQoMjJS+fn5io2Nld1uV0pKig4fPuzad82aNVq4cGG30jVp0iTl5eVJkpLv+F9qTpwlSTp/7AtVrvmN1NZ9Js8SMkwj7/ud/IdGS+paKP2GRstee6rL/qaAII3+yd+UGBOlgj/crdOnT/f4eUJDQ+V0OnXu3LmLfnZ/f3+FhYUpNDTUVRA7L5bdURBZLBuAkZihBDDgffTRR2poaJAk3XrrrRo5cqQyMjK0adMmFRQUaP/+/Zo8ebLa2tr05JNPusrk9OnT9eyzz2rr1q165ZVXXONVn2vREEmOVpuq1i1vL5Nmi4bOvEcBo5JkK85V/Z731NZ4VjUbXtPIO5Z2y2SvPaWw9IUKHD1etdn/UGtlkZwt59V0cJuKA7+v01VnL/h5OhbN7iiUERER+tGPfuRaLHvNmjV67bXXJEk//vGP9fLLL3vqVwkAfYL/zgIY8Dof7l64cGGXvzs/v3fvXpWVlbm279mzR//+7/8uSbrqqqu6jWsr2i9HU50kyZpwtQLjJsrkF6CgcdfKEj6yfZ/j+9T29T6dBSWla1jGAwpOmq7wGbe7treePSmTyaQ7Hn5M0dHR3V5ntVpVW1urP/zhD65tEyZM0Isvvqj/+T//p+bNm6eIiG8Oszc2Nn7XrwYABgQKJYABraGhQevWrZMkDR8+XHPnzpUkLViwwHU3k7fffltOp1NHjx7t9vr6+nq98sorPV5J3VpzwvXYdnyvTq/8petPW13H4WqnWqvLu73WGpfqemwO+uaKZkdzewF89j/+Uy+++KJre1BQUPv72Gyy2WwKCQlxPdfc3Nxl7JaWFtfjzvsBwEDFIW8AA9p7770nm80mSaqpqenxjiclJSWyWCwXvFjFXc5WW7dtZusQ12OTqdP/zb/OEODX9f/rTz/9tKZMmaIjR47IarUqISHB9dy3z7U8deqbczPHjBnjTnQA6BcUSgD9zm6369ixYzp8+LBrbcQTJ07o1KlTqq6uVm1trWvh7Avdm/nbRo0apYkTJ2rjxo1dtlssFvn7+2vkyJFdrrqWJP/ho12PQ1IzFXHTz7uN62i1yexv7dXnM0lKGBGivZ0ukjGZTLrttttcP6empio8PFx1dXUqKSnRiRMnNHr0aDmdTu3evdu13/XXX9+r9wYAI1AoAXjEd5XEqqqqLndXuVBJ7Fg4OzQ0VAkJCRo6dKh2794tp9Mpq9WqRx55RNHR0a5Fs1taWvT0009Lar9H9D//+U+NGTOmy3mU06ZN0/jx411L9EjSiCEBapZkTZgsc3C4HE11ajywReagIQpKmCyn0yF73Wk1lx9Sa2WRYh55rVe/i/gRwQoJ9OuyduMnn3yiWbNmyWq1Ki0tTeHh4XrooYe0fPlyOZ1O3X333frFL36hdevWqaCgQJJ0zTXXaOrUqb16bwAwAssGAbigziXxyJEjKi4udqskDh06tNvC2SkpKZowYUKPF7C8/vrrevTRRyVJP/zhD7V69epu+0yePNl1t5xNmzaprq6ux2WD0tLSlJ/fft/uHzz+gvK/Xofy/LEcVa5Z1uOyQZJkCYtS7E/+n6Rvr0P5pIZcNU+SZCv5UqffWiRJGpKWqadfeFlLbpmoqqoqxcbGdjtHcuvWrcrIyPjOO+UMHTpUO3bs8MidcgCgrzFDCfgYT5fEMWPGdFk8e+zYsUpKSrpgSeyNt956y/X4lltu6XGfm2++2VUos7Ky9Oc//1nvvPOOFi9erMLCQo0dO1a/+tWv9Pnnn7sK5ZyJscotai+cQWOnadQDy1W/+z3ZSvPV1lgrc2CwLKERsl5xlUImzOpVZqdTujc9XlL7ckBr167VokWLdPjwYZ0/f77LvmFhYcrOztYLL7yg1atX68SJExo6dKjmzZunpUuXaty4cb16bwAwCjOUgBfoKIlfffWVCgsLXSXx5MmTrlvx9aYkDhs2rM9KYl9zOp0ymUzdtqenp2vPnj2SpH379ul/72vp83t5A4CvYIYSGKB6Konl5eWuC1fcmUmMj49XYmLioCmJvZGdna3XXntNDzzwgK688krV1tbqv//7v11lMiUlRZMmTdKyK2yat3y7Rwuln9mkZbdxiBqA72GGEuhHdrtdhYWFOnTokEdKYueZRG8uib2xbds2zZkzp8fnQkNDtWHDBqWnp0uSsnJK9eyafI+9938tSNOd0+I9Nh4ADBbMUAJustvtOnr0qOvq5sstiUFBQRoyZIjPzCT2lcTERN17773atWuXTp48qba2NsXFxWn+/Pl65plnuqzreNe0eFWda9bvNxxx+32fuSGFMgnAZzFDCfTg2yWxqKio2zqJTU1Nl1wSO2YSY2JiFBcXp8TERCUnJ2vChAkaOXJkP386fFtWTqkWf3hQdoezV4fALWaT/MwmPX/LRMokAJ/m84Wysdmu4upGtdgdCvAzK2FEiEICmbj1Rp1L4tGjR7tc3eypktixBE5UVFQ/fzq4q6ymSYvez1d2YZUsZtN3FsuO568fF6Flt6UpbnhwPyYFgIHHJwvl0dMNWrmnVFsLKlVa06TOvwCTpPjhwZqTEqV7pscraWSoUTFxCb6rJHYsgUNJRG+4vh+OVKq0uuv3g5xOXRERojnJUbo3PV7jovh+AADJxwolMxCDQ0dJ7HzhyreXwOlNSRw+fHi3JXA6DjdTEvFdOh/BmJ85RzUlBcreuknf+973jI4GAAOKzxRKd8+RWnrLRN3FOVKXraMkfvXVVzp27NgF10lsaWnpdUnsuHCFkoi+0tDQoPDwcDmdTo0aNUqHDx923f4RAOAjV3n/cevRy76Ks+3rAvrsmnxVnWvWY3OSPJxu8LLb7Tpy5IgOHTrkKok9Xd18KSUxNDRU0dHRrpJ4xRVXaMyYMZREDAgff/yx61aOp0+f1k9+8hP94x//MDgVAAwcXj9DyTpzvWO321VQUKDDhw+7SmJZWZlOnz59WSWx8zqJlEQMVrfffrvef/99tbW1ubZlZWXpzjvvNDAVAAwcA65QPvroo3r99dddP7/44ot69tlnL2usspomzVu+Xc32novP5Qj0M2vTz2e7zqnMzc3V2rVrJUkZGRnKyMjosv+OHTv06quvav/+/aqsrNT58+c1YsQITZ06VT/72c/0L//yLx7LdiGtra06cuSIqyQWFRWpvLzc7ZIYExOj+Ph4SiK82vnz5zV8+HDZbLYu24cMGaJDhw4pNjbWoGQAMHAMqEPera2tWr16dZdtWVlZl10oF72fL7sHb6smSXaHU4vez3fdqzc3N1dLly6VJDU1NclkMmn27Nmu/Xfs2NHtM50+fVoff/yxPv74Y61cuVL/9m//1uscLS0trqubPVESOw43dy6JHVc3R0ZG9jof4C02bdokm80mi8XSZYaytbVVJSUlFEoA0AArlBs3blR1dXWXbXl5eTp8+LCuvPLKXo119HSDsgurPBlPUvs5ldmFVSqsbOi2ZMgrr7yi3//+9zp79qzCw8MlSaNHj9YTTzyh9PR0RUVFqaKiQsuWLdOhQ4ckSa+++qqrUHYuiZ3vuNKbkujv7++6LV90dLSioqJcF66MGTNGV155pSZMmKCIiAiP/24AbxQdHa158+YpMTFRa9eu1dmzZ3Xo0CElJCTIYrEYHQ8ABoQBdcj7/vvv15tvvilJuuuuu5SVlSVJWrx4sZYsWdJl39WrV2vJkiUqLCzUuHHj9Nxzz+mrr75yzRb+4PEXlD9ksuuK7pbKItXtelfNpflqO98gS3CYghKvUfjMf5Nf2DflqjZ7peo+e0uSNOLGJ+RoblLD3o9kbzgj/+GxGpb5iIYkXq37pl+hvz/+fZWUlPT4WToydy6JR48eVUlJib744gt98cUXkiSLxSJ/f/9LLonDhg3rUhI7r5NISQT61q233qoPPvhAra2t8vMbUP8fBwBDDZhCabPZFBUVpYaGBkVGRio/P1+xsbGy2+1KSUnR4cOHXfuuWbNGCxcu1LejT5o0SXl5eZKk5Dv+l5oTZ0mSzh/7QpVrfiO1tXZ7X0vIMI2873fyH9p+j+TOhdJvaLTstae67G8KCNLon/xNcVHDlPvrW3X+/PkeP4/FYpHT6bxgSewQEhLS7d7NnddJpCQCA8fzzz+vxYsX69NPP2UtSgDoZMD8F/ujjz5SQ0ODpPZZgJEjRyojI0ObNm1SQUGB9u/fr8mTJ6utrU1PPvmkq0zefvvteuCBB7R+/Xq98sorrvGqz7VoiCRHq01V65a3l0mzRUNn3qOAUUmyFeeqfs97ams8q5oNr2nkHUu7ZbLXnlJY+kIFjh6v2ux/qLWySM6W82o6uE0nAr+v8y1t3V4jSaGhoRo1apRGjx7tKol/+tOfVF9f79rHz89Pd999t/70pz9pyJAhHvxNAugrs2a1/yd1x44dFEoA6MRsdIAOHYe3JWnhwoVd/u78/N69e1VWViap/dymlStX6sYbb9TLL7+s9PT0buPaivbL0VQnSbImXK3AuIky+QUoaNy1soSPbN/n+D61fb1PZ0FJ6RqW8YCCk6YrfMbtru2tZ0/KZDLphoX3KjS063mUJpNJv/nNb1RQUKAtW7Zo5cqVevHFFxUUFNRlP4vF4prFBDA4XHfddZLav4cAAN8YEIWyoaFB69atkyQNHz5cc+fOlSQtWLDAddL722+/LafTqePHj7teN2XKFPn7+7t+njFjRrexW2tOuB7bju/V6ZW/dP1pqzv99TNOtVaXd3utNS7V9dgc9M1dMRzNjZKkl377e61YscK13WQyyel0druwSJI+/PBDbdmyRX/5y180ceJENTc36+9//7sefPDBC/5eAAwsAQEBCgwMVEFBgdFRAGBAGRCHvNeuXeta462mpqZLSexQUlKiXbt2ddlmMpk8lsHZauu2zWz95lC0ydSpe389qxjgZ5bZ/M32X/ziF0pKStKcOXO6jXXttddKkubMmaO5c+cqMTFRUvv5oDabTVar1SOfA0DfioiI0IkTJy6+IwD4kAFRKN96661L2i8rK0v33Xef6+f9+/erra3NNYv57cIpSf7DR7seh6RmKuKmn3fbx9Fqk9m/d4XOJClhRIj2diqUVqtVjzzySJf9zp8/3+1wd+ci7HQ6VV9fT6EEBokrrrhCu3fvNjoGAAwohhfK6upqbdy4UVL7xSzLli3r8nxLS4uefvppSdK7776r5cuXKy4uTmVlZaqoqND999+ve+65R+vXr+/yJT9iSICaJVkTJsscHC5HU50aD2yROWiIghImy+l0yF53Ws3lh9RaWaSYR17rVe74EcEKCfTTsGHDXNs++eQTzZo1S1arVWlpaQoPD9fo0aN177336tprr9WoUaNUVlamP/zhD67XxMXFsXA4MIikpaVp586dOnnypEaNGmV0HAAYEAwvlKtXr5bdbpck3XDDDXrssce67fPmm28qNzdXp06d0rZt27RixQrXskGrVq3SqlWrJLV/0efnt9+3e3x0mPLNJinAqojvP6nKNcuktlY15HyghpwPuoxvCevd7QJNJmlOcvtrZsyYocDAQDU3NysnJ0fz58+XJG3dulUZGRk6e/asXn311R7H8ff31x//+EePHroH0LfS09P1+uuva8uWLbrnnnuMjgMAA4LhF+V0Ptx9yy239LjPzTff7HqclZWlBQsW6J133tGECRMUEBCg8ePHa9WqVcrMzHTtN2dirGtR86Cx0zTqgeUKmThHltAIyewnc1CY/KMSFTrtVkXe1rtbOzqd0r3p8ZLaz6dau3atJk+e3O3QttS+wPns2bM1atQo+fv7KygoSElJSXr44Yf1xRdfXPAzAxiYOr5ndu7caXASABg4BszC5r3hdDp7nNVLT0/Xnj17JEn79u3T/97Xop3Hq13F0hMsZpOuSxzhupc3AN9jsVj0ve99Tzt27DA6CgAMCIbPUF6O7Oxs3X333Vq/fr1KSkqUl5enn/70p64ymZKSokmTJmnZbWnyM3v2cLKf2aRlt6V5dEwAg0toaKiKi4uNjgEAA8agnKHctm1bj0vzSO1f9Bs2bHAtcp6VU6pn1+R77L3/a0Ga7pwW77HxAAw+EyZMUFFR0QVvvQoAvmZQzlAmJibq3nvv1dixYxUcHKzAwECNGzdOP/7xj5WXl9fljjl3TYvXL25I9sj7PnNDCmUSgJKTk2Wz2VwXFAKArxuUM5SXIyunVIs/PCi7w9mrcyotZpP8zCY9f8tEyiQASdLzzz+vxYsX69NPP+We3gCgQTpDeTnumhavTT+fresSR0hqL4rfpeP56xJHaNPPZ1MmAbjMmjVLkrR9+3aDkwDAwOAzM5SdHT3doJV7SrX1SKVKq5vU+RdgUvui5XOSo3RverzGRYUaFRPAANXS0qLAwEAtWLBA7733ntFxAMBwPlkoO2tstqu4ulEtdocC/MxKGBGikEDD13sHMMBZrVYlJSW5bqYAAL7M5wslAFyO2NhYNTU1qaamxugoAGA4nzmHEgA8KSEhQXV1dUbHAIABgUIJAJchNTVVDodDFRUVRkcBAMNRKAHgMnSsd7tlyxaDkwCA8SiUAHAZMjMzJUm7du0yOAkAGI9CCQCXIS4uTmazmau8AUAUSgC4bGFhYSouLjY6BgAYjkIJAJcpJiZGZ86cMToGABiOQgkAlyk5OVk2m012u93oKABgKAolAFymyZMnS5J2795tcBIAMBaFEgAu0+zZsyVJ27dvNzgJABiLQgkAl2nGjBmSpH379hmcBACMRaEEgMsUEBCgwMBAFRQUGB0FAAxFoQQAN0RERHD7RQA+j0IJAG5ISEhQXV2d0TEAwFAUSgBwQ2pqqhwOB7OUAHwahRIA3NBxYc6WLVsMTgIAxqFQAoAbMjMzJUk7d+40OAkAGIdCCQBuiI2Nldls1oEDB4yOAgCGoVACgJvCwsJUVFRkdAwAMAyFEgDcFBMTo6qqKqNjAIBhKJQA4Kbk5GTZbDbZ7XajowCAISiUAOCmKVOmSJJ2795tcBIAMAaFEgDcNHv2bEnS9u3bDU4CAMagUAKAm9LT0yVJe/fuNTgJABiDQgkAbgoICJDVatWRI0eMjgIAhqBQAoAHjBgxgtsvAvBZFEoA8IAxY8aorq7O6BgAYAgKJQB4QGpqqhwOB7OUAHwShRIAPKDjwpxNmzYZnAQA+h+FEgA8IDMzUxJrUQLwTRRKAPCA2NhYmc1mHThwwOgoANDvKJQA4CFhYWEqKioyOgYA9DsKJQB4SExMjKqqqoyOAQD9jkIJAB6SnJwsm80mu91udBQA6FcUSgDwkKlTp0riwhwAvodCCQAeMnv2bEnS9u3bDU4CAP2LQgkAHtKxFuXevXsNTgIA/YtCCQAe4u/vL6vVqiNHjhgdBQD6FYUSADwoIiJCJ06cMDoGAPQrCiUAeFBCQoLq6+uNjgEA/YpCCQAelJqaKofDoYqKCqOjAEC/oVACgAfNmDFDkrRp0yaDkwBA/6FQAoAHzZ07VxJrUQLwLRRKAPCg2NhYmc1m5efnGx0FAPoNhRIAPCwsLEzFxcVGxwCAfkOhBAAPi4mJUVVVldExAKDfUCgBwMNSUlJks9lkt9uNjgIA/YJCCQAeNmXKFElcmAPAd1AoAcDDMjIyJEnbtm0zNAcA9BcKJQB4WHp6uiRp3759BicBgP5BoQQAD/Pz85PValVBQYHRUQCgX1AoAaAPREREcPtFAD6DQgkAfSAhIUH19fVGxwCAfkGhBIA+kJaWJofDofLycqOjAECfo1ACQB/ouDBny5YtBicBgL5HoQSAPjBv3jxJ0q5duwxOAgB9j0IJAH0gJiZGZrNZBw4cMDoKAPQ5CiUA9JGwsDAVFxcbHQMA+hyFEgD6yOjRo1VVVWV0DADocxRKAOgjycnJstlsamlpMToKAPQpCiUA9JGpU6dKknbv3m1wEgDoWxRKAOgjs2fPliTt2LHD4CQA0LcolADQRzrWoty7d6/BSQCgb1EoAaCP+Pn5yWq16siRI0ZHAYA+RaEEgD4UERGhiooKo2MAQJ+iUAJAHxozZozq6+uNjgEAfYpCCQB9KDU1VQ6HQ+Xl5UZHAYA+Q6EEgD503XXXSZI2b95scBIA6DsUSgDoQ3PnzpXEWpQAvBuFEgD6UExMjMxmsw4cOGB0FADoMxRKAOhj4eHhKioqMjoGAPQZCiUA9LGYmBhVV1cbHQMA+gyFEgD6WEpKimw2m1paWoyOAgB9gkIJAH1sypQpkrgwB4D3olACQB+bPXu2JGnHjh0GJwGAvkGhBIA+lp6eLknau3evwUkAoG9QKAGgj/n5+clqterIkSNGRwGAPkGhBIB+EBkZqYqKCqNjAECfoFACQD9ISEhQfX290TEAoE9QKAGgH6SlpcnhcKi8vNzoKADgcRRKAOgHM2bMkCRt3rzZ4CQA4HkUSgDoB3PnzpXEWpQAvBOFEgD6QUxMjMxms/Lz842OAgAeR6EEgH4SHh6u4uJio2MAgMdRKAGgn4wePVpVVVVGxwAAj6NQAkA/SU5OVnNzs1paWoyOAgAeRaEEgH4yZcoUSVyYA8D7UCgBoJ9kZGRIkrZt22ZoDgDwNAolAPST6dOnS5L2799vcBIA8CwKJQD0Ez8/P1mtVhUUFBgdBQA8ikIJAP0oMjJSJ0+eNDoGAHgUhRIA+lFCQoLq6+uNjgEAHkWhBIB+lJaWJofDofLycqOjAIDHUCgBoB/NmDFDkrR582aDkwCA51AoAaAfzZs3T5K0a9cug5MAgOdQKAGgH0VHR8tsNuvAgQNGRwEAj6FQAkA/Cw8PV3FxsdExAMBjKJQA0M9Gjx6tqqoqo2MAgMdQKAGgnyUnJ6u5uVktLS1GRwEAj6BQAkA/u+aaayRJO3fuNDgJAHgGhRIA+tmsWbMkSTt27DA4CQB4BoUSAPrZ9OnTJUn79+83OAkAeAaFEgD6mZ+fn6xWqwoKCoyOAgAeQaEEAANERkbq5MmTRscAAI+gUAKAAcaMGaP6+nqjYwCAR1AoAcAAqampcjgcKisrMzoKALiNQgkABrjuuuskSZs3bzY4CQC4j0IJAAbIzMyUJO3evdvgJADgPgolABggOjpaZrNZBw4cMDoKALiNQgkABgkPD1dxcbHRMQDAbRRKADDI6NGjVVVVZXQMAHAbhRIADJKSkqLm5ma1tLQYHQUA3EKhBACDTJ06VZK0c+dOg5MAgHsolABgkNmzZ0uSduzYYXASAHAPhRIADHLttddKkvbt22dwEgBwD4USAAzi5+cnq9WqI0eOGB0FANxCoQQAA0VGRqqiosLoGADgFgolABhozJgxamhoMDoGALiFQgkABkpLS5PD4VBpaanRUQDgslEoAcBAM2bMkCRt3rzZ4CQAcPkolABgoMzMTEnSnj17DE4CAJePQgkABoqOjpbFYlF+fr7RUQDgslEoAcBgYWFhKikpMToGAFw2CiUAGGz06NGqqqoyOgYAXDYKJQAYLCUlRc3NzWppaTE6CgBcFgolABhs6tSpkqSdO3canAQALg+FEgAMlpGRIUnavn27sUEA4DJRKAHAYNOmTZMk7d+/3+AkAHB5KJQAYDA/Pz9ZrVYdOXLE6CgAcFkolAAwAERGRqqiosLoGABwWSiUADAAjBkzRg0NDUbHAIDLQqEEgAHgqquuksPhUGlpqdFRAKDXKJQAMACkp6dLkjZv3mxwEgDoPQolAAwAmZmZkqTdu3cbnAQAeo9CCQADQHR0tCwWiw4cOGB0FADoNQolAAwQ4eHhKi4uNjoGAPQahRIABojRo0erurra6BgA0GsUSgAYIJKTk9Xc3KyWlhajowBAr1AoAWCAmDp1qiTps88+MzgJAPSOn9EBAACS0+nUVVddJUlasWKF1q1bp3PnzumVV15RQECAwekA4LuZnE6n0+gQAODLXnnlFf3nf/5nlzvlmEwmmc1m1dTUKCwszMB0AHBxHPIGAIMFBQV1u+2iyWTS7NmzKZMABgUKJQAY7Ec/+pH+9V//VRaLxbXN6XTqjjvuMDAVAFw6DnkDwABQWVmp8ePHq6amRlL7DGVFRYWio6MNTgYAF8cMJQAMAFFRUXrzzTddP1999dWUSQCDBoUSAAaIG2+8UfPnz5ckpaSkGJwGAC4dywYBwADy5ptvKjo6WpOnpetgRZ1a7A4F+JmVMCJEIYF8ZQMYmDiHEgAGiKOnG7RyT6ne2LRXzpDhkkyu50yS4ocHa05KlO6ZHq+kkaGG5QSAb6NQAoDBymqatOj9fGUXVsliNqnNceGv5Y7nrx8XoWW3pSlueHA/JgWAnlEoAcBAWTmlWvzhQdkdzu8skt9mMZvkZzZp6S0Tdde0+D5MCAAXR6EEAIP8cetR/X7DEbfH+cUNyXpsTpIHEgHA5eEqbwAwQFZOqUfKpCT9fsMRvZ1T6pGxAOByUCgB4BI8+uijMplMrj8vvfTSZY9VVtOkxR8e9GA66bkPD6qspsn1c25urpYsWaIlS5Zo27Zt3fYvLi7WU089pfT0dAUGBro+15IlSzyaC4BvoFACwEW0trZq9erVXbZlZWVd9niL3s+XvRfnS14Ku8OpRe/nu37Ozc3V0qVLtXTp0h4LZW5urpYvX649e/aopaXFo1kA+B4KJQBcxMaNG1VdXd1lW15eng4fPtzrsY6eblB2YVWvLsC5FG0Op7ILq1RY2XBJ+4eEhGj+/PlavHixfvCDH3g0CwDfQ6EEgIvoPBt511139bi9w+rVq5Wamiqr1arU1FS98847WrJkieuQ8jPLXpHF/M36ki2VRTrzwW9V/up9KvntrSr/4/2q/vgV2euruoxbm71SJS/dpJKXbtK5LzeqPucDnfi/j6jkd7eq4q+P6Xxxnixmk/6xu1QJCQl68MEHXa9dunRpt0Pa8+fP14YNG7RkyRJdeeWVnvpVAfBRFEoA+A42m01r166VJEVGRmrFihXy82u/Y823C+WaNWt0xx136ODBg2pubtbBgwd15513ul4vSYdO1btmJ88f+0In33hKTYd2qK3xrOSwq+1cjc59uUGn3vi5WmtP9ZipbufbOrv5z7LXnpTa7Go9U6wza15QS1ODth6p9PwvAQAugkIJAN/ho48+UkND+2HkW2+9VSNHjlRGRoYkqaCgQPv375cktbW16cknn1THSmy333671q1bp8cff1x5eXmu8arPtZ+v6Gi1qWrdcqmtVTJbNHTW/Yq689cKm/7D9vEaz6pmw2s9ZrLXnlJY+kJF/vBX8o8aI0lytpxX08FtKq1u0pursrRo0SLX/g8++KCys7OVnZ2thx56yIO/HQBoR6EEgO/QeRZy4cKFXf7u/PzevXtVVlYmSYqOjtbKlSt144036uWXX1Z6enq3cW1F++VoqpMkWROuVmDcRJn8AhQ07lpZwke273N8n9q+3qezoKR0Dct4QMFJ0xU+43bX9tazJ+WUNDxhvJKSvlmXMj4+XjNnztTMmTMVH88i6AA8j0IJABfQ0NCgdevWSZKGDx+uuXPnSpIWLFggi8UiSXr77bfldDp1/Phx1+umTJkif39/188zZszoNnZrzQnXY9vxvTq98peuP211p79+xqnW6vJur7XGpboem4PCXI8dzY2SpBa7o7cfFQDc4md0AAAYqNauXSubzSZJqqmp6VISO5SUlGjXrl1dtplMpm77XS5nq63bNrN1SKf36jQv8PXh9gA/5goA9C8KJQBcwFtvvXVJ+2VlZem+++5z/bx//361tbW5ZjG/XTglyX/4aNfjkNRMRdz08277OFptMvtbe5XZJClhRIj2mr8plQ4HM5YA+haFEgB6UF1drY0bN0qSQkNDtWzZsi7Pt7S06Omnn5Ykvfvuu1q+fLni4uJUVlamiooK3X///brnnnu0fv167d692/W6EUMC1CzJmjBZ5uBwOZrq1Hhgi8xBQxSUMFlOp0P2utNqLj+k1soixTzS84U5FxI/IlghgX4aNmyYa9snn3yiWbNmyWq1Ki0tTeHh4Tpz5oy2b98uqf3iog5fffWVaxH32bNnKzIyslfvD8A3USgBoAerV6+W3W6XJN1www167LHHuu3z5ptvKjc3V6dOndK2bdu0YsUKLVy4UE6nU6tWrdKqVaskSWlpacrPb7+LzfjoMOWbTVKAVRHff1KVa5ZJba1qyPlADTkfdBnfEhbVq8wmkzQnuf01M2bMUGBgoJqbm5WTk6P58+dLkrZu3aqMjAwdPHhQt99+e7cx3n33Xb377rtd9gWAi+FEGwDoQefD3bfcckuP+9x8882ux1lZWVqwYIHeeecdTZgwQQEBARo/frxWrVqlzMxM135zJsa61qEMGjtNox5YrpCJc2QJjZDMfjIHhck/KlGh025V5G3P9iqz0yndm95+FXdERITWrl2ryZMnKygoqFfjAEBvmZwdi6YBANzidDp7vCAnPT1de/bskSTt27dP/3tfi3Yer/bo7RctZpOuSxyhNx+e7rExAeBSMUMJAB6SnZ2tu+++W+vXr1dJSYny8vL005/+1FUmU1JSNGnSJC27LU1+Zs9dCS5JfmaTlt2W5tExAeBSMUMJAB6ybds2zZkzp8fnQkNDtWHDBtci51k5pXp2Tb7H3vu/FqTpzmksWg7AGMxQAoCHJCYm6t5779XYsWMVHByswMBAjRs3Tj/+8Y+Vl5fX5Y45d02L1y9uSPbI+z5zQwplEoChmKEEAANl5ZRq8YcHZXc4e3VOpcVskp/ZpOdvmUiZBGA4CiUAGKyspkmL3s9XdmGVLGbTdxbLjuevHxehZbelKW54cD8mBYCeUSgBYIA4erpBK/eUauuRSpVWN6nzl7NJ7YuWz0mO0r3p8RoXFWpUTADohkIJAANQY7NdxdWNarE7FOBnVsKIEIUEci8KAAMThRIAAABu4SpvAAAAuIVCCQAAALdQKAEAAOAWCiUAAADcQqEEAACAWyiUAAAAcAuFEgAAAG6hUAIAAMAtFEoAAAC4hUIJAAAAt1AoAQAA4BYKJQAAANxCoQQAAIBbKJQAAABwC4USAAAAbqFQAgAAwC0USgAAALiFQgkAAAC3UCgBAADgFgolAAAA3EKhBAAAgFsolAAAAHALhRIAAABuoVACAADALRRKAAAAuIVCCQAAALdQKAEAAOAWCiUAAADcQqEEAACAWyiUAAAAcAuFEgAAAG6hUAIAAMAtFEoAAAC4hUIJAAAAt1AoAQAA4BYKJQAAANxCoQQAAIBb/j93HZ/0yGxRQgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmHUlEQVR4nO3deVhVdeLH8TcXRHYNAcUFFfet1NyzRcUlR80Ux9zTpsmsMUubFFNBDW1atF9NM7abqWhmalqpmRaZOW4omvsCuLDLIshyl98f1k3SSgM5F/i8nseny7nnnPuBJ7if+/2exclms9kQEREREfmTTEYHEBEREZGyTYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKRYVSRERERIpFhVJEREREikWFUkRERESKxcXoACIiImVJTr6ZM2k5FJituLqYqFfNE8/KejuVik2/ASIiIn/geFI2S3fGs/VoMvHpudiues4JCPL1oFuTAEZ0DKJRdW+jYooYxslms9n+eDUREZGKJyE9l7BPY4k+kYqzyQmL9bffMn9+/u6GfkQ+2Io6vh6lmFTEWCqUIiIi1xG1K55Z6w5http+t0j+mrPJCReTExEDWvBQ+6BbmFDEcahQioiI/MobW4/z8qZjxd7PlF6NebJboxJIJOLYdJa3iIjIVaJ2xZdImQR4edMxVuyKL5F9iTgyFUoRESnzxo8fj5OTk/3f/Pnz/9R+EtJzmbXuUIlmm7nuEAnpuUWWxcTEEB4eTnh4ONu2bfvd7QsLC7njjjuKfH95eXklmlGkuFQoRUSkTCssLGTVqlVFlkVFRf2pfYV9Gov5Jo6XvBFmq42wT2OLLIuJiSEiIoKIiIg/LJT/+te/OHDgQIlmEilpKpQiIlKmbd68mbS0tCLL9u/fz5EjR25qP8eTsok+kXpTJ+DcCIvVRvSJVE4kZ9/0tkePHmXOnDm4ubmVaCaRkqZCKSIiZdrVo5EPPfTQdZf/bNWqVbRs2RI3NzdatmzJypUrCQ8Px8nJicY1fMg9+FWR9QuST5Oy9l+cfX0Ucf8ayNk3RpP2+f9hzkotsl5G9FLi5vcjbn4/Lh3YTNautZz776PEvTSQ8+8+SUH8AT764cqxlPXq1WPs2LH2bSMiIuxT2eHh4fblNpuNRx99lPz8fGbOnFmsn5HIraZCKSIiZVZeXh5r1qwBwN/fn4ULF+LicuWeHb8ulKtXr+avf/0rhw4dIj8/n0OHDjF06FD79gBW6y/rXz65mwuLnyH38LdYci6C1YzlUjqXDmwicfHTFGYkXjdT5vcruLjlbcwZF8BipjDlDImr5rAp5uRNfW+LFi0iOjqaO+64g2efffamthUpbSqUIiJSZq1fv57s7CtTyQMHDqR69ercd999wJXp4n379gFgsViYNGkSP18pb8iQIWzYsIGJEyeyf//+a/ZrLcwjdcMCsBSCyZmq94wmYOgcfDoOvrK/nIukb/rPdTOZMxLx6RSK/+AZVAqoD4Ct4DJHv/uCnHwzq1atIiwszL7+2LFjiY6OJjo6mnHjxgFw7tw5nnvuOZydnXn33XftJVnEUalQiohImXX1KGRoaGiR/179/J49e0hISACgRo0aLF26lL59+/Laa6/RqVOna/abd3of1txMANzqtaZynRY4ubji3rADzlWqX1nn1F4sP61zNfdGnbjtvofxaNSRKp2H2JcXXrzAmbQc2rVrR6NGv1ybMigoiK5du9K1a1eCgq5cCH3ChAlkZWXxzDPPcOedd/65H45IKVKhFBGRMik7O5sNGzYA4OvrS/fu3QEYNGgQzs7OAKxYsQKbzcapU6fs27Vt25ZKlSrZv+7cufM1+y5MP2d/nHdqD0lLn7P/s2Qm/fSMjcK0s9ds61anpf2xyd3H/tian0OB2XrN+r+2adMm1q1bR4MGDYiIiPjD9UUcgQqliIiUSWvWrLFfjzE9PZ1KlSrh5OREQEAAFosFgLi4OHbs2FFkOycnpxLLYCu89nqQJjevq17rqrdZmw1Xlz9+2z1//jwAJ0+exMPDw37CztXc3d0ZOHDgnwstcgvooAwRESmTli9ffkPrRUVFMWrUKPvX+/btw2Kx2Ecxf104ASr51rI/9mzZA79+T1+zjrUwD1Olm7ucT71qngCYTL8US6v1j0ctRRydCqWIiJQ5aWlpbN68GQBvb28iIyOLPF9QUMDkyZMB+Pjjj1mwYAF16tQhISGB8+fPM3r0aEaMGMHGjRv54Ycfrtm/W702mDyqYM3NJOfg15jcvXCv1wabzYo5M4n8s4cpTD5NzUevf2LO9XhVdsGz8pW33dtuu82+/Msvv+See+7Bzc2NVq1a0aFDBxYsWHDN9k8//Uupfemll2jSpMkNv7bIreZk+/mUNxERkTJi0aJFjB8/HoDBgwdfc6ccgDZt2hATEwPAV199RWZmJqGhofz6ba9Vq1bExl65k41/v0l4tAwB4PLJXSSvjrxypvd1OPsEUHvCe8CV61Bmbr8yYlqt7yS8br+yj7y4AyQtv3JG9x3dHyBmyxoAUlNTqV27Nvn5+UX2uXXrVvtZ6r929bT35cuXdbFzcSg6hlJERMqcq6e7BwwYcN11+vfvb38cFRXFoEGDWLlyJc2bN8fV1ZVmzZqxbNkyevToYV/P5lzZ/ti9QXsCH16AZ4tuOHv7gckFk7sPlQKC8W4/EP8Hp95U5mB/T/tjPz8/1qxZQ5s2bXB3d7+p/Yg4Io1QiohIhWCz2a57Qk6nTp3YuXMnAH1nLuaI2a9Eb7/obHKiS3A1ljzSscT2KeJoNEIpIiIVQnR0NMOGDWPjxo3ExcWxf/9+nnjiCXuZbNKkCW/+YxAuppI7CxzAxeRE5IOtSnSfIo5GI5QiIlIhbNu2jW7dul33OW9vbzZt2kSnTp2I2hXP1NWxJfa6Lw5qxdD2QSW2PxFHpBFKERGpEIKDgxk5ciQNGjTAw8ODypUr07BhQx5//HH2799vv2POQ+2DmNKrMcA1J/DcrGd7NVGZlApBI5QiIiK/Eh0dTf9J86nS/W+4uLpiuYlLRTqbnHAxOTF7QAuVSakwNEIpIiLyk/j4eIYNG8Y999xD5t7P6XzxK7oE+wFXiuLv+fn5LsHV+Orpe1UmpULRCKWIiFR4WVlZzJs3j1dffRWz2Wy/e81XX31Fjx49OJ6UzdKd8Ww9lkx8Wi5Xv3E6AUHVPOjWOICRnYJoGOBtyPcgYiQVShERqdBOnz5Nu3btyMjIuOY2iKdOnaJ+/fpFluXkmzmTlkOB2Yqri4l61Tztd8ARqaj0GyAiIhWat7c3AQEBXLx4schyZ2dn6tSpc836npVdaFGzSmnFEykTdAyliIhUaH5+fsTExNC7d+8iy2vWrImLi8ZdRG6ECqWIiFR42dnZbNmyBTc3N4KCrpxM06RJE4NTiZQd+uglIiIVXs+ePSksLGTNmjXce++9REZGcueddxodS6TM0Ek5IiJSoS1YsIBnnnmGBx54gDVr1hgdR6RMUqEUEZEK6/z58wQFBeHl5UVqaqqOmRT5k3QMpYiIVFg9evTAYrGwbt06lUmRYlChFBGRCmn27NkcOXKEESNGcM899xgdR6RM05S3iIhUOCdPnqRx48bcdtttJCcnYzJpfEWkOPQbJCIiFU5ISAg2m40vv/xSZVKkBOi3SEREKpRnn32WM2fO8Nhjj9GuXTuj44iUC5ryFhGRCuPgwYPcfvvt1KhRg7Nnz2p0UqSE6DdJREQqBKvVSq9evQDYvHmzyqRICdJvk4iIVAgTJkzgwoULTJkyhRYtWhgdR6Rc0ZS3iIiUe7t27aJDhw7Uq1eP06dPGx1HpNxRoRQRkXLNarUSEBDAxYsXOXHiBPXr1zc6kki5o9sCiIhIuTZq1CjS0tKYM2eOyqTILaIRShERKbe2bdtGt27daNq0KYcPHzY6jki5pUIpIiLlktlsplq1auTm5hIXF0fNmjWNjiRSbmnKW0REyqXQ0FCysrJYuHChyqTILaYRShERKXfWr19P//79adOmDXv37jU6jki5p0IpIiLlSl5eHtWqVcNsNnPhwgV8fX2NjiRS7mnKW0REypV+/fqRm5vLu+++qzIpUko0QikiIuXGihUreOihh+jSpQvbt283Oo5IhaFCKSIi5UJWVhbVq1cHICUlBS8vL4MTiVQcmvIWEZFyoU+fPuTl5bFixQqVSZFSZjI6gIiISHG988477Nixg549e/LXv/7V6DgiFY6mvEVEpExLTU2lZs2auLq6kpqaipubm9GRRCocTXmLiEiZ1rNnTwoLC1mzZo3KpIhBNOUtIiJl1quvvkpMTAwDBw6kb9++RscRqbA05S0iImXSuXPnqFu3Ll5eXqSmpuLiokk3EaNohFJERMqkHj16YLFYWLduncqkiMFUKEVEpMyJiIjg6NGjjBw5knvuucfoOCIVnqa8RUSkTDl58iSNGzfG19eXpKQkTCaNjYgYTb+FIiJSpvTo0QObzcYXX3yhMiniIPSbKCIiZcbkyZOJi4tj/PjxtGvXzug4IvITTXmLiEiZcPDgQW6//XYCAwNJSEjQ6KSIA1GhFBERh2e1WqlduzaJiYnExsbSokULoyOJyFX08U5ERBzehAkTuHDhAlOmTFGZFHFAGqEUERGH9r///Y+OHTtSv359Tp06ZXQcEbkOFUoREXFYVquVgIAALl68yIkTJ6hfv77RkUTkOnRrARERcVijRo0iLS2NuXPnqkyKODCNUIqIiEP6+uuv6dGjB82aNePHH380Oo6I/A4VShERcTgFBQX4+/uTm5tLXFwcNWvWNDqSiPwOTXmLiIjDGTJkCFlZWSxcuFBlUqQM0AiliIg4lPXr19O/f3/atm3Lnj17jI4jIjdAhVJERBxGXl4e1apVw2w2c+HCBXx9fY2OJCI3QFPeIiLiMPr160dubi7vvfeeyqRIGaIRShERcQhRUVEMGzaMu+66i++++87oOCJyE1QoRUTEcFlZWQQEBODk5ERKSgpeXl5GRxKRm6ApbxERMVyfPn3Iz89n5cqVKpMiZZDJ6AAiIlKxvfXWW+zYsYNevXoxZMgQo+OIyJ+gKW8RETFMamoqNWvWxNXVldTUVNzc3IyOJCJ/gqa8RUTEMCEhIRQWFrJ27VqVSZEyTFPeIiJiiFdffZX9+/fz4IMPcv/99xsdR0SKQVPeIiJS6s6ePUu9evXw8vIiNTUVFxdNmImUZRqhFBGRUhcSEoLFYmHdunUqkyLlgAqliIiUqoiICI4ePcqoUaO45557jI4jIiVAU94iIlJqTp48SePGjfH19SUpKQmTSeMaIuWBfpNFRKTU9OjRA5vNxpdffqkyKVKO6LdZRERKxeTJk4mLi+Pxxx/nzjvvNDqOiJQgTXmLiMgtd/DgQW6//XYCAwNJSEjQ6KRIOaNCKSIit5TVaqVWrVokJSVx6NAhmjVrZnQkESlh+ogoIiK31Pjx40lMTOS5555TmRQppzRCKSIit8zOnTvp1KkTwcHBnDx50ug4InKLqFCKiMgtYbVa8ff3JyMjgxMnTlC/fn2jI4nILaLbE4iIyC0xcuRI0tPTmTt3rsqkSDmnEUoRESlxX3/9NT169KBZs2b8+OOPRscRkVtMhVJEREpUQUEB/v7+5ObmEh8fT2BgoNGRROQW05S3iIiUqNDQULKysnjttddUJkUqCI1QiohIiVm3bh0PPPAAbdu2Zc+ePUbHEZFSUuELZU6+mTNpORSYrbi6mKhXzRPPyhq4FRG5Wbm5ufj7+2M2m7lw4QK+vr5GRxKRUlIhm9PxpGyW7oxn69Fk4tNzubpROwFBvh50axLAiI5BNKrubVRMEZEypX///uTm5vLee++pTIpUMBVqhDIhPZewT2OJPpGKs8kJi/W3v/Wfn7+7oR+RD7aijq9HKSYVESlbli9fzvDhw+natSvR0dFGxxGRUlZhCmXUrnhmrTuE2Wr73SL5a84mJ1xMTkQMaMFD7YNuYUIRkbIpKyuLgIAAnJycSElJwcvLy+hIIlLKKsSU9xtbj/PypmN/alvLTwV06upYUi/l82S3RiWcTkSkbOvduzf5+fl8/PHHKpMiFZTJ6AC3WtSu+D9dJn/t5U3HWLErvkT2JSJSHrz11lv88MMP9OrVi9DQUKPjiIhBHK5Qjh8/HicnJ/u/+fPn/+l9JaTnMmvdoRJMBzPXHSIhPdf+dUxMDOHh4YSHh7Nt27Zr1v/mm2946qmnaNeuHTVq1MDV1ZXAwECGDh3KgQMHSjSbiEhpSklJ4cknn8TLy4u1a9caHUdEDORQx1AWFhYSGBhIWlqafdkdd9xBTEzMn9rfqHd38v2ptJs6ZvKPOJuc6BJcjSWPdATggw8+YOzYsQDMmjWL8PDwIuv36dOHjRs3Xndfbm5ufP3113Tu3LnE8omIlJbWrVuzf/9+vvjiC/r06WN0HBExkEONUG7evLlImQTYv38/R44cuel9HU/KJvpEaomWSbhyTGX0iVROJGff8DbBwcFERkayadMm3nnnHfudI/Ly8pg6dWqJ5hMRKQ2vvPIK+/fv58EHH1SZFBHHGqEcPXo0S5YsAeChhx4iKioKuP7I36pVqwgPD+fEiRM0bNiQmTNn8uOPPxIREQHAAxPnEuvVxl4oC5JPk7njY/LjY7FczsbZwwf34HZU6TocFx8/+34zopeSuX05ANX6PoU1P5fsPesxZ6dQybc2t/V4FK/g1ozqWJcPJv6FuLi4634vP2f++uuvueeee3Bx+eX8p7Vr1zJw4EAA3N3dyc3Nve4+REQc0dmzZ6lXrx7e3t6kpKQU+fsmIhWTw4xQ5uXlsWbNGgD8/f1ZuHCh/Y/Uz8XyZ6tXr+avf/0rhw4dIj8/n0OHDjF06FD79gCHE7PsZfLyyd1cWPwMuYe/xZJzEaxmLJfSuXRgE4mLn6YwI/G6mTK/X8HFLW9jzrgAFjOFKWdIWT2Xgtxsth5LvqHvq3v37tf8sW3U6JczxT09PW9oPyIijqJHjx5YLBY+++wzlUkRARyoUK5fv57s7CvTyAMHDqR69ercd999ABw9epR9+/YBYLFYmDRpEj8PrA4ZMoQNGzYwceJE9u/fb99f2qUCAKyFeaRuWACWQjA5U/We0QQMnYNPx8FX9pdzkfRN/7luJnNGIj6dQvEfPINKAfUBsBVcJvfQNuLTclmyLIqwsDD7+mPHjiU6Opro6GjGjRv3m9/rJ598Yn98//3339TPSUTESOHh4Rw7dozRo0fTtWtXo+OIiINwmEJ59Sjkz5eeuPoSFD8/v2fPHhISEgCoUaMGS5cupW/fvrz22mt06tTpmv3mnd6HNTcTALd6ralcpwVOLq64N+yAc5XqV9Y5tRfLT+tczb1RJ26772E8GnWkSuch9uWFFy9gA3zrNSsy2hgUFETXrl3p2rUrQUHXvwj6559/zty5cwHw9fVlzpw5f/zDERFxAMePH2fOnDn4+/vz/vvvGx1HRByIQxTK7OxsNmzYAFwpWd27dwdg0KBBODs7A7BixQpsNhunTp2yb9e2bVsqVapk//p6Z0sXpp+zP847tYekpc/Z/1kyk356xkZh2tlrtnWr09L+2OTuY39szc8BoMBsvanv85NPPuHBBx+koKAALy8v1q9fT926dW9qHyIiRunZsyc2m40vv/wSk8kh3j5ExEE4xMEva9asIS8vD4D09PQiJfFncXFx7Nixo8gyJyenEstgK8y7ZpnJ7Zc7Pjg5XfXH86fpdleXG/+DunjxYh555BEsFgtVq1bl888/1+WCRKTMeOaZZ4iLi2PChAm0bdvW6Dgi4mAcolAuX778htaLiopi1KhR9q/37duHxWKxj2L+unACVPKtZX/s2bIHfv2evmYda2EepkpuN5XZCahXzZM9V31Kt1qvP2L573//m3/84x/YbDYCAgLYtGkTd9xxx029noiIUWJjY1m4cCG1atXi9ddfNzqOiDggwwtlWloamzdvBsDb25vIyMgizxcUFDB58mQAPv74YxYsWECdOnVISEjg/PnzjB49mhEjRrBx40Z++OEH+3bVvFzJB9zqtcHkUQVrbiY5B7/G5O6Fe7022GxWzJlJ5J89TGHyaWo+ev0Tc35L7apuJJ6N4/z58/Zlb7/9NsePH2fChAncfvvtVKlShQULFvDMM88AULlyZebNm0d2djbfffedfTsd2C4ijspqtdKrVy/gyrWCNdUtItdjeKFctWoVZrMZgF69evHkk09es86SJUuIiYkhMTGRbdu2sXDhQkJDQ7HZbCxbtoxly5YB0KpVK2JjYwFoVsOHWJMTuLrh95dJJK+OBEsh2bvWkr2r6C3CnH0CbjK1jUNfraTh1LeKLE1MTCQqKoqoqCi2bt3KfffdV+R2ZPn5+TzyyCPX7s1xLgUqIlLEY489RmJiIlOnTqVZs2ZGxxERB2X4R82rp7sHDBhw3XX69+9vfxwVFcWgQYNYuXIlzZs3x9XVlWbNmrFs2TJ69OhhX69bi9r261C6N2hP4MML8GzRDWdvPzC5YHL3oVJAMN7tB+L/4M3ercaJ/IObb3IbEZGyZefOnbzzzjsEBwczb948o+OIiANzqDvl3CibzXbdE3I6derEzp07Adi7dy+v7i24ZffynnVvNTp27MjFixeLjDBWq1aNxx9/nOnTp+PmdnPHZYqIOAqr1Yq/vz8ZGRmcOnVKV6QQkd9l+AjlnxEdHc2wYcPYuHEjcXFx7N+/nyeeeMJeJps0acIdd9xB5IOtcDGV3JngAC4mJyIfbEXDhg35+uuv8fT0tB9T5OHhQW5uLnPnzsXT05P27duzbt26En19EZHSMGLECNLT05k7d67KpIj8oTJZKK1WK1FRUfTp04d69erRunVr3nzzTeDKiT0ffPABJpOJOr4eRAxoUaKvPXtAC+r4egBwxx138Pnnn9tvPfb888+Tm5tLVFQUt99+O3v27OGBBx7Ay8uL4cOH/+Z9v0VEHMnXX39NVFQUzZs3Z9q0aUbHEZEyoExOecfHxzN9+nR27NjBhQsXsFgs1KlTh549e/Lss89Sv379Iuu/sfU4L286VuzXfbZXE57o1vCa5evXr2f69Ol88cUX1KxZ07780qVLRERE8OGHH5KcfOXe33Xr1uWxxx5j8uTJuLq6FjuTiEhJKigowN/fn9zcXBISEqhRo4bRkUSkDCiThfLPiNoVz6x1hzBbbTd1TKWzyQkXkxOzB7RgaPvr307xRsTExDB9+nS++uorCgoKcHZ2plOnTkRERBQ5mUhExEj9+/dn/fr1/N///R//+Mc/jI4jImVEhSmUAAnpuYR9Gkv0iVScTU6/Wyx/fv7uhn5EPtjKPs1dXFarlffff59XXnmFw4cPA+Dj48PgwYOJjIzUaICIGGbdunU88MAD3HnnnezevdvoOCJShlSoQvmz40nZLN0Zz9ZjycSn5XL1D8AJCKrmQbfGAYzsFETDAO9bliMtLY2ZM2cSFRVFeno6AA0bNmTixIk88cQTuoCwiJSa3Nxc/P39MZvNJCYmcttttxkdSUTKkApZKK+Wk2/mTFoOBWYrri4m6lXzxLNy6V/v/fvvv2fGjBl8++23mM1mXFxcuPfee3nhhRfo2LFjqecRkYqle/fubN26lQ8++IAxY8YYHUdEypgKXygdjdls5t///jevv/46J0+eBMDX15fhw4cTERGBr6+vwQlFpLxZunQpI0eO5O677+bbb781Oo6IlEEqlA7s/PnzTJ8+ndWrV5OVlQVA8+bNmTJlCmPGjNGUuIgUW1ZWFgEBAZhMJpKTk/Hy8jI6koiUQWokDqxmzZq8//77ZGZmsmnTJrp06cKRI0cYN24cHh4e9OvXjwMHDhgdU0TKsF69epGfn8+SJUtUJkXkT9MIZRlTUFDASy+9xKJFi0hISACgevXqjBkzhhkzZugNQURu2KJFixg/fjy9e/fmyy+/NDqOiJRhKpRl2OnTp5k2bRqfffYZubm5ODk50bp1a8LCwggNDTU6nog4sOTkZGrXrk3lypVJSUnBzc3N6EgiUoZpyrsMq1+/PlFRUeTk5LB69Wratm1LTEwMQ4YMwcPDgyFDhthP7BERuVrPnj0pLCxk1apVKpMiUmwqlOXEgw8+yO7du7l06RJhYWFUqVKFVatW0bBhQ+rUqcPs2bMpKCgwOqaIOICXX36ZAwcOMGjQIHr37m10HBEpBzTlXY4dOnSIsLAwNm7cSH5+PiaTiQ4dOjBz5kzuv/9+o+OJiAHi4+MJDg7G29ublJQUXFxK/7q7IlL+aISyHGvRogVr164lNzeXDz/8kObNm7Nz50769u2Lt7c3o0eP5uzZs0bHFJFSFBISgsVi4bPPPlOZFJESo0JZAZhMJkaNGkVsbCzp6ek89dRTuLm5sWTJEurUqUNwcDCvvPIKZrPZ6KgicgvNnDmT48ePM2bMGLp27Wp0HBEpRzTlXYHt2rWL559/nq1bt1JYWIiLiwt33XUXc+fO1ZuNSDlz/PhxmjZtSrVq1UhMTNSNEUSkRKlQClarlUWLFrFw4UKOHTsGQNWqVRk6dChz587Fz8/P4IQiUlx169YlISGB3bt307ZtW6PjiEg5o4+ogslk4vHHH+fo0aMkJSXx6KOPAlcueuzv70/Tpk1ZtGgRVqvV4KQi8mc8/fTTxMfH88QTT6hMisgtoRFK+U3btm1j1qxZbN++HYvFgqurK926dSMyMlJvSiJlxIEDB2jdujU1a9YkPj5eU90ickuoUMofMpvNLFiwgDfffJMzZ84A4O/vz8iRIwkPD8fHx8fYgCJyXVarlVq1apGUlMShQ4do1qyZ0ZFEpJzSR1X5Qy4uLjz77LOcPn2auLg4RowYweXLl1mwYAFVq1bl9ttvZ+nSpZoSF3Ewf//730lMTGTq1KkqkyJyS2mEUv609evXM2fOHHbv3o3VasXNzY0+ffoQGRmpNy8Rg+3YsYMuXbrQoEEDTpw4YXQcESnnVCil2PLy8pg/fz7vvPMO586dAyAwMJBHHnmEsLAw3N3dDU4oUrGYzWaqV69OZmYmJ0+epG7dukZHEpFyTlPeUmxubm6Eh4dz9uxZjhw5wqBBg8jIyGDu3Ll4eXnRvn171q1bZ3RMkQpj5MiRpKenM2fOHJVJESkVGqGUW2bFihXMmzePAwcOYLPZ8PT0ZMCAAcybN09vciK3yJYtWwgJCaFFixYcPHjQ6DgiUkGoUMotl52dzezZs/nwww9JTk4Grlxk+bHHHmPy5Mm4uroanFCkfCgoKMDPz4/Lly+TkJBAjRo1jI4kIhWEprzllvP29uall14iKSmJffv20bdvXy5cuEBYWBgeHh507dqVLVu2GB1TpMwbNGgQ2dnZLFiwQGVSREqVRijFEFarlffff59XXnmFw4cPA+Dj40NoaCgvvPCC3gxFbtLatWsZOHAgd955J7t37zY6johUMCqUYri0tDRmzpxJVFQU6enpADRs2JCJEyfyxBNP6M4eIn8gNzcXf39/zGYzSUlJVK1a1ehIIlLB6J1aDFetWjX+/e9/k5aWxvbt2+nWrRtnzpxh4sSJVK5cmZCQEHbu3Gl0TBGH9Ze//IXc3FzeeustlUkRMYRGKMUhmc1m3njjDd544w1OnjwJgK+vL8OHDyciIgJfX1+DE4o4ho8++ohRo0Zx99138+233xodR0QqKBVKcXjnz59n+vTprF69mqysLACaN2/OlClTGDNmjKbEpcLKyMigRo0amEwmkpOT8fLyMjqSiFRQeicWh1ezZk3ef/99MjMz2bRpE126dOHIkSOMGzcODw8P+vXrR2xsrNExRUpd7969yc/PZ8mSJSqTImIojVBKmVRQUMBLL73EokWLSEhIAKB69eqMGTOGGTNm6M1Vyr1FixYxfvx4+vTpwxdffGF0HBGp4FQopcw7ffo006ZN47PPPiM3NxcnJydat25NWFgYoaGhRscTKXHJycnUrl2bypUrk5aWppsDiIjhNOUtZV79+vWJiooiJyeHTz75hLZt2xITE8OQIUPw8PBgyJAhnDhxwuiYIiUmJCSEwsJCVq1apTIpIg5BhVLKlUGDBrF7924uXbrEtGnTqFKlCqtWraJRo0bUqVOH2bNnk5+fb3RMkT/tpZdeIjY2lsGDB9O7d2+j44iIAJrylgrg0KFDhIWFsXHjRvLz8zGZTHTo0IGZM2dy//33Gx1P5IbFx8cTHByMt7c3KSkpuLi4GB1JRATQCKVUAC1atGDt2rXk5uby4Ycf0rx5c3bu3Enfvn3x8fFh9OjRnD171uiYIn8oJCQEi8XCZ599pjIpIg5FhVIqDJPJxKhRo4iNjSU9PZ2nnnqKypUrs2TJEurUqUNwcDCvvPIKZrPZ6Kgi15gxYwbHjx/n4YcfpmvXrkbHEREpQlPeUuHt2rWL559/nq1bt1JYWIiLiwt33XUXc+fO1Ru3OITjx4/TtGlT/Pz8uHDhgi7mLyIOR4VS5CdWq5X//ve/vPbaaxw7dgyAqlWrMnToUObOnYufn5/BCaWiCgoK4uzZs+zdu5fWrVsbHUdE5Br6mCvyE5PJxIQJEzh69ChJSUk8+uij2Gw2Fi1ahL+/P02bNmXRokVYrVajo0oF8tRTT5GQkMCTTz6pMikiDksjlCJ/YNu2bcyaNYvt27djsVhwdXWlW7duREZG0rZtW6PjSTl24MABWrduTa1atYiLi9NUt4g4LBVKkRtkNptZsGABb775JmfOnAHA39+fkSNHEh4ejo+Pj7EBpVyxWq0EBgaSkpLC4cOHadKkidGRRER+kz7uitwgFxcXnn32WU6fPs2ZM2cYMWIEly9fZsGCBVStWpXbb7+dpUuXakpcSsSjjz5KcnIy06ZNU5kUEYenEUqRYlq/fj1z5sxh9+7dWK1W3Nzc6NOnD5GRkTRr1szoeFIGff/999x11100aNBAtw0VkTJBhVKkhOTl5TF//nzeeecdzp07B0BgYCCPPPIIYWFhuLu7G5xQygKz2UxAQABZWVmcPHmSunXrGh1JROQPacpbpIS4ubkRHh7O2bNnOXLkCIMGDSIjI4O5c+fi5eVF+/btWbdundExxcENHz6cixcv8sILL6hMikiZoRFKkVtsxYoVzJs3jwMHDmCz2fD09KR///7Mnz9fhUGK2Lx5M7169aJly5bExsYaHUdE5IapUIqUkuzsbGbPns2HH35IcnIycOWC1ePHj2fy5Mm4uroanFCMVFBQgJ+fH5cvXyYhIYEaNWoYHUlE5IZpyluklHh7e/PSSy+RlJTEvn37uP/++0lMTCQsLAwPDw+6du3Kli1bjI4pBnnwwQfJzs7mtddeU5kUkTJHI5QiBrJarbz33nu88sorHDlyBAAfHx8GDx5MZGSkikUFsXbtWgYOHEi7du3YtWuX0XFERG6aCqWIg0hNTWXWrFlERUWRnp4OQMOGDZk4cSJPPPGE7pJSTuXm5uLn54fFYiEpKYmqVasaHUlE5KbpHUrEQfj5+fHvf/+btLQ0vvvuO7p168aZM2eYOHEilStXJiQkhJ07dxodU0pY3759uXz5Mm+//bbKpIiUWRqhFHFgZrOZN954gzfeeIOTJ08C4Ovry/Dhw4mIiMDX19fghFIcH330EaNGjeKee+7hm2++MTqOiMifpkIpUkacP3+e6dOns3r1arKysgBo3rw5U6ZMYcyYMZoSL2MyMjKoUaMGJpOJlJQUPD09jY4kIvKn6R1IpIyoWbMm77//PpmZmWzcuJEuXbpw5MgRxo0bh4eHB/369ePAgQNGx5Qb1KtXL/Lz8/noo49UJkWkzNMIpUgZVlBQwEsvvcSiRYtISEgAoHr16owZM4YZM2bg5eVlcEK5nv/85z9MmDCB+++/n88//9zoOCIixaZCKVJOnDp1irCwMD777DNyc3NxcnKidevWhIWFERoaanQ8+UlycjK1atXCzc2NtLQ0XdBeRMoFTXmLlBPBwcFERUWRk5PDJ598Qtu2bYmJiWHIkCF4eHgwZMgQTpw4YXTMCi8kJASz2czq1atVJkWk3FChFCmHBg0axO7du7l06RLTpk2jSpUqrFq1ikaNGlGnTh1mz55Nfn6+0TErnH/961/ExsYSGhpKz549jY4jIlJiNOUtUkEcOnSIsLAwNm7cSH5+PiaTiQ4dOjBz5kzuv/9+o+OVe/Hx8QQHB+Pj40NycjIuLi5GRxIRKTEaoRSpIFq0aMHatWvJzc1l8eLFNG/enJ07d9K3b1+8vb0ZPXo0Z8+eNTpmudWjRw8sFgvr169XmRSRckeFUqSCMZlMjB49mtjYWNLT0+134lmyZAl16tQhODiYV155BbPZbHTUcuP555/nxIkTjB07li5duhgdR0SkxGnKW0QA2LVrF9OnT2fbtm0UFhbi4uLCXXfdxdy5c+natavR8cqsY8eO0axZM/z8/Lhw4YIuQC8i5ZIKpYgUYbVa+e9//8trr73GsWPHAKhatSpDhw5l7ty5+Pn5GZywbAkKCuLs2bPs3buX1q1bGx1HROSW0EdlESnCZDIxYcIEjh49SlJSEo8++ig2m41Fixbh7+9P06ZNWbRoEVar1eioDu+pp54iISGBf/zjHyqTIlKuaYRSRG7Itm3bmDlzJt9//z0WiwVXV1e6detGZGQkbdu2NTqew4mJiaFt27bUrl2b+Ph4o+OIiNxSKpQiclPMZjOvvvoq//nPfzhz5gwA/v7+jBw5kvDwcHx8fIwN6ACsViuBgYGkpqby448/0qRJE6MjiYjcUpryFpGb4uLiwj//+U9Onz7NmTNnGDFiBJcvX2bBggVUrVqV22+/naVLl1boKfG//e1vJCcnM23aNJVJEakQNEIpIiVi/fr1zJkzh927d2O1WnFzc6NPnz5ERkbSrFkzo+OVmu3bt9O1a1caNmzI8ePHjY4jIlIqVChFpETl5eUxf/583nnnHc6dOwdAYGAgjzzyCNOmTcPDw8PghCUrLy8Pq9WKh4cHZrOZgIAAsrKyOHXqFEFBQUbHExEpFZryFpES5ebmRnh4OGfPnuXIkSMMGjSIjIwM5s6di7e3N+3atWPt2rVGxywxTz31FDVr1mTFihUMHz6cixcvEhkZqTIpIhWKRihFpFSsWLGCefPmceDAAWw2G56envTv35/58+dTt25do+P9aW3btmXfvn32r5s2bcrhw4cNTCQiUvo0QikipWLo0KHExMSQkZHBlClT8PT0JCoqinr16lG3bl3mzZtHQUGB0TFv2unTp4t8nZSUxGeffWZQGhERY2iEUkQMExMTQ1hYGFu2bKGgoABnZ2c6depEREQEPXr0MDreH8rKyqJKlSrXfW7Pnj26PqeIVBgaoRQRw7Ru3ZrPP/+cy5cv8/bbb9OoUSO2b99OSEgIVapUYdy4cSQmJhod8zedOnWqyNfOzs64uroyffp0br/9doNSiYiUPhVKETGcyWTib3/7G4cPHyYlJYXHH38cZ2dn3n//fQIDA2nUqBGvv/56qV/bMiffzKHzmeyLv8ih85nk5JuLPP/jjz8W+fqhhx7ixIkTzJ07FxcXl9KMKiJiKE15i4jD2r59OzNmzCA6Ohqz2YyLiwv33nsvL7zwAh07drwlr3k8KZulO+PZejSZ+PRcrv4D6QQE+XrQrUkAIzoGMfT+e9m3bx+NGzdm2bJl3Hnnnbckk4iIo1OhFBGHZzabeeONN3j99dft08y+vr4MHz6ciIgIfH19r7tdVlYW3t7eODk5/eFrJKTnEvZpLNEnUnE2OWGx/vafxp+fv3x6H20tR/l85Yc39BoiIuWVprxFxOG5uLgwadIkTp48yblz53j44YftJbNatWq0aNGC999/v8iUeGpqKjVr1uSxxx7jjz43R+2KJ2TBN3x/Kg3gd8vk1c971G/NqabDWbE7oZjfoYhI2aYRShEpszZt2kRERAQ//PADVquVypUrExISQmRkJFu3buXpp5/GZrMxdepU5s2bd919vLH1OC9vOlbsLFN6NebJbo2KvR8RkbJIhVJEyryCggJeeuklFi1aRELCldFCZ2dnLBaLfZ2XX36ZyZMnF9kualc8U1fHlliOFwe1Ymh73SFHRCoeTXmLSJkxfvx4nJyc7P/mz58PYL9UT3x8PCdOnKBXr15FyiTAlClT+OCDD+xfJ6TnMmvdoRLNN3PdIRLSc+1fx8TEEB4eTnh4ONu2bbvuNllZWTz33HM0aNCAypUrU716dUaOHMnJkydLNJuIyK2kQikiZUJhYSGrVq0qsiwqKuqa9Ro0aEDjxo1xdna+5rmxY8fy17/+lbS0NMI+jcX8B8dK3iyz1UbYp7+MeMbExBAREUFERMR1C2VWVhZ33303//rXvzh16hQFBQUkJyezdOlS2rdvT2xsyY2eiojcSiqUIlImbN68mbS0tCLL9u/fz5EjR65Z99NPP71mhNLV1RVnZ2dWrVrFnd37EX0i9Q9PvrlZFquN6BOpnEjOvqH1w8PDOXDgAAD33HMPa9as4bHHHgPg4sWLPPLIIyWaT0TkVtExlCJSJowePZolS5YAVy4g/vPo5KxZswgPDy+y7syZM3n//fdJTk6mbt26zJw5kxMnThAREQFAt7H/JC7wXnuhLEg+TeaOj8mPj8VyORtnDx/cg9tRpetwXHz87PvNiF5K5vblAFTr+xTW/Fyy96zHnJ1CJd/a3NbjUbyCWzOqY10+mPgX4uLirvu9zJo1i7CwMKpXr05GRgZOTk6cO3eOwMBAbDYbzZs3txfl3bt36/qWIuLwNEIpIg4vLy+PNWvWAODv78/ChQvtd6L59bT36tWrmTt3LmfPnqWgoIDjx48zatQo+/YA53J+ufTP5ZO7ubD4GXIPf4sl5yJYzVgupXPpwCYSFz9NYcb1b/2Y+f0KLm55G3PGBbCYKUw5Q8rquRTkZrP1WPIffk8HDx4kIyMDgHr16hEYGAiAk5MTnTt3tq8XHR19Qz8jEREjqVCKiMNbv3492dlXppEHDhxI9erVue+++wA4evQo+/btA8BisTBp0iT7dSeHDBnChg0bmDhxIvv377fvL+1SAQDWwjxSNywASyGYnKl6z2gChs7Bp+PgK/vLuUj6pv9cN5M5IxGfTqH4D55BpYD6ANgKLpN7aBvxabksWRZFWFiYff2xY8cSHR1NdHQ048aN48yZM/bnqlevXmTfAQEB9senT5++6Z+XiEhpU6EUEYd39ShkaGhokf9e/fyePXvslw2qUaMGS5cupW/fvrz22mt06tTpmv3mnd6HNTcTALd6ralcpwVOLq64N+yAc5UrJS/v1F4sP61zNfdGnbjtvofxaNSRKp2H2JcXXryADfCt14xGjX65LmVQUBBdu3ala9euBAUFkZOTY3/O1dW1yL6v/vrq9UREHJUKpYg4tOzsbDZs2ABcud1i9+7dARg0aJD9TO4VK1Zgs9nst2UEaNu2LZUqVbJ/ffU08s8K08/ZH+ed2kPS0ufs/yyZST89Y6Mw7ew127rVaWl/bHL3sT+25l8pgAVm6zXbXM3T09P+OD8/v8hzBQUF111PRMRRuRgdQETk96xZs4a8vDwA0tPTi5TEn8XFxbFjx44iy0ry3tq2wrxrlpncvK56ras+m/803e7q8vuf1+vVq2d/nJSUVOS5xMRfjtusX7/+zUQVETGECqWIOLTly5ff0HpRUVGMGjXK/vW+ffuwWCz2UcxfF06ASr617I89W/bAr9/T16xjLczDVMntpjI7AfWqebLH9EupvPo+4wAtW7akSpUqZGZmEhcXx7lz56hVqxY2m40ffvjBvt7dd999U68tImIEFUoRcVhpaWls3rwZAG9vbyIjI4s8X1BQYL+d4scff8yCBQuoU6cOCQkJnD9/ntGjRzNixAg2btxYpKRV83IlH3Cr1waTRxWsuZnkHPwak7sX7vXaYLNZMWcmkX/2MIXJp6n56PVPzPktQb4eFF6+xKVLl+zLPvjgA5KSkhgxYgR33HEHVapUYdy4cSxYsACbzcawYcOYMmUKGzZs4OjRowC0a9dOlwwSkTJB16EUEYe1aNEixo8fD8DgwYOvuVMOQJs2bYiJiQHgq6++IjMzk9DQUH79p61Vq1b2O888MHEusV5tsFhtXD65i+TVkVfO9L4OZ58Aak94D/j1dSgn4XV7CAB5cQdIWn7ljG7Plt1xrdGQi1+99Zvf19atW7nvvvvsd8r5+eLmV6tatSrffvstrVq1+s39iIg4Cp2UIyIO6+rp7gEDBlx3nf79+9sfR0VFMWjQIFauXEnz5s1xdXWlWbNmLFu2jB49etjX69aitv06lO4N2hP48AI8W3TD2dsPTC6Y3H2oFBCMd/uB+D849SZTO3H5wKYbWtPHx4fo6GieffZZ6tevj6urKwEBAQwfPpxdu3apTIpImaERShEpV2w223VPyOnUqRM7d+4EYO/evby6t4DvT6WV6O0XnU1OdAmuxvS7qtCxY0eys7OLjJTWrl2biIgIHn74YUwmfZ4XkfJDf9FEpFyJjo5m2LBhbNy4kbi4OPbv388TTzxhL5NNmjThjjvuIPLBVriYSu5McAAXkxORD7aiadOmbN68mcqVK9vLrYuLC+fPn+eRRx7Bw8ODBx54gEOHDpXo64uIGEWFUkTKFavVSlRUFH369KFevXq0bt2aN998E7hyYs8HH3yAyWSijq8HEQNalOhrzx7Qgjq+HgB06NCBtWvX2s8ynzx5MpcvX+aFF14gICCAdevW0bJlS2rWrMnMmTPtl0YSESmLVChFpFwJDg5m5MiRNGjQAA8PDypXrkzDhg15/PHH2b9/f5E75jzUPojJIY1+Z2837tleTRjaPqjIsl69erFkyRKqV6/O3/72N1xdXQkLCyM+Pp7jx48TGhrKxYsXmTNnDp6ennTu3Jkvv/yyRPKIiJQmHUMpIhWWxWKhb9++fJ8INfpNxIrTTR1T6WxywsXkxOwBLa4pk1f7reM6f7Z8+XLmzZvHwYMHsdls+Pj4MHjwYCIjI6lRo8ZNfU8iIkbQCKWIVEhbtmwhODiYTZs24X5hH19P7kaX4GrAlaL4e35+vktwNb56+t7fLZPwx3ftGTZsGAcOHCA9PZ2JEydSqVIl3n//fQIDA2ncuDH/+c9/rrkwuoiII9EIpYhUKEeOHGHy5Ml8/vnn9mX//Oc/efHFFwE4npTN0p3xbD2WTHxaLlf/gXQCgqp50K1xACM7BdEwwPuW5fz+++95/vnniY6Oxmw2U6lSJXr06MG8efNo3br1LXtdEZE/Q4VSRCoEm83G5MmTee2113BycsJisdifW7JkCSNHjrxmm5x8M2fScigwW3F1MVGvmieelUv3BmNms5nXXnuNN954gzNnzgBQvXp1Hn74YWbMmIGnp2ep5hERuR4VShGpEC5fvkz9+vVJSkq65rnt27fTpUsXA1LdnLi4OKZNm8a6devIycnBycmJtm3bMnPmzN+88LuISGnQMZQiUiG4u7sTGxvLAw88cM1z9evXNyDRzatbty7Lli3j0qVLrFq1itatW7N3714eeOABvLy8GDlyJPHx8UbHFJEKSIVSRCoMf39/MjMzgSsFE8DV1bVMnkk9ePBg9u7dS1ZWFlOmTMHDw4OlS5dSt25dGjRowMKFCzGbzUbHFJEKQoVSRCqM5cuXs23bNu6++25OnjxJ//796dmz5x+ehe3IvLy8eOmll0hOTmbXrl307t2bhIQEnn76adzd3QkJCeF///uf0TFFpJzTMZQiUiFkZWUREBCAyWQiOTkZLy8voyPdMlarlf/85z8sXLiQEydOAODn58fIkSOJiIjAx8fH4IQiUt5ohFJEKoQ+ffqQn5/Phx9+WK7LJIDJZOKJJ57g+PHjnDt3jjFjxpCfn8/ChQupWrUqrVu3ZuXKlUbHFJFyRCOUIlLuvfvuu/ztb3+jZ8+ebNq0yeg4hvn888+JiIhg9+7dWK1W3N3d6devHy+++GKZOTFJRByTCqWIlGvp6ekEBgZSqVIlUlNTcXNzMzqS4XJzc4mMjOTdd98lMTERgKCgICZMmMDkyZNxcSnda22KSNmnKW8RKdd69uxJQUEBK1asUJn8iYeHB3PnzuXChQscOHCAv/zlLyQmJjJ16lTc3Ny49957+e6774yOKSJliAqliJRbr7/+Onv37mXAgAH85S9/MTqOQ2rVqhXr16/n8uXLvP322zRq1Ihvv/2Wu+++G19fX5544gnS09ONjikiDk5T3iJSLiUmJlKnTh08PDxISUnB1dXV6EhlRnJyMs8//zwrV660X7ezRYsW/POf/2TkyJGYTBqLEJGi9FdBRMqlkJAQzGYzn376qcrkTQoICOCtt94iIyODzZs306VLFw4fPsyYMWPw9PTkwQcf5MiRI0bHFBEHokIpIuXO/PnzOXToEEOHDqV79+5GxynTQkJC2L59O5cvXyYiIoJq1aqxZs0amjVrRu3atZk9ezb5+flGxxQRg2nKW0TKlfj4eIKDg/Hx8SE5OVlnLN8CR48eZdq0aXzxxRfk5eVhMpno1KkTs2fPpkePHkbHExEDaIRSRMqVkJAQLBYLGzZsUJm8RZo0acLq1avJycnhww8/pFmzZnz//feEhIRQtWpVHn30UZKTk42OKSKlSIVSRMqNmTNncvz4cR5++GE6d+5sdJxyz2QyMWrUKA4ePEhaWhpPPPEEzs7OvPPOO1SvXp2mTZvy1ltvYbVajY4qIreYprxFpFw4fvw4TZs2pVq1aiQmJupMZANFR0czY8YMvvvuOywWC66urvTs2ZN58+bRqlUro+OJyC2gQiki5UK9evWIj49n9+7dtG3b1ug4ApjNZl599VXefPNN4uLiAKhRowbjxo1j+vTpeHh4GJxQREqKPsKLSJk3efJk4uLiePzxx1UmHYiLiwv//Oc/OXPmDKdOnWLo0KFkZWURGRmJt7c3HTp0YMOGDUbHFJESoBFKESnTDh06RKtWrQgMDCQhIUFT3WXAihUrmD9/Pvv378dms+Hl5cWgQYOIjIykVq1aRscTkT9BhVJEyiyr1Urt2rVJTEwkNjaWFi1aGB1JbkJWVhbh4eEsWbKE1NRUABo0aMCkSZOYMGGCPhyIlCH6bRWRMuvJJ5/kwoULTJkyRWWyDPLx8eHVV18lJSWFH374gZCQEOLi4vjHP/6Bm5sbvXv3Zvfu3UbHFJEboBFKESmTdu/eTYcOHQgKCuLMmTNGx5ESYjabeeONN3j99dc5deoUAP7+/owZM4ZZs2bh5eVlcEIRuR4VShEpc6xWKzVq1CAtLY1jx47RoEEDoyPJLRAfH8/06dP59NNPycnJwcnJidatWzN9+nQGDx5sdDwRuYqmvEWkzBk3bhwpKSnMmDFDZbIcCwoKYsmSJVy6dIk1a9bQtm1bYmJiCA0NxdPTk2HDhtkvRyQixtIIpYiUKdu3b6dr1640atSIY8eOGR1HSllOTg5z587l/fffJykpCbhyDdInn3ySp556SrfbFDGICqWIlBlms5mAgACysrI4ffo0derUMTqSGGjfvn1Mnz6dr776isLCQlxcXLj77ruZO3cuXbp0MTqeSIWiKW8RKTOGDx/OxYsXiYyMVJkU2rRpw+eff05eXh5vvvkm9evXZ+vWrdx1111Uq1aNiRMnkpGRYXRMkQpBI5QiUiZs2bKFkJAQWrZsSWxsrNFxxEElJiYSFhbGJ598QlZWFk5OTrRs2ZKpU6cyfPhwo+OJlFsqlCLi8AoKCvDz8+Py5cskJCRQo0YNoyNJGbBx40bCw8P53//+h9Vqxd3dnb59+zJv3jwaNWpkdDyRckVT3iLi8AYPHkx2djYLFy5UmZQb1rt3b3bs2EFOTg6zZs3itttu45NPPqFx48YEBQXxwgsvUFBQYHRMkXJBI5Qi4tDWrVvHAw88wJ133qm7pkixHTp0iLCwMDZu3Eh+fj7Ozs507tyZOXPmcN999xkdT6TMUqEUEYeVl5eHn58fhYWFXLhwAV9fX6MjSTlhtVpZvHgxL730EocPHwagatWqDB06lLlz5+Ln52dwQpGyRVPeIuKw+vfvT05ODv/9739VJqVEmUwmxo4dy48//khKSgrjx48HYNGiRfj7+9O8eXPef/99rFarwUlFygaNUIqIQ1q5ciVDhw6lS5cubN++3eg4UkFs3bqVmTNnsmPHDiwWC5UrV6Z3795ERkbSokULo+OJOCwVShFxOJcuXcLf3x+ApKQkfHx8DE4kFU1BQQEvv/wy//3vf0lISAAgMDCQv/3tb4SFheHm5mZwQhHHoilvEXE4999/P3l5eXzwwQcqk2IIV1dXwsLCiI+P59ixYwwePJiLFy8yZ84cPD096dy5M19++aXRMUUchkYoRcShLF68mIcffpju3buzZcsWo+OIFLFs2TLmz5/PwYMHsdls+Pj4MHjwYCIjI3VJK6nQVChFxGFkZGRQvXp1XFxcSElJwcPDw+hIIteVkZHBrFmzWLp0KWlpaQA0atSIp59+msceewyTSROAUrHo/3gRcRg9e/akoKCA5cuXq0yKQ6tatSqvvfYaqampfPfdd3Tr1o3Tp08zYcIE3NzcuP/++4mJiTE6pkipUaEUEYfw5ptvsnv3bvr27cuAAQOMjiNyw+666y6+/vprLl++zMsvv0ytWrX48ssvadOmDTVq1GDq1Knk5OQYHVPkltKUt4gYLjk5mVq1auHu7k5qaiqurq5GRxIplri4OKZNm8a6devIycnBycmJtm3bMnPmTH1gknJJI5QiYriQkBDMZjOffPKJyqSUC3Xr1mXZsmVcunSJVatW0bp1a/bu3csDDzyAl5cXI0eOJD4+3uiYIiVGhVJEDPXSSy8RGxvL4MGD6dmzp9FxRErc4MGD2bt3L1lZWUyZMgUPDw+WLl1K3bp1adCgAQsXLsRisRgdU6RYNOUtIoY5e/Ys9erVw9vbm5SUFFxcXIyOJFIqdu/ezfTp09m6dSuFhYW4uLhw7733Mm/ePNq3b290PJGbphFKETFMjx49sFgsfPbZZyqTUqG0a9eOjRs3kpeXx+uvv069evXYsmULHTp0wN/fn2eeeYasrCyjY4rcMBVKETFEREQEx44dY9SoUXTt2tXoOCKGMJlMPPnkkxw/fpxz584xevRo8vPzWbBgAVWrVqV169asXLnS6Jgif0hT3iJS6k6dOkWjRo3w9fUlKSlJF4EW+ZUNGzYQERHBnj17sFqtuLu7069fP1588UXq169vdDyRa6hQikipq1+/PnFxcfzvf/+jXbt2RscRcVi5ubm88MILvPfeeyQmJgJXziCfMGECzzzzjA4VEYehYQERKVXPPfccZ86c4e9//7vKpMgf8PDw4IUXXuDChQvs37+fv/zlL1y4cIHnnnsONzc37rvvPr777jujY4pohFJESs/hw4dp0aIF1atX59y5c5rqFvkTrFYr7777Lq+88gpHjx4F4LbbbmPYsGHMmTMHX19fgxNKRaRCKSKlwmq1EhQUxPnz5zlw4AAtW7Y0OpJImZecnMz06dP5+OOPyczMBKBFixb885//ZOTIkfrQJqVG/6eJSKl46qmnOHfuHJMmTVKZFCkhAQEBvP3222RkZLBp0ya6dOnC4cOHGTNmDJ6engwaNMg+iilyK2mEUkRuuZiYGNq2bUvt2rV1uzmRWyw/P58XX3yRt956i3PnzgFQq1Yt/v73vzN16lTd3lRuCRVKEbmlrFYrgYGBpKamcuTIERo1amR0JJEK4+jRo0ybNo0vvviCvLw8TCYTnTp1Yvbs2fTo0cPoeFKOaMpbRG6pv/3tbyQnJzNt2jSVSZFS1qRJE1avXk1OTg6LFy+mWbNmfP/994SEhFC1alX+/ve/k5ycbHRMKQc0Qikit8wPP/xA586dadCgASdOnDA6jogA6enpzJgxg+XLl3Px4kUAmjZtyuTJkxk3bpxO5JE/RYVSRG4Jq9WKv78/mZmZnDx5krp16xodSUR+5dtvv2XmzJl89913WCwWXF1d6dmzJ/Pnz9fJc3JT9DFERG6JESNGkJ6ezpw5c1QmRRzUPffcw7Zt28jLy2PevHnUqFGDDRs20KpVKwIDA5k+fTqXL182OqaUARqhFJESt3XrVrp3706zZs348ccfjY4jIjfh5MmTTJs2jfXr13P58mVMJhN33nkn4eHh9O3b1+h44qBUKEWkRJnNZqpVq0Zubi5xcXHUrFnT6Egi8ietWLGCefPmceDAAWw2G15eXgwePJjIyEj9bksRmvIWkRIVGhpKVlYWL7/8st5wRMq4oUOHEhMTQ0ZGBk8//TSVK1dm8eLF1KpVi0aNGvHGG29gtVqNjikOQCOUIlJivvjiC/r27Uvr1q3Zt2+f0XFE5BbYuXMn06dP55tvvsFsNlOpUiW6devGCy+8QLt27YyOJwZRoRSREpGXl4efnx8FBQWcP38ePz8/oyOJyC1kNpt54403eP311zl16hQA/v7+jBkzhlmzZuHl5WVwQilNmvIWkRIxcOBAcnJy+Pe//60yKVIBuLi4MGnSJE6ePElcXBwjRowgNzeXl19+GR8fH+68804+/fRTo2NKKdEIpYgU2yeffEJoaCgdO3bkhx9+MDqOiBho7dq1zJkzh71792Kz2fD09GTAgAHMmzdPlxArx1QoRaRYcnJy8Pf3x2q1kpycjI+Pj9GRRMQBXLp0iTlz5vDBBx/Yb+9Yr149nnzySZ566ilcXFwMTiglSVPeIlIsffv25fLly7z77rsqkyJi5+XlxYsvvkhSUhJ79uyhT58+nDt3jilTpuDu7k6PHj3YsWOH0TGlhGiEUkT+tI8++ohRo0Zx7733sm3bNqPjiIiDs1qtLFq0iAULFnD8+HEAqlWrxogRI4iIiKBq1arGBpQ/TYVSRP6UzMxMqlevjslkIjU1FQ8PD6MjiUgZcuHCBaZPn84nn3xCVlYWTk5OtGzZkmnTpjFs2DCj48lN0pS3iPwpvXv3Jj8/n48++khlUkRuWmBgIO+99x6ZmZl8/vnndOjQgUOHDjF8+HA8PDwIDQ21j2KK49MIpYjctLfeeovHHnuM3r178+WXXxodR0TKiby8PCIjI3nnnXe4cOECAHXq1GH8+PFMmTIFV1dXgxPKb1GhFJGbkpqaSs2aNalcuTIpKSm4ubkZHUlEyqFDhw4RFhbGxo0byc/Px9nZmS5dujB79mzuu+8+o+PJr2jKW0RuSs+ePSksLGTlypUqkyJyy7Ro0YK1a9eSm5vLe++9R+PGjYmOjqZbt27cdtttPP7446SmphodU36iQikiN2zBggXExMQwcOBA7r//fqPjiEgFYDKZGDt2LD/++CMpKSk89thjAPz3v//F39+f5s2b88EHH2C1Wks1V06+mUPnM9kXf5FD5zPJyTeX6us7Gk15i8gNOX/+PHXr1sXT05PU1FRdlFhEDPX1118za9YsduzYgcVioXLlyvTu3Zv58+fTrFmzW/Kax5OyWboznq1Hk4lPz+XqAuUEBPl60K1JACM6BtGouvctyeCoVChF5IY0b96cw4cPs3XrVh2/JCIOo6CggJdeeolFixaRkJAAQM2aNXn00UeZOnVqiRyak5CeS9insUSfSMXZ5ITF+tvV6efn727oR+SDrajjWzGugqEpbxH5Qy+88AKHDx9m2LBhKpMi4lBcXV2ZPn068fHxHDt2jEGDBpGenk5ERASenp507tyZjRs3XrNdbm4u48eP5+DBg7+7/6hd8YQs+IbvT6UB/G6ZvPr570+lEbLgG6J2xf/J76xs0QiliPyuuLg4goODqVq1KikpKZhM+hwqIo7NarWyfPlyXnzxRQ4ePIjNZsPHx4fQ0FBeeOEFatSoweLFi3n44Yfx9/dn586d1K9f/5r9vLH1OC9vOlbsPFN6NebJbo2KvR9HpkIpIr+rYcOGnDx5kh9++IGOHTsaHUdE5KZkZGQwc+ZMli5dSnp6OgCNGzfGbDZz6tQpXFxcqF27Njt37iQgIMC+XdSueKauji2xHC8OasXQ9kEltj9Ho6EGEflN06dP5+TJkzzyyCMqkyLi8MaPH4+Tk5P93/z586latSr/93//R1paGt999x3dunXj5MmTnDp1CgCz2Ux8fDw9e/YkKysLuHLM5Kx1h0o028x1h0hIzy2yLCYmhvDwcMLDw9m2bds123z77bcMGTKEhg0b4uPjQ6VKlahRowZ/+ctfHO6mEhqhFJHrOnbsGM2aNcPf35/z589rqltEHFphYSGBgYGkpaXZl91xxx3ExMRcs+60adN48cUX+XUFqlOnDgcOHOAfnxzl+1Npf3i85M1wNjnRJbgaSx755cP5Bx98wNixYwGYNWsW4eHhRbaZO3cuM2bM+M19Ll26lOHDh5dYxuLQO4SIXFdISAg2m42NGzeqTIqIw9u8eXORMgmwf/9+jhw5UmSZxWLhvffew2azYTKZcHFxwcnJCYCEhASCWnUg+kRqiZZJuHKyTvSJVE4kZ9/wNrVq1eKpp55i+fLlbNmyhSVLlhS5JNLrr79eohmLQxeSE5FrTJo0iYSEBP7xj39wxx13GB1HROQPRUVF2R8/9NBD9q+joqKKjPw5OTnh7+/PpUuXyMvLo0qVKvTu3Zvc3FzWrFlD9tnjuB7YjNftPe3bFCSfJnPHx+THx2K5nI2zhw/uwe2o0nU4Lj5+9vUyopeSuX05ANX6PoU1P5fsPesxZ6dQybc2fj3/zkc/1CN8QAvq1atHXFycfduIiAgiIiKAX0Yrfx69vJqXlxcPPvggANnZN15ObzUNO4hIEbGxsfzf//0ftWvXZuHChUbHERH5Q3l5eaxZswYAf39/Fi5caL/5wtVFE2DNmjX8+OOP5ObmYrVaSUtLY9myZZw+ffqqtZzsjy6f3M2Fxc+Qe/hbLDkXwWrGcimdSwc2kbj4aQozEq+bKfP7FVzc8jbmjAtgMVOYcobEVXPYFHPyT32PFouF06dPs3jxYvuybt26/al93QoqlCJiZ7Va6dWrF3Bl+khT3SJSFqxfv94+Wjdw4ECqV69uv2bu0aNH2bdvH3CllE2aNMl+7OSQIUPYsGEDEydOZP/+/dfs11qYR+qGBWApBJMzVe8ZTcDQOfh0HHxlfzkXSd/0n+tmMmck4tMpFP/BM6gUcOWSRLaCyxz97gty8s2sWrWKsLAw+/pjx44lOjqa6Ohoxo0bV2RfNWrUwMXFheDgYNasWYOLiwujRo1i3rx5xfiplSy9W4iI3fjx40lMTOS5556jadOmRscREbkhV49ChoaGFvnv1c/v2bPHfjedGjVqsHTpUvr27ctrr71Gp06drtlv3ul9WHMzAXCr15rKdVrg5OKKe8MOOFepfmWdU3ux/LTO1dwbdeK2+x7Go1FHqnQeYl9eePECZ9JyaNeuHY0a/XJtyqCgILp27UrXrl0JCvr9yws5Ozvj7Ox8zUlFRlKhFBEAdu3axdtvv039+vUd6lOviMjvyc7OZsOGDQD4+vrSvXt3AAYNGoSzszMAK1aswGaz2S8VBNC2bVsqVapk/7pz587X7Lsw/Zz9cd6pPSQtfc7+z5KZ9NMzNgrTzl6zrVudlvbHJncf+2Nrfg4FZutNfY/r1q3j66+/5p133qFFixbk5+cXOUPcEeikHBHBarVy//33YzKZ2LJli9FxRERu2Jo1a8jLywMgPT29SEn8WVxcHDt27Ciy7Oczu0uCrTDvmmUmN6+rXuuq8TubDVeXmxvP69ChA3DlmMnu3bsTHBwMwOrVq8nLyyuR+5UXlwqliDB69GjS0tKYM2fOdW8/JiLiqJYvX35D60VFRTFq1Cj71/v27cNisdhHMX9dOAEq+dayP/Zs2QO/fk9fs461MA9TpZsrdPWqeQIUOU7dar121PLy5cu4u7sXWXZ1EbbZbGRlZalQiojxoqOjWbp0KU2aNOH55583Oo6IyA1LS0tj8+bNAHh7exMZGVnk+YKCAiZPngzAxx9/zIIFC6hTpw4JCQmcP3+e0aNHM2LECDZu3MgPP/xwzf7d6rXB5FEFa24mOQe/xuTuhXu9NthsVsyZSeSfPUxh8mlqPnr9E3Oux6uyC56Vr9Sv2267zb78yy+/5J577sHNzY1WrVpRpUoVatWqxciRI+nQoQOBgYEkJCTwyiuv2LepU6cO/v7+N/4Du4V0pxyRCsxsNuPn58elS5eIi4ujVq1af7yRiIiDWLRoEePHjwdg8ODBrFq16pp12rRpY79bzldffUVmZiahoaHXnNDSqlUrYmOv3Lvbv98kPFqGAHD55C6SV0deOdP7Opx9Aqg94T3g19ehnITX7Vf2kRd3gKTlV87ovqP7A8RsWQNAamoqtWvXJj8/v8g+t27dyn333fe70/KVKlVi1apVDBgw4DfXKU06KUekAhs6dCiZmZn861//UpkUkTLn6unu3ypW/fv3tz+Oiopi0KBBrFy5kubNm+Pq6kqzZs1YtmwZPXr0sK9nc65sf+zeoD2BDy/As0U3nL39wOSCyd2HSgHBeLcfiP+DU28qc7C/p/2xn58fa9asoU2bNtdMbcOVC5zfe++9BAYGUqlSJdzd3WnUqBGPPPIIu3fvdpgyCRqhFKmwNm7cSJ8+fbj99tuve/01EZHyyGazXXfkr1OnTuzcuROAvjMXc8Tsd8vv5V2eaIRSpAIqKCggNDSUSpUq2Y8/EhGpCKKjoxk2bBgbN24kLi6O/fv388QTT9jLZJMmTXjzH4NwMZXcWeAALiYnIh9sVaL7dCQ6KUekAho4cCCXLl3izTffJCAgwOg4IiKlxmq1EhUVdc0tGeHKiT0ffPABdf28iBjQgqmrY0vsdWcPaEEdX48S25+j0QilSAWzZs0avvjiC9q3b8/jjz9udBwRkVIVHBzMyJEjadCgAR4eHlSuXJmGDRvy+OOPs3//fvsdcx5qH8SUXo1L5DWf7dWEoe1//+43ZZ2OoRSpQHJzc/H398dsNpOUlETVqlWNjiQi4tCidsUza90hzFbbTR1T6WxywsXkxOwBLcp9mQSNUIpUKP369SM3N5e3335bZVJE5AY81D6Ir56+ly7B1YArRfH3/Px8l+BqfPX0vRWiTIJGKEUqjGXLljFixAi6du1KdHS00XFERMqc40nZLN0Zz9ZjycSn5XJ1gXICgqp50K1xACM7BdEwwNuomIZQoRSpALKysggICMDJyYmUlBS8vLz+eCMREflNOflmzqTlUGC24upiol41T/sdcCqiivudi1Qgffr0IT8/n48//lhlUkSkBHhWdqFFzSpGx3AYOoZSpJx799132bFjByEhIYSGhhodR0REyiFNeYuUY+np6fZbdqWmpuLm5mZ0JBERKYc05S1SjvXs2ZOCggI++eQTlUkREbllNOUtUk69/vrr7N27l379+tGvXz+j44iISDmmKW+RcigxMZE6derg4eFBSkoKrq6uRkcSEZFyTCOUIuVQSEgIZrOZTz/9VGVSRERuORVKkXLmxRdf5NChQwwZMoTu3bsbHUdERCoATXmLlCPx8fEEBwfj4+NDcnIyLi46705ERG49jVCKlCMhISFYLBY2bNigMikiIqVGhVKknJg5cybHjx9nzJgxdO7c2eg4IiJSgWjKW6QcOH78OE2bNqVatWokJiZiMumzooiIlB6964iUAz179sRms/Hll1+qTIqISKnTO49IGTdlyhTi4uIYP348bdu2NTqOiIhUQJryFinDDh06RKtWrQgMDCQhIUGjkyIiYgi9+4iUUVarlV69egGwadMmlUkRETGM3oFEyqgnn3yS8+fPM3nyZFq0aGF0HBERqcA05S1SBu3Zs4f27dsTFBTEmTNnjI4jIiIVnAqlSBljtVqpUaMGaWlpHDt2jAYNGhgdSUREKjhNeYuUMePGjSMlJYUZM2aoTIqIiEPQCKVIGbJ9+3a6du1Ko0aNOHbsmNFxREREABVKkTLDbDYTEBBAVlYWp06dIigoyOhIIiIiALgYHUBEbszw4cO5ePEiL774osqkiIg4FI1QipQBW7ZsISQkhBYtWnDw4EGj44iIiBShQini4AoKCvD39yc3N5eEhARq1KhhdCQREZEiNOUt4uAGDx5MVlYWr7/+usqkiIg4JI1Qijiwzz77jAEDBtC2bVv27NljdBwREZHrUqEUcVB5eXn4+flRWFjIhQsX8PX1NTqSiIjIdWnKW8RB9e/fn5ycHN555x2VSRERcWgaoRRxQCtXrmTo0KF06dKF7du3Gx1HRETkd6lQijiYS5cu4e/vD0BSUhI+Pj4GJxIREfl9mvIWcTD3338/eXl5REVFqUyKiEiZYDI6gIj8YvHixXz33Xd069aNoUOHGh1HRETkhmjKW8RBZGRkUL16dVxcXEhJScHDw8PoSCIiIjdEU94iDqJnz54UFBSwcuVKlUkRESlTNOUt4gDefPNNdu/eTd++fXnggQeMjiMiInJTNOUtYrDk5GRq166Nm5sbqampuLq6Gh1JRETkpmjKW8RgISEhFBYWsmHDBpVJEREpkzTlLWKgl19+mdjYWAYPHkzPnj2NjiMiIvKnaMpbxCBnz56lXr16eHt7k5KSgouLJgxERKRs0giliEFCQkKwWCx89tlnKpMiIlKmqVCKGGD27NkcPXqUkSNH0rVrV6PjiIiIFIumvEVK2enTp2nYsCG+vr4kJSVhMulznYiIlG16JxMpZT169MBqtfL555+rTIqISLmgdzORUjR16lROnz7N3//+d9q3b290HBERkRKhKW+RUnL48GFatGhB9erVOXfunEYnRUSk3NA7mkgpsFqt9utMbt68WWVSRETKFb2riZSCSZMmce7cOZ566ilatmxpdBwREZESpSlvkVssJiaGtm3bUrt2beLj442OIyIiUuJUKEVuIavVSmBgIKmpqRw5coRGjRoZHUlERKTEacpb5Bb6+9//TnJyMlOnTlWZFBGRcksjlCK3yM6dO+nUqRMNGjTgxIkTRscRERG5ZVQoRW4Bq9WKv78/GRkZnDp1irp16xodSURE5JZxMTqASHk0cuRI0tPTeeGFF1QmRUSk3NMIpUgJ27ZtG926daNZs2b8+OOPRscRERG55VQoRUqQ2WzGz8+PnJwc4uLiqFmzptGRREREbjlNeYuUoCFDhpCZmcmCBQtUJkVEpMLQCKVICfniiy/o27cvrVu3Zt++fUbHERERKTUqlCIlIC8vDz8/PwoKCjh//jx+fn5GRxIRESk1mvIWKQEDBw4kJyeHRYsWqUyKiEiFoxFKkWL65JNPCA0NpWPHjvzwww9GxxERESl1KpQixZCbm4ufnx9Wq5Xk5GR8fHyMjiQiIlLqNOUtUgx9+/bl8uXLLFmyRGVSREQqLJPRAUTKqo8++ohvvvmGe++9l5EjRxodR0RExDCa8hb5E7KysggICMBkMpGamoqHh4fRkURERAyjEUqRG2CxWHj88cf55JNPAOjVqxf5+fksWbJEZVJERCo8jVCK3IAzZ85Qv359ANq1a8fu3bvp3bs3X375pcHJREREjKcRSpEbcPr0afvj3bt3A/DYY48ZFUdERMShqFCK3IBTp05ds2zQoEFMnjzZgDQiIiKORYVS5AacOnUKk+mXX5efHycnJxsVSURExGHoOpRS4eXkmzmTlkOB2Yqri4l61TzxrFz0V+PgwYNYrVb7140aNeK1116jd+/epR1XRETE4eikHKmQjidls3RnPFuPJhOfnsvVvwROQJCvB92aBDCiYxCNqnvj7u5OXl4e3t7evPzyy4wbNw4XF30eExERARVKqWAS0nMJ+zSW6BOpOJucsFh/+3//n59vdpsTX0WOo2X9QL755hvdEUdERORXVCilwojaFc+sdYcwW22/WyR/zclmBZuVyMFtGNYh6BYmFBERKZtUKKVCeGPrcV7edKzY+5nSqzFPdmtUAolERETKD53lLeVe1K74EimTAC9vOsaKXfElsi8REZHyQoVSHNL48eNxcnKy/5s/f/6f2k9Cei6z1h0q0Wwz1x0iIT23yLKYmBjCw8MJDw9n27Zt12xz5swZnnnmGTp16kTlypXt31d4eHiJZhMRETGCCqU4nMLCQlatWlVkWVRU1J/aV9insZhv4njJG2G22gj7NLbIspiYGCIiIoiIiLhuoYyJiWHBggXs3LmTgoKCEs0jIiJiNBVKcTibN28mLS2tyLL9+/dz5MiRm9rP8aRsok+k3tQJODfCYrURfSKVE8nZN7yNp6cnPXv2ZNasWTzwwAMlmkdERMRoKpTicK4ejXzooYeuu/xnq1atomXLlri5udGyZUtWrlxJeHg4Tk5ONK7hQ+7Br4qsX5B8mpS1/+Ls66OI+9dAzr4xmrTP/w9zVmqR9TKilxI3vx9x8/tx6cBmsnat5dx/HyXupYGcf/dJCuIP8NEPV46lrFevHmPHjrVvGxERcc2Uds+ePdm0aRPh4eE0bdq02D8jERERR6JCKQ4lLy+PNWvWAODv78/ChQvtFxD/daFcvXo1f/3rXzl06BD5+fkcOnSIoUOH2rcHuOrmNlw+uZsLi58h9/C3WHIugtWM5VI6lw5sInHx0xRmJF43U+b3K7i45W3MGRfAYqYw5QyJq+awKeZkiX7vIiIiZZUKpTiU9evXk519ZSp54MCBVK9enfvuuw+Ao0ePsm/fPgAsFguTJk3i56teDRkyhA0bNjBx4kT2799/zX6thXmkblgAlkIwOVP1ntEEDJ2DT8fBV/aXc5H0Tf+5biZzRiI+nULxHzyDSgH1AbAVXObod1+Qk29m1apVhIWF2dcfO3Ys0dHRREdHM27cuJL5wYiIiDgwFUpxKFePQoaGhhb579XP79mzh4SEBABq1KjB0qVL6du3L6+99hqdOnW6Zr95p/dhzc0EwK1eayrXaYGTiyvuDTvgXKX6lXVO7cXy0zpXc2/UidvuexiPRh2p0nmIfXnhxQucScuhXbt2NGr0y7Upg4KC6Nq1K127diUoSBdCFxGR8k+FUhxGdnY2GzZsAMDX15fu3bsDMGjQIJydnQFYsWIFNpuNU6dO2bdr27YtlSpVsn/duXPna/ZdmH7O/jjv1B6Slj5n/2fJTPrpGRuFaWev2datTkv7Y5P7L7ddtObnUGC2XrO+iIhIReNidACRn61Zs4a8vDwA0tPTi5TEn8XFxbFjx44iy5ycnEosg60w75plJjevq17rqs9gNhuuLvpMJiIiokIpDmP58uU3tF5UVBSjRo2yf71v3z4sFot9FPPXhROgkm8t+2PPlj3w6/f0NetYC/MwVXK7qcz1qnkCYDL9UiytVo1aiohIxaJCKQ4hLS2NzZs3A+Dt7U1kZGSR5wsKCpg8eTIAH3/8MQsWLKBOnTokJCRw/vx5Ro8ezYgRI9i4cSM//PDDNft3q9cGk0cVrLmZ5Bz8GpO7F+712mCzWTFnJpF/9jCFyaep+ej1T8y5Hq/KLnhWvvIrdNttt9mXf/nll9xzzz24ubnRqlUrqlSpQkpKCt988w1w5eSin/3444/2i7jfe++9+Pv73/Dri4iIOAon28+nyYoYaNGiRYwfPx6AwYMHX3OnHIA2bdoQExMDwFdffUVmZiahoaH8+n/hVq1aERt75U42/v0m4dEyBIDLJ3eRvDryypne1+HsE0DtCe8BV65Dmbn9yohptb6T8Lr9yj7y4g6QtPzKGd13dH+AmC1rAEhNTaV27drk5+cX2efWrVu577772LZtG926dfvdn8HP64qIiJQ1OgBMHMLV090DBgy47jr9+/e3P46KimLQoEGsXLmS5s2b4+rqSrNmzVi2bBk9evSwr2dzrmx/7N6gPYEPL8CzRTecvf3A5ILJ3YdKAcF4tx+I/4NTbypzsL+n/bGfnx9r1qyhTZs2uLu739R+REREyjqNUEqZZbPZrntCTqdOndi5cycAfWcu5ojZr0Rvv+hscqJLcDWWPNKxxPYpIiJSlmmEUsqs6Ohohg0bxsaNG4mLi2P//v088cQT9jLZpEkT3vzHIFxMJXcWOICLyYnIB1uV6D5FRETKMo1QSpn1e8clent7s2nTJjp16kTUrnimro4tsdd9cVArhrbXBctFRER+phFKKbOCg4MZOXIkDRo0wMPDg8qVK9OwYUMef/xx9u/fb79jzkPtg5jSq3GJvOazvZqoTIqIiPyKRiilwojaFc+sdYcwW203dUyls8kJF5MTswe0UJkUERG5DhVKqVAS0nMJ+zSW6BOpOJucfrdY/vz83Q39iHywFXV8PUoxqYiISNmhQikV0vGkbJbujGfrsWTi03K5+pfACQiq5kG3xgGM7BREwwBvo2KKiIiUCSqUUuHl5Js5k5ZDgdmKq4uJetU87XfAERERkT+mQikiIiIixaKzvEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWFQoRURERKRYVChFREREpFhUKEVERESkWP4fSWCOlScUWOIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -175,19 +164,19 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\n" + "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsKElEQVR4nOzdd3RU1drH8e+UdNJDEhISWighhN57ryJNAaUqeLmK2AtwXxtesSsqIApYKIJSvCBVesnQe2+BhFDS60zazJz3j8hITAKBTPrzWYslmXPOPnsQMr/s8+y9VYqiKAghhBBCCPGQ1KXdASGEEEIIUb5JoBRCCCGEEEUigVIIIYQQQhSJBEohhBBCCFEkEiiFEEIIIUSRSKAUQgghhBBFIoFSCCGEEEIUiQRKIYQQQghRJBIohRBCCCFEkUigFEIIIYQQRSKBUgghhBBCFIkESiGEEEIIUSQSKIUQQgghRJFIoBRCCCGEEEUigVIIIYQQQhSJBEohhBBCCFEkEiiFEEIIIUSRSKAUQgghhBBFIoFSCCGEEEIUiQRKIYQQQghRJBIohRBCCCFEkUigFEIIIYQQRSKBUgghhBBCFIkESiGEEEIIUSQSKIUQQgghRJFIoBRCCCGEEEUigVIIIYQQQhSJBEohhBBCCFEkEiiFEEIIIUSRSKAUQgghhBBFIoFSCCGEEEIUiQRKIYQQQghRJBIohRBCCCFEkUigFEIIIYQQRSKBUgghhBBCFIkESiGEEEIIUSQSKIUQQgghRJFoS7sD5Z0+08i1eD1ZRjO2WjU1PZ1wspM/ViGEEEJUHpJ8HsKl6FSWHohkx4UYIhMMKHcdUwGBHo50q+/NqDaB1PVxLq1uCiGEEEKUCJWiKMr9TxMA1xMMTP/9FHsux6FRqzCZC/6ju3O8U5AXM4eEEuDhWII9LV4yKiuEEEKIu0mgLKTlhyJ5Z+0ZjGblnkHynzRqFVq1ivceDWFkq8Bi7GHxklFZIYQQQhREAmUhzN5xic/+vFjkdl7rXY/nu9W1Qo9KjozKCiGEEOJ+JFDex/JDkUxdfcpq7X08NJQR5WSksrKPygohhBCicCRQ3sP1BAM9v9xFptFM/KbZpB3fZDnm1mUcru0ez3W+MSmalCNrybxxnqzoK2AyAuDa4QncOo0CwE6rZuvLXcr86F1lHpUVQgghxIORdSjvYfrvpzCaFRSTEcMFXa5j+nO785yfFRNO6qE1ZN28YAmT/2Q0K0z/3XojnsVh+aFIq4RJgM/+vMivhyKt0pYQQoiyQ59p5MzNZI5FJnLmZjL6zPw/90TlIFNzC3ApOpU9l+MAyLh2DHN6Sq7j2TFXyY6/jo1ngOU1lY099jWbYeffgKyYq6Rf2p+nXZNZYc/lOC7HpBLkXfYmr1xPMPDO2jMAhRqVzYg8heGCjswb5zCmxmFOT0Pj4IxdQCNc2w/H1rsWb689Q/s6XmV+VFYIIcS9yQRNURAZoSzA0gORaNQqAPRn/x6NdAzubPn93a8DONRqhs/I93HrNAobz+oFtq1Rq1iyP/9Ru/T0dPR6fVG6XiQPOiqbvG8FqUf+IOv2Zcz6JDAbMekTMZzfw+1Fr+YEzXIwKiuEEKJg1xMMjFl4gF6zdrP4QAQR/wiTAAoQkWBg8YEIes3azZiFB7ieYCiN7opSIIGyADsuxGAyKyjGLAx/jTSqHV3x6PkMqDUA6M/teai2TWaFHRdjcr12+/Zt/vOf/+Dr68vQoUOL1vkC7Nmzh2vXrhV4/M6orMms3HNU9p+0br64dRmL94j38ej3ApoqHgAoxiwSd/6ca1RWCCFE+bL8UCQ9v9yFLjwe4L6TNO8c14XH0/PLXSyXsqdKQQJlPtIyjUT+9VOV4fJBlKx0ABzrtkXj5I59YCgAxoQosm5feah7RMYb0GcauXDhAs888wyBgYF8/PHHpKSkkJpaPMGrT58+1K1bl5deeom4uLg8xx9mVNalzTD8/vUdru2G41CrGc5NeuPR+znL8axbl4B7j8oKIYQom2bvuMTU1afINJofaLUPyAmWmUYzU1efYvaOS8XUQ1FWSA1lPiLi9ZahfMNdj3kdG3TI+W/9DmRcOw7kPAa29a3zwPdQgMCGLUgIP5nn2LVr13juueeoUqWK5ZeLiwvOzs64uLjg6uqKq6sr7u7uuLm54eh4/9pEk8lEenpOMJ49ezYLFizgP//5Dy+++KLl+nuNyhouhIHZhP7cHsuMdQCHmk3y3Evr4Wf5vcrGLuf+f43KvktI4f+QhBBClBprT9CsWsWu3CybJx6cBMp8ZBnNAJgzDaRfOQyA2t4Z+xo54cmxfnsS/vwWFHNOwOo6HpVK9cD30Wdk5vv6rVu3+Pbbbx+4PZVKhVqtRq1Wo9Fo0Gg0aLVay687TCYTer2e6dOn884779CtWzcGDB5GZII/UPCobMa145ZR2XuFaMOFMMvvHWq3sPz+zqisbNMohBBl2/UEA5NfnUbCnl9yH1CpUTs4Y1u1Bk6hvajSqJvlUEbkKdJOb8+pnY+/AX8Nzfg8MRP7Go1lgmYFJ5/s+bDV5lQCGC7tRzFmAWDOSCXyk0F5zjWlxJB54zz21YMf+D5he3ax5bcf+e9//0tGRgYmkwm1Ws1jjz3Gt99+S2JiIomJiaSkpJCcnExqaiopKSmkpaWRmppKWloaer2e9PR0DAYDBoOBjIwM0tPTyczMtPzKzs4mIyMj3z5kZ2ezZcsWDly8gdvIj3PedxFGZdOvHCJZ9yuQE8LdOo+xHFOAa/F6QvxcH/jPSgghRMmZ/vsp8n3CrZgxG5LJiDhJRsRJTPpEXNvk1P0bLu5Df3JLgW3emaC5eEKbYuq1KE0SKPNR09MJFaA/u6tQ5xvO7X7gQKkCGvh70mLqVJ555hn++9//Mnv2bIxGI46Ojnh4eODh4fHgnS9AVFQUAQE5SxxpNBpMJhOtWrVi2rRpPProo5y8kcKQb3VFGpXVnw8j7o9PwWREZeuA9+Nvo3X1znXOndFfIYQQZdOdCZp373tiX7sFru2Go5iyST26nvSL+wBIPbLOEig1Tm441u+AnX8DUo9vwphwI1e7ZX3ZPFE0Eijz4WSnpZpdNtf+GpFT2Trg1mVs7pNMRhK3LwTAcH4v7j2fwZyeSkZkzvI42fFRllOz46+jP78XAPvAUDSOrgS426PFxM2bMcTFxTFw4EDq1KnDqlWr6Nevn9XfU1ZWluX3/fr1Y+rUqXTo0MHyWlFHZdNObSN+w1egmFHbOeE9/F3s/POG7Dv3EUIIUTbdPUHzDo2jG/YBOTXwGid3S6A06RMt57i2G275/Z3PvH+6M0Hz3Uelnr6ikUBZAI+YY2A2ATnrS7q0GJjnnLTTO8iOCcekTyQj4iQqlZq4/32U5zzD+b0Y/vrH5fPETNQBIZze8hv2b/bM997vv/++Fd9Jjlq1ajFv3jw6d+5McHDeoFeUUdnUI+tI2PIdoKB2dMNnxAxsfWrnuUb1132EEEKUXXcmaOZHMWXn2rTDtmqNB2pbJmhWXBIoCxB7fLvl9w5B+dd7OAa1JjkmHMgJWE4NuxaqbZVag/nCznyP+fj40LZt2wfqa6HuqVIxadKkAo8/7Khs6qG1JG5fkHNcY4N7l7GYs9LJuH7Gctmdn2oDPR1lQo4QQpRhdy+bdzf96W3oT2/L9Zra0RX3ngV/rhREJmhWTPJ/swAHdHsYs/AAuvD4An9Sc+s8GrfOo3O9VmPqunu2q1GraF/bky+PhtGyZUsiIyNz1amo1Wq2b99O7969i/4mHpBT1P4HHpU13L29pCmb+I1f57mmxtR1aNQqutXzznNMCCFE2XH3snn3o9LaomQ9+E44MkGzYpJAeQ8zh4TS88tdD7yY671o1SpmDgnFy8ORbdu20apVK5KTkzGbcyar3L59mz59+uDu7s5TTz3FjBkzcHKyzmNiRVFYsWIFERERuWaBx8TEsGXLFm7HJljOLeyobGGZzAqj28r6Y0IIUZYVNHHyzqQczCYyos6QvOcXTCmxxK6eif+/F6Cp4m6V+4jySwLlPQR4OPLeoyFMXW29fahnPBpiWYOrTp06bNq0ic6dO5OZmcnAgQNZtGgR06ZNY+nSpXzxxRfMmjWLtm3b8vHHH9OxY8ci3dtoNDJmzBiysrLQarWoVCqMRqNlhLRnz554PfYuByOTH2hU9n4UkxHjzbN88OZKQkND8ff3z/XL1ta2SO9LCCGEdRQ0cfLuSTn2NRqTeeM8GeFHUIyZGC4fwLlpX6vcR5Rf8n/0Pka2CuS13vWs0tbrvevn2SWgdevW/Pbbb9jb2/PSSy/h5ubGt99+S0pKCitXriQkJASdTkenTp3w9vbm//7v/8jMzH9B9PuxsbFh8uTJqNVqjEYj2dnZljDZr18/tmzZwiePN0OrfvBF2u9Fo4KYdV/x008/8eqrrzJy5Eg6depE7dq1CQgIyPXIXwghROm5M0Hzvu76vm1Of7Dtgu+eoKkoCrdu3WLLli18+eWXvPbaayQkJNy7AVEmSaAshOe71eWjoaHYadV5llK4H8VkRIOZj4eGMrlbUL7nPProoyQnJ9O9e/dcrw8bNoyTJ08SHR3NuHHj0Ov1fPDBBzg5OdG9e3cOHz78QH0xm81kZGRYHq9DTs2mn58fv/ySsxvCnVFZa5r5WDNaNKiZ53WVSkWHDh0eapchIYQQ1udkpyUwn51sTIYkMq6fISPiJMm63ywbXQDYeOTsspYVF4n+/F705/fmCpkZ109bXgcwp0QTVDOAgIAAXF1d8fPzo3fv3rzyyit8/vnnREREFO+bFMVCpcjwUKFdTzAwatY6IrOd0KjAdI8/OY1ahcmskHHtGPEbZzPxiSF88sknODsXbTHXRYsWMXPmTC5cuABAtWrVmDJlCq+//nqu7RX/6bPPPuOdd97BYDDg6OhIeno6iqKgUqnYuXMnnTt3znX+7B2XrLKH6+u96zO5WxAXL14kJCQEo9FoOabVarly5QqBgVJbKYQQZcW7a8+w+EAE8buWkBy27J7n2vrUwXfs56g0WpL2LL3v+bWnrcPfEM6er17I97iXlxfR0dGo1TLeVd7I/7EHEB95kb3/HcntH55nTNua1PB0zPNoQAXU8HRkTJsabH25MzWvrsOYHM28efOoV68ea9euLVIfxo4dy/nz54mIiGDEiBEkJCQwffp0HBwc6NevH2fOnMl1/tKlS/Hy8uL1119HpVLx5ZdfEhMTg6enJwBTp07NEybh7lFZFcpfM78LS6NWYadV5xqVrVevHq+++mqubxJGo5GQkBDWrFnzoH8MQgghismoNoH3nIyq0tphU7UGLu1H4PPkh6g0hZ+OYVLgh+njOXHiBC4uLnmeUCUmJtKnTx9WrVqV62maKPtkhLKQ9uzZQ58+fUhPT8fOzs6yN7Y+08i1eD1ZRjO2WjU1PZ1yra31r3/9iwULFlhGAxVFYfDgwcyePRt/f/8i98tsNjN//nw++eQTwsNzZl8HBgYyYMAA1q1bx/Xr17G1teWll17iww8/tAS6VatW8euvv7J06VJsbGzybVtRFFp17UtUtU7Y12pmGXUtyJ3jnYK8mDkk1DL56A69Xk9QUBC3b9+mc+fODB8+nFdeeYWsrCw6d+7MH3/8gYuLS5H/TIQQQhTN/ZbNexh3ls27s5f35cuX6dq1K7dv38Zkyhm48PDwsNRQajQaQkJCePLJJ5k8eTJVqlSxWl+E9UmgLIT169czdOhQy/aFKpXKMlP6fv7zn//wySef5HrUCzkzqrds2WLVfl66dIl//etf7Ny50/JaQEAAGzduJCTkweoi9Xo9o0eP5n//+x+Ojo4cD7/N0gOR7LgYQ2S8Idc6ZSpyFi3vVs+b0W0D77lH65o1a3j22WfZtWsXdevWJSUlhYEDB7J7925sbW2ZNWsWzz777IO9cSGEEFZ1PcFA9893kG1WoHDTdO7LTqtm68tdcg02XL9+na5duxIeHo6dnR2JiYlkZ2fzzTffsHz5cs6dO2cJmwEBAQwYMIDXXnuNOnXqWKVPRXG/AaXKRgLlfSxdupRx48ZhNptzzUaOiooq1AjjrFmzePXVV3MN3Tdv3pwffviBJk2aWK2fkZGRPPHEE+h0OlQqFQ0aNCA5OZmbN28COUsUTZ06laeffvq+tSnh4eEMHDiQs2fPAlC3bl0uXvy7nrKo/4jujNbe7ffff2fs2LGkpaUREhLCpk2bqF69eqHbFEIIUXTJycns3buXd999lwtGTzz6TrFa2x8PDc2z0glAdHQ0vXv3JjQ0lCVLluQ6ZjabWbFiBd9//z379+/HYMhZSN3V1ZVOnToxZcqUEt0I5FJ0as7gyoUYIhPyGVzxcKRbfW9GtQmkrk/R5kyUNxIo7yElJQV3d/d86zgOHDhA69at79vG0qVLGT16NBqNBrPZjEql4tatW3h7W2fXmKSkJMaOHcu6detQFIW2bduyfPlyatTI2V/19OnTvPbaa2zbtg2j0Yi9vT2DBw/m008/zTewbd68meHDh6PX6y0/FTZs2DBPbWZxyMrKYtSoUaxcuRK1Ws3UqVP54IMPiv2+QghRWWVnZ7N582Z27tzJtm3bOHHihGXwxMnJif/+fphZ268U+T53JmgWRFEUzGYzGo3mnu0cPXqUL774gi1bthATEwOAra0tTZo0YezYsUycOBF7e/si9/efricYmP77KfZcjity+VdFJZNy7sHFxYV169YxcGDeLQjvjPzdT/369VGpVIwbN47ffvsNs9nM0KFDi9y3rKwsJkyYgJeXF3/88Qf169fnyJEj7Nu3zxImARo1asSmTZtIT0/n/fffx83NjeXLlxMQEEBwcDDLlv09I2/Tpk3069eP1NRUS5gELPWixc3W1pYVK1ag0+nw9PRk5syZBAQEcPLkyRK5vxBCVDbfffcdAwcOZNasWRw/fjzXk7hffvmFl3o1eOhl81QoKNmZvNDW855hEnJKye4XJiHnCd+SJUuIjo4mOjqaadOmUbNmTY4cOcKUKVNwdHSkTp06vPrqq9y4ceOebV2/fp1bt27d957LD0XS88td6MLjAe5bV3rnuC48np5f7mL5ocj73qMikBHKQoiLi6Nq1arUqlULe3t7zp07x7Jlyxg5cmShrk9LS7MUE3fu3Jk9e/awadMm+vTp88B9MZvNvPXWW3z++edkZmZSvXp1vv/+e/r161foNg4dOsQbb7zB7t27MZvNODk58fjjj/Pvf/+b5557jqNHj+Y638/P777/MK3NbDbz4osvMmfOHADGjRvHwoULZSkJIYSwovj4eFq1akVkZGSugYTAwEDCw8MtIe9hRuja1XJj9bTHyU68zU8//cSYMWOKbd1ho9HIzz//zA8//MCRI0csG4B4enrSvXt3XnrpJdq3b5/rmtDQUKKioti2bRvNmzfPt11rLaH3Wu96PN+tbpHbKcskUBbC5MmTmTt3Llu3bqV79+5ERETg7+9f4Ozoe0lISMDHxwcXFxdiY2MfKCDNnj2b6dOnk5qairu7O19++SXjxo174D7ckZGRwYwZM5g/fz5xcXFAzj8wHx8ftm7dajnPy8uL2NjYh75PUVy6dIl+/fpx5coV3NzcWLlyJT169CiVvgghREX0888/M378eMvXarWaTz75hFdffTXPuZYawkJO0GzatCknTpwAoFWrVsydO5eWLVsW7xsiZ2WWr776ih07dlhmjdvb29OyZUsmTpxIx44dCQoKQqVS4ejoyObNm+nQoUOuNpYfirTq1ssF1ZBWGIq4Lw8PD8XFxcVq7b399tsKoLz00kuFOn/lypWKt7e3AigODg7Khx9+qJhMJqv1R1EUZceOHUrbtm0VlUqlAAqgPPbYY8qwYcOUxx57zKr3ehgffvihotVqFUDp27evotfrS7tLQghR7s2ZM0dRqVSKRqNRNBqNAih2dnZKfHz8fa9d8NNixca7ljL98++V0zeSlLSM7DznTJ061fKZotFoFJVKpTz11FPK7du3i+Pt5CsiIkJ58cUXlZo1a1o+4+7+rFOpVIq9vb3y559/Wq6JjNcrHp2etJxj+aVSK2pHV8W+RmPF85FXlRpT11l+eT7yiuLUqLti4xWoqO2cFDRaRetWTXFuMVCp/sJSpd7/bVAi4yvuZ5cEyvvQ6XQKoIwfP96q7fr6+ipqtVq5ceNGgefs2bNHqV27tgIoNjY2ygsvvKBkZ+f9B2tN3333nQIotra2ln9oLVu2zPUPrbRER0crLVu2tATrxYsXl3aXhBCi3HruuecUQHF1dVUuX76sLF68WAGUCRMm3Pdas9msBAUFKYDSp0+fAs+bO3durvB251dQUJBiNput+XYKJT09XZk1a5ZSpUqVPH1SqVTKF198oSiKooxesF9x65hPoPzHL7duT1sCJRqbAs/TuvooNV5eroxesL/E33NJkUB5Hz169FCAewa/h7F3714FUFq0aJHn2NmzZ5WmTZsqgKJWq5WRI0eW2Iicv7+/YmNjo2RmZirr169Xmjdvbvlm4OHhobz66qulPjq4aNEixd7eXgGUli1bKrGxsaXaHyGEKE9MJpPStWtXBVDq1KmjpKamWo5t27ZNSUxMvG8bv/32myUs2dnZKcnJyfmet27dujyhzcXFRVm+fLm13s4DS05Otjzxyu9X4469lRpT1ymuHZ6wvGZfu4XiM+pjxXvkfxWHeu3+HnV18bYESpXWVrGr3lDx6DNZ8R75X8W102gFzd/3ce3whFJj6jrlUnRKqb334iQzHPIxb948Vq1aRUZGBrt27aJ27dr4+flZ9R4dOnSgd+/eHDlyhNWrVwNw69YtunXrRsOGDTl+/Dg9e/bk1q1bLFu2DEfH4l92YMuWLdy4cYPHH38cW1tb+vfvz5EjR4iLi2PSpElkZ2fz+eef4+zsTMeOHQkLCyv2PuVnzJgxxMfH07dvXw4fPky1atX46KOPSqUvQghRliUnJ1tqCCFnObygoCB27txJjx49uHjxYq4daLp3746bm9s929Tr9bzwwt97cWdmZrJ48eJ8zw0MzF0zqCgKq1atYsSIEQ/xbqzj8OHDls1G1Go1tWvXZujQoUyePJknn3wSh9DeqHNVh4LG0Q37gBAcajbFrdNoy+smfaLl91WH/R++oz/BuVm/nPM6jMS52QDL8cxbF9GoVSzZXzFnfUug/AdFUXjxxRd57LHHcHd3x2g0MmTIkFxLKVjLqlWrsLW1Zfz48Tz22GP4+/uzc+dOWrRowcWLF9myZYvV1qssjBdeeAG1Ws3s2bNzve7h4cG8efNISUlh5cqVhISEEBYWRseOHfHx8eHtt9+27CJUUhwdHdm4cSNbtmyhSpUqTJs2jaCgIC5dulSi/RBCiLJsyJAhBAcHExUVxaVLlwgICODq1atMmTKFrVu3PtTKGR988IFlDUjIWfLnm2++yfdzMjAwEJVKhbu7O1999RUAY8eOLdV9utu1a8fatWs5fvw4er2eK1eusGrVKmbPns3SpUuxq9UccwG7AymmbNIv7bd8bVv172X6HGrlnSlu4/H3YJTaxh6TWWHHxZg851UEEij/QaVSUbVqVeDv9Rc///xzGjVqxP79++916QOzt7enRYsWpKamsmrVKurUqYNOp+Pw4cPUrVuyywucPHmS8+fP07NnT9zd3Qs8b9iwYZw8eZJbt24xduxYUlNTef/993F0dKRHjx55lhwqbj179iQ+Pp7x48cTHh5O/fr1eeGFF0r1m5UQQpQFZ86cYceOHcTGxtKxY0caNmxIamoq8+bN4+uvv36oNiMiIvj0009zfY9VFIULFy6wZ8+ePOe7urqyc+dOLl68yAsvvMArr7zCrVu38p1BXlKuXr3K1atXcXd3z7MIelqmkcgEQ55r9Ke3EfHRI0R+OoSk3TmjsWpHV9x7TrrnvQwXdJbfO9RuAUBkvAF9prGgS8otCZT5yG8HmbNnzxZ6MfP7MZvNzJgxA2dnZ/bt22f5CXHLli20a9fOKvd4UJMm5fyj+O677wp1vq+vLz///DMGg4Gff/6ZOnXqsH37dlq0aIG/vz8ffvhhnv3Li4tarebHH3/k2LFj+Pv7880331CtWjX27dtXIvcXQojips80cuZmMsciEzlzM7lQgeSbb75Bq9WiKAoRERGYTCa2bNli+X7/MBRFoVWrVgQGBuYZ3cwvUELO+steXl5AzgCNv78/X331FefOnXvofhTFL7/8wosvvkiNGjXo2LEj33//vaUsICJeT2GfR6q0tihZecPnHYm7F5MRkbNkkq1ffZxCc5a8U4Br8fqivIUySdahzMfw4cNZsWKF5WuVSsXChQt56qmnitz2ggULeO2110hOTsbFxYVPPvmEVq1a0aJFCxo1asSpU9Zb86qwoqKiCAgIoEWLFhw+fPih24mMjOS1115j7dq1ZGZmotVq6dWrF59//jnBwcFW7PG9TZs2jU8++QSz2cywYcP45ZdfsLW1LbH7CyGENRRl3+ikpCSqVauWZ6ezKVOmPPTo5D8FBASg1+u5fPkyiYmJ1KxZs1C73Zw8eZKmTZsSGBjItWvXrNKXBzFv3jyeffZZIOfzXVEU1Go1Pj4+hHQewKVagwFI2rOU5LCc3eTsa7fAtd1wMJvIiDpD8p5fAAWV1g7/fy9AUyX3k73E7QtJOfg7AFrP6viO+hiNo6vl+O/PtqdZYMFPA8sjGaHMh7+/v+X3Wq2W1atXFzlMrl+/Hj8/P5555hkyMzN55513SExMZNKkSTRv3pxBgwZx+vTpAgubi9Odn1bnzZtXpHYCAwP57bffMBgMzJ07l4CAADZu3EjDhg2pUaMGX3/9dYk8iv7www+5evUqDRs2ZNWqVXh6erJmzZpiv68QQljD9QQDYxYeoNes3Sw+EEHEP8Ik5IxyRSQYWHwggl6zdjNm4QGu3/Wo9scff8wTJu/UOh48eNAq/dTr9VSpUgUPDw/q1KlTqDAJ0LhxYyZNmkRERATTp0+3Sl/yYzabuXLlCr/88gtvvvkmQ4YMoVmzZrnueWdMzWw2c+vWLQ7o8p9semdSjn2Nxrh1eAL72jn1kooxE8PlA3e1ZyZ+02xLmLSpWhPfJz/MFSYBbLUVL37JCGU+nn32WebNm4dGo2HLli1069btods6ePAgY8aM4eLFi2g0GiZOnMjXX3+dZ8QsIyMDd3d3NBoNiYmJD7ULz8NISUnB3d2dOnXqcPFi0beX+qdLly7x2muvsXHjRrKzs7G1tWXAgAF8/vnn1KpVy+r3+6c5c+bwyiuvkJWVRefOnfnjjz9wcXEp9vsKIcTDWH4oknfWnsFoVu67Z/TdNGoVWrWK9x4NYVCjqri4uOQqO/Lw8KBHjx706NGDCRMmoNVqi9xXR0dHatWqxZkzZx74WrPZTLVq1YiLi+Py5csP9XlgNps5e/Yshw4d4uTJk1y8eJHIyEhiYmJITk62bL94N1tbWxwcHEhOTra8plarsbOz45tvvmHEqLGEvvcnCrlHKJ0a9cDrkZct10T/+jYZV3PmDLh1GYdru8dRzCbi1n2B4eyunHv51cd7+Hto7P+eRQ85o8un3+2Dk13R/x+UJRXr3TwEfaaRa/F6soxmbLVqano6Wfat3rBhw33DpMlkIiMjAycnp1yvX7lyhSeeeIJDhw6hUqkYMmQIP/30U4Fhxt7eni+++ILnnnuOp556iiVLlljnDd7Hiy++iNls5osvviiW9uvWrcuaNWswm818+eWXzJo1i99//53ff/+doKAgpk6dylNPPVVse3RPnjyZUaNG8eijj7J7926qVq3KrFmzLI87hBCirCjKvtGmvwLo1NWn+ODznRiNRurVq8fLL79Mly5daNCggdX30c7KyrrvEkMFUavVrFu3jtatW9OnT598BzSys7M5fvw4R44c4dSpU1y+fJnIyEhiY2NJTU3Nd3URe3t7XFxcqFevHoGBgdSrV4/GjRvTqlUrgoODUavVlpHVO/r06cP8+fMtTycDPRyJ+MfEHJMhiYzrZ8BsIvPGeTKuHbccs/HIuS529UzS/xqt1LhUxa3jk2THRpB95z3bOWHrXZNAT8cKFyahko5Q3q8uRaWPx0+VyI/Tn85Tl3I3s9lMnz59uHbtGmfOnMHW1pa4uDhGjx7N5s2bgZxi5KVLl+Y70Sc/devW5cqVK5w5c6bY6w6NRiNOTk54eHhw69atYr3X3U6ePMnrr7/Otm3bMJlM2NvbM2TIED777DOrr/d5t9WrVzN27Fj0ej0hISFs2rSp0P9fhBCiOFl73+hJTaswbUQXq7WXH5VKxaOPPvrQJUUZGRkMGTKETZs20bJlS5ydnYmKiiIuLo7U1NQ8EztVKhX29va4ubnh6+tLzZo1qV+/Po0bN6Zt27bUqFGj0IMTPj4+pKenM2fOHEaPHp0rbL+79gyLD0QQv2uJZYSyILY+dfAd+zkqjZaIjx6557l2AY3wH/MxY9rU4N1HQwrVz/Kk4kXke7ieYGD676fYczkOjVqV7+MEBVCcPLml8qTXrN10CvJi5pBQAjzyLiz+1VdfsXXrVgDmzp3L4cOHWbZsGWazmcaNG7N06VIaNWr0QH1cu3YtISEhDBo0qFgeQd/trbfeIisri/fee69Y7/NPjRs3ZvPmzWRlZfHRRx/x7bffsmzZMpYtW0ZwcDBvv/02I0eOtPp9hw4dyiOPPMKTTz7JqlWrqFGjBlOnTuWDDz6w+r2EEKKwricYmPzqNBL2/JL7gEqN2sEZ26o1cArtRZVG+T8xy066za2Fz6Nk59RM2vrV5yftl4zuZcj3s8sa0tLSACzL7OUnJSWFgwcPcvToUc6cOUN4eDg3btwgPj4evV6PyWSynHv48GFUKhWOjo64u7sTFBREzZo1adiwIU2aNKFNmzZWHXDYuXMnHh4e+Pj45Dk2qk0gP+27VuC1Kq0dWndfHOq2xbXNMFSawkcpk1lhdNvA+59YDlWaEUpr1KWMbPX3X4KTJ0/SokWLPD9B1axZkx9//JGuXbs+dF9HjRrFL7/8wty5c4vt0azZbMbV1RW1Wp2rlqS0HDhwgDfffJM9e/ZgNptxcnJi+PDhfPLJJ5blJqxJp9MxePBgYmNjqV69OuvXr6dx48ZWv48QQtzPmIUHWPfT1yTt/eWe57l1exrXNkPzvB69/C0yrh2zfG3rV5/q47+gfW1PFk9ok+f8hIQE/vOf/9CuXTvGjh37UH0+deoUjRs3Zvjw4TRq1Ihz585x9epVbt68SUJCAgaDIc8kTI1Gg6OjIx4eHvj5+VG7dm0aNmyIjY0Nb7zxBg0bNnyoesziMGbhAXTh8Q+UF+5Ho1YV+P+kIqgUgbIodSl3e613PZ7vVpf09HSaN2/OhQsXcu0MMHz4cH799dci3ycrKwt3d3fMZjOJiYl5Fl61hm+++YYXXniBd955h3fffdfq7T+sjIwM3nvvPebPn098fDwATZo0YcaMGTz66KNWvZfZbObFF19kzpw5AIwbN46FCxcWWz2nEEL806XoVHrN2p3vEjWKKZvUo+tJv5izpq7GxZvqz/2Q6/q0U9uIX/9lzpqIxpyaQlu/+lQb+zkAW1/uTJD336Vb//vf/5g4cSLx8fF0796dbdu2Fdi369evc/DgQY4fP8758+e5evUqt2/fJjExkfT09Dw742i1WpycnPDy8sLf3586deoQEhJC8+bNadWqVa66xX96/PHHWblyJV9++SUvvfRS4f8Ai8n1BAM9v9xFptF6K5PYadVsfblLsY0al7YKHyitXZfy8dBQfvi/Z/jzzz/zHHN0dCQiIsIqI2qLFi1i3LhxDB48mN9//73I7f2Tt7c3KSkpGAyGMhugdu7cybRp0zhw4ACKouDi4sKYMWOYOXOmVWdqX7x4kf79+3PlyhXc3NxYuXIlPXr0sFr7QghRkPzq9e6eUZwVG8GthZNzTtbYUOP1vz8PTPokbs5/FnNGGm6dR1t2cLkTKDVqlaVeLy4ujueff55ff/3VsvZitWrV+PTTTzlx4gQXL14kIiKC27dvk5SURGZmZp7AaGNjg7OzM15eXqhUKi5cuMCkSZMYN24czZo1K9Lgh9FoxNPTE4PBwK1bt4rlydSDKo78MKJVxXzcDRV8HcrrCQbeWXuG+E2zifjoEcuv5H0r7nmdYjJyc+Hzua6585Pf1JXH2H7gRL7XGQwGDh06ZJW+jx07lpCQEP73v/9ZfTvDVatWERsby/jx48tsmATo2rUr+/btIzk52bLP+Jw5c3Bzc6N169b3/Mn6QdSrV4/Lly8zc+ZM0tLS6NmzJ/3798+zhpsQQljbjgsxBT5Wvde+0QAJW7/DnJGKc/P+2PnnncRpMitsOnmd8ePH4+fnZ3mCdico3rp1i9GjR/Ppp5+yZs0azp49i9FopHbt2vTp04cpU6bw/fffc+zYMbKzs8nKyiI+Pp4LFy4wbNgwAJ5//nnatWtX5CdpWq2W3377DaPRSN++fYvUljVER0ezZd57JO5a9NcrRRt7e713/QodJqGCj1COWXiAsEvRRHw9BnN6iuV1G+9a+D39TYHXJet+tfykd0fga6tRaW3BbMLTFM8HPavh7OyMnZ2d5ZeTk1OuRdGL6urVq9SpU8fquwnUrl2byMhIUlJScHQsX0PvGzZs4K233uLYsWMoioKHhwdPP/007733nlXeS0xMDP379+fIkSM4ODgwf/58Ro0aZYWeCyFEbmmZRkLf3ZxnzcP8qB1dqTr0/7CvnhMcDZcOELvqfTQuVfGbMIes25eJXpazYPfdj7wVReH6F49bJuz806xZs+jTpw/16tV7oAGGp59+mh9//BG9Xm/Vz5EBAwawYcMG5s+fz8SJE63WbmEoioJOp2P27NmsWLHCMmmox7/e4qJzUzQ2tigUfumlO3MwZjwaUuHDJFTgEcpL0ansuRyHPvxorjAJkB1zlez46/lelx0fRVLY8pzwmB+1hngbb4Kad6BDhw60bNmS0NBQ6tWrZ9UwCVCrVi0mTJhAREQEn332GZDzFz6/tbfu5datW3Tr1o3Zs2ezbds2rl69ysCBA8tdmAQsYS8uLo5nnnmGrKwsPvvsM5ydnenUqVOR9+/29vbm8OHD/PzzzyiKwujRo2nVqhVxcXFWegdCCJHjYfeNNmcaSPjzWwA8+zyH2q7g7+UqlYodh0+zcuVKBg0aZFnQ/M4yOa1bt6ZBgwYP/LQqNjYWwOqfI6tWrcLJyYnJkyeTlJRk1bbvZd26dYSGhtKxY8dcYdLW1pZt37/PrYWT6VAn5zG8Rn3vUHnnePvanmx9uUulCJNQgQPl0gORaNQq9Gd3W15zDO5s+f3dr9+hKArxG78BUzauHQpetkajVrFkf6R1O1yA7777DhcXF/7zn/9w/PhxevXqhbe39wM9jr18+TI7d+5kypQp9OnTB6DcL5Xj4eHB999/T2pqKr/99hvBwcHs3buX9u3b4+Pjw9tvv/3AwftuY8eOJT4+nr59+3L48GGqVavGJ598YsV3IISo7LIKmPBhX7sFPqM+xueJmbh2GgWoMKXEErt6Jqa0RJL3r8CUGodjwy441Gl13/u4uHkwbNgw/ve//xETE8P8+fPp2LFjkUqeEhISrLLbzj/Z29uzePFisrKyGDBggNXbL8gPP/xgmWF+93JGdz5HfKtoWTKxLVte6syYNjWo4emYZ6xSBdTwdGRMmxpsfbkziye0qbATcPJTYR95d/l0B9dikrj+9SiUrHTUjq74TZhN1JzxYDah9aiO/79y712demwDCZvnYuNdi2rjZxH5ySDLMcsj77/U8HRk12sPvyXjg1i2bBlPPvmk5SdKRVG4du0aNWrUuM+VOQ4ePEibNrmXKbC3t+f555/n448/LtN1lA/i9u3bvPHGG6xcuZL09HQ0Gg1du3bls88+o2nTpg/d7pYtWxg+fDhJSUkEBQWxYcMG6tata72OCyEqpTM3kxnwzV7gPtv8/fYOGeFHAPDo+zyZUefQn75/Dbl7j2dwaTWI9VM6EuLnmud4dnb2Q2/z27BhQ65du4bBYLj/yQ+hR48ebN++nSVLlpRI2VFaWhojRoxgw4YN+R7v169fnmP57bRXEXfAKayKkST+IS3TSGSCAcPlgyhZ6QA41m2Lxskd+8BQAIwJUWTdvmK5xpgaR+LOn0ClxrP/i6jU997kPjLegD7TmOf127dvW3Uyx8aNG3nzzTeBnCB5J//fedxQGPkVS2dkZLBgwQL0er11OloG+Pr6smjRIvR6PT/99BN16tRh27ZtNGvWDH9/fz766KM864YWRq9evYiPj2fcuHFcvnyZ+vXr88ILL+RZY00IIR5ETU+nwlXk3TXuY05Pfaj7REdHs2XLFr744gvGjx9P48aNadCgwUN/XqWmpuLg4PBQ1xbGH3/8gb29PRMnTrQsol6cqlSpgoeHR77HNBoN1apVy/O6k52WED9XmgW6E+LnWqnDJFTQQHmnLsVw7q7H3Q065Py3fgfLa/q7jids/hYl04BL68HY+Qbd9x4KcC0+J4wlJCTw3Xff0bZtW8syDNaQnZ3NiBEjuH49b73ng9T02dnZ5fparVYTHBzM4cOHcXYueGvJ8kqlUjFu3DguXLjAtWvXeOyxx4iPj2fatGk4ODgwYMAAzp0790BtqtVqfvrpJ44fP46/vz/ffPMN1apVK3LNphCi8nKy0xKYzyPRO/tGZ0ScJFn3W559o51CuuDe45lcv5yb//14WOPijXuPZ7APaER2wk2q2Nvg6+tL7969ee2111i6dCmnTp0iLi7uoUco9Xo9Tk5OD3VtYTg6OrJgwQIyMjIYNGgQN27cYNCgQcU2Wvnhhx+yZMkSgoOD6d+/f65jarU630ApcquQgTLLaMacaSD9ymEA1PbO2NdoAoBj/fagynnb+nN7UBSF9KtHSb98AK1bNVw7Fv4v64pVvzNo0CB8fHx49tlnOXjwYM49rFSkbGNjw6ZNm6hXr16ufUbhwUYo/xkohw0bxqFDh6hTp45V+lmW1ahRgxUrVmAwGJgzZw4BAQFs2LCBhg0bUrNmTWbPnv1AI41NmjTh+vXrTJ06lbi4ONq3b8/jjz9epHpNIUTl1a2+d55JHhnhR4he+ibRy6aTtHsRKDnfo2x96uAQ1BqHWs1xaTUo16+7B0s0VdxxaTUIh2p1aBvonKvWUVEUjEYjKpWKzp07o9Hc+2lcQTIyMqy6HnB+Ro0aRfv27dm+fTtBQUGsXbuWjRs3FrldRVF48803LY+wV65cyfTp06latSpHjx7l66+/BrCE7ezsbAmUhVAhA6WtVo3h0n7L2pHmjFQiPxlExEePEPX1KMs/TlNKDJk3zmNKTQDAmHSL658Ps6w9ebfIz4YSs+q/uV6b+d8ZrF27FqPRmOtx9JYtW5g3bx4HDx4sctBo3749p06d4v3338/1TSEiIiLPufpMI2duJnMsMpEzN5Mtj+Tv/obx6aef8uuvvxbrT5ZlkVqt5rnnniM8PJzz58/zyCOPcPPmTaZMmYKDgwPDhg3j6tWrhW7vww8/5OrVqzRs2JCVK1fi6enJmjVrivEdCCEqolFtAu+5vZ9Ka4dN1Rq4tB+Bz5MfPti+0Qp8/MwArl+/TnBwcK6BCUVRWLduHc7OzvTq1Ytff/31gX64zsrKws3NrdDnP4xr165ZPr/uPJpPTEwsct3m1atX+eSTT3jkkUeYOnUqI0eOxMHBgRMnTmBvb28ZoTxw4ABLliyhQYMGtG3btmhvphKokJNy9JlGqjZsS/pfRcz34txiILY+dYjfMOu+5zrUbYv3sP/76ysF/U//Ju72jftep9FocHJysuxfWrNmTerXr0/Tpk1p1apVoX/yuXTpEkOHDuX06dPUrVuXixcvcik6laUHItlxIYbIBEOuJShUQKCHI9VIYPXHL/N/L0zk7bffLtS9KgOTycSXX37JV199RVRUFAB169blzTff5Kmnnir0ZKU5c+bwyiuvkJWVRefOnfnjjz+K/Sd3IUTFURL7RicmJtKvXz8OHz6MyWRCpVLx5JNPsnPnTm7cyPkc02g01KtXj2HDhvHiiy/ec7calUrFoEGD+N///me1Pt8tLi6OmjVr5lvnf/78eerXr//QbS9cuDDXGpcqlYoDBw7QqlUry7bETzzxBL/8cu+91UVuFTJQxsfHU9XbB8VsQmXrgFuXsblPMBlJ3L4QAI2TO95PfEDG1WN52kncNt/ye7duT2Pj4Y9j3Zx/nNkJN7n5/b/yvf/q1atRqVScOHHCUsd369YtEhIS0Ov1uZYkgJy/zHZ2dri6uuLt7U1AQABBQUGWPVCbNGliGXpXFIWePXuiO3GBAe8t4XCUHo1ade+fcBUzikpNpyAvZg4JrVTLGBTWyZMnee2119i+fTsmkwkHBweGDBnCp59+ip+f332vT0pKYuDAgezduxdbW1tmzZrFs88+WwI9F0KUdyW1b7Rer2fQoEFs27aN9u3bExYWBuTMcJ47dy7Lly/n9OnTZGdnA1C1alW6d+/OlClT6NDh70fqKSkpuLq6MnHiRObPn09xMJvNTJkyhW+//Ra1Wp3rc/PPP/+kV69eD932k08+mWdEdtCgQcybN48aNWpga2tLYmJisSyLVJFVyED53Xff8e9//xvIqZmsOmR6nnNu/vAC2THhAHiP/C8ONZvmOefux953LxukUYHDjcOcWfRuvvffsmULPXv2LLB/GRkZnDhxgiNHjnD27FkuX75MVFQUsbGxJCcnk5mZmecarVaLk5MTnp6eVGnSh+Q6vVBptCiqwlct3Fm1/71HQxhZSRZafVBZWVl89NFHzJ07l+joaCBneYy3336bESNG3Pf6VatWMW7cOPR6PY0aNWLjxo1Ur169uLsthCjnSmrf6MzMTKZNm2bZYjY/mzdvZu7cuezevduyuLidnR3NmjVjzJgxtGzZkjZt2vDWW28xY8YMq/U5PydPnuT5559nz549ltfmzZvHpEmTcp1X2CV8FEXB29s734mttWrV4urVq6xatYqhQ4da/81UcBUyUHbt2pVdu3YB4DngZaqE9shzTtLuJSTrlgNQpUlvPPu9kOecggIlwNaXO7N19dICR6FsbGxo0KABgwcPZvLkyfj4+Nyzz2azmczMTMsyDJGRkRw6dIhTp05x/vx5IiIiuHXrFoZanXFsOwJFUfJM1HkQr/Wux/PdZC3Fezlw4ABvvPEGe/fuxWw24+TkxMiRI/noo4/u+SgoKyuLJ554gtWrV6NWq5k6dWq5X0heCFH8Zu+4xGd/XixyO6/3rs/kbvdfraQwIiMjmTVrFmvXriU8PJy7I0PXrl1ZuHAhtWvXtsq9CqIoCqtWrWLixIkkJyfTpEkTjh8/XqiSr271vRnVJpC6Pjkrmly4cIEGDRrkat/NzY3evXvz22+/0a5dO3Q6XbG+n4qqQgbKO0qiLmX16tWMGDECk8mEoigsWLCAK1eusGbNGi5evGhZ99Dd3Z127drx9NNPM2TIkDz1eV988QVvv/02a9asoUePvAEYrP8TbN3Eg3SvYU+TJk1o1aoVVatWtVrbFUl6ejrvvfceCxYsID4+HpVKRZMmTXj//fd55JFHCrwuLCyMIUOGEBsbS/Xq1Vm/fj2NGzcuwZ4LIcqb5YcieWftGYxm5YE+u0pi3+isrCwWLVrEhx9+SHh4uOV1FxcXOnTowL///W8eeeSRYtssIz09nWbNmnE9wUC/dxYVquTrzvE7JV/PjRvBunXrAGjVqhUvvPACw4YNw8/Pj7S0NKKjowtcj1LcW4UOlCVVl7Jz504eeeQRMjIySEhIsEzIMJvNbN26le+//57du3dblvpRq9XUqVOHAQMG8Pzzz1OnTh3atGnDwYMH0Wq1LF26lOHDhxf4XuI3zSbt+CbLMbcu43Bt93iu8zMiT5N65A+yosMxGZJQjFmoHZyx8w3CucVA7Gs1RzFmcWvBcxiTcx7tqlQq7O3tcXNzw9vbm8DAQOrWrUtISAgtW7akYcOGlb6mZMeOHUyfPp0DBw6gKAqurq6MGTOGDz74IN+JOGazmRdeeIG5c+cCMG7cOBYuXIharSYjI4PRo0czadKkItUDCSEqlusJBqb/foo9l+PuH5hUObO5S7JGftq0aXz00Uf8+uuvrF27lm3btnH79m0gpzwrODiY4cOH8/zzz1t9JvhPey7y3rpzqDRaHmSsSKNWoVEpxGycg03kITZs2ECrVjnbVj7zzDMsWLCAmTNnMm3aNKv2tzKp0IESSq4u5ezZs1y8eJHBgwcXeG1SUhLfffcdK1as4PTp05ZaSScnp1wz2VQqFV9//TXPP/+85bU7o63G7GyiZo/FnJ5iOWbjXQu/p7/Jfa+w5STvWVJgX7wGvoZLaFeCPTT0trnI2bNnuXLlCjdu3CA2NpaUlJR8lzyysbGx1HL6+/tTq1YtgoODLaOcnp6eBd6zIklJSeGtt97i559/Jjk5GZVKRatWrfjwww/p3r17nvMvXLhA//79CQ8Px93dnRUrVrBjxw4++OADqlWrxqVLlwq9lJNs9yVE5WB5pHsxhsj43I90IWdyaEt/Bz7/9yCCvEtuk4qnnnqKn376ifT0dMtObAkJCcyePZuVK1dy9uxZyyQaX19fevXqxYsvvkiLFi0KbPO3336jWbNm99zW1lolAS91q81LvYOBnO/NwcHB1KhR44GWjhN5VfhACWWzLgVy9tieM2cO69atIyEhIc/xiRMn8v3333M5Jo1es3J29Um/coiYFe/lOdfvmW+x8QywfJ12cgtZMVex86uP2tENU1oCKft+Izs+Z9cdW7/6VBv7OZBTD5rfNyOz2cy1a9c4dOgQJ0+e5OLFi0RERHD79m3LWmD/XLdMpVLh4OCQa5SzXr16NGrUiBYtWtCwYcMKs3f4HevXr+ett97i+PHjKIqCh4cHEyZM4N13382zyP2HH37I22+/nWsLSLVazZtvvsnMmTMLvMfD1AoJISqOf/4gWUVJp2b1atjY2BAZGYmvr2+J9eWRRx5h/fr1FBQfzGYza9eu5bvvvkOn05GSkjMA4uDgQMuWLRk/fjxjx461PPG6desWfn5+uLm5sXXr1nyDZ3ENDgUFBREeHs6pU6cICQmxWvuVUaUIlFC261ImTJjAokWL8t1n2svLi/ZTvuR0pgcms0LcH5+jP7MDAMfgzpbtJV07PIFbp3vv8mO4uI/Y1TmTQ2y8AvGbOBeNWsWYNjV499GH+4eUmprK0aNHOXbsGOfOnePKlStERUURFxdHampqgaOcVapUwcvLCz8/P2rXrk1wcLBlXc7iXiy3uCQkJDB16lSWLVtGWloaarWaDh068PHHH9OuXTvLeRcvXqRBgwa5vhlrtVrOnj2b56fzB3r09Y9aIVkeSoiKa+PGjZZZ2o0bNyYsLIwqVaqUyL3bt2/PoUOHLMsL3c/ly5f58ssvWb9+PZGRkZZJpbVr12bw4MH4+vry+uuvo1arsbe3Z+PGjXTu3Nly/fUEA00HP0PCnn+sC6lSo3ZwxrZqDZxCe1GlUTfLodQTmzGc30t23HXM6SkoioKmigf2AY1wbfcYVXxqMML5Eu+/+SJjx47l559/tsqfTWVWaQIllN0P58DAwFz7dfv7+9OgQQMMBgPe3t6cDxpJho0zijGL61+PQslKR+3oit+E2UTNGQ9mE1qP6vj/a16+7StmE8aUWBK3LSD90n4AnJs/gkfvnKWVang6suu1bnmuu7MD0MPu9Qo5P6leuXLFMmP90qVLXLt2jejoaBITE0lPT88zynnnm4q7uzs+Pj6WUc7Q0FBatGhB/fr1y/wo52+//caMGTM4c+YMAD4+Pvz73/9m+vTpjB49mhUrVuS5pmvXrmzfvt0ye7+oPwTJ8lBCVFzvvfce7733niWc9e3bl7Vr15ZInXtwcDCRkZH5Ljp+PxkZGSxYsIAlS5Zw/PjxPMvkqVQqbGxsWL16NQMG5OxPPmbhAdb99DVJe++90Lhbt6dxbZOz3E/0sv+QEXEi3/NUtg74j59FdkoM6Rs+JT4+vtLPD7CGShUo77hXXYoKCPR0pFs9b0a3DSyRupR58+aRlpZG8+bNadq0aa4ZZmmZRkLf3YwC6M/vJe5/HwFQpUkfPPtNIXr5/5Fx7TgA1cZ/ha1v7v25r38zGrM+6e8X1Bqcgjvj0ec51LY5SxSpgNPv9rHU4cXHx/P9998za9YsgoKCLIvfFpeUlBQOHz7M8ePHOXv2LOHh4dy4cYO4uDjS0tIKHOV0dnbGy8sLf3//PKOcZWWnmlu3bvHGG2+watUq0tPTUavVubbp/KfnnnuOOXPmWK1MQ5aHEqJi6tu3L5s3b7Z8rVKpmDRpEnPnzi3SknKFUb16dTIyMvJdy/FBbd++nV69euW77ePTTz/Nq+99Sv85+0jas5TksGUA2NdugWu74SimbFKPrif94j4ANC7eVH/uBwASti1Abe+ErVcNVHaOZMdFkrRnCUpmzraNLm0fw73reP6vmcLE4QWv1iEKr1JG8ro+zrz7aAjvElImJjjcWYQ9PxHxekvgvfN4G8CxQc6uBY71O1gCpf7c7jyBMg+VGtQauCvQKMC1eD3q5Jt8+eWXLFq0iOzsbMxm833Xz7QGFxcXunfvnu9kFsgZ5bx48SKHDx+2jHJGREQQHR3NjRs3uHz5Mjt27Mh1jVqtttRy+vr6UqNGDUstZ8uWLalbt26JjHJWq1aNxYsX8/PPP7No0SLefvvtXKPRAPb29tSqVYsLFy4wd+5cYl3qchDrhMDP/rxI1Sp2xVauIYQoeYqisH///jyvzZs3j169ehX7otx6vd5qP7SbTKZcYVKtVlu+/uGHH1h/2xHHJn1zXaNxdMM+IKdMS+PkbgmUJn2i5RyPHhNzXeNQsynGpNukHl4LgJKVDoqZKPviXUOzMqmUgfJuTnZaQvxcS7sbBcr6a8kjc6aB9CuHAVDbO2NfowmQsxNQwp/fgmJGf24Pbl3H5/rp1HvYWyjZmWQn3Sb10P/IjotEf2orSpYh1w5CHTp1ITk87+OBuLg4ZsyYgaenJ15eXlStWhUfHx+qVauGm5tbiYQytVpNgwYN8ixGe7ekpCQOHz5sqeW8evUqN27cID4+npMnT3LkSN593W1tbXONctapU4eGDRvStGlTWrZsadV6JLVazfjx49m0aRMrVqzI9Q00IyODyMhITpw4weaww8y9ljNTvjDLQ0HO341k3a8YLoRhTI1DbVcFh1pNce04Chv3ary99gzt63hJTaUQFcTVq1ctq0vcedoRGBhI7969ad26dbHfPyMjw2o7gJ09exbI+cH6znbDjRs3tkyQeWlbEsmm/K9VTNmWMi4A26o18j/PmE1WXITlMxTALrAxqNTsuBjDu8hkHGuolI+8y5MzN5MZ8M1e0k5vJ37dF/c932f0p9hXD873WHbSbW7Ou/NTm4rA11ZZdv+5/dOLZN6+8lB91Gg0aDQabGxssLW1xc7ODgcHBxwdHXFycqJKlSq4uLjg6uqKu7s77u7uJR5QzWYz586d48iRI5ZRzsjISKKjo0lKSiI9PT3PY2i1Wo2jo6OllrNmzZrUq1ePxo0b07JlS2rVqvVA/U1MTLSUM9z9QXD3/Vq/uYgYlXuhl4cyZxq4veQNsmOv5bmf2r4KPk9+hINvrVyL8Qshyrfr168zYMAAQkNDiY6OZtu2bRw7doymTZuWyP21Wi3t27dn9+7d9z/5PkwmEzdu3KB69ep5vp/eXfJ19yPv/KgdXak69P9yff5lx1/n5vzcu9mp7ZxwafuY5Yfzf5Z8iYcnf4JlXE1PJ1SA/uyuQp1vOLcb++rBmLMzUdvY5Tqm4u66GgVzpgGN1hYVcOviSX5e+D1vv/02BoMBk8mESqVi4MCBvPXWW8TExBAbG0tcXBzx8fEkJSWRlJREcnIyqamppKWlYTAYMBgMZGRkEB8fz+3btzEajXkeadxPcQRUtVpNSEjIPZeFSEhI4NChQ5w4cYJz584RHh7OzZs3Le/l8OHDea6xtbXFxcUFLy8vqlevbhnlbNasGS1atMi1bNDde9Gq1Woef/xxxo4di4+PDyqVipV/7mVpkhsoChnXjuUKkwDZMVfJjr+ea3mopL1LLWHSLqARLq0Gkx5+mLTjmzBnpBG/8SuqjfuSPZfjuByTWqJr1QkhikdAQAAnT54E4PTp04SGhjJ//nzmzJlTIvc3mUxWW3NYo9EQGJh/Sc7dJV/3o9LaomQZ7n+iWgPkLfkqy08qywsJlGWck52WanbZXPurTlJl64Bbl7G5TzIZSdy+EADD+b2493yGG3PG4RTSDdtq9dBUcceUEkfKod8tl2hcqqJ2zPkHFOjpiLuzIy+99BJjxozhvffeY+7cuZhMJnx8fGjZsqVV3ktWVha3b98mJiamzAfUli1b0rdv31wBtUqVKpw/f54jR45w+vRpLl++bBnljIiI4MKFC2zdujXXvdVqNU5OTri7u+eaXGQymVi+fDnnzp1j8eLFhIaGsua6LZoDEZjMCvqzd9XL3rU8lP7sbsvyUIopG/3JO/dT4TXoDbRVPHCo24aM66cxxkeRdesSmbcv4+hXlyX7Ix96eSghRNnUqFEj7Ozs2LJlS4ncLzk5GaBEturNKmCXuzuTcjCbyIg6Q/KeXzClxBK7eib+/16Apoo7kDNJx2fUxyjGTLKiw0nZvxJzegpJuxahsnXApcXAe95HPBgJlOWAR8wxMOcUkTjUamb5R3C3tNM7yI4Jx6RPJCPiJOaMNFKP/JF/g2otHr3+jUqlQqNW0a2et+WQp6cnX3/9NZMnT+b999+3LNtgDba2tgQGBhb40+iDuhNQo6OjiY2NLdWA6uvri6OjI7a2tpjNZrKyssjMzCQzMxODwUBsbCzp6el52jpx4gSNGzemXr162AydiQl7FGMWhr/qgtSOrnj0fAbDhTAwm3LqZP8KlFmxEZgzc5bt0Lp6o63y9+N0O78GGOOjAMi8fgY73yCpFRKiggoODubUqVOWJYSK0509vP38/Ir1PgC22vxLiu6elGNfozGZN86TEX4ExZiJ4fIBnJvmTOJR29hZznOo1RyNoyvxG74CwHB2l+WztKD7iAcjgbIciD2+3fJ7h6D86+Acg1qTHJPzD91wbjeuHZ4gI/IUxsSbmAwpqNQaNM6e2Ac0wrnlQGy9awFgMiuMbps34NWvX58lSwreurEsKK6AWtIjqADhkTfxU+xQqcBw+WDODETAsW5bNE7u2AeGknHtOMaEKLJuX8HWtw6m5BjL9Wont1ztae762piUs8duZLwBfaZRaoWEqGD69+/P8ePH2bVrF127di3We0VERAAlEyjvlHzd97H3XfXo5vRUFGM2aLT5hOu/vzZn6C2v1PQs3La34t7kk6UcOKDbY9nLu6AFrt06j8at8+gHalejVtG+tqfU1f2luAPqpEmTiIqKynOeu7s7HQeO5ORf3/wKuzyUOTvDcp5Kk3vxeZX673/aSnbOwsFSKyRExTRp0iRmzpzJDz/8UOyBMjIyEsip4yxuTnZaAj0ciUjIXRtpMiSRcf0MmE05o5N/fW8EsPHwJ/PGOeI3foNTo27YeNVAbedIduw1knW/Wc67s8ReoKej/JBtJfKnWE7MHBJKzy93PdCOKfejVauYOSTUau2J3P4ZUJs0aUJUVJRlJ4inn36aF198kQYNGnAsMpEh3+oeaHkotY295V6KKfcWaIr57208VXdNzpJaISEqnsDAQJycnNi1q3CTN4vi5s2bANSuXTLrN3ar783iAxG5XssIP0JGeD5LwfnUwSGoNZlRZzEm3SK5gJ11NE7uuHYanafkSxSNBMpyIsDDkfceDWHq6lNWa3PGoyGyNmEJ6tatGydPnmTy5Mk888wzuXZEulPDY7i0H8WYM3nHnJFK5CeD8rRjSokh88Z5NK5/fyM03b0bEmBK+3uBX62bb577CCEqlsaNG7N//37MZnOxrg98+3ZOCU2NGvmv+Whto9oE8tO+awUeV2nt0Lr74lC3La5thqHSaNF6+OPcYmBOsEyJxZyRhsrGDht3P+xrN8el1WA0jq4FlnyJhyOBshwZ2SqQuLRMq2zJ93rv+rJ7Sgl79dVXefXVV/M99jDLQ7l3fxqVnRNKph5TcgzG1Di0zl4oikLmzQuWc+3+KkpHUfhj2Q9oBvSjfv36xV68L4QoOYMHD2bfvn3873//K9adcmJjY4GchchLQl0fZzoFeaFTj7ZMSLwfrbMnHr0m3fMcKfmyPhmuKGee71aXj4aGYqdVo1E/WCDQqFXYadV8PDSUyd2CiqmH4mHcWR4q467lodx7Tcr9q/sEy/mG83tBraFK455/vaIQt+ZTDJcOkLB5DsaEnFpNW9+62Pnm/L+2yUrm3f9MIzg4mNq1azN58mTWrVuHXq8vybcqhCgGEyfmbFpR3JMpExIS0GpLdixq5pBQtA/4eXc/UvJlfTJCWQ6NbBVIhzpeTP/9FHsux6FRq+5ZW3nnePvanswcEiqPucuoh1keyq3jKDKunSA79hqZUWeIjTpjOVdt54Rn/xeBnL8Do7o25Y3/JrBz5042bNjAhg0bmDt3LnZ2dnTp0oV+/frRv39/6tatK6OXQpQzHh4euLm5odPpivU+SUlJ2NraFus9/klKvsoH2XqxnLsUncrSA5HsuBhDZLwh1/IKKnJmsHWr583otoEytF/GtWnfiYP79gLgOeBlqoT2yHNO0u4lJOuWA1ClSW88+73w117eyzGcD8OYFo/argr2NZvg1mkUNu5/L+2x9eXOuf4OKIrCxYsX2bhxIxs2bGDXrl1kZWVRu3Zt+vfvT79+/ejatWuu3X6EEGVXz5492bZtG+np6cX2SNrf35/MzEzi4uKKpf17mb3jktVKvuQpnfVJoKxA9JlGrsXryTKasdWqqenpJMshlDP3Wx7qYdypFbrfXt56vZ4dO3ZYRi8jIiKwt7ena9euloAZFCTfhIUoq77//nsmTZrEggULmDBhwv0veAju7u64urpy7dq1Ymn/fpYfiuSdtWfIzDaCqvBVexq1Cq1axYxHQ2T+QDGRQClEGXI9wUDPL3eRacXlfey0ara+3OWBHu8oisL58+cto5e7d+8mOzuboKAgS7js0qULDg4OVuunEKJoDAYDTk5O9O7dm82bNxfLPRwcHKhbt65lL/HS0H/4GI5q6mNfs1mhS746BXlJyVcxk0ApRBmz/FCkVWuFPh4aWuSfyFNTU9m+fTsbN25k48aNREZG4uDgQLdu3SwBs6TWpRNCFMzHx4fs7GwSEhKKpX2tVkuHDh1KZM3Lf9Lr9Tz11FOsWLECb29v9p68LCVfZYgESiHKoLJcK6QoCmfPnrWMXu7Zswej0Uj9+vXp168f/fr1o3PnziW2rIgQ4m+DBw9mzZo1JCYm4ubmZvX2VSoVQ4YMYfXq1VZv+14OHz7MiBEjLHuJP/744/z229873ySmGqgZ2gozanZu30oDf08p+SphsmyQEGVQWV4eSqVSERISwmuvvcb27duJj49n9erVdO7cmZUrV9KnTx88PT0ZOHAg3377banVWglRGT355JMA/PDDD1ZvOzExZ8MEb++S213GZDLx0Ucf0bZt21zfS/65l/gzT40lJeIsn0+fQovaPhImS4EESiHKqJGtAtn6chfa1/YEuG+wvHO8fW1Ptr7cpcQKz11cXBgyZAjff/89kZGRnDx5knfeeYfU1FReeOEFatWqRcOGDXn11VfZunUrmZmZJdIvISqjoUOHolKpimUE8c7ooK+v733OtJ5JkyYxbdo0TCYTZnNObblWq821dNGhQ4dYtWoVDRs25F//+leJ9U3kJhFeiDIswMORxRPalJvloVQqFaGhoYSGhvLGG2+QnJzM1q1b2bhxI8uXL+eLL77AycmJHj16WGov7+x1LoQoOq1Wi7+/PydOnLB62xEROXtq+/v7W73tgvTp04fVq1dbRkch5/uMnZ2d5etBgwahVqvZsGFDifVL5CWBUohyoK6PM+8+GsK7hJSr5aFcXV0ZNmwYw4YNQ1EUTp48aam9nDx5MiaTiZCQEMui6h06dCjxRZOFqGg6d+7ML7/8QlRUFNWrV7dau9evXwdKbh9vyKmV7Nu3L9WrVyclJQW1Wo3RaLR8n5g+fTq3bt3ipZdeKtF+ibzkkbcQ5YyTnZYQP1eaBboT4udaZsPkP6lUKpo0acLUqVPZvXs3cXFx/Pbbb7Ru3ZolS5bQvXt3PD09GTJkCPPnzycqKqq0uyxEufTUU08BMH/+fKu2e/PmTQBq1apl1XbvZ82aNaSkpDBy5EimTJliGYW9efMmn3zyCVWrVuXzzz8v0T6JvGSWtxCi1JnNZk6cOGEZvdy3bx9ms5nQ0FDL6GX79u2xsbEp7a4KUeaZzWZsbW1p0qQJR44csVq748aNY9GiRWRmZpbokwQvLy9SU1NJTk7G3t6e9PR07OzsaNGiBcePH2fPnj107NixxPoj8icjlEKIUqdWq2nWrBnTp09n7969xMbGsnz5cpo3b85PP/1E165d8fLy4rHHHmPhwoWWkRIhRF5qtZpatWpx9uxZq7YbGxuLSqUq0TD5+eefEx8fz0svvWRZiszBwYElS5Zw/PhxBgwYIGGyjJARSiFEmWY2mzl27BgbNmxg48aNHDhwALPZTJMmTSyjl+3atUOrLR+P/oUoCf/+97/57rvvOHv2LMHBwVZps23bthw5coTs7GyrtHc/ZrMZFxcXAEv9JEBGRgYeHh4oikJiYqKseVtGyAilEKJMU6vVtGjRgrfeegudTkdMTAy//PILjRs3ZuHChXTu3BkvLy+GDx/Ojz/+yK1bt0q7y0KUuokTJwI5+3tbS1JSUq7Z1cVt2rRp6PV6ZsyYYQmTACNGjCA9PZ25c+dKmCxDZIRSCFFumc1mjhw5Yhm9PHjwIIqi0KxZM8uyRG3atJHRS1Ep2dnZUadOHas9+vb39ycrK4vY2FirtHcvGRkZuLq64uzsTFxcnOV1nU5Hhw4daNy4cbEsjSQengRKIUSFERcXx+bNm9m4cSObNm0iPj4ed3d3evfuTb9+/ejbty8+Pj6l3U0hSkRoaCgXLlwgKyvLKu25ubnh5uZWIrtfPf300/z4448sXryY0aNHAzk/QPr5+REbG0tERIRVl0QSRSePvIUQFYaXlxejRo1iyZIlREdHs3//fqZMmUJ4eDhPPfUUvr6+tGzZkrfffpt9+/ZhMplKu8tCFJu+ffuSnZ3Nvn37rNJeZmampaaxOCUlJbFo0SICAgIsYRLgzTffJDo6mtdee03CZBkkI5RCiEohJibGMnq5efNmEhIS8PDwoE+fPpbRy6pVq5Z2N4WwmitXrhAUFMSECRNYsGBBkdvTaDR07NiRXbt2WaF3BRs0aBBr165l06ZN9OnTB4DIyEhq1aqFt7c3N2/eRKW691a0ouRJoBRCVDomk4mDBw9aai+PHDmCSqWiZcuWltrLli1botFoSrurQhSJo6Mjvr6+ln24i0KlUjF06FBWrVplhZ7l7/r169SoUYP69etz7tw5y+uNGzfm1KlT7N+/nzZt2hTb/cXDk0feQohKR6PR0K5dO95//30OHz7MrVu3+PHHH6lduzZfffUVbdu2xcfHh9GjR7N06dJckwKEKE9CQkKIiIjAbDYXqZ2EhAQAvL29rdGtAo0aNQpFUVi8eLHltQULFnDq1CmGDBkiYbIMk0AphKj0fH19GTduHMuXLyc2Npa9e/cyadIkzp49y+jRo/H29qZt27bMmDGDQ4cOFfnDWYiSMmjQIMxmM5s2bSpSO1euXAGgWrVq1uhWvk6fPs2ePXto3bo1LVu2BMBgMDBlyhQcHR1Zvnx5sd1bFJ0ESiGEuItWq6VDhw588MEHHD16lJs3b7Jw4UICAwP54osvaN26Nb6+vowdO5Zly5YRHx9f2l0WokB31qNctGhRkdqJiIgAcpYOKi6jRo0C4JdffrG89thjj5GRkcH3339fojv0iAcnNZRCCFFI2dnZ7N+/31J7eeLECdRqNW3atLHUXjZr1izXIsxClDZXV1eqVKnCjRs3HrqNWbNm8fLLL7NlyxZ69uxpxd7l2L17N126dKF3795s3rw512vNmze36p7konhIoBRCiId048YNNm3axMaNG/nzzz9JTU3Fx8eHvn370r9/f3r16oW7u3tpd1NUcl27dmX37t1kZmZiY2PzUG28/vrrfPbZZ1y+fJk6depYuYdQp04drl27xq1bt/D29sZsNuPt7U1SUhJRUVH4+vpa/Z7CuuTHaCGEeEj+/v5MmDCBlStXEh8fz86dOxk3bhxHjx5lxIgRVK1alU6dOjFz5kyOHTuG/PwuSsOwYcNQFIXffvvtoduIjo4GICAgwFrdsli1ahXh4eEMHz7cMunnpZdeIj4+nunTp0uYLCdkhFIIIYrB9evXLaOXW7ZsIS0tjWrVquUavXR1dS3tbopKIC0tDWdnZwYMGMC6deseqo1+/fqxefPmYpmQ5uvrS3x8PMnJyTg6OnL16lWCgoKoVq0aUVFRVr+fKB4SKIUQophlZWURFhZmqb08c+YMGo2GDh060K9fP/r3709oaKgs1iyKjZeXFyqV6qH34W7dujXHjx+32jaOd3z77bc899xzPP/883zzzTcABAcHc/78eY4cOULz5s2tej9RfCRQCiFECYuMjGTjxo1s2LCBbdu2odfr8ff3t4xe9uzZs0S2uBOVR//+/dm4cSOpqalUqVLlga+vX78+N27cIC0tzWp9MpvNuLu7k5WVRWpqKlqtlrlz5zJ58mSGDx/Or7/+arV7ieInNZRCCFHCAgMDmTRpEmvWrCE+Pp6tW7cyYsQIdDodw4YNw9PTk27duvHJJ59w+vRpqb0URfbEE08A8PPPPz/U9ampqTg4OFizS8yYMYOUlBSmT5+OVqslLS2NV155BScnp1wLm4vyQUYohRCiDLl27Zpl9HL79u0YDAaqV69uWZaoR48eODs7l3Y3RTmTlZWFvb09Xbp0YceOHQ98vZubG+7u7ly9etUq/TEajTg7O2NnZ0dCQgJqtZpevXqxdetWVqxYwWOPPWaV+4iSI4FSCCHKqIyMDPbs2WOpvbxw4QI2NjZ06tTJUnsZHBwstZeiUPz8/NDr9SQnJz/wtfb29tSvX58TJ05YpS+TJ09m7ty5fPfdd/zrX/9i69at9OrVi9atW3PgwAGr3EOULAmUQghRToSHh1tGL3fs2EF6ejqBgYGW0cvu3bs/VH2cqBwef/xxVq5cSXR09APvya3RaOjUqRM7d+4scj/S0tJwd3fHy8uLW7duYTab8fLyIjU1lVu3buHl5VXke4iSJzWUQghRTtSuXZvJkyezfv164uPj2bRpE4MHD2bbtm0MGjQIT09PevXqxRdffMH58+el9lLkMm7cOADmz5//QNeZzWZL6LOGCRMmYDQamTdvHgDPPfcciYmJvPPOOxImyzEZoRRCiArg8uXLltHLnTt3kpGRQc2aNS2jl926dcPJyam0uylKkdlsxsbGhpYtWz7QY+W4uDiqVq3Ks88+y9y5c4vUh+joaPz8/KhZsyZXrlzh0qVL1K9fn4CAAMt+4aJ8khFKIYSoAIKCgpgyZQobN24kPj6e9evX88gjj7Bp0yYGDhyIp6cnffr0YdasWVy8eFFGLyshtVpNYGAgp0+ffqDrrly5AkC1atWK3IfRo0djNpsts80HDBgAwB9//FHktkXpkkAphBAVjKOjI/379+ebb77h8uXLXLhwgY8++giAqVOnUr9+fUsA3bBhAwaDoZR7LEpKt27dMBgMhIeHF/qaOyOH1atXL9K9L126xNatW2natCkdO3Zk1qxZXLp0iSeffJLGjRsXqW1R+uSRtxBCVCJ6vZ4dO3ZYHo9fu3YNe3t7unbtapk5HhQUVNrdFMUkLCyMjh078sYbb/Dxxx8X6povvviCV199la1bt9KjR4+Hvnfr1q05dOgQp0+fJiAgAC8vL+zt7UlISECr1T50u6JskBFKIYSoRJycnHjkkUeYM2cO4eHhnDt3jpkzZ2I0Gnn99depW7cudevW5cUXX2TTpk2kp6eXdpeFFXXo0AGtVsvGjRsLfc2NGzeAnElhD+vQoUMcOnSILl26EBISwqOPPkp2djZLliyRMFlByAilEEIIIGc5l+3bt1tGLyMjI3FwcKBbt26WyT1FCRWibAgODiY8PJzMzMxCnT969GiWLl1Kdnb2Q4e/Bg0acPHiRa5fv86JEycYMGAAHTp0YO/evQ/Vnih7ZIRSCCEEAFWqVOHRRx/l22+/5dq1a5w5c4b333+fjIwMXn75ZerUqUP9+vV5+eWX+fPPP8nIyCjtLouH0Lt3b7Kysjh69Gihzo+Li0OlUj10mNywYQMXLlxg0KBBVKtWjSeffBIbGxvWrl37UO2JsklGKIUQQtxXamoq27Zts4xeRkVF4ejoSPfu3S2jlzVr1iztbopCOHPmDI0aNSr0MkCtWrXixIkTZGVlPdT9qlevzu3bt4mPj+fll1/mxx9/5OOPP+aNN954qPZE2SSBUgghxANRFIUzZ85YwuXevXsxGo0EBwfTr18/+vXrR6dOnbCzsyvtrooCODg4EBAQwMWLF+97br169bh58yZpaWkPfJ+ff/6Z8ePHM2HCBF555RUaNWpEzZo1H2iWuSgfJFAKIYQokpSUFLZu3WoJmDdv3sTJyYkePXpYRi8DAwNLu5viLs2bN+fkyZNkZWWhVt+7+q1atWqYTCZiYmIe+D6enp7o9XpSUlJo0KCBpZQiODj4YbsuyiipoRRCCFEkLi4uDB06lPnz5xMVFcWJEyf4v//7P5KSkpg8eTI1atSgUaNGvP766+zYseOhH50K6xkwYAAmk6lQe3MbDIaH2iP+k08+ISEhgVdeeYVZs2Zx9epVxo8fL2GygpIRSiGEEMUmKSnJMnq5ceNGbt26RZUqVejZs6dl9LKoC2aLBxcVFUVAQACjRo1iyZIl9zzX3t6eBg0acPz48UK3bzabcXZ2Rq1Wc/XqVfz8/HB0dCQhIeG+I6KifJLFn4QQQhQbNzc3HnvsMR577DEUReHEiRNs2LCBjRs38uyzz2IymQgNDbUsqt6+fXtsbGxKu9sVXvXq1XFycmL37t33PTc7Oxt3d/cHav+NN97AYDAwa9YsBg0aRHZ2NsuWLZMwWYHJCKUQQohSkZiYyJYtWyyjl9HR0bi4uFhGL/v27Yu/v39pd7PC6tChA/v27SMrK6vAJYHMZjMajYbHHnuMFStWFKrdjIwMXFxccHV1ZcGCBQwePJguXboU6vG6KL/kRwUhhBClwt3dneHDh/Pjjz9y8+ZNjhw5wuuvv87t27f517/+RfXq1WnatCnTpk1jz549GI3G0u5yhTJkyBAURWHNmjUFnhMXFweAt7d3odudNGkS2dnZfPnll4wZMwZbW1tZc7ISkEAphBCi1KnVapo3b87//d//ERYWRmxsLMuWLaNJkyYsXLiQzp074+XlZQmgt27dKu0ul3tPP/00wD1rKK9cuQKAn59fodpMSEhgyZIlBAYGsmnTJlJTU/nkk09wcXEpeodFmSaPvIUQQpRpZrOZo0ePWmovDxw4gKIoNGvWzFJ72aZNG9kT+iF4eHhgY2NDdHR0vsd//fVXRo4cyU8//cS4cePu294jjzzC+vXr+e6775g0aRJ169Yt1FqXovyTQCmEEKJciYuL488//2TDhg1s3ryZuLg43Nzc6NOnD/369aNv3774+PiUdjfLhV69erF161bS09Oxt7fPc/zzzz/ntddeY/v27XTr1u2ebUVERFCrVi2Cg4NJS0vj+vXrXLhwgbp16xZX90UZIo+8hRBClCteXl48+eSTLFmyhNu3b7N//35efPFFrl69ylNPPYWvry8tW7bk7bffZt++fZhMptLucpk1YsQIoODH3jdu3ACgVq1a921r1KhRKIpCly5diIyM5F//+peEyUpERiiFEEJUGLGxsWzevNkyepmQkICHh4dl9LJPnz4PNMGkosvIyMDBwYFevXrx559/5jk+atQofvnlF7Kzs+9ZUnDixAmaNm1Ky5YtOX78OC4uLsTGxsoyQZWIBEohhBAVkslk4uDBg5YtIY8cOYJKpaJly5aWRdVbtmyJRqMp7a6WKh8fH7Kzs0lISMhzrE+fPmzZsgWz2XzPNkJDQzlz5gyNGzfmxIkTbN26lR49ehRXl0UZJIFSCCFEpRAdHW0Zvfzzzz9JTEzE09OTvn37WkYvvby8SrubJW7w4MGsWbOGhISEPAuYt2zZ0rLnd0F27NhB9+7dadq0KcePH6dnz55s2bKluLstyhgJlEIIISodo9HIgQMHLKOXx44dQ6VS0bp1a8voZYsWLSrFI9uVK1fy+OOP89JLL+Hv749OpyM2NhYPDw927txJeno67733Hl5eXjz++OO4ubnlur5WrVpERkZib2+PyWQiLi7uofb+FuWbBEohhBCV3q1bt3KNXiYnJ1O1alXL6GXv3r3x9PQs7W5aVVpaGosWLeLPP/+85+LmABqNBpPJxMKFC2natCnLly9nzJgxnD17lpEjRxIYGEhkZCRz5szhueeeK6F3IMoSCZRCCCHEXYxGI/v27bOMXp44cQK1Wk2bNm0so5fNmjUr96OX8+bN49lnn0WtVueqkXRxccHHx4dLly5ZXlOpVFSrVo1Lly7x4Ycf8t///hfA8mdgNpsJDg7m7NmzJfsmRJlRvv81CCGEEFam1Wrp1KkTM2fO5Pjx49y4cYP58+fj5+fHp59+SsuWLfHz82P8+PH8+uuvJCYmlnaXH8r48eNp27YtKpXK8ppKpaJt27a88MILuV5XFIWvv/4aR0dHsrKyLBOZzGazJYwuW7asZN+AKFMkUAohhBD34Ofnx9NPP83KlSuJi4tj586djB8/nqNHjzJy5Ei8vLzo2LEjM2fO5NixY5SXB3/29vasW7eOwMBAy0jjnUA5ZswY7OzsLOd269aNoUOHApCZmZlve927d5cRykpMAqUQQghRSDY2NnTp0oWPPvqIkydPcv36debNm4e3tzcfffQRzZs3x9/fn6effpoVK1aQlJRU2l2+J09PT7Zs2YKrqyuQM+LYunVrXF1dGTt2LJATMufMmWMZsczKysp3GaGEhASpn6zEpIZSCCGEsIKsrCzCwsIstZdnzpxBo9HQvn17S+1l48aNcz1KLisOHDhAu3btUBSFmJgYqlatyu7du+nSpQvNmzfnyJEjlnOfeuopfvrppzxt9O7dm2+//ZbatWuXYM9FWSGBUgghhCgGkZGRbNy4kY0bN7J161b0ej3+/v707duX/v3707NnT1xcXEq7mxZjx45l8eLFREdH4+Tqwf4zV+j/yKN8+fmnjBvaHye7nJ1y6tWrl2vCTrVq1ZgzZw6DBw8uk2FZlAwJlEIIIUQxy8zMZO/evZbRy3PnzqHVaunYsSP9+vWjX79+NGrUqFQDme50OI+++im1Ow4k1qBwdzhQAYEejnQO8uSrFx4jNSonUL788svMmDFD1p0UEiiFEEKIknbt2jXL6OW2bdswGAxUr16dfv360b9/f3r06IGzs3OJ9OV6goHpv59iz+U4NCow3SMVqAEzkH71KK928uONyRNKpI+i7JNAKYQQQpSijIwM9uzZw4YNG9i4cSMXLlzAxsaGTp06WQJmcHBwsYxeLj8UyTtrz2A0K5jMhY8DKhRstRreezSEka0Crd4vUf5IoBRCCCHKkPDwcMvo5fbt20lPTycwMNASLrt3737PR8yXL18mNTWVZs2a3fM+s3dc4rM/Lxa5v6/1rsfz3eoWuR1RvkmgFEIIIcqo9PR0du/ebRm9vHTpEra2tnTu3NkSMOvXr59r9LJTp07s37+fxYsXM3LkyHzbXX4okqmrT1mtnx8PDWWEjFRWahIohRBCiHLi8uXLltHLHTt2kJGRQc2aNS3hsnnz5gQEBGA2m1GpVHzzzTdMnjw5Vxsvv/kfZn0yM3fDKjVqB2dsq9bAKbQXVRp1y3U4O/EmSXuWknHtBObMNLTOXjjW74Br+xGo7Ryx06rZ+nIXAjwci/uPQJRREiiFEEKIcig9PZ2dO3eyYcMGNmzYQHh4OFqtFqPRmOu8t99+m3fffdcyitn40Ymc+mPhPdt26/Y0rm1ydsbJig7n9i/TUDL1ec6z8a6N76iPsHFwon1tTxZPaGOldyfKG9kpRwghhCiHHBwc6NevH9988w2XL1/mwoULtGjRIs/knRkzZjBw4EDMZjOXolOJTDBYjtnXboHPqI/xHvlfHOq1s7yeemSd5ffxG76yhMkqTftSddhb2AU0AiA7JpzksOWYzAp7LsdxOSa1ON+yKMMkUAohhBDlnEqlom7duoSHh+faS/zOHt3r169n3bp1LD0QmStwahzdsA8IwaFmU9w6jba8btInApB58wJZ0VcAsPEMwKPPZBzrtsFr0BvkrE4JaSf/RDEZ0ahVLNkfWdxvVZRR2tLugBBCCCGK7vbt28TGxgJQpUoVmjRpQosWLWjSpAn169enQ4cOfP7pDvKrdFNM2aRf2m/52rZqDQAyo87+/Zrf35N/tFU80Lp6Y0yOxpyRRnZcJCqf2uy4GMO7hBTn2xRllARKIYQQogLw9fXl4MGDVK1alRo1auR59J2Wacz1uBtAf3ob+tPbcr2mdnTFveckAIzJMZbXNU5uuc9zcoPk6Jzzkm5j61ObyHgD+kyjZZtGUXnI/3EhhBCiAlCpVLRq1arA4xHxegozC1eltUXJygme5uyMv1/X2OQ+T/13hDBnZwKgANfi9YT4uRa+46JCkEAphBBCVAJZRnOe1+xrt8C13XAwm8iIOkPynl8wpcQSu3om/v9egNrG3nKuYsrOda1i/ns2udrG7p73ERWfBEohhBCiErDV5p2He2dSDoB9jcZk3jhPRvgRFGMmhssH0Lp6W8416ZNyXWtKS7T8Xuvme8/7iIpP/q8LIYQQlUBNTyfuuxv4XRN2zOmp2FVvaPk688Z5y4QeY2ocppScCUBq+yrYeOXskqP66z6i8pERSiGEEKIScLLTEujhSOJdr5kMSWRcPwNmU87o5LXjlmM2Hv7Y+dXH1qcOWdFXMCZEkbBpNg5BrUk5+Dv8VZFZpXFvVJqcOBHo6SgTciop+b8uhBBCVBLd6ntz8q7Z3xnhR8gIP5LnPFufOjgEtQbAs/+Llp1y0k5sJu3EZst5Nt61ce2Qs1+4Rq2iWz3vPG2JykECpRBCCFFJjGoTyKwCdlxWae3QuvviULctrm2GWUYdbX1qU23cFyTt/eXvvbyreOLYoKNlL28Ak1lhdNvAEnsvomyRvbyFEEKISmTMwgPowuMxma338a9Rq2Qv70pOJuUIIYQQlcjMIaFo1fednvNAtGoVM4eEWrVNUb5IoBRCCCEqkQAPR9571LrbI854NIQAD0ertinKFwmUQgghRCUzslUgr/WuZ5W2Xu9dnxGtpHayspMaSiGEEKKSWn4oknfWnsFoVh6oplKjVqFVq5jxaIiESQFIoBRCCCEqtesJBqb/foo9l+NQo2C+x/LnGrUKk1mhU5AXM4eEymNuYSGBUgghhBBcik6lz+T/Yl+nBelqJ+4OBypyFi3vVs+b0W0DCfJ2Lq1uijJKAqUQQgghiImJwcfHh2XLljFwyGNci9eTZTRjq1VT09NJdsAR9yR/O4QQQgiBTqcDoH379jjZaQnxcy3lHonyRGZ5CyGEEAKdTkf16tUJDJRJNuLBSaAUQgghBGFhYbRv3760uyHKKQmUQgghRCWXmZnJ4cOH6dChQ2l3RZRTEiiFEEKISu7IkSNkZWXJCKV4aBIohRBCiEpOp9Ph6OhIkyZNSrsropySQCmEEEJUcjqdjtatW2NjY1PaXRHllARKIYQQohJTFEUm5Igik0AphBBCVGLh4eHExMTIhBxRJBIohRBCiEosLCwMgLZt25ZyT0R5JoFSCCGEqMR0Oh0NGzbEw8OjtLsiyjEJlEIIIUQlJvWTwhokUAohhBCVVFJSEmfOnJH6SVFkEiiFEEKISmr//v0oiiIjlKLIJFAKIYQQlZROp8PLy4u6deuWdldEOSeBUgghhKik7tRPqlSq0u6KKOckUAohhBCVkNFo5MCBA1I/KaxCAqUQQghRCZ06dQq9Xi/1k8IqJFAKIYQQlVBYWBg2Nja0bNmytLsiKgAJlEIIIUQlpNPpaNGiBfb29qXdFVEBSKAUQgghKiFZ0FxYkwRKIYQQopKJiooiMjJSJuQIq5FAKYQQQlQyOp0OQEYohdVIoBRCCCEqGZ1OR+3atfH19S3trogKQgKlEEIIUclI/aSwNgmUQgghRCWi1+s5duyY1E8Kq5JAKYQQQlQihw4dwmQyyQilsCoJlEIIIUQlotPpcHFxISQkpLS7IioQCZRCCCFEJRIWFkbbtm3RaDSl3RVRgUigFEIIISoJs9nMvn37pH5SWJ0ESiGEEKKSuHDhAomJiVI/KaxOAqUQQghRSYSFhaFWq2nTpk1pd0VUMBIohRBCiEpCp9PRuHFjnJ2dS7srooKRQCmEEEJUEmFhYVI/KYqFBEohhBCiEoiLi+PixYtSPymKhQRKIYQQohLQ6XQAEihFsZBAKYQQQlQCOp0OPz8/atSoUdpdERWQBEohhBCiEggLC6N9+/aoVKrS7oqogCRQCiGEEBVcVlYWhw4dkgk5othIoBRCCCEquKNHj5KZmSn1k6LYSKAUQgghKjidToeDgwPNmjUr7a6ICkoCpRBCCFHB6XQ6WrVqhY2NTWl3RVRQEiiFEEKICkxRFFnQXBQ7CZRCCCFEBXbt2jVu374t9ZOiWEmgFEIIISqwsLAwANq1a1fKPREVmQRKIYQQogLT6XQ0aNAAT0/P0u6KqMAkUAohhBAVmNRPipIggVIIIYSooFJSUjh16pTUT4piJ4FSCCGEqKD279+PoigyQimKnQRKIYQQooLS6XR4eHhQr1690u6KqOAkUAohhBAVVFhYGO3bt0elUpV2V0QFJ4FSCCGEqIBMJhP79++Xx92iREigFEIIISqgU6dOkZaWJhNyRImQQCmEEEJUQDqdDq1WS6tWrUq7K6ISkEAphBBCVEA6nY7mzZvj4OBQ2l0RlYAESiGEEKICkgXNRUmSQCmEEEJUMDdv3uTatWtSPylKjARKIYQQooLR6XQAEihFiZFAKYQQQlQwOp2OmjVr4ufnV9pdEZWEBEohhBCigpH6SVHSJFAKIYQQFUh6ejpHjx6Vx92iREmgFEIIISqQQ4cOYTQaZYRSlCgJlEIIIUQFotPpcHZ2plGjRqXdFVGJSKAUQgghKpCwsDDatm2LRqMp7a6ISkQCpRBCCFFBKIqCTqeT+klR4iRQCiGEEBXEhQsXSEhIkEApSpwESiGEEKKC0Ol0qFQq2rZtW9pdEZWMBEohhBCigtDpdISGhuLi4lLaXRGVjARKIYQQooKQBc1FaZFAKYQQQlQA8fHxnD9/XuonRamQQCmEEEJUAPv27QOQEUpRKiRQCiGEEBWATqfD19eXmjVrlnZXRCUkgVIIIYSoAO7UT6pUqtLuiqiEJFAKIYQQ5Vx2djYHDx6U+klRaiRQCiGEEOXcsWPHyMjIkPpJUWokUAohhBDlnE6nw97enmbNmpV2V0QlJYFSCCGEKOfCwsJo1aoVtra2pd0VUUlJoBRCCCHKMUVR0Ol0Uj8pSpUESiGEEKIci4yM5ObNmxIoRamSQCmEEEKUY2FhYQASKEWpkkAphBBClGM6nY569erh5eVV2l0RlZgESiGEEKIcu7OguRClSQKlEEIIUU6lpqZy8uRJedwtSp0ESiGEEKKcOnDgAGazWUYoRamTQCmEEEKUUzqdDnd3d+rXr1/aXRGVnARKIYQQopwKCwujffv2qNXycS5Kl/wNFEIIIcohk8nE/v37pX5SlAkSKIUQQohy6MyZM6SkpEj9pCgTJFAKIYQQ5ZBOp0Or1dKqVavS7ooQEiiFEEKI8igsLIxmzZrh6OhY2l0RQgKlEEIIUR7pdDqpnxRlhgRKIYQQopy5ffs24eHhUj8pygwJlEIIIUQ5o9PpAGjXrl0p90SIHBIohRBCiHJGp9MRGBhI9erVS7srQgASKIUQQohyJywsTB53izJFAqUQQghRjmRkZHDkyBGZkCPKFAmUQgghRDly+PBhsrOzZYRSlCkSKIUQQohyRKfT4eTkRGhoaGl3RQgLCZRCCCFEORIWFkbbtm3RarWl3RUhLCRQCiGEEOWEoiiyoLkokyRQCiGEEOXEpUuXiIuLk/pJUeZIoBRCCCHKCZ1Oh0qlom3btqXdFSFykUAphBBClBNhYWE0atQIV1fX0u6KELlIoBRCCCHKCamfFGWVBEohhBCiHEhISODs2bNSPynKJAmUQgghRDmwf/9+ABmhFGWSBEohhBCiHNDpdPj4+FC7du3S7ooQeUigFEIIIcqBsLAw2rdvj0qlKu2uCJGHBEohhBCijMvOzubgwYPyuFuUWRIohRBCiDLuxIkTGAwGmZAjyiwJlEIIIUQZp9PpsLOzo3nz5qXdFSHyJYFSCCGEKOPCwsJo2bIldnZ2pd0VIfIlgVIIIYQo42RBc1HWSaAUQgghyrDIyEiioqKkflKUaRIohRBCiDJMp9MB0K5du1LuiRAFk0AphBBClGFhYWHUrVsXb2/v0u6KEAWSQCmEEEKUYVI/KcoDCZRCCCFEGZWWlsaJEyekflKUeRIohRBCiDLq4MGDmEwmGaEUZZ4ESiGEEKKMCgsLw83NjeDg4NLuihD3JIFSCCGEKKN0Oh3t2rVDrZaPa1G2yd9QIYQQogwym83s27dPHneLckECpRBCCFEGnT17luTkZJmQI8oFCZRCCCFEGaTT6dBoNLRq1aq0uyLEfUmgFEIIIcqgsLAwmjZtSpUqVUq7K0LclwRKIYQQogySBc1FeSKBUgghhChjoqOjuXz5stRPinJDAqUQQghRxuzbtw9ARihFuSGBUgghhChjwsLCCAgIICAgoLS7IkShSKAUQgghyhipnxTljQRKIYQQogzJyMjg8OHDUj8pyhUJlEIIIUQZcvToUbKysmSEUpQrEiiFEEKIMiQsLAxHR0eaNGlS2l0RotAkUAohhBBliE6no02bNmi12tLuihCFJoFSCCGEKCMURSEsLEzqJ0W5I4FSCCGEKCOuXLlCbGys1E+KckcCpRBCCFFGhIWFAdCuXbtS7okQD0YCpRBCCFFG6HQ6QkJCcHNzK+2uCPFAJFAKIYQQZYQsaC7KKwmUQgghRBmQlJTEmTNnZEKOKJckUAohhBBlwP79+1EURUYoRbkkgVIIIYQoA8LCwqhatSpBQUGl3RUhHpgESiGEEKIMuFM/qVKpSrsrQjwwCZRCCCFEKTMajRw4cEDqJ0W5JYFSCCGEKGUnT55Er9dL/aQotyRQCiGEEKUsLCwMW1tbWrRoUdpdEeKhSKAUQgghSplOp6NFixbY29uXdleEeCgSKIUQQohSFhYWJvWTolyTQCmEEEKUouvXr3P9+nWpnxTlmgRKIYQQohTpdDoACZSiXNOWdgeEEEKUL/pMI9fi9WQZzdhq1dT0dMLJTj5OHpZOp6NOnTr4+PiUdleEeGjyHUAIIcR9XYpOZemBSHZciCEywYBy1zEVEOjhSLf63oxqE0hdH+fS6ma5JPWToiJQKYqi3P80IYQQldH1BAPTfz/FnstxaNQqTOaCPzLuHO8U5MXMIaEEeDiWYE/LJ71ej6urK3PmzGHSpEml3R0hHprUUAohhMjX8kOR9PxyF7rweIB7hsm7j+vC4+n55S6WH4os9j6Wd4cOHcJkMskIpSj35JG3EEKIPGbvuMRnf158qGtNZgWTWWHq6lPEpWXyfLe6Vu5dxREWFoaLiwsNGzYs7a4IUSQyQimEECKX5YciHzpM/tNnf17kVxmpLJBOp6Ndu3ao1fJxLMo3GaEUQghhcT3BwDtrzwBgzsog7fgmDBf3kR0XiTk7A00VD2y9AnEM7oxTcEdUGptc1yfvX0nSzp8sX3v0eY63tWra1/GSmsp/MJvN6HQ6XnnlldLuihBFJoFSCCGExfTfT2E0K2TFRRK7cgbGpNu5jpuSo0lPjib9yiFsq9bA1qe25Vh24k2S9y7L06bRrDD991MsntCm2Ptfnpw/f56kpCRZf1JUCBIohRBCADlLA+25HIcpPZWY397BlBILgKaKBy5thmFTtQZKVjoZkadJO7U1z/XxG2ejGDNRaW1RjFmW101mhT2X47gck0qQtywpdEdYWBhqtZo2bSRoi/JPAqUQQggAlh6IRKNWkXhwtSVMquyc8B33BVpnL8t5jvXa4drucVBrLK+lnthMZuRJbKrWwKZqTQxnd+VqW6NWsWR/JO8+GlIyb6Yc0Ol0NGnShCpVqpR2V4QoMqkCFkIIAcCOCzGYzAqGc3ssr7m0GpQrTN6hcXJD45Az2mhMSyBp+w+gUuPZ7wVU6rxjFSazwo6LMcXX+XJIFjQXFYkESiGEEKRlGolMMGDOSs9VN2lX/f4jiol/zsOcqce5xUDs/OoXeF5kvAF9ptEq/S3vYmNjuXTpktRPigpDAqUQQggi4vUogDlTn+t1rbPHPa8zXNBhuKhD4+qDW+cx9zxXAa7F6+95TmWh0+kAZIRSVBgSKIUQQpBlNAOgtnPK9boxNeGe1yVsmQeAZ9/JqG3tC32fyk6n0+Hv709AQEBpd0UIq5BJOUIIIbDV5owvqG0d0Lr5Wh57Z944i0PNJgVeZ0rLCZwxv76d7/GEzXNJ2DyXgJeWo7avYrnPHXq9ntOnT9OoUSOcnJzybaMiulM/qVKpSrsrQliFjFAKIYSgpqcTd6KNY3Any+upB/+HMTU+z/kmfRKm9NQHuocKMCbeYtGiRTz33HOEhobi4uJC27Zt+fHHH4vQ+/IlMzOTw4cPS/2kqFBkhFIIIQROdloCPRyJSDDg0noo+jM7MaXEYs7Uc3vRq7i0HoJN1Zp/rUN5irRTW/F98kPcezyTpy392Z1k3boEgGODjtj5B6PS2pGVcJOmjR4BQK1WYzb//fg7JKTyLCd09OhRMjMzpX5SVCgSKIUQQgDQrb43iw9EgIMz3sPfs+yUY0qNI3Hb/HyvcWk1KM9rWdHhlkBpX6Mxzs36o1GBW3Y0N/865+4wCbBr1y6Cg4Px9fW16nsqTvpMI9fi9WQZzdhq1dT0dMLJ7v4fqzqdDkdHR5o0KbiUQIjyRqUoilLanRBCCFH6LkWn0mvWbsvXf+/lrSM77jrm7HQ0Tu7YeAbg1LALTg0759nLGyBu3ZfoT28Dcvbydm7WH4CtL3fmzL7tDB8+nOzsbPL7+KlSpQqNGzdm4MCBTJw4ES+vvGtglqZL0aksPRDJjgsxRCYYuPsdqIBAD0e61fdmVJtA6vrkvyvQsGHDSEhIYMeOHSXSZyFKggRKIYQQFmMWHkAXHo/JbL2PBo1aRfvanpa9vA8fPky/fv1ISkpCURT+85//0LZtWxYvXszevXuJioqyhE0XFxcaN27M4MGDeeqpp/DwuPcyRsXleoKB6b+fYs/lODRq1T3/fO4c7xTkxcwhoQR4OFqOKYpCtWrVmDBhAh988EFJdF2IEiGBUgghhMX1BAM9v9xFphWX97HTqtn6cpdcwSoiIoI+ffpw4cIFdu3aRefOnS3HzGYz69atY8mSJeh0Om7evGkJmK6urjRt2pQhQ4bw1FNP4eLiYrV+FmT5oUjeWXsGo1l5oKCtUavQqlW892gII1sFAhAeHk6dOnVYv349/fv3L64uC1HiJFAKIYSwyM7OZvCrn3LGyXr1fR8ObsQTbWrkeT05OZmNGzcyYsSIey6fYzQaWbNmDUuXLmX//v3cvn3bEjDd3Nxo3rw5w4YNY+zYsVbfF3v2jkt89ufFIrfzWu96PN+tLosXL2bs2LHEx8eX2mirEMVBAqUQQghiY2NZtmwZ06ZNIzMzk+e/Xcf/wk1Fbjdx18+kHVjF8OHDGThwIL179y5yXWR2djarVq1i2bJlHDhwgOjoaMsxDw8PWrZsybBhwxg9ejSOjo75tnH69GmmTZvGrFmzqFOnTr7nLD8UydTVp4rU17t9PDSUnT98yK5duzh79qzV2hWiLJBAKYQQlVRUVBS///47K1asYM+ePZbXhw4dyqpVq4r8qHfGoyFM7tec+Pi/17FUqVSWR9Zvvvkmtra2RX4fWVlZ/Prrr/z6668cPHiQ2NhYyzEvLy9atWrF8OHDGTlyJPb2Obv5vPHGG3z66ae4u7uzfv162rVrl6vNux/9/z05aR/ZcZGYszPQVPHA1isQx+DOOAV3RKWxIeXAajIiT5F58wLm9JScPwsXb6o/9wOQ8+jf5s+PaNe4HvPn5z9rXojySgKlEEJUQjNmzOCdd95BpVLlmW0dGxtrGUUs6mSUH374gQkTJuQ5V61Wc+HCBYKCgqz7xoCMjAx++eUXVqxYwaFDh3IFWm9vb1q3bs3JkyeJjIxErVaj0WhYunQpjz/+uOW8O5OT0mMiLMsnFaTaU19j61ObyC9HoPxjL/S7A6VGBWnhx/iojz9PPfWUld+1EKVLAqUQQlRCa9asYciQIbnCpEqlomfPnvz55595zrcsl3Mxhsj4fJbL8XSkWz1vRrcNJMj77+Vy0tLSqFq1KhkZGbnamz9/PhMnTrT228qXwWBgyZIlrFixgqNHj5KQkP/+5DNnzmTq1Klcjkmj16zdmNJTufXjC5hSckY8NVU8cGkzDJuqNf5a4P20ZYF3W5/a3F46FRuvQLQuXiTtWpRzzV2B8o4FQ2rQs3Wj4n3TQpQwCZRCCFFJzZ49mylTpuR67eeff2bs2LH3vC4tIxuvWsH0f+RR3n/vnfsu6P3000+zePFijEYjkDM6uWvXLjp27Fj0N/EQfvvtN0aMGJHvMV9fXzq8MItjac7E7fiJlH0rAFDZOeE3cQ5a59z1nyZ9Eqg1aBz+DtHZ8de5Of9ZIG+gVMwmxneozXuPSqAUFYvs5S2EEJVQVFQU06dPz/WajY0Ngwbl3fnmn/bu3Ebm7Sts+20hDau53Hd3mIkTJ1rC5JAhQ1Cr1XTp0oXVq1c//BsoggMHDgCg1Wots8u1Wi0uLi7Y2tpyMMqAyaxgOPd3XalLq0F5wiSAxsktV5i8H5Vaw86Lsfc/UYhyRgKlEEJUMhERETRo0IDU1FR++OEHywSR/v374+rqes9rFUXhnXfeASAlJYW1a9fe937t2rWjdevWjBs3jpUrV3LkyBHs7Ox47LHHmDt3btHf0ANydnamZs2aPPHEE8yZM4ejR4+Snp5OcnIyZy5eQePijTkrPVfdpF116+01HhlvQJ9ptFp7QpQFspe3EEJUIleuXKFx48akp6ezePFiRo8eDUDt2rWpW7fufa/fuXMnBw8etHw9bdo0Bg4ciFpd8PiESqVi//79ltHAxo0bc/78eRo3bszkyZO5ffs2M2bMKOI7K7x3332Xd999N99jEfF6FMD8j8k1WmfrrRmpANfi9YT43Tu8C1GeyAilEEJUEhcuXKBRo0akp6ezfPlyS5gE6N69OwEBAfdt47333kOj0Vi+PnfuHCtWrLjvdf9cuDwwMJBr165RrVo13n///RKboANw8+ZNzp8/n+9e4ll/7RCktnPK9boxNf+JPA8ry4o7EQlRFkig/P/27jygqjp9/Pj73Hu5LBeuBIiKiluoCJiSW2qggtmgkeBaVubY8p0px5ZvZk2a1kw109hUk82UOdrX5VcGjem4LyQqBKi4gAtugOKCF1zYL3f5/UFcvYEKXDTE5/UX3M85zzkHLR4/5/N5HiGEuAtkZmZy3333UVFRQXx8VaHx+kpKSmLbtm2YzVcLniuKwh//+EfbGsn68PT0JDs7m+7du7Nw4UJGjRpV7xgN8eyzzxIYGEjr1q15+umnWbp0KWfPngVAq6n6tajSuqLxbG07pyKvcQuRV19HiOZC/kYLIUQzt3fvXkJDQ6msrGTVqlXExMQ0KE5cXFyNz6xWK8ePH+fw4cMNiqnVasnMzGTQoEGsWbOGfv362SWst0KnTp1QqVTk5+ezbNkynnzySfz8/NBqtQzrG2KbuXQLfNB2TlHqSkxFBTVimUsuYS4rqtf1FaCjt+6mxwlxJ5GEUgghmrFdu3bRr18/TCYTa9eudWgWcM6cOWzdupVt27ahUqkICQkhNTWVw4cPExzc8DI4KpWKHTt2EBsbS1paGt26daO0tLTB8a6nvLycuLg49u7di8VS9cr52pnVyspKOrZrg49LVUKp7xeLWt8SqFpTee7/XuVK2g+UZe+jNOsnCjcvIO/L5211KsuO76Lk8A7KTqbbYlpNFZQc3kHJ4R1UnD0KVNXsvNnOeCHuNFKHUgghmqnk5GTCwsKwWq1s3LiRYcOGNVpsJycn7r//fn766adGiwnwwgsv8Pnnn+Pr60tmZmaD+36bTCa2bNnCDz/8QHJyMsePH6eoqPaZRJVKhZeXFytXrmTQoEHMWZXJkpQczBYrRkNunTvlnP78t5iv5F/3OF1wBK2iX+HJ/h2YE914u8aFaArkn0hCCNEMJSYmEhERAVTtzG7sIuKKotySV9Pz58/Hz8+Pt956i86dO7Nv3z46dep0w3MsFgtpaWnEx8ezfft2jhw5wsWLF23jGo0GPz8/hg4dSmRkJLGxsQQEBFBWVoaiKPTv35/4+HjatGkDwKT+/ixOzgZA6+NPm99+9nMv7yQqDaewVJah1t2Dk3d7dD3CcfK5+WamamaLlScG+Nf/ByNEEyczlEIIcYerqKhgwoQJPPPMM4waNYotW7YwYsQIFEVh+/btDBgwoNGv6ezsTHBwMLt372702AALFy7k2WefRavVsmPHDvr06WMbO3ToECtWrODHH3/k4MGDGAwG2ytslUqFr68vwcHBDBs2jPHjx9OlS5ca8QcPHszOnTuZNm0a8+bNw8nJyW68upf3jXqX15dapTCwszdLpvZvtJhCNBWSUAohxB1u5cqVxMTEoNFomDVrlq20T1JSkl0i1phcXFzo3r07e/fuvSXxAf773//aOveEhoZy9uxZzp07Z5sZVRQFLy8vAgMDCQsLY8yYMYSGhtYpdmpqKvn5+dddU3qqsJSIj37EaG6sX5FWnDVqNr8cTnsvt0aKKUTTIQmlEELc4SZMmEB8fDwWiwWr1YpGo2H37t307Nnzll3T1dWVgIAA9u/f32gxCwsLiYuLY8OGDaSnp5OXl4fRaLS7Zo8ePRg0aBAxMTGEhYXdsKB6QxkMBmbPns23u07hEfE/jRb3L7EhTOgrr7tF8yRrKIUQookpqTCRXVCC0WRBq1HR0Vt33V3BxcXF/PDDDzVqQxoMhlt6j46uoSwtLWX16tWsWbOGtLQ0cnJyKCsrs43rdDq6detG//79CQ0N5bXXXqOkpIRx48bx+uuvN8Yj2JSVlbFjxw42b97M+vXrbUmyTqfjjbnv81lijgPRrYDCq5EBkkyKZk0SSiGEaAKOni9iWUouCUfyyS0s5dpXRwrg7+XG0G6+TOrvT0ArD9vY6tWrqaiosItVWVnJyJEjycnJwdfX95bcr6IotnWLN2Mymdi4cSOrVq0iOTmZEydOUFxcbBt3cXGhffv29OnTh6ioKEaPHo27u7tdjDFjxhAcHMzMmTM5e/YsH3/8caM8xxdffMG0adOorKxEo9HYlRFaunQpo38TTDsfPW+vysRksdZrTaVapWAxmfA99SPTIkY2yv0K0VRJQimEEL+iU4WlvPmfA2w/ZkCtUmpNWKxATmEpS1JyWJyczYP3+vBeTAjtvdz461//ajtOrVZjNpvx8/Nj0qRJeHp63rL7VqlUtc5QWiwWkpOT+f7779mxYwdZWVlcunTJNu7k5ISfnx+RkZEMHz6csWPH1inp9fX1JTs7m+DgYD755BPOnDnDihUrHH6Otm3b2pLIa5PJdu3aER0dDcDEvv4M6uJz0z+natXjD3T2Yv27k3l6yuMO36cQTZ2soRRCiF/JN2m5DZ750qgUnuzhzKzHq0oDtW/fnieeeMK2MeWXvbMbm16vx9fXl5UrV7JixQq2bdvGoUOHMBgMtk4zarUaX19fQkJCiIiIYNy4cTctAXQzJpOJ/v37s2fPHsLCwkhISHB4HeX777/Pm2++aftepVLx5z//mZkzZ9Y41jaTnJVPbkEtM8nebgzt6ssTA/ypLDhNjx492LRpE5GRkQ7doxBNnSSUQgjxK/gs4Sh/25jleKB9q1j02kSGDBlyy5PInJwcVqxYwZYtW9i4cSPX/vpQFAUfHx8CAwMJDw9n7Nixt2xTkMViYeTIkaxfv54ePXqQnp6OVqttUKxjx44RGhpqV/RcrVaTl5dHq1atbnhuSYWJUY9N4afUXaT+lETnlh52a10XLlzIc889x6VLl/Dw8LhBJCHufPLKWwghbrNv0nIbJ5kEuC+afPcuN0wmrVZrvZNNg8HAd999x8aNG0lPT+fMmTNUVlbaxhVFQavV8sILLxAbG8vAgQNvyY7r2qhUKtatW8eUKVNYvHgxnTt35uDBg+j1+nrF2bFjBxEREVRWVvLFF1+wadMm4uLiGD169E2TSQBnNfy0Lo7y8nIyd2wgZOJEu/GdO3fSs2dPSSbFXUFmKIUQ4jY6VVhK5N+3UWGyYDGW/9yBJZlKQy6WynLU7l5offxxCwxDFzgYc1kRJRlbKc/ZR2XhGSwlF0GlxsnHH49eD+PeczjOGlWt9Q3z8vIYN24cLVq0YN26dde9p5KSElauXMnatWvZtWsXubm5lJeX28bd3d3p3LkzAwYMIDo6mhEjRtCqVSt0Oh25ubm37GdVF2+++Sbvv/8+99xzD/v376ddu3Z1Om/ZsmU89dRTqFQq1q5dy/DhwykvL+ett95i6tSpBAYG3jTG119/zdNPPw3Avffey+HDh1Gr1bbx7t27ExERwfz58xv0bELcSSShFEKI26i6A0tZfk6dekRXFpzCsOrD6x7j0Sealg89X6MDS2JiIrGxsRQUFKDVaikuLsbJyQmj0cj69etZvXo1KSkpnDhxgpKSEtt5Li4udOjQgT59+jBy5EgeffRR3NxqFuL28fHBxcWF06dPN/An0Xj+8Y9/8Ic//AFXV1dSU1MJDg6+4fF/+tOfmDVrFjqdjpSUFIKC6t9X22QyERAQQHZ2tu2zZcuW8fjjVRtwDAYDLVu2tPtMiOZMXnkLIcRtcvR8EduPGTCXFZG/4m3MVy4AoHb3Qt9/DE4tO2A1llGem0Hxgc228xSNFl2PIbh26QNqJ4rT11B2fBcARbtW49Enmu0WK8fyi+jS0p1PP/2UV155xbbG0Wg00qtXL/Ly8rh8+bItrlarpW3btvTu3ZsRI0YwZswYvL296/Qs19vl/WuYNm0arVu3ZuLEiYSGhrJ582bCwsJqPfa3v/0tixYtwtfXlwMHDjS4rNLy5cvtkkmVSsXs2bOZMGECarWa5ORkAAYOHNig+ELcaWSGUgghbpM5qzJZkpKDIWExV5K/A0Bx1uH3zHw0Hj52x5pLLoFKjaXkEorWFY3+6rjVVMnpf07BUnIJAJ9HX0cfFMaobnq2/PV/yMzMrHFtlUpFmzZtCAkJITIyknHjxuHv3/BC261btwbg3Lnrz7Debtu2bWP48OGYzWa+/fZbxo4daxuzWCxERkaSkJBA9+7dSU9Px8XFpUHXMZlMdO3alZMnT9YYW7p0KZMmTWLmzJksWbKE06dP3/LNUkI0BbdnBbUQQggSjuRjtlgpPbTd9pm+76M1kkkAtc4TtasHTj7t7ZJJAEXjhEbf8ur3Ti6YLVbidh6qNZlUq9VMnTqV06dPs27dOl599VWHkkmoSlDrWtj8dgkPD2fPnj04Ozszbtw4PvvsM6CqK09gYCAJCQkMHz6czMzMBieTUJVEnzp1qtax6pnJpKQkBg4cKMmkuGtIQimEELdBcYWJ3MJSLMYyu3WTzu3qv36v8tI5jOdPAKBoXXFpXxXDyasNH3/2T2bMmEGvXr1syYzZbCYpKakRnuKqpphQAgQHB5OVlYWnpyfTpk3jpZdeomPHjmRlZfHss8+yceNGh3ejt2vXjoKCAs6fP89DDz0EQH5+PhcuXODTTz/FaDSSlpbGoEGDGuORhLgjyBpKIYS4DXIKSrAClooSu881Hl71imMuu8KF+D+BpWr9omf4U6icqzfNKETGPEaQXwv+8pe/UFhYSEJCAps2baJly5bXD9oAKpWKprpiql27dpw8eZJu3brxySefAFXFy2srVN5Qer0evV5vm+m89uebnp5OeXm5rJ8UdxVJKIUQ4jYwmqpm81TOOrvPTUWFOHm3r1MMU3Eh+d+8RaWhqlSPR9/R6O9/pNbrAHh5eREbG0tISIgjt16rpjpDWS05OZmCggLb94mJicyYMeO21MpMSkrC1dWV3r173/JrCdFUyCtvIYS4DbSaqv/dqrSuaDxb2z6vyDtYp/NNl/M5v/R1WzKpHzAWr4hnar3O+fPnWb58OVOmTMHPz49u3brxyCOP1DjWEU05ofziiy8YOXIkarWa7du3ExYWxrp16+jXr59dv+7GUNsayZ07d9K3b1+cnJwa9VpCNGUyQymEELdBR28dCmAF3AIftO3yLkpdiXvPh9B42Jfrqd7lrXb1oLLgNOe/nWUrM+QZPpkWD4yrcQ2r1Urve9tRWVYMVG3GMZvNKIpCQEBAoz5PU33l/frrr/PXv/6VFi1akJ6eTqdOndi2bRvjxo0jLi6Obt26ceDAgVpra9ZVeXk58+bN4+LFi2RkZAAQGRlJYWEhjzzyCImJiTzzTM1kX4jmTMoGCSHEbRL+YQI5haWYy4o4u+gPV+tQevig7xeDU8uOP9ehPEDxgc20fvx9FI2Wc8tmYim9BIAuaAjuvX5jF9fJqy1qnSda42WOfjSp1msHBgYyffp0xo4dW+dakzfStWtXzp49a9cD+9dWnTS2b9+e/fv34+npaTc+ffp0Pv30U1q2bElGRkaDa1BeuHDBVjbJarXaWlte++vU29ubESNGMGHCBKKjoxv8TELcKSShFEKI26S6DqXZYsVoyK1Tpxzj+RMUrP34hnG9o16iRa/hPNm/A493d2LUqFEcO3bsujOI1d1w+vbty8iRI4mOjq73jF1gYCC5ubl2XXZ+LSaTiYEDB5KWlsb999/PTz/9hEZT+wu4Dz74gDfeeAN3d3f27t1Lly5dGnTNyZMns2zZspsWd+/Zsyf79u1r0DWEuJPIGkohhLhNJvX3x2ypSvK0Pv60+e1n3DPsGZzb9UDl4gFqDWp9S1w6heI98mWcfOq2WQfAbLHyxAB/unbtyp49e4iNjbUbP3nyJEuXLuXxxx/H39+fnJwcli5dymOPPYZOp8PDw4NevXrxu9/9jvXr1990rWFTeeV95coVunTpQlpaGqNHj2bXrl3XTSYBZs6cyeLFiykpKSEoKIi0tLQGXXf27Nl2z//LzT6KouDi4sKSJUsaFF+IO43MUAohxG1U3cu7OrFsDGqVUqOXt9VqZd68ecyYMYO2bdvWWog7Pz+fuLg4Nm7cyN69ezlz5gyVlZW28XvuuYdu3boxePBgxowZQ79+/WyJU8+ePTl69ChlZWWN9hz1lZOTw3333cfly5d55ZVXmDdvXp3PXbdunW2j0qpVq4iKigLg1KlTmEwmOnXqdNMYU6ZM4euvv7a98lYUxW6j0vfff09MTEw9n0qIO5MklEIIcRudKiwl8u/bqDA13g5pZ42KzS+H096r5mvr5ORkjEYj4eHhdYp18uRJvv32W7Zu3UpGRgbnz5+3JUkqlQofHx+CgoI4ePAgFy9epKKiotGeoz5SUlIIDw/HaDTy6aef8uKLL9Y7xq5duxg8eDBGo5GFCxcyaNAgBgwYgLe3N1lZWTftcnPixAnbK/PHHnuMI0eOsGfPHgDeeecdZs2aVf8HE+IOJQmlEELcZt+k5TLz+wONFi/gYirL3nmhwZtMbmbPnj3ExcWRmJjI4cOHKSwstL3u1Wg0tG7dmvvuu4/IyEjGjx+Pn5/fLbmPanFxcUyYMAFFUVi5ciWjRo1qcKzjx4/Tu3dvioqK0Ov1FBUVYbVa2blzZ50Kk3fq1Ins7GwOHTrEnDlz+PbbbxkxYgTr1q2TtoviriIJpRBC/Ao+SzjK3zZmORzHmBbH2S2LAQgKCiIqKorhw4czePBgXF1dHY5fG4vFQo8ePTh69Ci9e/fm6NGjXLlyxTbu7OxMu3btCA0N5Te/+Q1jxoxBr9c3yrU//PBDZsyYgaurK0lJSfTq1cvhmMeOHaN79+62DTYajYYnn3ySf//73zc8r6TCxFsffMIXXy0kLSWZ7ANp/PH1/2Xnzp3odLobnitEcyMJpRBC/Eq+Scvl7VWZmCzWeq2pVKsUNCqFd6KD6GQ9R//+V9dOajQaTCYTWq2Wd999lxkzZtyKW2fAgAHs3r3btuayoqKCNWvW8N///peUlBSys7MpLS21He/m5kbHjh3p378/o0aNYtSoUWi12npd83e/+x3/+te/8Pb2Zv/+/Y0yE1pWVkZERASpqal2O7ZdXFy4cOEC7u7udscfPV/EspRcEo7kk1tYyrV/agrg7+XG0G6+TOrvT0ArD4fvT4g7hSSUQgjxKzpVWMqb/znA9mMG1Crlholl9fiD9/rwXkyIbc1k79692bt3b43jv/rqK6ZOnXpL7nvQoEGkpKTccDf45cuX+f7771m3bh179uzh1KlTGI1G27herycgIICBAwcyevRohgwZUmtrRIvFQlRUFBs2bCAgIIC9e/c6VJj8Wps3b2b48OG2IvDXWrBgga1AeWP8OQnRnElCKYQQTYBt5isrn9yCWma+vN0Y2tWXJwb4c6+v/czXggULeP755+3K2Lz44ov84x//uGX3GxYWRlJSUr1bGZ45c4YVK1awefNm9u3bx7lz52wxFEXBy8uL7t27Ex4eztixYwkKCiI0NJTMzEzCwsJISEho1H7cVquV1NRU1q1bx+rVq0lPT7f9HF1dXSkqKuK7PXkOzSTPjQ5iYl//RrtnIZoiSSiFEKKJKakwkV1QgtFkQatR0dFbh875+rUVi4qKaNWqFWVlZbaOLW5ubqSmphIUFHRL7nHo0KEkJibetLB3XRw6dIjvvvuOH3/8kczMTAwGQ40+4a1bt2b69OlMmDChTiV9GspgMLBp0yZmz57NsWPHGPTcu5z26u1w3P99qCsvDm3c9pdCNCWSUAohRDPw3HPPsWDBAoYOHcrTTz/NlClTUKlUrF+/noiIiEa/XmRkJFu3bq2R+DUGi8XCihUreOqpp6isrMTFxYXy8nLbuJOTE35+fvTq1YuHHnqI8ePH4+Pj0+j38eZX/2X58cbbqf2X2BAmyEylaKYkoRRCiGbg5MmTzJs3j/feew+9Xk9iYiKRkZGYTCYWLVrE5MmTG/V6I0aMYNOmTbckody6dSsPP/wwJpOJxYsX89RTT2Eymdi0aROrVq0iOTmZ48ePU1xcbDvHxcUFf39/+vTpQ1RUFDExMTdcZ/m3v/2NxYsX88033xAcHFxj/Np6oRZjOcV711OalUylIRdLZTlqdy+0Pv64BYahCxyMonYCoORQIkW7VmPMPwmA1rcTHn2i0QU+eMN6oULc6SShFEKIZurIkSP06dOH4uJi5s6dy+zZsx2KV1lZyddff01hYSELFy4kKyuLOXPmYDabiYqKYsCAAQ7f86JFi5g6dSoajYaNGzcyZMiQ6x5bWlrK6tWrWbNmDampqeTk5NjNZOp0Ojp37syAAQOIjo7m4YcftrVlHDhwIMnJybi4uPD1118zfvx4u9jVHY3K8nPq1HNd26ozl7Yv4/LO/1frMS0efALvBx+r0dFIiOZCEkohhGjGDAYDwcHBnD9/nilTpty0tuKNnDlzhrZt29oKdlutVluZot///vfMnz/foXudPXs27777Lu7u7uzatYtu3brVO4bBYCA+Pp4NGzaQnp5OXl6eXTtJT09PAgIC2LNnj936z1dffZUPPvgAjUbD0fNFDP84EXNZEWcX/QHzlQsAqN290Pcfg1PLDliNZZTnZlB8YDOtH38fgLOLXwKrBUXrilfkcwAUbv4Sq7EMFBVtpnyC1rcTm18Oq7GxSog7nSSUQgjRzJWXlxMaGsqhQ4cYNmwYmzZtavBO6djYWFavXm23u1tRFDIyMujRo0eD73HSpEksX76cNm3akJGRgZeXV4Nj/VJOTg4rVqxgy5YtHDhwgHPnztX6qr5Dhw7Ex8ezOs+FJSk5GBIWcyX5OwAUZx1+z8xH42G/VtNccglUai4lLqE4fS0AnuGTafHAOAAuJ3/HpW1fA+AROoqWD/+OJ/t3YE70rdksJcSvpfFqLwghhGiSXFxcyMjIYNiwYWzdupWgoCC7V8P18e6779rN7Gk0GmJiYhqcTFosFgYPHszy5csJCQkhOzu7UZNJqEoUX3vtNdavX09eXh4LFiyo9bicnBz69OnD15t2YbZYKT203Tam7/tojWQSQK3zRO3qQcXpg7bPnNsG1vp1+elMzBYrCVn5jfFYQjQpklAKIcRdQKVSsWXLFqZMmcLhw4fp2LEjBoPBNm42m+uUZAYFBTFx4kTba2+TycSsWbPqdA8mk8muVmZxcTEBAQHs3LmTqKgo9u7dW+/uOQ2RlpYGYJul9fHx4fHHH+eNN97gk8+/wOrujcVYZrdu0rndjWcUTZfP275W6zyv+bpFjWNyC0opqahf/U4hmjpJKIUQ4i7y73//m7lz53L+/Hk6derEkSNHuHLlCr179yYqKqpOMebOnWtLDKOiourcTzs6OpqBAwdSWlrK6dOn6dChAydOnODFF19kzZo1jVqw/EZCQ0MZOXIkH330ERkZGeTn57Ns2TLee+89Ih6dAChYKkrsztF43HjW1FpZcfUb9TU1Q3/e/Q1gNVYl7FYgu8A+vhB3uutXyhVCCNEszZ49mw4dOjBlyhRCQkIICgriwIEDABw8ePCmr68DAgIICAjg6NGj/PGPf6zTNbOysli3bh0ADz/8MGlpaZSXlzNv3jxeeeUVxx6onqZOncqkSZNqLStkNFWtrVQ56+w+NxUV4uTd/roxFSfnqs03AOarm4Cu/VrRutS4jhDNhcxQCiHEXWjy5Mls2rQJk8lk6wOuVqv58ssvb3puSYWJMc9MR9umK+7tu9fp9e2XX36JWq0GYPv27VRUVBAXF3fbk0mAF154Ab1ez4ABA5g9ezbbtm2joqJqhlGrqfq1qNK6ovFsbTunIu9grbGqaVq0sn1tLrl09evii7UeU30dIZoLmaEUQoi71IYNG+zWNJrNZhYtWsQHH3yAi4uL3bG2XuNH8sktLMVKR9pM/ojoz5Oreo17uTG0my+T+vsT0Mq+JE55eTlfffWV3WYeq9XKsWPHbunzXY+3tzdms5mUlBR2797Nu+++i1qtRq/X06Z9R/jNO6AouAU+aNvlXZS6EveeD6Hx8LaLVb3L27ldDyovZANQkXcIF/+Qqq/PHLYd6/LzOkwF6OhtPwMqxJ1O/okkhBB3oeTkZD788MMan1+5coX4+Hjb96cKS3lyYQrDP05kSUoOOYWl/LLWnBXIKSxlSUoOwz9O5MmFKZwqLLWNx8fHc/ny5RrXmjlzJunp6Y31SHVSXFxMaenVe6suf2Q2m7l48SIXzp5GrzICoO8Xi1rfEgBLRQnn/u9VrqT9QFn2PkqzfqJw8wLyvnwe85ULeNw3ApSqX6mXk7+jeN9Givdv4vLPCSmKCvdeIwDw93a7YW92Ie5EUodSCCHuQhUVFcyfP5+1a9eyfft2jEajbczT05PCwkK+3XWKt1dlYrJYMVvq/qtCrVLQqBTmRgcxoU97vL29uXjx6qtfRVEIDQ0lKiqKmTNn3rBFoiMsFguJiYnEx8ezc+dOjh49ateu8dr7URSFv//970ybNo25qw+yJCUHs8WK0ZDbaJ1yPAdNRK1SpA6laJYkoRRCiLtceXk5O3bsYMOGDXz++eeUlpYy/KV5ZLnUv1PNL3U3HmXDRy/j7OzMlClTGDFiBEOGDMHT09PxG/+FkydPsnz5crZs2UJGRgYGg8H2Sl+j0dC2bVtCQ0N5+OGHefvttzl37hwajQa9Xs/KlSt58MEHAWydcqpd7eWdRKXhFJbKMtS6e3Dybo+uRzi6HmG/6OW9CmN+NgBa34549HkUXeCDtnjSKUc0R5JQCiGEsPP7eUtZa7in0eKNuMfAFzMmX3fcarXa6lrWVVFREfHx8axZs4bdu3dz+vRpW4tFRVHw9vamR48eDBs2jAkTJtC9e3e788ePH893331HaGgoP/zwA+3atbMbr+7lXZ+Z2ZtRqxTp5S2aLVnEIYQQwuZUYSlbLnkDlmtm5pKpNORiqSxH7e6F1scft8AwdIGDsZoqufjjYoxnjmC6cgFLRQmKRouTV1vcug7Eo++j/Fjky6nCUtp71Xy1vXjxYqZPn8769et54IEHar0ni8VCQkIC8fHxJCUlcezYMUpKrtZx1Ol0BAYGMnDgQGJjY4mIiLhpTcuXXnqJwMBA3njjjRobkADeiwkh8u/bGjWh1KgU3osJabR4QjQlMkMphBDCpnpmriw/p05rB1WuevI+f/q6x7h06o3fY3+qMTNXWVnJyy+/zPz58wF4++23mTNnDlBVs/Kbb75h69atZGZmUlBQYHt17eTkRNu2bbn//vuJiopi7Nix6PV6xx+8Ft+k5TLz+wONFu8vsSFM6OvfaPGEaEpkhlIIIQRQtXZw+zED5rIi8le8jfnKBQDU7l7o+4/BqWUHrMYyynMzKD6wGQBFrcat60BcOvVG08IXrFZKDm2nJGMLAOUn0ym/cIrtFivH8ou419eD8+fPExsbS3Jysu3a//znP1m8eDF5eXm2ndeKouDj40N4eDgRERFMnDiRe++997b9PCb29cdQXMHfNmY5HOu1h7pJMimaNUkohRBCALAsJRe1SuFi6ve2ZFJx1tF68kdoPHxsx7l1fYAWD4wDlRq1qwctY9+0i+PapQ9lR3+ytS+0GMtQqxSW/JRD23NJTJ8+vUbf8Pz8fNzd3QkODmbQoEGMGTOG8PDw29aO8XpeHBqAj7uzQ7vd34kOkmRSNHuSUAohhAAg4Ug+ZouV0kPbbZ/p+z5ql0xWU+s8a41hKS+m5MhOWzKpcvPEyccfs8XKv9encPqfz1/3+nv27CEgIMCxh7gFJvb1Z1AXH978zwG2HzOgVik3TCyrxwd29ua9mJBa144K0dxIQimEEILiChO5haVYjGV26yad29WtXuLFHxdz5ac4u8+cWnbE+zfTUDk5A6Bu0YpP5v+LixfOsW/fPjZv3kxRURGKomC1WklJSWmSCSVAey83lkztf7VjUFY+uQX2Rd4VqoqWD+3qyxMD/KU0kLirSEIphBCCnIISrGCbWaym8fBqcExF7YTVYrn2EyJGTyTIrwVQ1Z1m3759bN26leTkZAIDAxt8rdsloJUHc6KDmEMQJRUmsgtKMJosaDUqOnrrpAOOuGvJ33whhBAYTVWJn8rZvse0qagQJ+/2Nz3fo3cUrl36YCkrovRIEiWZCRjPHSX/21m0fX4Bavd77K4DoFarCQ0NJTQ0tBGf5PbROWtsybEQdzvp5S2EEAKtpurXgUrrisazte3ziryDdTpf08IXl/bBuHV9AJ9HXsW5fTAA1spySo+l1LiOEKJ5kf+yhRBC0NFbR3WvGrdr2gQWpa7EVFRQ43hzySXMZUVYKituGttSXtU/W/n5OkKI5kdeeQshhEDnrMHfy42cwlL0/WIpyfwR88+db87936vo+8Xg1LLjz3UoD1B8YDOtH3+fK7tXYy4uxO3efmg8W2M1myjNSqbiVIYttrZ1Ve1If283WWMoRDMl/2ULIYQAYGg3X5ak5ICrB77j59o65ZiLDFzcsqD2kywWyk/spvzE7lqH3QIfxLVjL9QqhaFdfW/h3Qshfk3SelEIIQRQ1Sln+MeJtu+v9vJOotJwCktlGWrdPTh5t0fXIxxdjzDKc/ZTvH8zxnPHMJdewmoyonL1QOvbGV3QEHRBQ1CUqtVVm18Ok1I6QjRTklAKIYSwqe7lXZ+OMDejVik1enkLIZoX2ZQjhBDC5r2YEDQq5eYH1oNGpfBeTEijxhRCNC2SUAohhLBp7+XG3Oi6dcepq3eig6T9oBDNnCSUQggh7Ezs68//PtS1UWK99lA3JvT1b5RYQoimS9ZQCiGEqNU3abm8vSoTk8VarzWVapWCRqXwTnSQJJNC3CUkoRRCCHFdpwpLefM/B9h+zIBapdwwsawef/BeH96LCZHX3ELcRSShFEIIcVNHzxexLCWXhKx8cgtKufYXh0JV0fKhXX15YoC/lAYS4i4kCaUQQoh6KakwkV1QgtFkQatR0dFbJx1whLjLSUIphBBCCCEcIru8hRBCCCGEQyShFEIIIYQQDpGEUgghhBBCOEQSSiGEEEII4RBJKIUQQgghhEMkoRRCCCGEEA6RhFIIIYQQQjhEEkohhBBCCOEQSSiFEEIIIYRDJKEUQgghhBAOkYRSCCGEEEI4RBJKIYQQQgjhEEkohRBCCCGEQyShFEIIIYQQDpGEUgghhBBCOEQSSiGEEEII4RBJKIUQQgghhEMkoRRCCCGEEA6RhFIIIYQQQjhEEkohhBBCCOEQSSiFEEIIIYRDJKEUQgghhBAOkYRSCCGEEEI4RBJKIYQQQgjhEEkohRBCCCGEQyShFEIIIYQQDpGEUgghhBBCOEQSSiGEEEII4RBJKIUQQgghhEMkoRRCCCGEEA6RhFIIIYQQQjhEEkohhBBCCOEQSSiFEEIIIYRDJKEUQgghhBAOkYRSCCGEEEI4RBJKIYQQQgjhEEkohRBCCCGEQ/4/mnp+AA25HHoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxZElEQVR4nOzdd1yVZRvA8d8ZbGQqOHFrDsyFEzFcmblLcZsrLS2z0sy30palLUstG1bOzFyZeysu3AoucAGKiixlwznnef8gTh5BZRw8Ctf383k/wfPcz/1cx97g8h7XrVIURUEIIYQQQogCUls6ACGEEEII8WSThFIIIYQQQhSKJJRCCCGEEKJQJKEUQgghhBCFIgmlEEIIIYQoFEkohRBCCCFEoUhCKYQQQgghCkUSSiGEEEIIUSiSUAohhBBCiEKRhFIIIYQQQhSKJJRCCCGEEKJQJKEUQgghhBCFIgmlEEIIIYQoFEkohRBCCCFEoUhCKYQQQgghCkUSSiGEEEIIUSiSUAohhBBCiEKRhFIIIYQQQhSKJJRCCCGEEKJQJKEUQgghhBCFIgmlEEIIIYQoFEkohRBCCCFEoUhCKYQQQgghCkUSSiGEEEIIUSiSUAohhBBCiEKRhFIIIYQQQhSKJJRCCCGEEKJQJKEUQgghhBCFIgmlEEIIIYQoFEkohRBCCCFEoUhCKYQQQgghCkUSSiGEEEIIUSiSUAohhBBCiEKRhFIIIYQQQhSKJJRCCCGEEKJQJKEUQgghhBCFIgmlEEIIIYQoFK2lAxBCCPF4S07XcSU2mQydAWutmiruDjjYyK8PIcR/5CeCEEKIHMJuJrIkKIKd56OJiEtBueueCvBys8e/tgcDm3tR07OUpcIUQjwmVIqiKA9vJoQQoiSIjEthyupgAi/EoFGr0Bvu/ysi+36bGqWZ3subSm72jzBSIcTjRBJKIYQQACw7HMHUtafRGZQHJpL30qhVaNUqPuxej34+XkUYoRDicSUJpRBCCObsDOPLLaGF7uftTrUY51/TDBEJIZ4ksstbCCFKuGWHI8ySTAJ8uSWUPw9HmKUvIcSTQ0YohRCiBIuMS6Fhz1HEBS41vaFSo7YrhXWZyjh4d8Sxvr/xVlLIDtKunCDjxgX0ibEYdOloS5XBrnpTnFv3w97JlW0T2sqaSiFKEBmhFEKIEmzK6mByXS6pGDCk3CYt/BSx677idtAq463YjbNJDtlBZkwEhvRk0OvQJVwn8eg/3FjwJunJd5iyOvjRfQghhMVJ2SAhhCihwm4mEnghhrsnqmyrNcG5ZV8UfSaJx9aTGnoAgMSj63Bu3hsAlUqFdcW6ONTzR+tajvRr57i9f1lWYnn7JgmH/ibQZiAXohOp4SElhYQoCSShFEKIEmpJUAQatcrkmsbeBdtK9bK+dnA1JpT65HhjmzIvvIdd1cbG7+2qNMSQmkjikb8BSL8eikatYvHBCKZ1r1fUH0MI8RiQKW8hhCihdp6Pvm95IEWfSWrYQeP31mUqG7++O5nMZuVW3vi12soWvUFhZ2i0GaMVQjzOZIRSCCFKoKR0HRFxKTmuJ4dsJzlku8k1tb0zrh1GP7C/lPP7jV/bVWsCQERsCsnpOjmmUYgSQEYohRCiBAqPTSavJT5UWmuUjJzJZ7b4PYtICz8JgHX52jh4twdAAa7EJhcyUiHEk0D+2iiEECVQhs6Q6/XsTTkY9KRdPc3twKXo79zi1qrpVBjzCxpHV5P28Tvmc+fQagC07hXxePEDVGrNQ98jhCheZIRSCCFKIGtt7j/+szfl2FZugEvr/thWy1ovqejSSbkQZGynKAZiN80xJpNWZapQdsBnaOyd8/QeIUTxIiOUQghRAlVxd0AFD5/2vqukkCE1MeuSQU/Muq9JObMbyJrm9uj7IRpbR5NHVf++RwhR/ElCKYQQJZCDjRYvN3vC79mYo09JIC3yNBj0pF87R9qVE8Z7Vm4VALi1ajqp/45WapzK4OI7gMxb4WT+205t44C1RxW83O1lQ44QJYT8ly6EECWUf20PFgWFm1xLu3SUtEtHc7S19qyOXY1mAMZkEkB/5xbRy6eatLWpVJ8Kg2fgX8ujCKIWQjyOZHGLEEKUUAObe923DiWASmuDVZnKOLUKwHPAZ6g0eR+D0BsUBrXwMkeYQogngEq5+8wtIYQQJcrg+UHsvxT7wMQyvxSDnvSIUzgfW0SfPn2oVKkSFStWpGLFilSoUAF3d3dUKtXDOxJCPDEkoRRCiBIsMi6FDt/sJt2M5X1sNCpu/DqOO9cv53r/448/5r333jPb+4QQlidT3kIIUYJVcrPnQzOft/1Rj/oc2rkRtTr3XzEtWrQw6/uEEJYnCaUQQpRw/Xy8eLtTrX+/K9yk1cROtQnw8aJ27dq89dZbOZLKZ555hg4dOhTqHUKIx49MeQshhABg8s9r+eO8DrWVNQp5X+OoUavQqlV81L0eAT7/bcRJTEykRo0a3Lp1i7t/1bRp04Z169bh5ORk1viFEJYjI5RCCFHCZWRk8PHHHzPj5R5E/fIqLaq6AVmJ4oMoBj0Araq5s21CW5NkEqBUqVLMmjXLmEz+/vvvtGnThsDAQMqUKcOPP/5YBJ9GCGEJMkIphBAlWGBgICNGjCAsLAwAR0dHEhMTCbuZyJKgCHaGRhMRm2IyEa4CvNztCdnyJyknNxN2NJCKFSvm2r+iKDz33HO4uLjwxx9/oFKpWLVqFUOGDCE5ORlvb282bdpE+fLlAdi1axfbt2/no48+kp3gQjxBJKEUQogSKD4+nokTJzJ//nzUajUGQ9Yu70aNGnHs2DGTtsnpOj78+nu+nT0XnyaN2LxiMQ42WqysrNDpdJQvX559+/ZRpUqVXN+V/Wvm7gQxIyODgIAA1qxZg0aj4f333+f111+nVq1axMTEsGrVKnr16pXnz5OcruNKbDIZOgPWWjVV3B3klB4hHiFJKIUQogR6++23+eqrr3Jc79q1K//884/JNUVRqF27NmFhYWi1Wq5fv461tTXOzs5AVqJYtmxZdu/eTc2aNfMVx969e+nZsyexsbE4OjqSnJwMQPny5QkNDcXe3v6+zxpHUc9HExGXyyiqmz3+tT0Y2NyLmp6l8hWXECJ/ZA2lEEKUQO+88w4DBw40uabVavH09MzRdvPmzcYpcb1ez+eff054+H9HNiqKQnR0NK1ateLMmTP5isPX15fo6Gief/55kpKSUBQFRVGIiopixowZuT4TGZfC4PlBdJy1h0VB4YTfk0xC1l718LgUFgWF03HWHgbPDyLynnPLhRDmIyOUQghRQun1epycnEhJyUq0VCoVkydPZvr06SbtWrVqRVBQkHFa3Nramh9//JFhw4bl6LNs2bJcu3btvjUoc5OSkkKdOnWIjIw02Q2u0WgIDQ2lWrVqxmvLDkcwde1pdAYlX6f7ZO9E/7B7Pfr5yJGQQpibjFAKIUQJNXr0aFJSUvj888/57LPPsLGxoW7duiZt9uzZw4EDB4zJJGQlovPnz8/RX7169Zg2bVq+kkmAZcuWERERgVqtxsrKyuQ9vr6+xnfP2RnG5FXBpOsM+T4qUm9QSNcZmLwqmDk7w/L1rBDi4WSEUgghSqCwsDBq166Nl5cXV65cAUCn06HRaEw2z/Tp04cVK1ag1WrR6XTGeyqVCoPBQMWKFYmPj8dgMBhHOvMrKSmJFStWcPXqVa5evUpkZCShoaFcunQJg8FAy5YtGTF9Ph9vvlToz51tRm/vHGWOhBAFJwmlEEKUQHXq1OHcuXOcPHmSBg0a3Lfdli1b2LNnDwaDgc8++4ymTZsSEBBAqVKlaNq0KY0bN2b8+PHMnj2b7du3065dO7PGuWfPHoaMHEN42FnTGyo1artSWJepjIN3Rxzr+xtvJZ7cTMq5vWTGRGJIvYOiKGgc3bCtVB/nli9i5V4JG62abRPaUsnt/pt+hBB5JwmlEEKUMD///DMvv/wyffr0Yfny5Xl6RqfTYWVlxdChQ/n9999N7sXExFCmTBnat2/Ptm3bzB5vg+4jCf4n5xT73Vz8h+PcvDcAN//4H2nhJ3Ntp7K2o9xLs7AtXZFW1dxZNKK52eMVoiSSIl1CCFGCpKWl8frrr2Nvb8/ixYvz/JxWm/XrIjMzM8e90qVLU7VqVQIDAzEYDPleQ/kgYTcTibhrd7ZttSY4t+yLos8k8dh6UkMPAJB4dJ0xobTyqIqNV32sS1dGZWNPZkwECYGLUdJTUDJSSTq1FatnXiLwQgwXohOp4SElhYQoLNmUI4QQJUj//v1JS0vjhx9+wNraOt/P55ZQAgwfPpyMjAyWLVtW2BBNLAmKMFnTqbF3wbZSPeyqNMSlzSDjdX1yvPFrt/YjcWndH/varbCr0hCnpt1x9O5gvK9kpGb1pVax+GCEWeMVoqSShFIIIUqII0eOsGbNGurXr8+QIUMK1IdOp8v1+ttvv41KpeLrr78uTIg57DwfTW4rsxR9JqlhB43fW5epnOvzii6T9BsXSL14xHjNxitrzajeoLAzNNqs8QpRUsmUtxBClBC9evVCrVazbt26AvdxvxFKW1tb6tevz/Hjx8nIyCjQ6Oe9ktJ1JtPdAMkh20kO2W5yTW3vjGuH0aZxxkYS9fMrpu1sHHBq8SIOT7U2XouITSE5XSfHNApRSDJCKYQQJcCnn37K1atXGT16NJUr5z6a9zAqleq+I5QAr7/+OgaDgdmzZxc0TBPhsck5TsDJNS6tNUpGHkoWqTVwT48KcCU2uSDhCSHuIru8hRCimIuPj8fT0xMHBwdiY2MLvGlGrVbTvn17tm7dmut9g8GAjY0N1apV4/z584UJGYDjEfH0+mE/CYFLuL3vD+C/TTkY9KRdPc3twKWAgkprQ4Uxv6BxdM2KJTOdjBsXUHTpZNy8xJ2DKzCkJQHg2nE0Tk26Gd+z+pVWNPJyLXS8QpRkMkIphBDFXK9evcjMzGTJkiWF2oH9sBFKtVpNixYtCA0N5fbt2wV+TzZrbc5Yszfl2FZugEvr/thWawyAoksn5ULQf7FY2WRt3qnaGOcWL+LaboTxXsqZ3Q99jxAif+S/IiGEKMa2bt3K7t27adWqFV26dClUXyqV6r5rKLO98847ADnOAy+IKu4OqB7W6K5JNkNqIoouM9dNPNzVkyEt2eRqFXeHQsUphJBNOUIIUWwZDAb69euHVqvl77//LnR/KpUKvV7/wDZdu3bFzs6OJUuWMGPGjEK9z8FGi5ebPfF3XdOnJJAWeRoMetKvnSPtygnjPSu3CqRfO0vsxtk41PfHqnRl1Db2ZN66wu39/xVwty5b3fi1l7u9bMgRwgzkvyIhhCimJkyYQFxcHFOnTqV06dKF7u9hU97Z2rdvz7p164iIiMDLq3DnZfvX9uDUXXUo0y4dJe3S0RztrD2rY1ejGelXz6BLuM7tvUtz7U/j4Irzv/UrNWoV/rU8ChWfECKLTHkLIUQxdPXqVebMmUO5cuWYNm2aWfpUq9UPHaEEmDp1KoBZ3juwudd9prBBpbXBqkxlnFoF4DngM1QaLVq3CpRq0g1rz+qo7ZxApUZlbYe1Z3WcWvah3Ig5WLmUBbLqUA5qUbiEVwiRRXZ5CyFEMdSoUSNOnDjBgQMHaNGihVn6tLOzo1atWpw8mfs52XdzdXVFrVYTGxtb6PcO+Hk/By7FoTx8RWWeadQqOctbCDOSEUohhChm/vjjD06cOEGXLl3MlkxC3tZQZuvevTtxcXGcOHGiwO9LSEjgo48+4u/3+qPPzChwP7nRqlVM7+Vt1j6FKMlkhFIIIYoRnU6Hi4sLOp2OuLg47O3tzda3o6MjlSpV4uzZsw9te+XKFapWrUqPHj1Ys2bNQ9srikJoaCjr1q1j3bp1HD9+3KT00AuTvuaIulZhwjcxo7c3AT4y3S2EucimHCGEKEaGDh1KcnIyc+fONWsyCfkboaxSpQrlypW7bxH0e82dO5fXXnst13suLi6smDGBOTvD+HJLaJ7jvZ+JnWpLMimEmcmUtxBCFBOnT5/mjz/+oGbNmrz66qtm7z+vm3Ky9e/fn5SUFDZt2vTQtv7+/qhUua+R/PXXXwEY51+Tz3t7Y6NVo1Hnbz2lRq3CRqtmRm9vxvrXyNezQoiHkylvIYQoJmrUqMGlS5c4c+YMTz31lNn7d3V1xdnZmStXruSpfVxcHO7u7vj5+bF79+6Htp85c6axMHo2Z2dn4uPjTZLNyLgUpqwOJvBCDBq1Cr3h/r/Gsu+3qVGa6b28qeRm3lFbIUQWmfIWQohiYPbs2Vy8eJHBgwebNZnctWsXo0aNIj09ndu3b3Pnzh3c3d1Rq9WsWLGCtm3b3vdZNzc3atSowYEDBzAYDA889nHVqlVMnjw5x/W33347x8hlJTd7Fo1oTtjNRJYERbBg2xEUe3e4q52KrKLl/rU8GNTCixoepfL/4YUQeSYjlEII8YRLSkqidOnSWFlZER8fj1ZrvrGCPXv23DdpPHnyJA0aNHjg89mjjr/++ivDhg3Ltc2bb77JN998A0Dz5s3RaDTs378frVZLQkICDg73PxoxODiYBg0aYOPgxNHQCDJ0Bqy1aqq4O8gJOEI8QrKGUgghnnB9+vQhPT2d+fPnmzWZBPDz8+OZZ55Bo9EYr2m1Wrp27frQZBLgjTfeQK1W89133+W4ZzAYaNmypTGZHDt2LAcPHmT37t20adOGadOmPTCZzMjIoH///gCkJ99Bc+c6jbxcqVfeWZJJIR4xGaEUQogn2L59+/D19aVx48YcPZrzSEJzCAoKylHPMigoiGbNmuXp+caNG3Py5EmSk5OxtbUFICYmhqeeespY+HzhwoUMHjw4X3G99957TJ8+HUVRUKlUTJ061XhKjxDi0ZIRSiGEeIK9+OKLqNVq/vnnnyJ7R/PmzXn++eeN3/v7++c5mQQYP348BoPBOBJ54MABypUrR2xsLFqtlqNHj+Y7mTx06BCfffaZ8VhGRVFYsmTJfY9pFEIULUkohRDiCfX+++9z48YNxo8fT/ny5Yv0XZ9++qnx6w8++CDPz61fv55p06ah1WqZP38+c+bMoVWrVuh0OlxdXbl+/TqNGzfOVyxpaWkMGDAgR/IYFhZGSEhIvvoSQpiHTHkLIcQTKDo6mvLly+Pi4kJ0dPQDd1Cbi5ubG0lJSaSnp9+3ZuTdFEWhUaNGnDx5EltbW9LS0oz3GjZsyOHDhwu05jMqKor69esTHx9vvKbVatHpdLz//vt89NFH+e5TCFE4MkIphBBPoB49eqDX6/nzzz8fSTKZnK6j3QtDaODfnTPX75CcrnvoM4GBgZw8eRLAJJkcPnw4x48fL/AGovLlyxMbG0tUVBQVKlTA2tqaKVOmMGjQIFq2bFmgPoUQhSMjlEII8YRZu3YtPXr0wN/fnx07dhTZe7LrPO48H01EXAp3/7JQAV5u9vjX9mBgcy9qeuas89itWzc2btxocrqOtbU16enpZovR2dkZV1fXPBdbF0IUDUkohRDiCWIwGHBzcyMlJYXo6GhcXFzM/g5znEQTGhpK7dq1c31m/vz5DB8+3CyxajQaWrVqRWBgoFn6E0IUjEx5CyHEE+TVV1/l9u3bfPTRR0WSTC47HEGHb3az/1JWOZ8HJZN3399/KZYO3+xm2eEIAPr165ejbfbU/PLly80Sa1xcHAaDgVq1apmlPyFEwckIpRBCPCEuX75M9erVqVixIhEREWbvf87OML7cElrofhprr7H6k9EAODo68u677+Ln50eTJk2oWLEier2ehISEQr8ne+r/u+++47XXXit0f0KIgpOjBIQQ4gnRtWtXFEVhzZo1Zu972eEIsySTAMd0FXBs0JHOtZz566+/TO716tWL+fPnExQURPPmzQv1nsOHDwPIRhwhHgMyQimEEE+A3377jeHDh9O7d29Wrlxp1r4j41Jo2HMUcYFLTW+o1KjtSmFdpjIO3h1xrO9vvJUWEUxSyA7Sr51FF3sN/t2y49l/OjZe3mhVCrsmtjeuqcx29epVKlWqRJcuXVi/fn2h4u7Vqxdr1qwhMzPT7EdOCiHyR9ZQCiHEYy4jI4OxY8diZ2fHkiVLzN7/lNXB5LpUUjFgSLlNWvgpYtd9xe2gVcZbKaEHSD61FV3sVcD0YZVKBWoNU1YH5+iyYsWKVKxY0Sy70y9evIiNjY0kk0I8BiShFEKIx9yAAQNITU1l9uzZxrOwzSXsZiKBF2JMTp2xrdYEz4Ez8Oj3CXa1/ptOTjy6zvi1xsEF+9qtcW03Aq1bhRz96g0KgRdiuBCdmOPeoEGDSEtLY+3atYWK/caNG0WyMUkIkX+SUAohxGPsxIkTrFy5kjp16jBixAiz978kKAKN2vTUG429C7aV6mFXpSEubQYZr+uT/zuZxrllX8r0ehenZr1Q2zrm2rdGrWLxwZybh959911UKhUzZswoVOwJCQlFfuSkECJvJKEUQojHWI8ePVCpVIVeb3g/O89H37c0kKLPJDXsoPF76zKV89W33qCwMzQ6x3UnJydq1arFoUOHMBgM+Qv4XxkZGWRmZlK9evUCPS+EMC9JKIUQ4jH1+eefExERwciRI6latarZ+09K1xERl5LjenLIdsI/70rEF71I2LMIALW9M64dRuf7HRGxKbke0zhmzBh0Oh0///xz/gPnvx3e9evXL9DzQgjzkoRSCCEeQ3fu3OGDDz7A2dmZefPmFck7wmOTyWuZD5XWGiUjZ/L5MApwJTY5x/Vx48ahVquZO3duvvsEOHgwa+S0WbNmBXpeCGFeklAKIcRjqFevXmRmZrJgwQLjCTPmlqHLfbo5e1OOZ//pOLcZCKjQ37nFrVXT0SfF5/pMft+j1Wpp3LgxISEhpKTkP1E9efIkAK1bt873s0II85OEUgghHjM7duxgx44dNG/enB49ehTZe6y1uf8KyN6UY1u5AS6t+2NbrTEAii6dlAtBZnvPW2+9haIofPHFF/nuMywsDI1Gg5OTU76fFUKYnySUQgjxGDEYDAQEBKDRaApdVudhqrg7oHp4M7irpJAhNWcZoAdR/fue3PTt2xdra2t+//33fPUJWQXSS5Uqle/nhBBFQ6rBCiHEY2TixInExMQwZcoUPDw8ivRdDjZavNzsCb9nY44+JYG0yNNg0JN+7RxpV04Y71n9W3MyIyaCzJiskkB3J5lpkSHoU+9k9f+UL17u9jjY5P6rRq1W4+fnx7Zt24iOjs7X542NjcXLyyvP7YUQRUsSSiGEeExERUUxa9YsPD09+fTTTx/JO/1re7AoKNzkWtqlo6RdOpqjrbVndexqZG2CSTkbyO19f+Roc3vvf8c3Ok1Zj3+tByeJ7733Htu2bePjjz9m9uzZeYrZYDCQmppKlSpV8tReCFH0ZMpbCCEeE927d8dgMLBixYpH9s6Bzb3uW4cSQKW1wapMZZxaBeA54DNUmryPQ+gNCoNaPHgUsW3btpQqVYrly5fnud+LFy8CULdu3Tw/I4QoWjJCKYQQj4EVK1Zw9OhRnn32WXx9fR/Ze2t6lqJNjdLsVw/Cpc3APD/n0mbgA9tr1CpaVXOnhsfD1zl27tyZv/76i/Pnz1O7du2Htt+7dy8ATZo0yXO8QoiiJSOUQghhYTqdjmHDhmFjY/NIRyezfdjtKRS9zuQ878LSqlVM7+Wdp7bTpk0z+efDHDt2DOCRJt5CiAeThFIIISxsxIgRJCUlMWPGDBwdcz8X29xu3brFypUrGTZsGDXLuXFr41xUqjzt+c6TqV3rUMnNPk9t69atS5kyZfJ8vOTZs2dRqVRUrpy/oyCFEEVHEkohhLCg8+fPs2jRIqpVq8b48eOL9F0nT57ktdde46mnnsLDw4MXX3yR33//HYPBQNKpLTTWXjPLe+J3L2Cob02mTJlCSEhInp554YUXSExMNE5nP0h4eDj29nlLVoUQj4ZKMecchxBCiHypVasWFy5cIDg4mHr16hXpu4YOHcrChQtzvbd48WIGDhzIssMRTF17Gp1BeeBmnXtp1Cq0ahUfda/HlH7+XLp0yXivdu3aDBo0iICAAGrWrJnr8zdu3KBcuXJ06tSJzZs3P/Bdzs7OuLi4EB4e/sB2QohHRxJKIYSwkB9++IFXX32V/v37s3Tp0oc/UEjR0dE0bdqUq1evmqyXHDhwIIsXLzZ+HxmXwpTVwQReiEGjVj0wscy+36ZGaab38qaSmz3Lli2jf//+Ju3UajUGg4EjR47cdzNNlSpVuHHjBqmpqURHRxMVFUWjRo0AWLp0KZs3b6Z69epMmzYNb29vtm3bRunSpc06VS+EKBhJKIUQwgJSUlJwc3NDq9WSkJCAVlv0RTcMBgNt2rRh//79JtdDQ0NzHTkMu5nIkqAIdoZGExGbwt2/LFSAl7s9/rU8GNTCy2Q3d2JiIu7u7mRmZhqvqdVqWrduzebNm7Gzs8s1vsmTJzNjxgy8vb0JCQnBysqK1NRU1Go1I0aM4Ndff0Wj0aDX643PVKhQgbCwsPv2KYR4NCShFEIIC+jatSvr169n6dKlOUbzikJKSgoNGjQw1nDM1rFjR7Zs2fLQ55PTdVyJTSZDZ8Baq6aKu8N9T8CBrM+3adMmY/Ln6OjI9evXc910dOHCBaZMmcKaNWtMklB3d3diYmIA2LhxI126dDF5TqVS0bx5c/bv3y+jlEJYmGzKEUKIRywoKIj169fz9NNPP5JkMjw8nLJlyxqTyfHjxzN//nwA3nzzzTz14WCjpV55Zxp5uVKvvPMDk0mAPn36oNfrUavVeHp6kpSUhL+/PwaDIUfbrVu38tdff5kkkwBVq1Y1ft2hQwecnJxM7tvY2LB48WJJJoV4DEhCKYQQj1jv3r1Rq9WsXbu2yN+1Z88eatSoQWJiIiqVivnz5zNr1iyGDx9OTEwMnTt3LpL3du/eHTs7O5599lmuXLlC7969OXLkCL6+vhgMBs6cOUODBg3YuXMnY8aM4bXXXjN5XqVSUaNGDeP3VlZW9OnTxyR5/Oabb6hevXqRxC+EyB9JKIUQ4hH68MMPiYqKYuzYsXh5PfhYwsL6+eefadu2LTqdDmtra/bt28fw4cON993d3Yvs3a6urly8eJG1a9dia2vLypUr6d69OwcOHMDHxwdfX1+Cg4OZN28eKpWKb7/9lnfeecf4vKIoOepM9u/f37iZqH379owePbrI4hdC5I+soRRCiEckJiaGcuXK4eTkxK1bt1Cri+7v9OPHj+e7774DshLH4OBgypUrV2TvyytfX1/27dtn/N7Ozo64uDhsbW1RFIWPPvrIeGLON998wxtvvGFsm50YK4pCZGQkFStWfMTRCyHuR0YohRDiEenZsyc6nY6lS5cWWTJpMBho166dMZls2LAhUVFRj0UyeezYsRyFzlNTU9m6dSuQNc09depUhg4dCmCsM5mcruN01G2CoxIpU6sR7To9J8mkEI8ZGaEUQohHIHuXsp+fH7t37y6SdyQlJVG/fn1jIjZo0CAWLVpUJO8qiFq1ahEWFmZyTaVSMXjwYBYsWGByvWaTNpRu2Qvryo2IiDMtWQQKld0c8K/twcDmXtT0LIUQwrIkoRRCiCJmMBhwd3cnKSmJmzdv4ubmZvZ3XL58mQYNGpCUlATAl19+yVtvvWX29xTG3r17mTdvHqtWrSI1NdV4XaPRkJqaipWVlUlRdTUKBu6/gzu3oupCCMuQKW8hhChir732GgkJCUydOrVIksldu3ZRs2ZNkpKS0Gg0bNq06bFLJiFr/eTixYuJjY1lxYoV9OrVCwC9Xs+4ceNYdjiCDt/sZv+lWIAHJpOA8QSf/Zdi6fDNbpYdjijaDyCEuC8ZoRRCiCIUHh5OtWrVKFeuHFevXjV7/z/++CNjxowBsoqHnzhx4okqpXP79m1efPFFDiW74dp2SKH7e7tTLcb5535euBCi6MgIpRBCFKFu3bphMBhYs2aN2fseN26cMZmsWrUqN27ceKKSSQBnZ2eGfzrfLMkkwJdbQvlTRiqFeOSK/vBYIYQooRYuXEhwcDA9evSgadOmZuvXYDDg7+/Pnj17AHjuuedYt25dkZYhKioT3vkfs2ZON72oUqO2K4V1mco4eHfEsb5/rs9mJtzg+vxxKJlpAFiXr025IV/xwdrTtKpeWtZUCvEIPXk/fYQQ4gmQkZHBK6+8gq2tLcuWLTNbv0lJSXh5eRmTySlTprBhw4YnMpkE2H72Zs6LigFDym3Swk8Ru+4rbgetyvXZuE1zjcnk3XQGhSmrg80dqhDiAWSEUgghisCQIUNISUlh3rx52NramqXPixcv4u3tTWpqKiqVimXLltG3b1+z9G0JYTcTiYhLMX5vW60Jzi37ougzSTy2ntTQAwAkHl2Hc/PeJs8mBW8n7cpxVFprFF2GyT29QSHwQgwXohOp4SElhYR4FJ7Mv9IKIcRj7NSpU/z555/Url3bbMcD7tixg1q1apGamoq1tTUnTpx4opNJgCVBESZnc2vsXbCtVA+7Kg1xaTPIeF2fHG/ynD45gfjtvwAqnFsF5Nq3Rq1i8UFZSynEoyIJpRBCmFmPHj1QqVT8888/Zulv7ty5tG/fHoPBQJkyZbh+/ToNGjQwS9+WtPN8NLkVGlH0maSGHTR+b13G9EzvuG0/YkhLpFTjLthUqJNr33qDws7QaPMGLIS4L5nyFkIIM/rqq6+4cuUKw4YNo2bNwpevefnll/n5558BaNq0KQcOHECrffJ/dCel60ymuwGSQ7aTHLLd5Jra3hnXDv+N8qaEBZFyNhCNUxlc2g4l48aF+74jIjaF5HQdDjZP/p+XEI87GaEUQggzSUxMZMqUKTg5OfHTTz8Vqi+DwUCLFi2MyeSIESM4fPhwsUgmAcJjk8lLEWSV1holIyvxNKSnELflBwDcn30Vtc2Dd3ErwJXY5EJGKoTIi+Lxk0kIIR4DvXv3JiMjg6VLlxYq8UtMTKRmzZrcvJm1A3revHlmW4v5uMjQGXJcy96Ug0FP2tXT3A5civ7OLW6tmk6FMb9w5+ha9Ikx2Ndti111nwK/RwhhfpJQCiGEGezZs4dt27bRtGlTXnjhhQL3c/HiRerVq0d6ejoajYZdu3bh6+trxkgfD9banBNk2ZtyAGwrNyD92jnSLh1F0aWTciEIfWIcAClndhN+ZneO5zOizhP+eVdc24/CyafHfd8jhDA/+S9NCCEKyWAw0KdPHzQaTaE24mzfvp2aNWuSnp6Oo6MjV65ceaKTyczMTKKionLdeFPF3eEhJ3UDdz1nSE3M9/tV/75HCFH0ZIRSCCEK6d133yU6OppJkyZRtmzZAvUxa9YsJkyYAED16tU5ffo0NjY25gzzkZs8eTJff/01dnZ21KxZk/r16/PUU0/h5uZGUlIStvqqJu31KQmkRZ4Ggz5rdPLKCeM9K7cKWJetjrVnNZNndPFRJB5bD4DGyQMnnx7YVqoPgJe7vWzIEeIRkf/ShBCiEG7cuMFXX31FmTJl+OyzzwrUx5AhQ1i0aBGQdfb32rVrzRmixdSvn5XYpaamcurUKU6dOmVyv+6gqdxVhpK0S0dJu3Q0Rz/WntWxq9EMlUaLXdXGJvfSwk/9l1A6uhqnujVqFf61PMz5cYQQDyAJpRBCFEL37t3R6/UsX74838cfGgwGGjduzMmTJwH48MMP+eCDD4oiTIvw8Mg9odNqtSxatIgm/s/j80Lum41UWhu0rmWxq9kC5+YvoNLk79eV3qAwqIVXvmMWQhSMSsltcYsQQoiHWr16Nb1796ZDhw5s3bo1X8/euXOHatWqERsbi0qlYu3atXTt2rWIIn101q9fz6xZs9i/fz8pKaZ1JtVqNc7OzuzatctYmH3w/CD2X4pFbzDfryKNWkWrau4sGtHcbH0KIR5MEkohhCgAnU6Hu7s7aWlp3Lp1Cycnpzw/GxYWRr169cjMzMTa2pqQkBCzFEG3BIPBwB9//MH333/PkSNHyMjIOle7UqVK9OrVizJlyvDBBx+gVqtxcXFh9+7d1KtXz/h8ZFwKHb7ZTboZy/vYaNVsm9CWSm4PrlMphDAf2eUthBAF8PLLL3Pnzh2mT5+er2Ry48aN1KpVi8zMTMqUKUNsbOwTl0xmZGQwd+5cGjdujLW1NYMGDeLAgQN4eXnx3nvvERcXR0REBN9++y0vvfQSiqLg7u7Ovn37TJJJgEpu9nzYvd593lQwH3WvJ8mkEI+YjFAKIUQ+hYWFUbt2bSpXrszly5fz/Nxnn33GlClTAGjWrBkHDhzI97pLS0lKSuLbb79l8eLFhIaGYjAYUKvV1K1blyFDhjB27Fjs7XNP4lavXk2jRo2oUqXKffufszOML7eEFjrOiZ1qM9a/RqH7EULkjySUQgiRT0899RTnz5/n5MmTxrWAD9OnTx9WrFgBwOjRo5k3b15RhmgWMTExfPHFF/z111/GxFmr1dKwYUNGjRrF8OHDzXoU5LLDEUxdexqdQcnXmkqNWoVWreKj7vUI8JGNOEJYguzyFkKIfPjpp584f/48ffr0yVMyaTAYqF+/PmfPngXg119/ZdiwYUUdZoGFh4czY8YM/v77b6KiogCwsbHBz8+PsWPH8uKLLxbZqGo/Hy9aVy/NlNXBBF6IQaNWPTCxzL7fqpo703t5yzS3EBYkI5RCCJFHaWlpuLq6olariY+Px9ra+oHt79y5g5eXF7dv30atVhMUFETTpk0fUbR5d/r0aWbMmMHGjRuJiYkBwMHBAT8/P9544w06der0yGMKu5nIkqAIdoZGExGbwt2/qFRkFS33r+XBoBZe1PAo9cjjE0KYkoRSCCHyqGfPnvz9998sWLCAIUOGPLDt2bNn8fb2Rq/X4+DgwJUrVyhduvQjivThDhw4wBdffMGOHTu4ffs2AC4uLnTo0IFJkybh4+Nj4Qj/k5yu40psMhk6A9ZaNVXcHeQEHCEeM5JQCiFEHhw+fJhmzZpRv359goODH9g2uz4lZB2jeO7cObOuNSyojRs3MmvWLPbu3WusEenh4UGXLl2YNGkSderUsXCEQognlSSUQgiRB5UqVSIqKopLly5RuXLl+7Z77733+PTTTwHo2rUr//zzz6MKMQeDwcCyZcv4/vvvOXz4sLFGZMWKFenVqxeTJk2iYsWKFotPCFF8WP6vzEII8Rhau3YtSUlJ9O/fn+nTp3P16lVeeeWVByaTnTt3ZvPmzYDljlHMzMzk559/Zv78+Zw8eRK9Xo9KpaJatWoEBATw1ltv4ebm9sjjEkIUbzJCKYQQuahXrx5nzpyhWbNmHD16FCcnJ2JiYnLd4WwwGKhRowaXL19GpVKxbt06unTp8shiTUlJMdaIPHfunLFGZJ06dRgyZAjjxo27b41IIYQwBxmhFEKIXERHRwNw6NAhANq1a0dqaioODg4m7RISEqhQoQIpKSlYWVkRFhb2wFFMc4mNjeXLL79k+fLlXL58GUVR0Gq1NGrUiBEjRjBq1KjHYt2mEKJkkBFKIYS4h8FgwNraGr1eb7ymVqtxc3Pju+++o3///gCcOnWKRo0aYTAYKF26NJGRkdja2hZZXJGRkcyYMYM1a9Zw7do1IKtGZLNmzRg7dix9+vR5Yk7eEUIUL5JQCiHEPeLi4nB3dze5plarURQFRVFYsWIFqampDB48GIAmTZpw5MiRIonl7NmzfP7552zcuJFbt24BWTUifX19GT9+PM8991yRvFcIIfJDEkohhLjH2bNnqVu3LgAqlQq1Wk23bt1Ys2ZNjrYjR47k559/Nuv7g4KC+OKLL9i2bZtJjcj27dszceJEmjdvbtb3CSFEYcnciBCixElO13E66jbHI+I5HXWb5HSdyf2QkBDj1z4+Phw/fpxz587l6Ofrr782WzK5efNmnnvuORwdHWnRogUrV67E2tqaoUOHcubMGeLj41mxYoUkk0KIx5KMUAohSgTjUX7no4mIy+UoPzd7/Gt7MLC5F2+/PIi1a9fyzjvvMH36dC5fvkyNGjVy9Fm+fHnCw8MLtPnFYDDw119/MXfuXA4dOkR6ejoAFSpUoFevXkycOBEvL68CflohhHi0JKEUQhRrkXEpTFkdTOCFGDRqFXrD/X/kZd9Pu3ycUQ0d+XjyG4Bpfcl7zZo1i/Hjx+cpFp1Ox/z58/n55585efIkOp0OlUpF1apVCQgI4O2335YakUKIJ5LUlBBCFFvLDkcwde1pdP8mkQ9KJu++71CtEcuT1dQ7HEGLMoYcyaRWq6VmzZp07NiRli1botPp7jtKmZKSwpw5c1i4cCFnz5411oh86qmnGDx4MK+//rrUiBRCPPFkDaUQoliaszOMyauCSdcZHppI3kuvQLrOwORVwTQZPAUAR0dH3n77bYKDg8nIyODMmTNUqlSJ5s2bM3fuXJPn4+Li+N///keNGjVwdHTknXfe4fz58zRq1Ijvv/+e1NRUTp8+zeTJkyWZFEIUCzLlLYQodpYdjmDyqmCz9de/moHPRnUzuTZ9+nT+97//AdCyZUuWL1/OzJkzWb16NVevXgWyakT6+Pjw6quvEhAQIDUihRDFliSUQohiJTIuhYY9RxEXuNT0hkqN2q4U1mUq4+DdEcf6/ia3M+OjSAhcQtqVkxjSk9CWKo197dY4twrAzsGRbRPaUsnNHkVRmDZtGh999FGu77e3tzfWiHyUxy8KIYQlyRpKIUSxMmV1MLnOcCsGDCm3SQs/RVr4KfTJ8Tg37w1Axs1L3Fj6Lkp6srG5LuEGd4JWknr5OBUGz2DK6mAWDm/G8OHD+f3333N037BhQ77//ntatmxZRJ9MCCEeX5JQCiGKjbCbiQReiOHuiRfbak1wbtkXRZ9J4rH1pIYeACDx6DpjQhm74VtjMunYsDN21X24c2g16ZEhZEZfIi7wDwKthlOpng/Xzh7N8V6VSoW7u7skk0KIEksSSiFEsbEkKAKNWmVyTWPvgm2lellfO7gaE0p9cjwA6VHnybh5EQAr90q4PTsWlUqFdbmaXJszFFBIOrUFF79BlGnVm+plHChXrhxXrlzh7Nmz3LlzB0VR2Lt3L4qioFKZvl8IIUoCSSiFEMXGzvPR993RregzSQ07aPzeukxlANKvnvnvWvnaxoRQ6+iG1tkD3e2bGNKSyIy9ilPdluz+ZYpJvzExMZw/fx6DwSDJpBCixJKEUghRLCSl64iIS8lxPTlkO8kh202uqe2dce0wGgDd7WjjdY2Di2k7Bxe4fTOrXcINImKrkZyuw8Hmvx+dpUuXpnTp0mb6FEII8WSSGhZCiGIhPDaZvJasUGmtUTKykk9DZtp/1zVWpu3U/yWOhsx0FOBKbDJCCCFMyQilEKJYyNAZcr2evSkHg560q6e5HbgU/Z1b3Fo1nQpjfkFtZWtsq+gzTZ5VDDrj12ormwe+RwghSjJJKIUQxYK1NvcJl7s35dhWbkD6tXOkXTqKoksn5UIQWmcPY1t9coLJs/qkeOPXWpeyD3yPEEKUZPKTUQhRLFRxdyBPW2LuKilkSE3EpmJd4/fp184ZSw7pEmPQ37kFgNrWEavSXqj+fY8QQghTMkIphCgWHGy0eLnZE37Pxhx9SgJpkafBoM8anbxywnjPyq0CNuVrY+1ZnYybF9HFXSVu0xzsajTjzqHV8O+qTMcGnVBptHi525tsyBFCCJFFfjIKIYoN/9oeLAoKN7mWdukoaZdyFiO39qyOXY1mALh3GW88KSfp5GaSTm42trPyqIZz635o1Cr8a3nk6EcIIYRMeQshipGBzb3uW4cSQKW1wapMZZxaBeA54DNUmqy/U1t7VqPc0K+xr9sWtb0LaLRonT1xav4CZQd+jtrGHr1BYVALr0f0SYQQ4smiUu4+o0wIIZ5wAT8Ecig8AUVlvr8va9QqWlVzZ9GI5mbrUwghihMZoRRCFBu7du0i8JuxGPS6hzfOB61axfRe3mbtUwghihNJKIUQTzy9Xs+HH35I+/bteapiaaZ0qmHW/l0vbuXskb1kZGSYtV8hhCguZMpbCPFEu379OoMGDWLXrl1MnTqV//3vf2g0GubsDOPLLaGF7r+57U2WTxsBgL29PZ06daJr16506dKFcuXKFbp/IYQoDiShFEI8sbZu3cqgQYPQaDQsXbqUZ555xuT+ssMRTF17Gp1BeeBmnXtp1Cq0ahUfda9H9/plcHNzIy0t64hGjUaDXq8HYPDgwSxcuNBsn0cIIZ5UMuUthHji6HQ63nvvPZ599lkaNmzIiRMnciSTAP18vNg2oS2tqrkDWYnig2Tfb1XNnW0T2hLg44WdnR1DhgxBo9EAGJNJgEqVKpnpEwkhxJNNRiiFEE+Uq1evMmDAAPbv388nn3zCpEmTUKsf/nfjsJuJLAmKYGdoNBGxKdz9g08FeLnb41/Lg0EtvKjhUcrk2YMHD9KyZUuTa3379mXZsmWoVHk6n0cIIYo1SSiFEE+MDRs2MGTIEOzs7Pjjjz/w9fUtUD/J6TquxCaToTNgrVVTxd3hgSfgKIpCzZo1uXjxImq1GhsbGzw8PNi2bRs1aph3A5AQQjyJZMpbCPHYy8zMZNKkSTz//PO0bNmSEydOFDiZhKxjGuuVd6aRlyv1yjs/9DhFlUrFyJEjAfDz8+PUqVPY2tri6+vLyZMnCxyHEEIUFzJCKYR4rIWHh9OvXz+OHDnCjBkzmDBhgkWmmRMSEpg7dy7jx4/H0dGRW7du0blzZy5evMj69etp3br1I49JCCEeF5JQCiEeW2vWrGHYsGE4Ozvz559/0rz543VSzZ07d+jevTuHDh1i1apVdO7c2dIhCSGERciUtxDisZOens4bb7xBr1698Pf35/jx449dMgng5OTExo0b6dChA926dePPP/+0dEhCCGERklAKIR4rFy9epHXr1vzwww/Mnj2blStX4urqaumw7svOzo6VK1fSv39/+vfvz48//mjpkIQQ4pF78Ep0IYR4hP766y9GjhxJmTJl2L9/P02aNLF0SHliZWXF77//jqurK2PGjCEuLo7JkydLSSEhRIkhCaUQwuLS0tJ48803+eGHHwgICOCnn37CycnJ0mHli1qtZtasWbi7uzNlyhTi4uKYOXOmJJVCiBJBEkohhEWdP3+evn37Ehoayo8//sioUaOe2CRMpVLxwQcf4Orqyuuvv05cXBw//vgjWq38qBVCFG/yU04IYTGLFy9mzJgxVKxYkaCgIBo0aGDpkMzitddew9XVlZdeeomEhASWLl2KjY2NpcMSQogiI5tyhBCPXEpKCiNGjGDw4MH07t2bI0eOFJtkMtugQYNYvXo169ev5/nnnycpKcnSIQkhRJGROpRCiEfq9OnT9O3blytXrjB37lxeeuklS4dUpHbv3k23bt2oW7cu69evx93d3dIhCSGE2ckIpRDikVAUhd9++w0fHx9UKhWHDx8u9skkQNu2bdm1axcXL16kbdu2REVFWTokIYQwO0kohRBFLikpiSFDhjB8+HAGDhzIoUOHqFu3rqXDemQaN25MYGAgd+7coXXr1ly4cMHSIQkhhFnJlLcQokidPHmSvn37EhUVxY8//siAAQMsHZLFRERE0KlTJxISEtiyZUuxWzcqhCi5ZIRSCFEkFEXhxx9/pHnz5tjZ2XH06NESnUwCeHl5ERgYSIUKFWjbti379++3dEhCCGEWklAKIczuzp079OvXjzFjxjBixAgOHjxIrVq1LB3WY6FMmTLs3LmTp59+mg4dOrBp0yZLhySEEIUmU95CCLM6evQoAQEB3Lp1i19++YU+ffpYOqTHUmpqKgEBAWzatIlFixYREBBg6ZCEEKLAZIRSCGEWiqIwe/ZsWrVqhaurK8ePH5dk8gHs7OxYuXIlAQEB9O/fnx9//NHSIQkhRIHJSTlCiEKLj49nxIgRrF69mjfeeIPPP/9cTobJAysrKxYsWICrqytjxowhPj6ed95554k9elIIUXJJQimEKJSgoCACAgK4ffs2a9asoUePHpYO6YmiVqv59ttvcXd359133yU2NpaZM2dKUimEeKJIQimEKBCDwcDXX3/Nu+++S9OmTdm9ezeVK1e2dFhPJJVKxdSpU3F1dWX8+PHEx8fz448/otFoLB2aEELkiSSUQoh8i4mJ4aWXXmL9+vVMmjSJTz75BCsrK0uH9cR7/fXXcXV1ZdiwYSQkJLBkyRJZOiCEeCLILm8hRL4EBgbSv39/0tPTWbhwIc8995ylQyp2/vnnH/r06UObNm1YvXo1jo6Olg5JCCEeSHZ5CyHyxGAwMH36dPz9/alWrRonTpyQZLKIdOvWjU2bNhEUFESHDh2Ii4uzdEhCCPFAMkIphHiomzdvMnjwYLZt28b//vc/pk6dilYrK2aK2tGjR+ncuTOenp5s2bKF8uXLWzokIYTIlSSUQogH2rFjBwMHDkRRFBYvXkyHDh0sHVKJcu7cOTp27IhWq2Xbtm1Ur17d0iEJIUQOMuUthMiVXq9n2rRpdOjQgbp163LixAlJJi3gqaeeYt++fVhbW+Pr68upU6csHZIQQuQgCaUQIoeoqCg6dOjAxx9/zIcffsiWLVsoW7aspcMqsby8vAgMDKRcuXK0bduW/fv3WzokIYQwIVPeQggTW7ZsYdCgQVhZWbF06VLatm1r6ZDEv27fvk337t05fPgwq1ev5tlnn7V0SEIIAcgIpRDiXzqdjilTpvDss8/SpEkTTpw4IcnkY8bZ2ZlNmzbRvn17unXrxvLlyy0dkhBCAJJQCiGAyMhInnnmGWbOnMnnn3/O+vXrKVOmjKXDErmws7Nj1apVBAQE0K9fP3766SdLhySEEHJSjhAl3fr16xkyZAgODg7s2bOHVq1aWTok8RBWVlYsWLAAV1dXRo8eTVxcHJMnT7Z0WEKIEkwSSiFKqIyMDKZMmcJXX31Ft27d+O2333B3d7d0WCKP1Go13377LW5ubrz77rvExcUxY8YMVCqVpUMTQpRAklAKUQJduXKFfv36cezYMb7++mveeOMNSUSeQCqVimnTpuHq6sobb7xBXFwcP/74IxqNxtKhCSFKGEkoi7HkdB1XYpPJ0Bmw1qqp4u6Ag438Ky/pVq9ezfDhw3FxcWHv3r00a9bM0iGJQho/fjyurq4MHz6chIQElixZgo2NjaXDEkKUIFI2qJgJu5nIkqAIdp6PJiIuhbv/5aoALzd7/Gt7MLC5FzU9S1kqTGEB6enpTJw4kdmzZ/PCCy/wyy+/4OLiYumwhBmtXbuWvn374ufnx6pVq3B0dLR0SEKIEkISymIiMi6FKauDCbwQg0atQm+4/7/W7PttapRmei9vKrnZP8JIhSVcuHCBgIAAQkJC+Oabb3jllVdkiruY2rVrF927d6du3bps2LABNzc3S4ckhCgBJKEsBpYdjmDq2tPoDMoDE8l7adQqtGoVH3avRz8fryKMUFjSn3/+yahRo/D09GT58uU0atTI0iGJInb06FE6d+6Mp6cnW7ZsoXz58pYOSQhRzEkdyifcnJ1hTF4VTLrOkK9kEkBvUEjXGZi8Kpg5O8OKKEJhKampqYwePZp+/frRtWtXjh07JslkCdGkSRMCAwO5ffs2vr6+XLx40dIhCSGKOUkon2DLDkfw5ZZQs/T15ZZQ/jwcYZa+hOWdO3eO5s2bs3DhQn7++WeWLFlCqVKyZrYkeeqpp9i3bx9WVlb4+vpy6tQpS4ckhCjGZMo7jx63HdORcSl0+GY36ToDhow0kk5sIiX0AJkxERgy09A4umFd2gv7On441PFFpbHiTtAq0iKCSY86jyH1DgAaJw8qvvorADZaNdsmtJU1lU+4RYsW8corr1CpUiWWL1+Ot7e3pUMSFhQdHU3nzp25fPky69evl8L1QogiITVkHuBx3jE9ZXUwOoNCRkwEt1Z8hC7hhsl9/e2bpN6+SerFw1iXqYy1ZzUS9v+Jkp583z51BoUpq4NZNKJ5UYcvikBycjLjxo3j999/Z+jQocydOxcHBwdLhyUszMPDg507d9KtWzc6duzIqlWrePbZZy0dlhCimJGEMhd52TGtAOFxKSwKCuf3A1ce6Y7psJuJBF6IQZ+aSPTyqejv3AJA4+iGU/MXsCpTGSUjlbSIEJKCtxmfs/aoilVpL7ROpUnYvTBHv3qDQuCFGC5EJ1LDQ6ZHnySnT5+mb9++XLlyxZhQCpHN2dmZzZs307dvX7p168bixYvp27evpcMSQhQjsobyHssOR9Dhm93svxQL8NCNLtn391+KpcM3u1n2CNYhLgmKQKNWcefQKmMyqbJxoOzQr3Hy6YFdlYbY12qJW4dRVHj5RzROZQAoO/Bz3J99FftaLe/bt0atYvFBWUv5pFAUhfnz5+Pj44NarebIkSOSTIpc2dnZsWrVKvr27Uu/fv34+eefLR2SEKIYkYTyLk/Kjumd56PRGxRSzgYarzn59EBbqnSOthoHFzR2eR9t1BsUdoZGmyVOUbQSExMZPHgwI0eOZNCgQRw6dIg6depYOizxGLOysmLhwoWMHTuWl19+mRkzZlg6JCFEMSFT3v8y947pMo42BBRBbcekdB0RcSkYMlJN1k3aVKxntndExKaQnK6TYxofYydOnCAgIICoqCiWLl1K//79LR2SeEKo1Wq+++473NzcmDx5MnFxcXz++edS6F4IUSiSMZC1ZnLq2tMAedoxregyid/1OxlR59HduYUhPRmV1hortwrY12pFKZ8efLD2NK2qly7Qmspjx44RFBREr169KFu2rMm98NhkFMBwz+YabSnznYahAFdik6lX3tlsfQrzUBSFefPmMWHCBOrUqcOxY8eoWbOmpcMSTxiVSsWHH36Im5sbb7zxBnFxccybNw+NRmPp0IQQTyiZ8sZ0x/T1X8cRv+MX0q+expCWCPrMrB3TFw8Tu+4rMmMiMaSnkHR8Axk3L2aV3zHoUTJSybhxgYQ9C7m16hPjjuncBAcHs3z58vvG88svv/Dqq69Svnx5/P39mT9/PvHx8QBk6AwAqG1Md+/qEuPM9KeByXvE4+P27dsEBATw6quvMnLkSA4cOCDJpCiU8ePHs2DBAn777Tf69etHenq6pUMSQjyhSvwIZUF2TKs0GuxrtcK2aiO0zh6gKCSfDSQ5ZDsAaZePk3YrkkCDYrJjWqfTMWPGDKZNm4ZOp6Nbt27Y2dnliKlSpUqo1WoMBgN79uxh165dvPzyy5QuXZp6rZ+F2gGore3QupQ1TnunXzuDXZWnzfbnYq2Vv2s8To4cOUJAQACxsbGsWLGCF154wdIhiWJiyJAhuLi4GHeAr1q1CkdHR0uHJYR4wpT4hDJ7x3R8Ljum797kYl+rJc4t+4Bag8auFGV6TzHpx656U1LDDhqnog0ZqcYd09O61+PMmTMMHDiQkydPkl1LPjw8HE9PT/bv38/Ro0c5ffo0Fy9e5NKlSxgMWSOEd/8zOjqajMAtONfqCyoV9nXacOfAXwAkHlqDY4NOaEu5m8SlT04wxpxXKqCKu9QvfBwoisJ3333HxIkTadiwIVu3bqVatWqWDksUM927d2fjxo10796djh07sn79etzczLeMRghR/JX4hDK/O6ZzY0hLIvn8PmMyqbZ3waq0F3qDwo7zN7k19nvmzZuHoijcfTBR3bp1ufegIisrqxyjlmq1mlKlSjF//nxeeOEF2n6xk/C4FJya9Sb59C70/67jvLHwLZya9cKqTJV/R1WDSQreRtkBn6GxK0XqxSMYMtPQJ/03Pa7o0kk+txcArbMnNuVq4uVuLxtyHgNxcXEMGzaMtWvX8uabb/LZZ59hbW1t6bBEMeXv78/OnTvp3Lkzbdu2ZfPmzZQvX97SYQkhnhAlOmso7I7p+F2/c+fgCpNrVmWq4P7ca6itbAAIj01h78+/ohhyrkmsXr06bdu2xdvbm2bNmtGkSROsra2Jjo7G09PT2O6FF17g+++/p3TprCTXv7YHi4LCwa4UHn0/NJ6Uo0+MIX77/WvLxW7+Hv0d05JAhpTbxKz5HACH+u2x7/4m/rU88vT5RdE5cOAA/fr1IzExkbVr19KtWzdLhyRKgKZNmxIYGEinTp3w9fVl69atVK9e3dJhCSGeACV6oVxR7JhWaaxMkkeVSkWrZ3sYd2trtVk5vFqtpkePHvzyyy+MHz+eli1bGkefypQpg5OTE87Ozixfvpzly5cbk0mAgc29jHUyrUt7UW74HFzbjcSmYl3UtqVAo0XjVAbbqo1xf34CVqUr5Tl+vUFhUAvzlzsSeWMwGJg5cyZt2rShYsWKnDhxQpJJ8UjVqVOHvXv3otVq8fX1JTg4982FQghxtxI9QvmgHdNW7g9Pwko16oJd9aYYUhNJOb+f5NM7ybgRRvSf71Nh9M9oHF0BmD33BxpWcuHEiRP88ccfLF68mOvXrxMdnXsBcZVKxd69eylbtixlypTJcb+mZyna1CjN/kux6A0KamtbnJr1xKlZzwfGW/HVXx94X6NW0aqauxy7aCG3bt1i6NChbNy4kcmTJ/PRRx9hZWVl6bBECVS5cmX27t3Ls88+i5+fHxs2bKBly/ufsCWEECV6hDJ7J3P2juls6dfO5Ol5rbMHtpXqY1+rJaW7vYVNpfoAKJlppFwIMnmPSqWiUaNGzJw5k6tXr7J//34++eST+/bt7e2dazKZbXovb7Rq8xYi1qpVTO/lbdY+Rd7s2bOHhg0bcvjwYTZu3Mhnn30myaSwKA8PD3bt2oW3tzcdOnRgy5Ytlg5JCPEYK9EJZRV3B7JTMvs6bYzXEw+tQZcYm6O9PjkBfWoihsyH12ozpCUBue+YVqvVtGzZEi+vgk8tV3Kz58Pu5jsdB+Cj7vUKVIhdFJxer+eTTz7B39+fmjVrcvLkSTp37mzpsIQAwNnZmU2bNuHv70/Xrl3566+/LB2SEOIxVaKnvB1stHi52ed7x/Sdo/+gT4rDvkYztC5lUfQ6UkIPkB4ZYuzbumwNgCLdMd3Px4uL127xc9CNhzd+iImdahfJUZHi/m7evMmgQYPYvn0777//Pu+//75xja0Qjwt7e3tWr17NSy+9REBAAAkJCYwaNcrSYQkhHjMl/rdXgXZMGwykXTpK2qWjud62r9MGuyoN0ahVRbZjWq/Xs3jxYj4cNQo3n244+49Ap2DcrJMXGrUKrVrFR93rSTL5iG3fvp2BAwcCsHXrVtq3b2/hiIS4PysrKxYtWoSrqysvv/wycXFxvPPOO5YOSwjxGCnxCeXA5l78fuAK8N+O6ayzvPdnHbOYmYrGwRUr90o41G2LVelKONT1Q9FlkHHjAvqUBBRdBmq7Ulh7VMOh3jM41HsGKJod04mJifz22298+eWXREZGAjDSvw6j33yGKauDCbwQg0atemBimX2/VTV3pvfylmnuR0iv1/PRRx/x8ccf0759exYvXmxSIkqIx5VarWb27Nm4ubkxefJk4uLi+Pzzz1GpzLuWWwjxZFIp91bWLoEGzw8y7pg2l+wd04tGNDdLf7du3eLzzz/nxx9/JCUlxaQgekxMDO7uWSfkhN1MZElQBGsOhRKvs7rnh71CZtx1Avzq82rH+rKb+xGLiopiwIABBAYG8tFHHzF58mQ0Go2lwxIi32bNmsWECRMYOXIk8+bNk/8fCyEkoQSIjEuhwze7SdflLD5eUDZaNdsmtDXb6N97773Hp59+muN6jRo1CAsLy3G9QoUKJKVlsj84jAydAWutGuv029SqVpmWLVuyf/9+s8Ql8mbTpk0MHjwYa2tr/vjjD/z8/CwdkhCFsmDBAkaMGEHv3r1ZtGgRNjY2lg5JCGFBJXqXd7ai2DH9QhU9FV3tHt4wj9555x26du1qck2r1dK2bdscbZctW0ZUVBSJ8THUKmNPIy9X6pV35tb1q0DWKSyLFy82W2zi/jIzM3n33Xd57rnn8PHx4cSJE5JMimJh6NChrFy50niSU1JSkqVDEkJYkCSU/+rn48XbnWqZpa+E3Qv5bGQ3XF1dGTx4MAsXLiQqKqpQfZYqVYqPPvrI5JpOp8PX19fk2oULFxg+fDgAiqKwb98+470DBw4Yvx42bBiBgYGIohMZGckzzzzDF198wcyZM1m3bt0Da4sK8aTp0aMHGzdu5MCBA3Ts2JG4uDhLhySEsBBJKO8yzr8mn/f2xkarRpPPouEatQobrZoZvb0Z2CjrmMTbt2+zdOlShg4dSoUKFahVq5ZJgpcfCQkJ+Pn5oVar+fjjj41Fr+9OKNPT03nhhRdIT8+qk6lWq1m3bp3x/oEDB4xrKg0GA926dct1ulwU3j///EPDhg25evUqgYGBTJw4EbVa/nMTxY+/vz87duwgLCyMtm3bcv36dUuHJISwAPkNd49+Pl5sm9CWVtWyNrk8LLHMvt+qmjvbJrQlwMeLqVOnGhepG+461/vChQtkZGTkOyaDwUDjxo1JSkri119/5b333mPv3r18+umnVK9e3dhu4sSJhISEGN9pMBhYvXq18X5gYKBxM4/BYCApKYlOnTrJqIIZZWRk8Oabb9K9e3fatGnD8ePH5cg6Uez5+PgQGBhIfHw8rVu35uLFi5YOSQjxiMmmnAcIu5nIb3svsmDLYazcygH37JiOv86gdo0Y9UztHDumAwICWLlyJXq93nhtzpw5jB07Nt9xdOnShY0bN/Laa6/x3Xff5drm6NGjNG3aNNd7oaGh2Nra3vdknh07duDv75/vuISpy5cvExAQwIkTJ/jiiy94/fXXpaSKKFHCw8Pp2LEjiYmJbNmyBW9vOcpViJJCRigfoKZnKdyvbCfqp5eZ0VTH+td8Wf1KK9a/5svcZ2yJ+vFl1rw/kGqlHXI8O2bMGJNkErJ2Rep0unzF8N5777Fx40Z8fX3vm0wCVK9enUmTJtGhQ4ccSczOnTs5c+a/88mtrLLKCS1evJjIyEhJJs1g5cqVNGrUiJiYGPbt28f48eMlmRQlTuXKlQkMDKRs2bL4+fmZrNsWQhRzirivhIQExcHBQQGUGTNmmNxbuXKlAiiAMnr0aMVgMJjcNxgMSrVq1RRACQgIUHr27KkAipeXl3L79u08vT/7HeXKlVMyMzPzHLeVlZXi7e2t7NixQ5k3b55y7do1JSUlRVm3bp0SGRmpvPPOOwqg7N27N899itylpqYqY8eOVQDlxRdfVBISEiwdkhAWl5CQoLRp00axt7dXNm/ebOlwhBCPgCSU92EwGJSAgABj0tixY0eT+x9++KHxHqBMnDgxR1K5cuVKZfDgwUpaWpqiKIry9ttvK4Di7OysXLly5YHvP3PmjKLVahVbW1vl+vXreY775s2bCqAMGzbsvm3CwsIUQBk1alSe+xU5hYaGKo0aNVJsbGyU77//Pse/fyFKsuTkZKVLly6KlZWVsnz5ckuHI4QoYpJQ3sfvv/9ukjBqtVqTkcUXX3xRUalUJm0+/fTTh/Y7d+5cRaVSKTY2NsrBgwdzbZOYmKg4OTkpKpUq36OI2XEvWLDgge1sbW2VmjVr5qtv8Z+lS5cqjo6OSs2aNZXjx49bOhwhHksZGRnKgAEDFLVarfz000+WDkcIUYQkoczF+fPnFVtbW5NkEVD+/PNPY5vq1avnuA8oa9aseWj/69evVzQajaJWq5W//vrL5J5er1dq1aqlAMq8efPyHfvQoUMVQLl169YD2zVs2FDRarX57r+kS0lJUUaNGqUAyoABA5Q7d+5YOiQhHmt6vd64LOTepUNCiOJDNuXk4rXXXiMtLc3kmlqtZs2aNQCkpaVx+fJlk/tarZZ27dpRrVq1h/bfpUsXjhw5go2NDX369OHLL7803nvxxRcJDQ1lxIgRjB49Ot+xnzx5EisrK0qXLv3Adp07d0an0xW4LmZJdPbsWZo1a8bixYv55ZdfWLx4MaVKyXnoQjyIWq1m9uzZvP/++7zzzjtMnjzZWL5MCFGMWDqjfRytWbNGGTp0qFK5cmWT0UdPT09FURTlxo0bxrWQ9evXVwBl1apV+X7PtWvXFHd3dwVQXnnlFeXTTz9VAKVp06YFjt3V1VUpX778Q9tduHBB1lHmw++//67Y29srderUUYKDgy0djhBPpG+++cb4c0en01k6HCGEGUkdygd49dVX+eGHHzhw4ADx8fHY2NjQrl07AKKiovD09CQ+Pp4yZcrQtWtX/vnnn3y/IyUlhYYNGxpPrHF3dycqKgpra+sCxaxWq/Hz82PXrl0PbWtnZ0elSpUIDQ0t0LtKguTkZMaOHcuCBQsYNmwYs2fPxsEhZ5koIUTeLFiwgBEjRtC7d28WLVqEjY2NpUMSQpiB1tIBPM5OnjyJRqOhRYsWOe6VL18egNKlS+Ph4VHgc7Ht7e3ZsGEDNWvWNPZXUCEhISiKQrNmzfLU/qmnniIkJKTA7yvugoOD6du3L5GRkSxcuJDBgwdbOiQhnnhDhw7F2dmZgIAAunfvzqpVq+QvaUIUA7KG8gEuX76Mi4vLQ9t17NiR27dvc+nSpXy/IzU1lebNm6NSqejYsSPnz5+ncuXKxMTE5Luv7HO7O3bsmKf2so4yd4qi8Msvv9CsWTOsrKw4cuSIJJNCmFHPnj3ZuHEj+/fvp2PHjnL8qxDFgCSUDxATE3Pf4wrvNmHCBAC++uqrfL+jRYsWxMXF8eWXX7JlyxamTZvGjRs3qFq1KufPn89XX9mnUrRt2zZP7UeOHAlkTUGJLImJiQwcOJBRo0YxdOhQgoKCeOqppywdlhDFTrt27dixYwehoaG0bduW69evWzokIUQhSEJ5HwkJCWRmZlK/fv2Htm3SpAn29vb5XkM5cOBATp06xYABA3jzzTcBmDp1Kr///jvJycl4e3uzY8eOPPd35swZ7O3t87z+snr16tja2rJz5858xV1cHT9+nMaNG7Nu3Tr++OMP5s2bh52dnaXDEqLY8vHxITAwkPj4eHx9fQs0yyOEeDxIQnkf27ZtA6Bly5Z5at+sWTMiIyNJSUnJU/tvvvmGpUuX4u3tzZIlS0zuDR06lO3btwPQoUOHPI8gRkVFUaFChTy1zfbUU09x5cqVfD1T3CiKwty5c2nRogVOTk4cO3aMfv36WTosIUqEOnXqsG/fPjQaDb6+vgQHB1s6JCFEAUhCeR979uwB4Nlnn81T++zp4x9++OGhbXfu3Mlbb72Fm5sbQUFBubbx9/cnODgYBwcHXnrpJaZNm/bAPjMyMkhJSaFu3bp5ijdb9jrKvXv35uu54iIhIYE+ffowbtw4Ro8ezf79+6lRo4alwxKiRKlcuTKBgYF4enrStm1bDh48aOmQhBD5JAnlfZw4cQK1Wp2nQuUA/fv3R61W5xhtvNfVq1fp3LkzWq2Ww4cPP3BKtXbt2ly+fJmyZcvy4YcfMmTIkPu2zZ4ab926dZ7izZadCC9cuDBfzxUHhw4dolGjRmzfvp1Vq1bx3XffSQkTISzE09OTXbt2Ua9ePdq3b8/WrVstHZIQIh8kobyPS5cu4ezsnOf2arWa2rVrExwcjMFgyLVNRkYGjRs3JiMjgzVr1uQpWS1dujTh4eHUr1+fRYsW4efnl2v/2T98u3TpkueYoWSuo1QUhW+++QZfX188PDw4fvw4vXr1snRYQpR4zs7ObN68mWeeeYbnn3+eFStWWDokIUQeSUJ5H7du3aJSpUr5eqZv377odDo2bNiQ631fX19u3brFJ598kq/Ez9rampMnT9K5c2cCAwOpXbt2jrWaR44cQaVSUa9evXzFDCVrHWVcXBw9evTgzTff5PXXXycwMJAqVapYOiwhxL/s7e1Zs2YNffr0ISAggF9++cXSIQkh8kASylwkJSWRkZGR7/WI48ePB+D777/PcW/kyJEcPnyYnj178r///S/fManVajZu3Mgrr7zChQsX8PLyIioqyng/LCwMV1fXfPcLJWcd5f79+2nYsCH79u3jn3/+4csvvyzwiURCiKJjZWXFokWLGDNmDKNGjWLmzJmWDkkI8RCSUOYiez1iXnd4Z3N1daVs2bI5ErN58+Yxf/58atWqxcqVKwsV2/fff8/MmTOJjY2lRo0anDhxAsiqmVm5cuUC9Vnc11EaDAZmzJiBn58fXl5enDhxgq5du1o6LCHEA6jVaubMmcN7773HO++8w+TJk5GTgoV4fElCmYvsc7DzusP7bs8++yyJiYnGouT79+/n1VdfxcnJiaNHj6JWF/6PfOLEifz111+kp6fTtGlTFi9eTGZmJg0bNixQf8V5HeWtW7d4/vnnmTx5MpMmTWLXrl35XsoghLAMlUrFxx9/zDfffMOMGTMYPXo0er3e0mEJIXIhCWUujh8/jkqlonbt2vl+NrtA+VdffcWNGzdo3749arWagwcP4ujoaLYYX3zxRfbv349WqzUeC/jMM88UuL/iuI5y9+7dNGzYkKNHj7Jp0yamT5+OVivH1wvxpHnjjTf47bffmD9/Pv379ycjI8PSIQkh7iEJZS4uXryIk5NTgZ5t0KABDg4ObNiwgSZNmpCWlsaff/5JnTp1zBwlNG/enPPnzxvXAd6vpmVetG/fHp1Ox0svvUTr1q1p1qzZEzu9pNfr+fjjj2nXrh21atXixIkTBRptFkI8Pl566SVWrlzJ33//Tbdu3UhOTrZ0SEKIu6iUJzVrKEK2trbUqFGDkJCQAj3foUMH40k3U6ZM4dNPPzVneDl4e3sbY+3VqxerVq3K87Nr165lxowZBAUFodfrUalUKIpCuXLlTDb9PClu3LjBoEGD2LFjBx988AHvv/8+Go3G0mEJIcxkx44d9OjRA29vb9avX1/gzYhCCPOSEcp7pKWlkZ6enu8d3nfLHjGsWbNmkSeTANeuXaNs2bL4+PiwevVqmjZtik6ny9Oz+/btY//+/cZ1SYqioNFoaNOmTVGGXCS2bdtGw4YNOX36NNu2bWPatGmSTApRzLRr144dO3YQGhpK27ZtuX79uqVDEkIgCWUO2RtTWrRoUaDnFy5cyMaNG4Gskc6ipigKCQkJ1K5dm0OHDvHCCy9w9OhRqlWrxu3btx/6/Mcff0ybNm1MEi9FUWjVqlVRhm1WOp2O999/n06dOtGgQQNOnDhBu3btLB2WEKKI+Pj4sGfPHuLi4vD19eXSpUuWDkmIEk8Syntk7/Du1KlTvp89duwYw4YNw8HBgTp16nD27Nn7nppjLiEhISiKQrNmzQBYsWIFEydOJDIyksqVK3P58mVj240bN3Lz5k2T562trVmzZg2VK1dGpVIBWWV28lsyyVKuXbtG+/btmT59Op988gmbNm3C09PT0mEJIYpY3bp12bdvHxqNBl9f3wIvURJCmIcklPc4evQoKpUq31PecXFx+Pn5oVKp2LdvHwMHDkSn07F69eoiijRL9qk8HTt2NF6bOXMm33//PXfu3KFOnTocOHCA+fPn06VLFyZMmJCjDzc3N7Zs2WLcha5SqQpcguhR2rhxIw0bNuTixYvs2rWLKVOmmKUskxDiyVC5cmUCAwPx9PTEz8+PgwcPWjokIUos2ZRzjypVqhAfH5+n6eJsBoOBatWqER4ezuLFixk4cCB37tzB2dmZjh07smXLliKLt0ePHqxdu5b09PQcp75s2LCBHj16mKyP1Gq1XL9+ndKlS+foa9++ffj6+mJra0tqamqRxVxYmZmZvPfee8ycOZMuXbqwYMGCXD+PEKJkSEhIoFu3bhw7dow1a9aY/AVbCPFoyHAOkJGRQWJiIgA3b96kfPny+Xq+c+fOhIeHM2HCBAYOHAiAk5MT5cuX58CBA2aP925nzpzB3t4+1yMEs5MtRVGMJYAMBgMLFizIta/WrVvToUMHSpUqRXK6jtNRtzkeEc/pqNskp+dtk09RCw8Px8/Pj6+//povv/ySf/75R5JJIUo4FxcXNm/ezDPPPMPzzz/PihUrLB2SECWOjFACvXv3ZvXq1Xh6enLz5k2qV6/O5MmTadWq1UOnvt955x1mzpxJ27Ztjesvs40cOZL58+cTEhJCvXr1iiR2BwcHKlSoQGhoaI57ly5dwsfHh4SEBJO1nNWqVePChQvGNZPZwm4m8sWag2wJiULlWJq7/4+hArzc7PGv7cHA5l7U9CxVJJ/nQf7++2+GDRuGk5MTy5YtK/DGKSFE8ZSZmcnQoUP5888/+fHHH43Hygohip6MUJJV3gcwbli5fPkyo0aNomnTpg8s7r18+XJmzpxJxYoV2bZtW4772esVv/rqqyKIOmtkNSUl5b5J799//01cXFyOxPHSpUvG88oBIuNSGDw/iI6z9rA9IhPuSSYBFCA8LoVFQeF0nLWHwfODiIxLMfMnyl1GRgZvvPEGPXv2pG3bthw/flySSSFEDlZWVixevJgxY8YwatQovvjiC0uHJESJIQklWesQ72YwGFCpVEyePNkkGQsJCTEe+XX69GkGDBiAnZ0dx44dy/VIv3r16lGqVCk2bdpUJHFnJ4WtW7fO9f748eM5ePAgH374YY7SQH379kWn07HscAQdvtnN/kuxAOgNDx6wzr6//1IsHb7ZzbLDEeb4KPd16dIlWrduzQ8//MB3333HqlWrpJCxEOK+1Go1c+bM4b333mPSpEm8++67T+ypX0I8SWTKm6yj+jw9PYmNzUqqtFotzZo1Y8+ePcYk7NKlS9SoUYOWLVuycOFCGjVqRHJyMgcOHDCW7MlN586d2bx5M/Hx8bi4uJg17rfffpuvvvoqz1PqycnJ7N27l4kTJxISEoLfmE+54tyg8HF0qsU4/5qF7udeK1asYMSIEZQuXZrly5fTpEkTs79DCFF8ffPNN7z55pu8/PLLfP/993LQgRBFSEYoAY1GQ8+ePY3f29vb88cff5j88AkMDERRFA4ePEjt2rVJTEzkp59+emAyCfDKK68AMHv2bLPHffjwYVQqVZ7XZzo4OPDss89y6tQp/vfrBrMkkwBfbgnlTzOOVKalpfHqq6/Sp08fOnfuzLFjxySZFELk24QJE/jtt9/45Zdf6N+/v3GGSQhhfjnnaUuonj17Mn/+fAB+++03vLy8TO4HBgai1WqNRxpqNBrKlCnz0H67deuGVqvlzz//5P333zdrzGFhYQWa/o2MS2H5xX93fWekkXRiEymhB8iMicCQmYbG0Q3r0l7Y1/HDoY4vKo2VyfO3D64gYdfvxu/dnn2VD7RqWlUvTSU3+0J9ptDQUPr27cu5c+eYN28eL7/8co41oEIIkVcvvfQSLi4uBAQE0L17d1auXImDg4OlwxKi2JERyn/5+/sDULVqVXr37p3j/u7du03Ox9br9fTs2fOhhcvVajX16tXj3LlzZj81JyYmhsqVK+f7uSmrg9EZFDJiIrj+6zjid/xC+tXTGNISQZ+J/vZNUi8eJnbdV2TGRJo8mxkfxe29f+ToU2dQmLI6uMCfBWDp0qU0adKE1NRUgoKCGD16tCSTQohC69mzJxs3bmTfvn107NiR+Ph4S4ckRLFT4hPK7HqLu0KuYOVRlS9m5Zyajo2N5cKFC8bvs09jqVKlCuXKlXvoOwYMGIBer+evv/4yW9zR0dFkZmbm+0SbsJuJBF6IISP5DtHLp6JLuAGAxtEN1/aj8Oj3CWV6/49STXugssn5t/jYjXNQdOmotKZ1L/UGhcALMVyITsz3Z0lJSWHkyJEMHDiQnj17cvToUZ5++ul89yOEEPfTrl07duzYQWhoKG3btuX69euWDkmIYqVETnmH3UxkSVAEO89HExGXYiyRU374bN4+AN+d32lSb/HeRNDPz4+33nqLLl265Omov1dffZV33nmHn376iYCAALN8huwjF5955pl8PbckKAKNWkX8oVXo79wCQGXjQNmhX6Mt9V+BcPtaLXFu2QfU/60jTTy5mfSIU1iVqYxVmSqknNlt0rdGrWLxwQimdc97zc0zZ87Qt29fLl26xK+//spLL70ko5JCiCLh4+PDnj176NSpE76+vmzdupVq1apZOiwhioUSNUJ5d73FRUHhhN+VTGa7t97iwF8O8vE33wPw3HPPcfLkSXbu3EnXrl3zfG60o6MjFStWJCgoyGyfZffurGSuS5cu+Xpu5/lo9AaFlLOBxmtOPj1MkslsGgcXNHZZBcx1SXEk7PgVVGrcn3sdlTrn30X0BoWdodF5juX333/Hx8cHRVE4fPgww4YNk2RSCFGk6taty759+1Cr1fj6+hISEmLpkIQoFkpMQlnQeosHLsag7TaN//26ng0bNtCgQcF2Rj///PMkJydz4sSJAj1/rxMnTmBlZZXj2MGIiAiCg3Nfy5iUriMiLgVDRqpxqhvApuLDRxTjt8zDkJ5MqSbdsClf+77tImJTHnpMY1JSEkOHDmXYsGH069ePw4cPF9lJQkIIca/KlSuzd+9ePD098fPz4+DBg5YOSYgnXolIKOfsDGPyqmDSdYaHJpL3MqBCZWXD4lCFOTvDChzDW2+9BcDXX39d4D7uFh4enusu8/Hjx9OgQQPq1avHV199ZbJOKDw2GQUwpCebPKMt5fbAd6Wc309K6H40zp64+A1+YFsFuBKbfN/7p06dwsfHh5UrV7Jo0SLmz5+PvX3hdoYLIUR+eXp6snPnTurVq0eHDh3YunWrpUMS4olW7BPKZYcj+HJLznOuC6Iw9RZr1qyJk5MTW7ZsMUssCQkJxiMj7+bq6oparebMmTNMmjSJ8uXL4+fnx8SJE9mxaw8A6ns22+gS4x74rrit8wBw7zwWtbXtQ2PL0OXcza4oCj/99BPNmzfH2tqao0ePMmjQoIf2JYQQRcXFxYXNmzfj5+fH888/z4oVKywdkhBPrGK9KScyLoWpa0/nqdaiPjWR5JAdpIWfJDMuCkNyPKg1WJX2olTDzjg26AjAB2tPF7jeoq+vLxs2bCAuLg43twePCj5ISEgIiqLg4+PD1atXOXbsGMHBwYSGhrJr1y5jeaLsfwYGBhIYGIiVx0rKD5+N2toOrUtZ47R3+rUz2FW5/65qfVJWwhn95we53o/b/D1xm7+n0hvLUNs6Yq01/XvKnTt3GD16NMuWLWPMmDF8/fXX2NnZFfjzCyGEudjb27NmzRpeeuklAgIC+OmnnxgxYoSlwxLiiVOsE8opq4NJuRnOjb8+NFkzCGTVWvy33qJ1mcpkxkaaFOvOlhF1ntio82REX8atw8vGeouLRjQ3aacoCn/99RdXrlxh0qRJucYzduxYNmzYwKxZs/joo48eGv+NGzc4cuQIISEhnD9/nitXrnD9+nUiI7NqQ3755Zd8+eWXJs/cu6kl+/vOnTvz2Rdf03PxRRTAvk4b7hzI2r2eeGgNjg06oS3lbvpnlJxgsss7L1RAFff/RkCPHTtG3759uXXrFn/++Sd9+/bNV39CCFHUrK2tWbx4MS4uLowcOZK4uDgmTpxo6bCEeKIU24Qy7GYiu4Ivc/3PD4zlcTSObjg1fwGrMpVRMlJJiwghKXib8RmV1hqHus9gV70paKxIOr6e1ItHAEg88g+lmnYHl7LGeos1PLJ2QF+7do0xY8awbt061Go1b731Vq5nxnbu3BkrKyv++usvxo0bx9GjR40ji5cvXyYqKorY2Fju3LlDenp6jufVajW2trbo9XpjfzVr1uSpp57i6aefplGjRuzZs4fnnnvO+MzTTz/NggULjJuJvNyuEx6XglOz3iSf3oX+zi0M6cncWPgWTs16YVWmyr9/NsEkBW+j7IDPcG0/KkcsyWd2kXE9a02p/VO+2FSog0prg5e7PQ42WhRFYc6cObz99tt4e3uzefNmqlevXqB/l0IIUdTUajVz587F3d2dSZMmERcXx/Tp06XyhBB5VGwTyiVBESQdXp3nWosqjRXlX/4JrdN/9+2qNOTqD8MwJCcAChnXw7ByKWustzi1W11++eUXJkyYQFpaGpA1zXz69GmuX79OSEgI586dMyaLMTEx6HQ6zp07h6enp0m8KpUKOzs7nJycqFWrFhUrVqRq1arUqVOHBg0a0LhxYxwdHYGs9ZhRUVFs3Lgxx+euWLEiADY2Nnz66aeMHz8erfa/f83+tT1YFBQOdqXw6Psht1Z8hC7hBvrEGOK3/5zrn6WTT48c1zJuXjImlLaVG1CqURc0ahX+tTyIj49nxIgRrF69mvHjxzNjxgxsbGwe9q9MCCEsSqVS8fHHH+Pm5sabb75JXFwc33//fa4DBEIIU8U2odx5PpqkM3uM3z+o1iJgrLd4N5XWCq1TGTKSE7K+t8rakKI3KPx9+AI/jemY62kL957yolKpsLW1xdnZGU9PT27cuEG7du3o3r07Tz/9NI0bN8bJySnPny0qKooKFSrkeq9u3brMmjWL559/nho1auS4P7C5F78fuAKAdWkvyg2f8+/60v1kxkRiyExF4+CKlXslHOq2xap0pTzHpTcoeNsn0LhxVxISEli9ejU9e/bM8/NCCPE4mDBhgnH6OyEhgUWLFmFtbf3wB4UowYplQpmUruPKjdh811q8V2bCDTJuXgJAZW2HbaX/+ojL1HAjJvfzYDt06MDzzz+Pt7c3TZo0wcXFxXgvJSUFBwcHdDod48ePz3dMGRkZpKSkULdu3Vzvq9XqB/Zb07MUbWqUZv+lWPQGBbW1LU7NeuLUrGe+4ijddQKlu04wfq9RqyivSaTfcz1p2rQpu3btKtA540II8TgYNmwYLi4u9OvXj+7du7Ny5UocHHIeRyuEyFIsywaFxyajz2etxXvpU+9wa+UnYMhar+jSdghqm/92dqtUKmb+8Bu9e/dGq9WiUqmMa22ee+453njjDdq3b2+STELWjsLKlStz+PDhAnwy2LlzJwCtWrUq0PMA03t5o1Wbd12QQZfJwe/GM2HCBPbs2SPJpBDiiderVy82bNjAvn376NSpE/HxuQ8iCCGKaUKZoTPku9aiSdukOG4umUzmrSsAlPLpiVOTbjnate/4LCtXriQ6OpoffvgBHx8fAON6yvvp1q0bqampBUoqt23L2kSU3yMX71bJzZ4P83Hedl6k7l3AmiXzmTlzJlZWVmbtWwghLKV9+/Zs376dc+fO0bZt21yXOQkhimlCaa1VG2stZku/diZPz+puR3Nz8TtkxmQVMHdq8SJu7Ufe9z2QVUx89OjRBAUFcfXqVd58880HviP7/jfffJOnmO526NAhVCoV9evXz/ezd+vn44WvU2H/tp116pDzld0c+fM7nn/++UL2J4QQj59mzZoRGBhIXFwcbdq04fLly5YOSYjHTrFMKKu4O6Aiq9ZitsRDa9AlxuZoq09OQJ+aCEBm7FVuLHkHXULW30Bd2g7F9ZmXcn3HvfUWs1WoUAFb2wefJlO1alVcXFyMo435ERYWlmMaPT8URWHfvn00btyYJVMGYxe8GhutGk1+p8AVA4bMDFqoLnJ00XTj7nIhhCiO6taty969e1GpVLRu3ZqQkBBLhyTEY6VYJpQONlq83OxxatYbjVPWedfZtRbvHP6b1CsnSQk9SNy2n7n202j0d279m0xONpYZcqj3DDYV65IWedr4P/2/u70BY73FgvLz8+PWrVtER0fn67mYmBiqVKmS7/fp9XpWrFiBj48Pvr6+HD9+HIDZb/Rj24S2tKqWVdT8YYll9m39tTN87ufIsumvm5QlEkKI4qpKlSrs3bsXDw8P/Pz8OHjwoKVDEuKxUWwzAf/aHlxNSM1zrcX0a+cwpCQYv08+vYvk07tM2rh3eQPHBh2M9RYLY9y4caxdu5ZZs2Yxffr0PD0THR1NZmZmjrJED7Nr1y6GDBlCZGSkSZFerVaLn58f1tbWLBrRnLCbiSwJimBnaDQRsSn/TmhnUQGOpBF1ZCt1tDH8NX825cqVy1ccQgjxpPP09GTXrl107dqVDh06sGbNGjp06GDpsISwuGI5QglZ9Rb1BsVYa9G13UhsKtZFbVsKNFo0TmWwrdoY9+cn5KvWImTVWxzUwqtQ8XXs2BFra2tWrlyZ52eyC5k/88wz+XrXpUuXjMc1Ksp/aWKTJk1MaqvV9CzFtO712P22PyHTnmX9a76sfqUVC/o/RZUjszkzsy/jfcuz+58/JZkUQpRYLi4ubNmyBT8/P55//vl8/RwXorgqtiOUd9dbJA+1Fh0bdMCxwcP/lqlRq2hVzd147GJhPP300xw9ehSdTpenaeNdu3YB5Hvzy/Dhw7G1tWXQoEHGhFKr1dKmTZv7PuNgo6VeeWe2bt3KoEGD0Gg0bN++Pd/JrBBCFEf29vasWbOGoUOH0rdvX3766SdGjBhh6bCEsJhiO0IJRVBvUVHQqlVM7+Vtlu4GDx6MwWBg4cKFeWp/8uRJrKysKF0654k/DxMTE4OiKGi1WjQaDTqdjpYtW963vU6n47333uPZZ5+lYcOGnDhxQpJJIYS4i7W1NYsXL2b06NGMHDmSL7/80tIhCWExKuXuOdBiaNnhCCavCjZbf7EbvqW6Kppu3brRpk0bWrZsSalSBRutTEtLw97enlatWrF3796Htndzc8POzo5r167l6z379u2jTZs2ODs7c+zYMQYMGMDhw4eJjIzMder66tWr9O/fnwMHDvDJJ58wadIk1Opi/XcPIYQoMEVR+OCDD/jkk0949913+fTTT03WqwtREhTbKe9s/Xy8iElK58stoYXuq0bKGcJPbeUkEBwcjMFgQK1WU79+fT788MN8n1tta2tLlSpVOHr0aJ7aJyQk0KBBg3y9IyYmho4dO6LRaDh48CBVq1Zl9+7dXLlyJddkcv369QwdOhQ7Ozt2795N69at8/U+IYQoaVQqFR9//DGurq689dZbxMXFMXfuXDQajaVDE+KRKRHDTuP8a/J5b+8C1VvUqFXYaNXM6O3N39Nfxd4+6/hFg8Fg/OepU6e4cOFCgWLr0aMHaWlp7Nu374HtQkJCUBTFeBpPXhgMBho3bkxqaip//PEHtWvXBrKmaWrVqmXSNjMzk4kTJ9K1a1datmzJiRMnJJkUQoh8ePPNN/n111/5+eefGTBgABkZGZYOSYhHpkQklJA1UpmfeovZ91tVc2fbhLYE+Hjh4ODA2LFjc0z/duvW7aGn49zPhAkTAPj2229zvZ+YmIiiKGzYsAEgX+UpnnvuOSIjI3n77bd58cUX79vuypUrtGnThlmzZvHVV1+xdu1a3N3d8/EphBBCAAwbNowVK1awZs0aevToQXJysqVDEuKRKPZrKHPzsHqLXu72+NfyYFALrxy7uSMiIqhatSoGgwGVSoWiKJQvX56TJ08WaLMMZB3dqCgKb7zxBmvXrmXw4MFMmDCBc+fOUbduXezt7bGysiIhIYFZs2bRqFEjWrZs+cAzsz/44AM+/vhjfH19CQwMvG+7NWvWMGzYMFxcXPjzzz9p1qxZgT6DEEKI/2zfvp0ePXrw9NNPs27dOlxdXS0dkhBFSynhktIylZBrCcqx8Dgl5FqCkpSW+dBnevfurQCKu7u78sorryiAYm9vrxw+fDhf7w4MDFRGjRqlWFtbK4Ci0WgUQHnjjTcURVGUO3fuKFqtViHr0GwFUFQqlQIon3/++X37/eeffxRAKVu2rJKZmfvnSUtLU15//XUFUHr37q3Ex8fnK3YhhBAPFhQUpLi5uSne3t7K9evXLR2OEEWqxCeUBXH48GGlSpUqysGDBxVFUZQ//vhD0Wg0ilqtVhYsWJCnPgwGg+Lh4WGSLGb/75dffjG269Chg6JWq00SylKlSimXL182tgkKClJu3LihKIqiXLlyRbGyslJsbGyUa9eu5fruCxcuKE2aNFGsra2V2bNnKwaDoYB/EkIIIR7k9OnTSoUKFZTq1asrly5dsnQ4QhSZErOG0pyaNm3K5cuXad68OQD9+vXj2LFj2NnZMXToUOO6yAdRqVQsXrwYrVabo7xE/fr1jV93797d5HQbRVFYsGCB8TzvtLQ02rRpg7e3N3v37qVp06bodDo2bNhA+fLlc7x3+fLlNGrUiISEBA4cOMC4ceOkvIUQQhSRunXrsnfvXlQqFa1btyYkJMTSIQlRJCShNJMGDRoQERFB5cqVmTVrFu3atTPuBAdITk4mLS3N5JmOHTuyfPnyHAld3bp1jV8///zzxoRSpVIxbtw4evXqZbx/7NgxMjIyiImJwc/Pj5iYGKZPn067du1M+kxNTeWVV14hICCALl26cOzYMRo3bmy2zy+EECJ3VapUYe/evXh4eODn50dQUFCen01O13E66jbHI+I5HXWb5HRdEUYqRMGVyE05RclgMNCpUye2b9+Ol5cXx48fJyMjgyZNmtCsWTNWr16d45lFixYxZMgQIOuM2Pj4eJP7bm5uxMfHU6tWLU6dOoWNjY3x3ldffcWkSZNMktdu3bqxdOlSHB0dATh//jx9+/YlNDSUb7/9llGjRsmopBBCPGIJCQl07dqVEydOsGbNmvtW7TBuHD0fTURcLhtH3ezxr+3BwOZe1PQs/DHAQpiDJJRF5K233uLrr7/G3t6eKlWqcObMGVQqFaGhodSoUSNH+++++47x48fj6upKXFycyb1atWoRFhZGaGgoNWvWNLn3wgsvsHr1au7911ivXj1CQkJYvHgxY8aMoWLFiixfvjzfhdGFEEKYT0pKCi+++CLbt2/njz/+oHfv3sZ7kXEpTFkdTOCFGDRqFXrD/X89Z99vU6M003t5U8nN/lGEL8R9SUJZhO4eeQTQaDS8+uqrfPfdd7m2r1+/PvHx8Vy7do3kdB1XYpPJ0Bl4Z+Jb3L52gaC9e0zaK4qCu7u7cURTo9Gg1+uN95955hl27drF4MGD+f77740jlkIIISwnIyODoUOHsnz5cn7++WeGDx/OssMRTF17Gp1BeWAieS+NWoVWreLD7vXo5+NVhFEL8WCSUBahTz/9lPfee8/kmr29PdevX8fJySlH+4VrtjDl141Ua9OdyHumOUChspuDyTTH2bNnTdZb1q1blzNnzpg8NWPGDCZNmmTGTyWEEKKw9Ho9r732Gj/88ANjvlvNxqj71xXOq7c71WKcf82HNxSiCEhCWURCQkLw9vbO9d7XX39tshO8INMcvjVKE/X3V+z85y9atGjB7Nmz6d27N5GRkf+11WioV68ehw4dMll3KYQQwvIURWHs10vYEGO+ouczensTICOVwgIkoSwiqampfPnll2zbto2goCDS09ON9zQaDXfu3MHe3r7g0xwqyMxIp3v5NOa8OYC5c+cybtw4kzbZJ/nMnTuXV1991WyfTQghROFFxqXQ4ZvdpOsMxG6aQ9KJTcZ7Lm2H4tyyT45nDOkp3N7/Jynn96FLjEFt44hd1YY4+w7EyrUcNlo12ya0lTWV4pGThPIRyMzM5NixY+zdu5e5c+dy+fJlfHx86Pfx73y363Kh+3+7Uy3e6dqQlJQUANRqNTVq1KBx48Z4e3szcuRIPDw8Cv0eIYQQ5jN4fhD7L8Wiy8zk6pwhGFLvGO9ZeVSl/PDZJu0N6SncWDyJzFtXcvSltnXEc8Dn2JWtSqtq7iwa0byowxfChCSUFnD48GFenvE78TW7mK3PVtrLNHZOo2PHjjz11FMyxS2EEI+xsJuJdJyVtdEy9eJhov/6MEeb8qN+wMq9kvH7uO0/k3j4bwBsKtXHyacnqZeOGEc2rcvVpNzQbwDYNsGPGh5SUkg8OlpLB1ASla1ej5Q6XUFnwJCRRtKJTaSEHiAzJgJDZhoaRzesS3thX8cPhzq+qDRZi7WTz+4h8cg/ZERnjWpae1SlVNPuONRpw1GqM2O4THMIIcSTYElQhHFNfPKZ/yp42NfxI+Vs1vfJZ/bg0mYgAIo+k+RT2/5tpaJ0j0loHd2wq9mctMgQdLFXybgeRvqNC9iXr8nigxFM617vUX8sUYLJSTkWMGV1MDqDQkZMBNd/HUf8jl9Iv3oaQ1oi6DPR375J6sXDxK77isyYrE02CYFLiPl7JunXzqJkpqFkppF+7Swxf88gYd8ydAaFKauDLfzJhBBC5MXO89HoDQqKLoOUsIMAqO2dceswCtQaAJLPBhrbZ9wKx5CeDIDW2QOtoxuQtVbepvxTxnbpkafRGxR2hkY/qo8iBCAjlI9c2M1EAi/EoE9NJHr5VPR3bgGgcXTDqfkLWJWpjJKRSlpECEnBWX8bzbh5idv7/wRAZW2HW4eXAYjb9hNKRiq39y7FvmZzAg0KF6ITZZpDCCEeY0npOiLista8p1w4hJKRCoB9zRZoHFyx9fIm7coJdHFXybhxEeuy1dHf/i9BVDu4mPSnuet7XcINACJiU0hO1+FgI7/mxaMhI5SPWPY0x51Dq4zJpMrGgbJDv8bJpwd2VRpiX6slbh1GUeHlH9E4lSHxxCZQso5WdG7ZF8cGHXFs0BHnln2zOlUMJJ3YjEatYvHBCEt9NCGEEHkQHptsrDOcPb0NYP9U66x/1m5tvJb8731DZprxWvYyKOP36v+SRiUzq6KIAlyJTTZn2EI8kCSUj1j2NEfKXVMZTj490JYqnaOtxsEFjV0p0q/+V6zcpkKdXL9OuyrTHEII8STI0GUNEBjSU0i9eAQAtW0pbCs/DYB97Vagyvr1nHw2EEVRUFvZGp9X9Jkm/SkGnfFrldV/GzKz3yPEoyBj4Y9Q9jSHISPVOC0BYFPxwQundbdvGr++e2pD4+Cco41McwghxOPNWpuVLKaEHUTRZQBgSEskYmaPHG31d6JJv3YOjfN/pd/0yQmmbZLijV9rXcrmeI8Qj4L8v+0Ryp7myF5YnU1byu2Bz2VPYQCguStRvGvaQ8nImg6RaQ4hhHi8VXF3QAUkn9mdp/YpZ/dgXaYyKhsHAPS3o9ElxgBZp+2kR503trWplDVAofr3PXfu3GH//v3MmzePsWPH8swzz7Blyxazfh4hQEYoH6ns6Qf1vz8UsukS40xqjd1LZWVjXLTN3VMdd32tsv5vOkSmOYQQ4vHlYKOlnE0mV66cALI2W7q0HWLaSK8jfsd8AFLO7cW1wygcG3T4tw6lQszfX+DUvDepFw+ji7sKgHXZmtiUrQFAZvx1XEvZk5mZ9XtCpVKhVqvR6/UMHjz4kXxOUbJIQvkIZU8/qK3t0LqUNU57p187g12Vp+/7nNbZ03gygj45wZh8mkxzOHvmeI8QQojHk1v0cTDoAbCr2ginJt1ytEkK2Ulm9CX0yfGkhZ/CxXcgaVdOknnrCulXT3Pr6mljW7WNA+5dxmd9jYL+6iljMglZI5l6fdb7unQx36EaQmSTzOMRyp7mALCv08Z4PfHQGnSJsTna65MT0KcmYlOxrvFa+rWz/30ddc74tW1F02kOIYQQj69bJ3YYv7arkfsxifY1mhm/Tjm7B7WNPWUHzcSpee+sQQSNFrW9C/Z121L2pW+w9qgCgAEVO376kH79+uXab506dejatSvr1q3DYJAZLWEecvTiI9b2i52Ex6WgT03k+m+v/1eHslRpnJr1wqpMlX/rUAaTFLyNsgM+A0Xh+oIJoBiy6lC2HwUqlbEOJSo15YZ9i7VHVSq727P7bX8Lf0ohhBAPk32Wt95gvl/DGrXKeJa3wWDgtdde4/vvvwdArVZTr149bt68SXR0VkUQrVZLvXr1CAgIYOzYsTg5OZktFlGyyAjlI+Zf2wONWoXGrhQefT807sjTJ8YQv/1nopf9j1urPiHxyN8o/27esS5bHedWAQAoGanEbvyO2A3fGtdVOvsOwNqjKhq1Cv9aHrm/WAghxGNlei9vtGrVwxvmkaIoGDIz6FUpnfT0dNRqNXPmzOF///sfAAaDgV9//ZWbN28SGxvLtGnTqF27NiEhIUyZMgVnZ2fKly/PsGHDOHXqlNniEiWDjFA+YmE3E+k4679Ctv+d5b2fzJhIDJmpaBxcsXKvhEPdtjjU9bvnLO+1ZERfAcDaowqlmvbA4a7p820T/OSkHCGEeEIsOxzB5FXmOzY3dsO3JJ3ailqtpnbt2vj4+NCwYUPCw8M5f/4869evR602HUsyGAysXr2an376iQMHDpCYmAiAvb09zZo1Y8SIEfTr1w+tVrZdiPuThNICinqaQwghxJNjzs4wvtwSWuh+bu9ZhFXYDm7dumW8ptVqMRgMGAwGjhw5QpMmTR7az7lz55g1axYbNmwgMjISyJour1GjBr1792b8+PGULVv2Ib2IkkYSSguIjEuhwze7STdjeR8brZptE9pSyc3ebH0KIYR4NJYdjmDq2tPoDEq+Bhs0ahVatYomXOSPT17LvY1GQ7t27di0aVOO0cmHSUlJ4aeffmLx4sUEBweTkZFViN3d3R1/f39ee+01/Pz88tWnKJ4kobQQc09zzOjtTYCPl9n6E0II8WhFxqUwZXUwgRdi0KhVD0wsVSgoqKjtbOCXl9tTxl6Ns7OzMeG7144dO/D3L/yGze3btzN37lx2795NXFwcADY2Njz99NMMHjyYkSNHYmtr+5BeRHEkCaUFmWuaY2Kn2oz1r2GGiIQQQlha2M1ElgRFsDM0mojYFO7+Ja0CvNzt8avhzucjn0cfd421a9fStWtX+vXrx19//ZVrKSC1Ws0XX3zBm2++abY4r169yrfffsuaNWu4ePEiiqKgUqnw8vKia9euTJgwgerVq5vtfeLxJgmlhRV2muOj7vVkZFIIIYqp5HQdV2KTydAZsNaqqeLugINN1uYYKysrdDodAG+99RZNmjRhwIABJs9369aN6dOn4+fnR3x8PO3bt2fTpk1m32Cj0+lYtGgRv/32G0eOHCE1NasKiZOTE61bt2bMmDF07do131Pu4skhCeVjID/THNn329QozfRe3rJmUgghSihHR0eSk7PKy6lUKpo0acLJkydNTshxdnbmwoULODk50aFDBwIDA3F3d2ffvn3Url27yGI7cuQI3333HVu3buXGjaxT4bRaLXXq1CEgIIBx48bh7OxcZO8Xj54klI+RvExz+NfyYFALLykNJIQQJdzdCSVkbb5RqVTodDoWL15MQkIC48aNw83NjQsXLuDq6sr06dN57733UKvVzJ07l9GjRxd5nPHx8cyZM4fly5dz9uxZ4xGQZcuWpVOnTowfP57GjRsXeRyiaElC+Zh60DSHEEL8v707j4uyWvw4/pkZQMAFBEUlBXFDcy3ccidJ85dZamZetcX2ssV7b8v13hbbF7tp2XItrcxKy61dS1LcF9xSQQRRcUsCRGAGgVl+f0yMTqCAA6bwff/j8Dxne+qf7+s8zzlH5M+BEqBJkyZMmzaNm2++GYBp06YxadIkGjRowL59+6hXrx6bN29m4MCB5ObmMmzYMBYvXnzBXkXb7XaWLFnCBx98wLp168jJyQGce1527dqVCRMmMHbsWO15eQlSoBQREbkE/TlQPvzww0ydOhVvb2+3cq+99hpPPPEEISEh7Nu3jzp16mCxWOjfvz/x8fE0adKE9evXEx4efqEfgeTkZKZNm8Z3333HoUOHcDgcGI1GWrZsyfDhw3nkkUcIDQ294OOSilOgFBERuQSFhTkXZD7xxBM8/PDDhIWFsX///lLLvvjii/znP/+hSZMmpKSk4O/v/P5+8uTJvPLKK5hMJj766CPGjRt3wcb/Z/n5+XzwwQfMnTuXHTt2uLZACgoKon///kycOJGrr776Lxvfn+lNojsFShERkUtQTk4Ofn5+eHt7c8sttzB//nx++OEHhgwZUmr5Z599lilTptC0aVOSk5Nd+0WuWrWKIUOGYLFYGDNmDHPnzr0oVmOvXLmSGTNmsHLlSjIzMwHw8fGhU6dOjB07lnvuuccVjC8U11qHpHTSskpZ6xDkT3RkCGN7hNG6Uc1a66BAKSIiconLycmhfv36hIeHk5qaetZy//73v3nppZcIDw9n7969+Pj4uOr37t2bXbt2ER4ezoYNGy6q4xWPHTvG9OnTWbx4MSkpKa69Nps1a8Z1113HpEmTaNOmTZX1r91YyqZAKSIiUg3cfPPNfPXVVyxdupTBgweftdxjjz3G1KlTadGiBYmJia5QCc7vMN9++218fHyYN28ew4cPvxBDrxCr1coXX3zBrFmz2Lx5MxaLBYC6devSq1cv7r77boYPH15ps6ye7hc9ZVh7bqkB+0UrUIqIiFQD2dnZBAcH07x5c/bt23fOso888ghvvfUWrVu3JiEhwW1V9Y8//sjw4cMpKCjg7rvvZubMmVU9dI9s376d6dOns2zZMo4dOwY4t1Bq164dN910Ew899BBBQUEl6o0bNw4fHx/+97//lVjIVKyyTrT756A2TIxu7XE7FzMFShERkWpi1KhRLFiwgGXLljFo0KBzlr3//vt5//33adu2LTt37nQLlRkZGVx11VWkpKTQpk0b1q9fX2oou9jk5OTwzjvvMG/ePBISElwnCTVq1IiYmBgeffRRunbtSlZWFg0aNMDhcDBkyBAWLlyIn5+fW1vzNqfx5KKdlTa2V0d0rNYn2ylQioiIVBMVmaUEuOuuu5g1axYdOnRgx44dJV4TT5gwgY8++ghfX1++/vrrMkPqxcRut/P999/z/vvvs3btWk6ePAmAn58fzZo1Y+9e58yj0Wjkqquu4ocffqBevXqA85vJmDfjKLDayVw6g7ztS13tBva/jYCrRp21X4fNyrGPH6Xo9wOua2H/XISvry/LJ/Wvtt9U/vXLuERERKRSBAYGMnz4cFJTU/n555/LLP/hhx9y6623smvXLqKiolyLXYrNnj2bBQsWYLPZGDx4MJMmTaqqoVc6o9HI9ddfz/fff092djb79u1j4sSJNGrUyBUmwRk8161bR8+ePfn9998BmLx4J1a7A4fNiiVpnVu75sRV5+w3Z+NCtzBZzGp3MHlx5c14Xmw0QykiIlKNFM9SRkREkJKSUq46Y8aMYd68eXTt2pWNGzeWmKk8evQoPXv25NChQ3Tq1InVq1e7ZvMuNVarlfr165OXl1fintFo5LEX/su8nFYA5O/bTPpXU0qUC737PbyDm5W4XpR5mKOzH8JgMOCwFrquh/1zEQYv5+Kn5ZP6VcvjkzVDKSIiUo0Uz1Lu27eP2NjYctX54osvGDlyJPHx8fTp06fETGVoaCgHDhzg5ptv5tdffyU0NJQ1a9ZUxfCr3IYNG8jLyysRmmvXro2/vz+z4pIw/LHDpDnh9Gykf7t+rt9nXi/mcDjI/PFtsBUR0PuWUvs2GQ3M3ZBWGY9x0VGgFBERqWY++OADjEYj9913X7nrLFiwgGHDhrF+/Xqio6NL3DcajcyfP59PPvmEgoIC+vXrx9NPP12Zw74gGjduzA033MAjjzzCRx99RHx8PBaLhby8PHJzc2l39U04cM4wWpI3AGD0DyAo5m4wmgAwJ64u0W7e9h8pOLwb75AI6vUYWWrfNruDFXvTq+7h/kIKlCIiItVM/fr1ueGGG0hJSSn3LCXA119/zbXXXsuqVauIiYkptcytt97K3r17adSoEc8//zw9evTg1KlTlTX0KteqVSuWLFnCf//7X26//XaioqJcK7zzCqwcOpEPgCVlE45C52//1j0x1a6Pb1hHAKxZhyn87fSiJ2tuBidWfgwGI8H/9wiGP4JnadIyLZgLrFX0dH8dBUoREZFq6MMPP6zwLCU496EcOHAgsbGxZz3GMSIigiNHjnDdddexadMmGjVqRHx8fGUM+y91MNPsOk7RcsbiG/+2vZ3/RvZ2XTtzcU7WsvdwFFio1/1GajVudc4+HMCBTHOljflioUApIiJSDQUFBTFs2DBSUlL45ZdfKlR3+fLl9OvXj6VLl3LDDTeUWsZoNPLdd9/x7rvvkpeXR/fu3XnttdcqY+h/mUKr89tRe4GF/H3OgGz0rYtveGcA/CN7gcEZncyJq3E4HOTv30p+yka8ApsQ0GdshfqpTrTKW0REpJrKysqiYcOGtGzZ0m2rnPKw2+306dOH9evXM3LkSBYsWHDWsomJifTp04esrCwGDBjAsmXL3I50vFTsPnqS695eQ96uX8j87r9llm807nWsWUfI/GFamWX9WvckZOR/APj+oT60Dw3wdLgXFc1QioiIVFPFs5TJycmsXLmyQnWNRiNr1qyha9euLFy4kDFjxpy1bLt27Th27BjR0dGsXLmSJk2asHv3bg9Hf+E1D66NATAnxJWrvKWMPSlLY/ijn+pGM5QiIiLVmCezlOCcqYyKimL79u2MHz+eOXPmnLP866+/zhNPPIHBYODtt9/mgQceON+h/yV6PbuE9c/fBHYbBh8/Avvf6l7AZuXEL7MAMNWuT8iYFzm1f1uJdk7EfuD6HRg9Ae+gy/Bv3YPwYH/i/llyFf2lzqvsIiIiInKpCgoK4vrrr+frr79m5cqVDBgwoEL1jUYjW7ZsoUuXLnz66af4+Pjw4YcfnrX8Y489xsCBA4mOjubBBx/k+++/59tvvy2x7+PFKih9G9htAPhFXEG9qOtLlMnbtYKi9FRs5hPY8rKo163kd6ZnBsp6UUMxePlgMhqIbhNSdYP/C10a/3dFRETkvBWv+L733nvPq77RaGTr1q20bduWWbNmcf/995+z/JVXXsnx48fp2bMnP/zwA6Ghoezfv/+8+r7Qft9+egGTX6sepZbxb9Xd9bsir71tdgfjeoad/+AuYnrlLSIiUgPccMMNfPPNN8TFxdGvX7+yK5TCarVy+eWXk5yczMMPP8z06dPLrPPMM8/w/PPPYzKZ+PDDD7ntttvOq++qZjabOXjwIMuWLeOdBANFQS3OuZ9kRZmMBnq1CObTO0sPqZc6BUoREZEaICMjg5CQENq0acOePXvOu53CwkLatWtHamoq//jHP5g6dWqZddasWcO1116L2Wxm1KhRzJs3z/UKvLCwkLy8PIKCgs57TOfjp59+YubMmaSkpHDw4EGys7Nd97zrNyH8/g8oqsTdfWp5GVk+qT/Ngvwrr9GLiF55i4iI1AANGjTguuuuIykpyaNzuH18fEhMTCQ8PJw33niDyZMnl1mnT58+/Pbbb3Tu3JmvvvqK5s2bc/ToUYqKihgwYACdO3emsLDwvMdUERkZGezfv5+4uDgWLlzIjh073MIkwAdvvszzN3as1H6fG9a+2oZJ0AyliIhIjZGenk7jxo2JjIwkMTHRo7ZOnTpF69atOXz4ME8//TRTpkwpV71//OMf/Pe//8Xb25trr72W7777DofDwcyZM7n77rvL1Ya5wMqBTDOFVjs+XkaaB9emdq2y1xkXr1g/cOAAW7ZsoV+/fhw5csR132g0EhMTw7JlywCYsSKZqT9VfGX8nz02KJIHo899gs6lToFSRESkBhk6dCjff/89q1evpk+fPh61ZbFYaNWqFceOHeOFF17g3//+d7nq/fzzz1x33XUUFRUBYDAYuOyyy0hNTcXb27vUOsnHc/lsYxorktJJy7JwZngxAGFB/kRHhjC2RxitG9UttY2PP/6YO+64A6PRSK9evdi2bRtm8+ljEE0mE7t27aJt27aua/M2p/Gfxb9SZLVhMJV/cxyT0YCX0cBzw9ozulv1XIhzJgVKERGRGqQyZykB8vLyaNWqFcePH+fVV1/l8ccfL7PO/v376dixo1uYA5g9ezZ33HGH27VDWRYmL97J6pQMTEYDNvvZY0vx/b6tGvDS8I5ur5hzc3Np0aIFmZmZFEcfg8FA9+7d2bx5MwaDgQcffLDEQqPFixdz8x33E3rjPzA0udyjMVRn+oZSRESkBgkJCWHIkCHs2bOHtWvXetxenTp12Lt3Lw0bNuSJJ55g2rRpZdaZMGFCiTAJ8OSTT2K1Wl1/z9ucRsybcaxLzQQ4Z5A78/661Exi3oxj3uY0172XXnqJrKwszpxHq1evHp9//jmNGzembt26PPvss657ubm53HPPPYwYMQLryeP0s/3Kz4/2Y3yPcMKD/QH3sRiA8GB/xvcIZ/mkfnx6Z48aEyZBM5QiIiI1TvEsZdu2bUlISKiUNrOzs2nZsiVZWVnMmDGDBx988Kxl3333XebPn8+2bdvIzc11u1d8bnhlfb/4z0FtGNwUIiMjKS3y3HrrrTzzzDOYzWY6dnQuxImLi2PcuHEcOXLEVeett97ioYcectULDYsgo8DAT8t/oWFw/XJ/x1ldaYZSRESkhgkJCeHaa68lMTGR9evXV0qbgYGBJCUlERgYyMSJE5k5c+ZZyz7wwAPExcVx8uRJDh48yNdff81jjz1G3bp1WbhwIbc9N7NSwiTA1J/2ctXYf7iFSYPBQEhICN27dycqKooWLVq4wuR//vMfBgwYwNGjR93q1KlTx/V72bJlHDt0gKL0/Wz9eRHtQwNqdJgEzVCKiIjUSL/99huhoaG0a9eO3bt3V1q76enptGnThpMnT5b6TeS5OBwOpn84lxn762N1GMhcOoO87Utd9wP730bAVaPc6pxK24klaR0FRxKx5mZgz8/D5FeXWs06ENDrZnwaNsdhK6L778u4b/womjdvTtOmTalVq1ap/ffo0YPNmzeXuPfll18yatQo8vPzadeuHQcPHgSgdevWJCUlYTAYyv2c1ZFmKEVERGqgxo0bM3jwYBISEiptlhKcs58JCQnUrVuXCRMm8Nlnn5W7rsFgYIuxDQ6DEYfNiiVpndt9cynHHJ5c/xW5W76l8LcU7OZssFuxmU9g2bOa3+b8g4Kje/Dy9sG37x0MHDiQli1blhomi/tfu3Yt77zzTomAWDxD+fLLL3Po0CHX9eTkZNatcx9nTaRAKSIiUkN99NFHGAwG7rrrrkptNzQ0lISEBGrXrs348eOZP39+ueolH89ldUoGNruDUwe2Yc/PcbtflL6fosxDJep5BTYmsP+thIx+nqAhD2Oq4zx1x2Et5MTKT7A5YHVKBinpuSXq/pm3tzeFhYU4HA66dOmCl5fzVXadOnXYs2cPL7/8Mnb76SN0vLy8zvl6v6ZQoBQREamhzpyl3LhxY6W23bRpU3bv3o2fnx9jxoxh0aJFZdb5bGMaJqNzZtCccHo20r/d6bPHz7wOUK/HSELv+R8BV92MX8QV1O08iKBBD7juFx5LBpzb+czdkEZZrFYrkydPpnbt2mzZsoW9e/fy6quv0qNHD958802sVismk8mt/Pz588nJyTlHq9WfAqWIiEgNVjxLeeedd1Z62+Hh4fz666/4+vpy00038e23356z/IqkdGx2Bw5rIZbkDQAY/QMIirkbjM4QZ05c7VbHr3lnDEaT2zWvoFDXb4O38/W2ze5gxd70Msf8wAMPkJ+fzxtvvIHRaCQiIoLHH38cHx8fnnrqKWbNmsUzzzzjer5+/foRFRWFzWYrs+3qTIFSRESkBmvcuDGDBg1i9+7dlT5LCdCyZUt27NhBrVq1uPHGG/nxxx9LLZdXYCUtywKAJWUTjsJ8APxb98RUuz6+Yc5V2NaswxT+tu+cfVqSTu+v6dciyvU7LdOCucBaWhUAfv/9d2bNmkXTpk259957S9xv2rQpEyZMYPjw4QD87W9/Iy4ujrVr11K/fv1zjqm6U6AUERGp4WbPnl0l31IWa926NfHx8Xh7ezN06FBiY2NLlDmYaXZtFW45Y/GNf9vezn8je7uulbY4p1j+vs2cXOf8ZtPoW5fAfuNd9xzAgcySG6oXGz16NHa7nU8//fScz7Nnzx4AWrRocc5yNYkCpYiISA0XGhrKNddcw65du0rdMqcytG/fnk2bNuHl5cXgwYOJi4tzu19odS50sRdYyN8XDzgDoW94ZwD8I3uBwRlbzImrS92k3LxnLemLXgSbFYOPHyGjnsYrIKTUfv5s27ZtrFixgq5duzJgwIBzPktKSgoAbdq0KeOpaw4FShEREanSbymLderUifXr12M0Ghk4cKDb0Y8+Xs5IYknegMNaCID9VC5pr93AwVeGcvitseBwhkFbTjoFR/a4tZ23M5aMr18FmxVjrdo0Gv0ctS5rV2IMxf382S233ILBYGDBggVlPkfxHpSXX355OZ66ZlCgFBEREUJDQ4mJiWHnzp1VNksJcOWVV7JmzRoMBgMDBgxg06ZNADQPro0BMCfEnbuBP5z5Wjx3y3dkfj8NHHaM/oE0+tvLpYZJwx/9/NmXX37J3r17GTlyJOHh4WX2ffjwYQAaNGhQrrHWBDopR0RERABnUAoLC6NDhw78+uuvVdrX2rVr6d+/P0ajkfXr1xMVFUWvZ5ew/vmbwG7D4ONHYP9b3SvZrJz4ZRYAptr1uWziJ+Ru/oYTv3zovG/yJnjQ/XgFXeZWzbdZewDCg/2J+2e02z273U6DBg0wm82cOHECf3//MsfevXt3tm3bRlFR0Xk+ffVTsw+eFBEREZemTZsycOBAli9fTnx8PF27dq2yvnr37k1sbCwDBw7kqquuIj4+nqD0bWB3br/jF3EF9aKuL1Evb9cKitJTsZlPcOrgr67thQCwFZH541sl6oQ/+R0mo4HoNiEl7k2ZMoUTJ07w1FNPlStMAmRmZuLn51fOJ60Z9MpbREREXC7Et5TF+vfvz7Jly7DZbHTr1o209d+77vm16lFqHf9W3V2/LedY7f1nNruDcT3D3K5ZLBZeeeUV6tevz7PPPlvutk6ePOk6ilGcNEMpIiIiLk2bNuXqq68mNjaWrVu3cuWVV1ZpfwMHDuS7775j6NChJO/ZzfC3Ytnx2yls9tK/yAvsN47AfuMq1IfJaKBXi2BahdR1u37HHXdQWFjInDlzMBrLP8dmsVho1KhRhcZQ3ekbShEREXGTlpZG8+bN6dSpE9u3b78gfX7zzTfceOON+IeEEXrXuxTaKi+e1PIysnxSf5oFnX6lffDgQSIiImjVqhV79+6tUHsmk4m+ffuycuXKShvjpU6vvEVERMRNWFgY0dHR7Nixg61bt16QPocNG8bChQuxpKeR+dN7ldr2c8Pau4VJgFGjRuFwOJg3b16F2rJardjtdpo0aVKZQ7zkKVCKiIhICRfyW8piw4cP54svvuBE/PeY11cs6J3NY4MiGd3N/dvJVatWsXnzZgYMGFDhV/r79jmPfWzWrFmljK+6UKAUERGREsLCwhgwYADbt2+/YK+9wXn84Zw5c8iIm4v5l5n4mAyYjIYKtWFw2KnlZeTVER15MLpVifvjxo3DaDQyf/78Co8vKSkJgIiIiArXrc4UKEVERKRUxbOUEyZMuKD9jhs3jtmzZ5Ox6Rt+//hhujZ1LqYpK1cWB0/Lge0MMK/m5q4lZxFnzpzJoUOHuOOOOwgJKbmNUFmSk5MB5/nkcpoW5YiIiMhZRUdHs3LlSrZt20aXLl0uaN8zZ87k3nvvJTAwkGUbdvDgm/PIqtUEu38QZ4YXAxAW7E90mxBu7BDMFS2d3zded911vP/++zRt2hRwbmIeEBCAzWYjJycHL6+Kb3bz0EMPMWPGDA4dOuRqV7RtkIiIiJzDxx9/TPPmzZkwYcIFW6BT7J577qGwsJCHHnqIQT06cfLkScLDw9mdlMKBTDOFVjs+XkaaB9emdq3TkcZkMmGz2fjhhx+IjIxk6tSp3HvvvUyaNIm8vDzeeOON8wqTcPrYxdDQ0Ep5xupCM5QiIiJyTsWzlDt27KBTp04XvP/XX3+dxx9/HID69euTlZV1zvKNGjUiPT3d7Vq3bt3YunUrDRs25NixY+c9ll69erFp0yasVut5t1Ed6RtKEREROaePP/4YcG4EfqE5HA52797t+vvEiRMcPHjwnHWCgoLc/jYYDGzevBmbzcbs2bM9Gk9GRga+vr4etVEdKVCKiIjIOYWHh9O/f3+2bt3Kr7/+ekH7fuedd/jkk0/crnXp0gWLxXLWOn9ebBMQEABA586dGTJkiEfjyc7O1rGLpVCgFBERkTJ99NFHABd0xfeqVat49NFH3a4ZjUays7OJjIzk1KlTpdZr2LAhAN7e3hiNRnJycjAYDHz11Vcej8lsNhMYGOhxO9WNAqWIiIiUKSIign79+rFlyxZ27dp1QfqcN28eNpvN7Zxtu91O/fr1OXz4MG3btqWwsLBEveHDhzN+/HiSk5MZM2YMdrud8PDwStnqp6CggAYNGnjcTnWjRTkiIiJSLvv376dFixZERUURHx9f5f0VFRWxdetWPv74Y95//30CAwPJzs7Gy8uLiRMnMm3aNFq0aEFiYiI+Pj6lthESEsLvv/8OwLFjx2jcuPF5j8dut2MymRg5ciQLFiw473aqI81QioiISLlERETQt29ftmzZ4rZQpqp4e3vTo0cPiue+tm7dSkZGBnv27OHNN9/k4YcfJjU1lQ4dOpS66vrll1/m999/Z/To0QDceOONHo0nLS0N0LGLpVGgFBERkXIr/pby9ttvv2B9rlu3Dm9vbyIiIggODqZly5YATJ8+nfvuu4/k5GQ6deqEzWZz1SksLOS5556jXr16fP7550RHR7Nx40Z+/PHH8x5HYmIiAM2bN/foeaojBUoREREpt5YtW9KnTx/i4+MvyCwlQGpq6llPpXnvvfeYMGECiYmJdOnSBbvdDsDdd9/NqVOnmDZtGkajkQULFuDl5cX48eNdZSpKxy6enQKliIiIVMiF3JcyOzsbs9lMVFTUWcvMmjWL8ePHs2vXLqKiojh8+DBz586lefPmrjEGBQXxxBNPkJmZyb/+9a/zGsv+/fsBaNeu3XnVr84UKEVERKRCWrZsSe/evdm8eTMJCQlV2tfChQsBGDp06DnLzZkzh9GjR7N9+3batWuH3W7n888/dyvz3HPP0bBhQ9544w0yMjIqPJbiYxfDw8MrXLe6U6AUERGRCiv+lrKqZyl/+OEHAEaMGFFm2Xnz5tG/f3/y8vKoU6cOPXr0cLtvNBr5/PPPsdls5Wrvz3777TdMJpPbNkbipP8iIiIiUmGtW7d2nWtdvFilKmzZsoXatWtTt27dcpU/dOgQAHl5eVx99dUl7sfExNCrVy9Wr17NL7/8UmZ7eXl5fPPNN6xevZqjR4/i4+ODdlwsSYFSREREzsuF+JbyyJEjtGrVqlxl58yZQ2pqKmPHjmXw4MHExcVxzTXXlCi3ePFiTCYTY8aMKbPNJUuWcMMNN9CvXz9SU1PJz8+nVq1aNGvWjLVr11b4eaorBUoRERE5L8WzlBs3biQpKanS209OTsZqtdK7d+8yy9rtdh5++GFq1arFhx9+yNKlS7n66qtZvnw5//d//+dWNiQkhEceeYT09HSefvpptm7dyjXXXON6jX+mQYMGYTKZ3K4VFRVx5MgRnel9BgVKEREROW9VuS/lF198AZTv+8l//etfnDx5kqeeegpfX18AYmNj6du3Lz/++GOJTc1ff/11AgMDeeGFF+jatSvLly8nNja2RLshISEMGzYMLy8v1zWj0chDDz1E586dPXi66kVHL4qIiIhHevXqxfr169mzZw+RkZGV1u6AAQNYtWoVVqv1nAth8vLyCAoKIiAgwHXMYjG73U7v3r3ZsGGD68hEq9XK2LFj+eabbzh16pSr7ODBg1m6dGmJ9pctW8a1117r+jskJITk5GTq1atXCU9ZPWiGUkRERDxSVSu+ExISaNCgQZmrqsePH09RUREffPBBiXtGo5G1a9cSFRXFwoULGTNmDNHR0Xz55ZduYRIgPT291PavueYatzPA3333XYXJP9EMpYiIiHjsqquuYsOGDZU2S2m32/Hy8qJfv36sXLnyrOX27dtH69atadu27Tn3xLTb7URFRbF9+3a36waDwbVqu1mzZq7zuv/s9ttv55NPPiEyMpLExEQMBkOFn6k60wyliIiIeKyyZylXrFiBw+EodeufM40aNQqHw8GXX355znIOh6PUbx79/Pxc4fD48eNnrT9kyBAAXnzxRYXJUihQioiIiMfatm1Ljx49WL9+vevMa08Un5Bzrq19fv75Z7Zt28agQYPo0KHDOdv797//zSeffFLieteuXRk7diwAhYWF5Ofnu903F1jZffQkWYZ6+DRqQfdefSv6KDWCXnmLiIhIpUhMTOTyyy+nV69eHu/R2KVLFxISEigsLDxrmdDQUNLT00lPTycoKOic7c2dO5d//etfHD58GJPJhM1mA5yvvDMzM3n77bd55plneOWVVxhx+wN8tjGNFUnppGVZODMoGYCwIH+iI0MY2yOM1o3Kt+F6dadAKSIiIpWmR48ebNq0ib1799K6devzbqdOnTo0aNCAAwcOlHp/+vTpPProozzwwAO888475WrT4XCwceNG5s2bx9y5c8nMzATg5ptvZv78+Ux66kV+yQ3hpF8oJqMBm/3sEan4ft9WDXhpeEeaBflX+BmrEwVKERERqTTFs5S9e/dmzZo159VGTk4OAQEBjBgxwvXq+0xWq5WAgAAMBgPZ2dlue0SWl81mY/ny5YwbN44TJ07w1MdL+TypCKvdcc4g+WcmowEvo4Epw9pzS7ewCo+jutA3lCIiIlJp2rVrR7du3Vi7di379u07rzYWL14MUOKEm2ITJ07EYrHw2muvnVeYBDCZTAwePJhjx45x7d/f5KPdBRRY7RUKkwA2u4MCq50nF+1kxgrPvx29VGmGUkRERCrV7t276dChA3369GH16tUVrj9q1CgWLFhAdnY2AQEBbvcyMjJo3LgxjRs35vDhwx6Pdd7mNJ5ctNPjdoq9OqIjo2vgTKUCpYiIiFS6bt26ER8fT0pKCi1btqxQ3RYtWpCenk5eXl6JezExMcTGxhIbG1vmlkJlOZRlIebNOAqsdjKXziBv++lTcgL730bAVaPcyluzj5Oz5RsKjuyh8Pg+sFkBCOg9hsC+zpXitbyMLJ/Uv8Z9U6lX3iIiIlLpKrov5ZdffsmTTz7JokWLOHToEC1atChRZseOHcTGxhIVFeVxmASYvHgnVrsDh82KJWmd2z1z4qoS5QvTU8nd/DWFR5NcYfLPrHYHkxdX3oznpUKBUkRERCpdhw4diIqKYvXq1aSmphIbG8udd95JVlZWqeU/++wzXn31VUaOHInVaiU5OZnhw4fz2GOPcfLkSQBGjx6NwWDgq6++8nh8ycdzWZ2Sgc3u4NSBbdjzc9zuF6XvpyjzkNs1g7cvvs2vIKD3GPxa9yy1XZvdweqUDFLScz0e46VEgVJERESqRPEsZZcuXYiJiWH27Nls3bq11LLR0dFuZ3afOnWKJUuWMHXqVJo3b85dd91FUlISI0aMICIiwuOxfbYxDZPReeKNOeH0bKR/u36u32deB/CLuIJGtzxPYN+xeAc3PWvbJqOBuRtKP8KxulKgFBERkUq3cuVK7rnnHgByc8uerbv66qux2+1u10wmEwDZ2dnMmjULgL/97W9UxvKPFUnp2OwOHNZCLMkbADD6BxAUczcYnf2aEyu+oAics5Qr9qZ7PMZLiQKliIiIVCqr1cqwYcPYsGFDuet06NCBwMBAt2uPPvqo298Gg4GRI0cydOhQ10k35yOvwEpalgUAS8omHIXO4xb9W/fEVLs+vmEdnc+RdZjC385v66O0TAvmgtK/s6yOFChFRESkUnl5ebFo0SKCgoJcs4xlMRqNDBw40PX3XXfdVWLhTfHMZHZ2tkfjO5hpdh2naDlj8Y1/297OfyN7u66VtjinPBzAgUzz+Q7xkqNAKSIiIpUuJiaGXbt20atXL7frBoPhrHXCwpz7N4aGhjJjxgy3V+VGoxEvLy9efvll4uLiyh1US1Nodb5atxdYyN8X72zfty6+4Z0B8I/sBQZnRDInrj7vV+zF/dQE57e9vIiIiEgZmjRpwi+//MKzzz7Liy++CMDx48fdypgLrBzINFNotePbpBUGb18WLVpErVq1OHjwoKtc+/bt+eyzz+jYsaPH4/LxcoZFS/IGHNZCAOynckl77YYSZW056RQc2YNv03bn3U9NoEApIiIiVcbLy4sXXniBpk2bcv/99xMXF0e3gdfz2cY0ViSlk5Zl4fT8Xzhhf/+Kx1dZiD6+m69/WAk4X3+/8847+Pj4VKjv48ePExgYSK1atdyuNw+ujQEwJ8SVqx1L4qoKB0rDH/3UFDopR0RERC6Ie/8+mZ+yG+BoFInJaDjnudkmA9gc0NCWwaInR1X45Jk1a9bQt29fAIKDgwkPD6dFixb4+Piwf/9+jrQfR9rsh8Fuw+DjR2D/W90bsFk58YtzZbmpdn0um/gJ9vxcTqU5Ny03715J/h+rw/3b9sG/bR8AfMM6YvIPIDzYn7h/RldozJcyzVCKiIhIlZu3OY2Vtfti9LVjc3DOMAnOMAmQ5d2AmDfjmDKsPbec5Yxsh8PBkiVLiImJoW7dugC0a9cOLy8vrFYrmZmZZGZmuu2B2cwYAnbnSnG/iCuoF3V9iXbzdq2gKD0Vm/kEpw7+isFgJGPJKyXKWfaswbJnDQCNxryET0RnotuElP0fpRqpOS/3RURE5C8xY0UyTy7aSYHV7gqK5WWzQ4HVzpOLdjJjRXKJ+w6Hg8cff5wRI0bw2muvua77+fmVenwjwMyZM2lizzxdtlWPUsv5t+ru+m2pwGpvm93BuJ6lh9/qSq+8RUREpMrM25zGk4sq72zrV0d0ZPQZM5XPPfcczzzzDACXXXYZU6ZMYfr06ezatavU1dlz5sxh/PjxAIyftZF1qZllzpZWhMlooFeLYD69s/SQWl0pUIqIiEiVOJRlIebNOI5+9xZ525e6rgf2v42Aq0a5lT2VtovcLd9SeDwVmyUbh7UQo19dajVuRd2o6/FrEQVALS8jyyf1p1mQP2+++SZ///vfS/RrNBq54oorePTRR7n//vvJy8sD4L333uO+++4rMb6CStze58zx1SR65S0iIiJVYvLinRQVFWFJWud2vbTNwk8d2oUlaS3W7GPOk2vsNuzmbPL3xZP+5TOYd68EwGp3MHnxTl544YVSw2T37t3Jz88nPj6ecePGMXr0aACmTp3qFiYBmgX5M2VY+0p6WqfnhrWvcWEStChHREREqkDy8VxWp2SQn7oVe36O272i9P0UZR7CO7iZ65pX3WDqdh1GrdBIjP6B2PKyyFn/JUWZhwDI2fIttdsPwGZ3sDolg3kf/K/UfhMTE91edb/88svceOONDB06tNTyt3QLIyOvgKk/7fX0kXlsUKTb6/iaRIFSREREKt1nG9MwGQ2YE8442rBdP9fiFnPCKgL7jnXdq9PpmhJtGH18+X2Rc0P04vO2AbDbaD1kAlGkYjab2bdvH4cOHeLEiRPk5uZy4MABIiMjAWjYsOFZw2SxidGtaVCnFs98sxur3VGhbypNRgNeRgPPDWtfY8MkKFCKiIhIFViRlI61sADLH3s1Gv0DCIq5G0vSWrDbMCeudguUZ3LYbVhzfidvZ6zrmm9Yp9MFjCYadh7Ap/+c4lYvPz+f3NxcQkIqvmXPLd3C6N2yAZMX72R1SkbZ+2T+cb9Xi2BeGt6xRr7mPpMCpYiIiFSqvAIraVkWLCmbXDOL/q17YqpdH9+wjpw6sB1r1mEKf9uHT+OWbnUPvT0Ouzn79AWjidrt+hE44Da3cmmZFswFVmrXOh1l/Pz88PPzO+9xNwvy59M7e5B8PNd5ks/edNIyzzzJx3kCTliwP9FtQhjXM4xWIXXPu7/qRIFSREREKtXBTDMO3Pdu9G/b2/lvZG9OHdgOOBfn/DlQlmAwgtEEf9qUxgEcyDTTPjSgEkfu1LpRXZ4d1p5nae921riPl5HmwbXdQqw46b+IiIiIVKpCqx17gYX8ffEAGH3r4hveGQD/yF5k/fQeOOzO194DbsdgMLjqhox8CkdRAUXZv5G7eQlFGWmYdy7HUWih4fDJJfqparVreVVJaK1uFChFRESkUvl4GbEkb8BhLQTAfiqXtNduKFHOlpNOwZE9+DZt57pWK9S5mMY3vBO+4Z04+v5dAFiS1uOwFmLw8nHrRy4O+j8hIiIilap5cG0sCXHlKlv8WtxeVFDingHDGX85sBdYzrjn7EcuDpqhFBERkUp1Ku+k6ztJg48fgf1vdS9gs3Lil1kAWPasoX7M3Rx55zZqt4/Gp0kbTHXqY8vJIGfzYlcVU72GGP1Pv3oOC/bXt4wXEf2fEBERkUq1YMECHHYbAH4RV1Av6voSZfJ2raAoPRWb+QSnDv6K/VQeuVu+Lb1BoxdB19zn+tbSZDQQ3abiWwNJ1VGgFBERkUr1xRdfuH77tepRahn/Vt05mZ4KOF97B/Qew6m0nVhPHMVmycFgNGGqG4xvsw7U7Xo9PiERrro2u4NxPWvuJuIXI4PD4Sj/dvAiIiIi5TR+1kbWpWZW6OSZspiMBnq1CObTO0sPqvLX0KIcERERqRIvDe+Il9FQdsEK8DIaeGl4x0ptUzynQCkiIiJVolmQP1OGta/UNp8b1r7GH3N4MVKgFBERkSpzS7cw/jmoTaW09digSEZ307eTFyN9QykiIiJVbt7mNJ75ZjdWu6NC31SajAa8jAaeG9ZeYfIipkApIiIiF8ShLAuTF+9kdUoGJqPhnMGy+H7fVg14aXhHvea+yClQioiIyAWVfDyXzzamsWJvOmmZFs4MIgacm5ZHtwlhXM8wWoXU/auGKRWgQCkiIiJ/GXOBlQOZZgqtdny8jDQPrq0TcC5BCpQiIiIi4hGt8hYRERERjyhQioiIiIhHFChFRERExCMKlCIiIiLiEQVKEREREfGIAqWIiIiIeESBUkREREQ8okApIiIiIh5RoBQRERERjyhQioiIiIhHFChFRERExCMKlCIiIiLiEQVKEREREfGIAqWIiIiIeESBUkREREQ8okApIiIiIh5RoBQRERERjyhQioiIiIhHFChFRERExCMKlCIiIiLiEQVKEREREfGIAqWIiIiIeESBUkREREQ8okApIiIiIh5RoBQRERERjyhQioiIiIhHFChFRERExCMKlCIiIiLiEQVKEREREfGIAqWIiIiIeESBUkREREQ8okApIiIiIh5RoBQRERERjyhQioiIiIhHFChFRERExCMKlCIiIiLiEQVKEREREfHI/wOfH9zZznvnGAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -233,12 +222,12 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGy0lEQVR4nO3deViVdf7/8ReIiqC4A264IO6QOporu+JW7k5ZVjpNU06N7U3jTKUzk1MzNebPpm2mssXSctxFAVkOuKS44wIiIqgIqAiIiCyH3x9OfDWtVJb7LM/HdXl1POc+9/0+XKWvXp9z37dDZWVlpQAAAIA75Gj0AAAAALBuBEoAAABUC4ESAAAA1UKgBAAAQLUQKAEAAFAtBEoAAABUC4ESAAAA1UKgBAAAQLUQKAEAAFAtBEoAAABUC4ESAAAA1UKgBAAAQLUQKAEAAFAtBEoAAABUC4ESAAAA1UKgBAAAQLUQKAEAAFAtBEoAAABUC4ESAAAA1UKgBAAAQLUQKAEAAFAtBEoAAABUC4ESAAAA1UKgBAAAQLUQKAEAAFAtBEoAAABUC4ESAAAA1UKgBAAA+BGZmZmaNWuW4uPjjR7FohEoAQAAfsT27du1ZMkSBQYGKigoiGD5IwiUAAAAt2DLli0Eyx/hZPQAAAAA1qCiokKSZDKZFBgYqPHjx2vPnj26fPmymjRpor59+2rIkCEaOnSofvGLX6hRo0YGT1x3HCorKyuNHgIAAMDSnDp1So888ohiYmKqnnNwcFBlZaV8fHz0wQcf6MSJE8rJydGFCxe0a9cu7dixQ8XFxXJzc9Pvfvc7Pfvss2rZsqWBn6JuECgBAACuUVJSoldeeUWLFy9WgwYNdPHiRTk6OspsNis0NFR//vOfNXTo0Ju+t7y8XElJSVq6dKnef/99OTo66qmnntJrr70mZ2fnOv4kdYdACQAA8D95eXmaOHGiEhMT9fLLL8vX11dTpkz52SB5M2fPntXChQu1cOFC+fn5adWqVWrbtm0tTm8cAiUAAICuXiJo9OjRys3N1dq1azV06FCZzWadOXNG7dq1u+P97tq1SxMnTpTZbNbq1at199131+DUloFACQAA7N7ly5c1ePBgFRYWKiIiQt26davR/WdnZ2vSpElKTk7Wrl275O3tXaP7NxqBEgAA2L0nn3xSH3/8sXbu3Ck/P79aOUZ+fr4GDhyoRo0aafv27XJ1da2V4xiB61ACAAC7tnbtWr333ntV33WsLc2aNdOqVat0/PhxPf7447V2HCPQUAIAALtlNpvl6+ur9u3ba9OmTXJwcKj1Yy5ZskSzZs3S9u3bNXjw4Fo/Xl0gUAIAALu1evVqTZo0SVu3br2tM7irw2w266677pK7u7uio6Pr5Ji1jUAJAADs1qBBg+Ts7CyTyVSnx12zZo0mTpyo6OhohYSE1OmxawPfoQQAAHYpLS1NO3fu1Jw5c+r82OPHj1fv3r316aef1vmxawOBEgAA2KVNmzbJyclJYWFhdX5sBwcHTZkyRevWrVNpaWmdH7+mESgBAIBd2rhxo4YPH64mTZoYcvzJkyeroKBAcXFxhhy/JhEoAQCA3amsrFR8fLxGjBhh2Ax+fn7y8vJSRESEYTPUFAIlAACwO3l5ebp48aK6d+9u2AwODg7y9fVVSkqKYTPUFAIlAACwOydOnJAkderUydA5unfvTqAEAACwRt8Hyo4dOxo6R/fu3ZWenm71J+YQKAEAgN25fPmyJKlx48aGztGiRQtVVFRUzWOtCJQAAMDuNGjQQJJUVlZm8CS2gUAJAADsTv369SURKGsKgRIAANgdFxcXSdLFixcNnaOkpESS5OTkZOgc1UWgBAAAdsfHx0eSlJycbOgcx44dk4eHh1xdXQ2do7oIlAAAwO506tRJLi4uOnz4sKFzpKSkqFu3bobOUBMIlAAAwO44OjqqZ8+eOnjwoKFzJCcnG3px9ZpCoAQAAHZp+PDhioiIkNlsNuT4ubm52r9/vwYPHmzI8WsSgRIAANilqVOnKisrS9u3b7/t9166Uq5DWQXam3lBh7IKdOlK+W3vY+3atXJwcND48eNv+72WxqGysrLS6CEAAADqmtlsVvv27fXLX/5S77zzzs9un5pzUUt3ZCo2JVeZecW6NkA5SPJq4aLg7u56cJCXfDya/Oz+xo4dq+LiYsXFxd3pR7AYBEoAAGC3nn/+eX3yySc6fvy4mjdvftNtTuYVa+6qJCUcO6d6jg6qMP94dPr+df+urbRgkq86tHC56Xapqanq2bOnFi9erNmzZ9fIZzESgRIAANitM2fOqGvXrnr66ae1YMGCG15flpip19YeUrm58ieD5A/Vc3SQk6OD5o/vrfsHet3w+gMPPKCEhASlpqbK2dm5Wp/BEvAdSgAAYLfatGmjZ555RosWLdKZM2eue+3d2FS9vDJJV8rNtxUmJanCXKkr5Wa9vDJJ78amXvfagQMH9PXXX+uVV16xiTAp0VACAAA7l5+fLx8fH/Xr10/h4eFycnLSssRMvbwyqcaO8eZkX9030EvFxcUaNmyYiouLdfDgwapbQFo7GkoAAGATnnjiCTk4OFT9euONN27pfc2aNdOyZcsUHR2tuXPn6mResV5be6hGZ3t17SFlnr+k3/zmNzp69Ki+/fZbHTp0SPPmzdO8efNuemLOiRMn9Nxzz2nw4MFq2LBh1eeaN29ejc5WE6z7xpEAAACSysrKtGLFiuueW7ZsmV5++eVben9oaKjeeustPffcc9rpOkjl5kY1Ol+5uVLT/7lW25Yu1ddffy0/Pz8tWbJE8+fPr9omKCjouvfs27dPCxcurNE5aguBEgAAWL2oqCidP3/+uuf279+v5ORk9ejR45b28cwzz2hfeo5MJc6SavYbgRXmSp2Wm5597U3df//9t/QeV1dXjRw5UkOHDtW+ffu0Zs2aGp2pJrHkDQAArN6yZcuqHl8b2K59/nsrVqxQnz595OzsrD59+uibb77RvHnz5OjoqM8Xv6miA1HXbV+am66za/6uU4sfUsbfJ+rUuw/rfPj/U3nhueu2y09Yqow37lHGG/eo6ECUChPX6PQHjynjHxOV9fFTunJin9z6j5N09V7is2bNqnrv/Pnzb1jSHjlypCIjIzVv3rxbDsVGIVACAACrVlJSotWrV0uSWrdurXfeeUdOTlcXYX8YKFeuXKlf/vKXOnTokK5cuaJDhw7pvvvuq3r/VQ5Vjy6n7dKZz55T8ZF4VVy6IJnLVVGUp6IDkcr+7FmV5WffdKaCbct1IfrfKs8/I1WUq+zsCeWsfF2R+9Jq8qNbDAIlAACwauvXr9fFixclSRMnTpSHh0fV9xFTUlK0d+9eSVJFRYWeeeYZfX+Bm2nTpmnDhg2aM2eO9u/ff8N+zWUlOrdhoVRRJjnWU7OAh+V+31/kNmjK1f1duqC8yPdvOlN5frbcBk9V6ymvqL57Z0lSZellpWzZqEtXyrVixQrNnTu3avtZs2YpISFBCQkJ+tWvflUzP5g6RKAEAABW7doWcurUqdf989rXd+/erZMnT0qSPD09tXTpUo0dO1aLFi3S4MGDb9hvSfpemYsLJEnOnfqqYYfecnBqoEZd71a9ph5Xtzm+RxX/2+ZajXwGq3nQTLn4DFLTIdOqni+7cEYnzl/SgAED5OPjU/W8l5eXhg8fruHDh8vL68YLoVs6AiUAALBaFy9e1IYNGyRJLVq0UEhIiCRp8uTJqlevniRp+fLlqqys1PHjx6ve179//+uuATlkyJAb9l2Wd7rqccnx3cpZ+vuqXxUFOf97pVJl50/d8F7nDn2qHjs2cqt6bL5ySaXl5jv4pJaNs7wBAIDVWr16tUpKSiRJeXl5N71QeEZGhrZv337dcw4ODjdsd6cqy0pueM7RufE1x7qmv6usVAMn2+vzCJQAAMBqff3117e03bJly/TQQw9V/X7v3r2qqKioajF/GDglqX6LdlWPXfuEqtU9z96wjbmsRI71b+/2iZ1aukqSHB3/L1iazdbdWhIoAQCAVTp//ryioq5e4qdJkyZasGDBda+Xlpbq+eeflyR9++23WrhwoTp06KCTJ08qKytLDz/8sB588EFFRETou+++u2H/zp36ydGlqczFBbp0MEaOjRqrUad+qqw0q7wgR1dOHVFZbrraPnbzE3NupnFDJ7k2vBq/mjdvXvX8pk2bFBAQIGdnZ/n6+qpp06Y6e/asTCaTpKsnF33v8OHDVRdxDwwMVOvWrW/5+LWFe3kDAACr9OGHH+qJJ56QJE2ZMuWGO+VIUr9+/bRv3z5J0ubNm1VQUKCpU6fqh/HH19dXSUlX793d+p5n5NJnhCTpclqiclcuuHqm903Uc3NX+99+IunqdSgLtl5tTFuOfUaN/a7uoyTjgHK+vnpG910hE7QverUk6dy5c2rfvr2uXLly3T5jY2MVFBSkuLg4BQcH/+TP4PttjWZ7i/gAAMAuXLvcPX78+Jtuc++991Y9XrZsmSZPnqxvvvlGvXr1UoMGDdSzZ0999dVXCg0Nrdqusl7DqseNvAeqzcyFcu0drHpNWkmOTnJs5Kb67l3UZOBEtZ50a7d2/F6X1q5Vj1u1aqXVq1erX79+atSoZm/1WNdoKAEAgN2orKy86Qk5gwcP1o4dOyRJfrNeV37rPnJwrFdjx63n6KChXVrqi0cH1dg+LQmBEgAA2I34+Hi9//77euSRR1RYWKh9+/Zp/fr1Vcvd0tVlbK/Z/5bZoeYCZUMnR21+NlAdWrjU2D4tCSflAAAAu2E2m7Vs2bKb3uP7e108murPU/rq5ZVJP7rN7frz+N42GyYlvkMJAADsSJcuXTRjxgx16dLlR69FuWrVKt0/0EsvhHWrkWO+GNZd9w20vrvf3A6WvAEAgF364IMPNHv27KrfOzo6asaMGfrss8+qnluWmKnX1h5SublSFeZbj0z1HB3k5OigP4/vbfNhUiJQAgAAO2M2mzVz5kx98cUXqlevnioqKiRJTk5OSk1NVadOna7b/mReseauSlLCsXOq5+jwk8Hy+9f9u7bSgkm+Nr3MfS0CJQAAsBupqakKDAzUmTNn1KNHD8XFxenXv/611q9fr6eeekqLFy/+8ffmXNTSHZmKPZqrzPPFujZAOUjyaumi4G7umjHYS13dm9T6Z7EkBEoAAGAX3n77bb300kuqrKzUiy++qDfffFPS1QuM//Wvf9Wf/vQntWrV6pb2delKuU6cv6TScrMaODmqU0vXqjvg2CMCJQAAsGlFRUUaMWKEduzYoWbNmikyMlIDBw40eiybwlneAADAZkVERMjDw0M7duzQ6NGjlZOTQ5isBQRKAABgc8xms2bNmqXRo0errKxMS5Ys0caNG9WgQQOjR7NJ9rvYDwAAbFJ6err8/f11+vRp+fj4KD4+Xp6enkaPZdNoKAEAgM1YtGiRfHx8lJWVpeeee05Hjx4lTNYBGkoAAGD1iouLNXLkSG3btk1NmzbVpk2bNHjwYKPHshs0lAAAwKpFR0fL3d1d27Zt08iRI5Wbm0uYrGMESgAAYJXMZrMee+wxjRgxQleuXNHHH3+syMhITrwxAEveAADA6mRkZMjf318nT56Ut7e34uPj1bZtW6PHsls0lAAAwKq8++678vb21smTJzVnzhwdO3aMMGkwGkoAAGAVSkpKFBYWpoSEBLm5uSk8PFzDhg0zeiyIhhIAAFiBuLg4tW7dWgkJCQoJCVFubi5h0oIQKAEAgEWbPXu2goODVVJSoo8++kjR0dFq2LCh0WPhGix5AwAAi5SZmamAgABlZGSoc+fOio+PV/v27Y0eCzdBQwkAACzOhx9+KG9vb2VkZOjJJ5/U8ePHCZMWjIYSAABYjJKSEo0ePVomk0lNmjTRhg0b5O/vb/RY+BkESgAAYBG2bNmisWPH6uLFiwoMDNSmTZvk7Oxs9Fi4BSx5AwAAwz355JPy9/dXcXGx3nvvPcXFxREmrQgNJQAAMMypU6cUEBCg9PR0dezYUSaTSR07djR6LNwmGkoAAGCI//znP+rcubPS09P1+OOPV4VKWB8aSgAAUKdKS0s1ZswYxcTEqHHjxlq3bp2CgoKMHgvVQKAEAAB1Ztu2bRozZowKCws1fPhwRUREyMXFxeixUE0seQMAgDrx9NNPa9iwYbp06ZIWL16shIQEwqSNoKEEAAC1KisrSwEBAUpLS1OHDh0UHx+vTp06GT0WahANJQAAqDWffvqpOnbsqLS0ND366KM6ceIEYdIG0VACAIAaV1paqnvuuUdRUVFydXXVpk2bFBoaavRYqCUESgAAUKN27NihUaNGqaCgQEOHDlVUVBTflbRxLHkDAIAa8/zzz2vIkCEqKirSwoULtXXrVsKkHaChBAAA1Zadna2AgAClpqaqXbt2io+PV5cuXYweC3WEhhIAAFTL559/Li8vL6WmpmrmzJnKzMwkTNoZGkoAAHBHysvLde+992rTpk1ycXHR+vXrFRYWZvRYMACBEgAA3LbExESFhYUpPz9fgwYN0ubNm9W4cWOjx4JBWPIGAAC35fe//70GDRqkwsJCvfXWW/ruu+8Ik3aOhhIAANyS3NxcBQYGKjk5WW3btlVcXJx8fHyMHgsWgIYSAAD8rKVLl6pDhw5KTk7WjBkzdPLkScIkqtBQAgCAH1VeXq6JEydqw4YNatSokcLDwzVmzBijx4KFIVACAICb2rNnj0aOHKm8vDwNGDBA0dHRcnNzM3osWCCWvAEAwA3++Mc/asCAAcrPz9cbb7yhxMREwiR+FA0lAACocu7cOQUGBurw4cPy9PRUXFycunfvbvRYsHA0lAAAQJK0fPlytWvXTocPH9b06dN1+vRpwiRuCQ0lAAB2rry8XFOnTtWaNWvk7OystWvX6t577zV6LFgRAiUAAHbswIEDCgkJ0fnz59W/f3/FxsbyXUncNpa8AQCwU6+++qr69u2rCxcu6PXXX9fu3bsJk7gjNJQAANiZvLw8BQUFKSkpSe7u7oqNjVWvXr2MHgtWjIYSAAA7smLFCrVt21ZJSUmaNm2azpw5Q5hEtdFQAgBgB8xms6ZNm6aVK1eqYcOGWrVqlSZOnGj0WLARBEoAAGzcwYMHFRISorNnz6pv376KjY1Vs2bNjB4LNoQlbwAAbNj8+fPl5+enc+fOaf78+dq7dy9hEjWOhhIAABuUn5+voKAg7d+/X61bt1ZMTIz69Olj9FiwUTSUAADYmFWrVqlNmzbav3+/pkyZouzsbMIkahWBEgAAG/H9iTeTJ09WZWWlVqxYoRUrVsjRkb/uUbtY8gYAwAYcOXJEQUFBys3Nla+vr+Li4tSiRQujx4Kd4H9ZAACwcq+//rr69Omjs2fP6tVXX9WBAwcIk6hTNJQAAFipwsJCBQUFae/evWrZsqViYmLk5+dn9FiwQzSUAABYobVr18rDw0N79+7VhAkTlJ2dTZiEYQiUAABYEbPZrOnTp2vChAkym81atmyZVq9eLScnFh1hHP7tAwDASqSkpCgoKEjZ2dnq3bu34uLi1KpVK6PHAmgoAQCwBn//+9/Vq1cv5eTkaO7cuTp48CBhEhaDhhIAAAtWWFiokJAQ7d69Wy1atFBUVJT69+9v9FjAdWgoAQCwUOHh4fL09NTu3bt1zz33KCcnhzAJi0SgBADAwpjNZs2YMUPjxo1TRUWFli5dqnXr1nHiDSwW/2YCAGBBUlNTFRgYqDNnzqhHjx4ymUxyd3c3eizgJ9FQAgBgId5++2316NFD2dnZeumll3TkyBHCJKwCDSUAAAYrKipSaGiodu7cqebNmysyMlIDBgwweizgltFQAgBgoIiICHl4eGjnzp0aM2aMcnNzCZOwOgRKAAAMYDabNXPmTI0ePVplZWX6/PPPFR4ezok3sEr8WwsAQB1LT0+Xv7+/Tp8+rW7duik+Pl4eHh5GjwXcMRpKAADq0KJFi+Tj46OsrCw9//zzSklJIUzC6tFQAgBQB4qLizVixAht375dTZs2VUREhAYNGmT0WECNoKEEAKCWRUdHy93dXdu3b1dYWJhyc3MJk7ApBEoAAGqJ2WzWr3/9a40YMUKlpaX69NNPFRERoQYNGhg9GlCjWPIGAKAWZGRkyN/fXydPnlTXrl0VHx+vNm3aGD0WUCtoKAEAqGHvvvuuvL29dfLkST399NNKTU0lTMKm0VACAFBDiouLNWrUKG3ZskVubm7auHGjhg4davRYQK2joQQAoAbExcXJ3d1dW7ZsUWhoqM6ePUuYhN0gUAIAUA1ms1lPPPGEgoODdeXKFf373//W5s2bOfEGdoUlbwAA7lBmZqYCAgKUkZGhLl26yGQyqX379kaPBdQ5GkoAAO7A+++/L29vb2VkZOipp55SWloaYRJ2i4YSAIDbUFJSotGjR8tkMqlJkyYKDw/X8OHDjR4LMBQNJQAAtyg+Pl7u7u4ymUwKCgpSbm4uYRIQgRIAgFvy5JNPKjAwUJcvX9YHH3yg2NhYOTs7Gz0WYBFY8gYA4CecOnVKAQEBSk9PV6dOnWQymeTl5WX0WIBFoaEEAOBHfPTRR+rcubPS09P1xBNPKD09nTAJ3AQNJQAAP1BaWqoxY8YoJiZGjRs31rp16xQUFGT0WIDFIlACAHCNrVu3auzYsSosLJS/v78iIyP5riTwM1jyBgDgf+bMmaPhw4fr0qVLevfddxUfH0+YBG4BDSUAwO5lZWUpICBAaWlp8vLyUnx8vDp27Gj0WIDVoKEEANi1Tz/9VB07dlRaWpoee+wxpaenEyaB20RDCQCwS6WlpRo3bpw2b94sV1dXbdq0SaGhoUaPBVglAiUAwO7s2LFDo0aNUkFBgYYNG6bIyEi5uLgYPRZgtVjyBgDYleeee05DhgxRUVGRFi1apC1bthAmgWqioQQA2IXs7GwFBAQoNTVV7du3V3x8vDp37mz0WIBNoKEEANi8zz//XF5eXkpNTdWsWbOUkZFBmARqEA0lAMBmlZaWavz48YqIiJCLi4s2bNigkSNHGj0WYHMIlAAAm5SYmKiwsDDl5+dr8ODBioqKUuPGjY0eC7BJLHkDAGzOSy+9pEGDBqmwsFBvv/22tm/fTpgEahENJQDAZuTm5iowMFDJyclq27atTCaTunbtavRYgM2joQQA2ISlS5eqQ4cOSk5O1sMPP6yTJ08SJoE6QkMJALBq5eXlmjBhgsLDw9WoUSOFh4drzJgxRo8F2BUCJQDAau3Zs0cjRozQhQsXNHDgQMXExPBdScAALHkDAKzS3LlzNWDAABUUFOjNN9/Uzp07CZOAQWgoAQBW5dy5cwoMDNThw4fl6ekpk8mkbt26GT0WYNdoKAEAVmP58uVq166dDh8+rAceeECnT58mTAIWgIYSAGDxysvLNWXKFK1du1bOzs5at26d7rnnHqPHAvA/BEoAgEXbt2+fRowYofPnz+sXv/iFYmJi5ObmZvRYAK7BkjcAwGK9+uqr6t+/vy5cuKAFCxZo165dhEnAAtFQAgAsTl5enoKCgpSUlCQPDw/FxsaqZ8+eRo8F4EfQUAIALMqKFSvUtm1bJSUl6b777lNWVhZhErBwNJQAAItgNps1depUrVq1Ss7Ozlq9erUmTJhg9FgAbgGBEgBguIMHDyo4OFjnzp1T3759FRsbq2bNmhk9FoBbxJI3AMBQ8+fPl5+fn/Ly8vSXv/xFe/fuJUwCVoaGEgBgiPz8fAUGBurAgQNq3bq1YmJi1KdPH6PHAnAHaCgBAHVu1apVatOmjQ4cOKApU6YoOzubMAlYMQIlAKDOmM1mTZs2TZMnT1ZlZaVWrFihFStWyNGRv44Aa8aSNwCgThw6dEghISHKzc2Vn5+fYmNj1aJFC6PHAlAD+F9CAECte/311+Xn56ezZ8/qtdde0/79+wmTgA2hoQQA1JrCwkIFBQVp7969atWqlaKjo+Xn52f0WABqGA0lAKBWrF27Vh4eHtq7d68mTpyoM2fOECYBG0WgBADUKLPZrOnTp2vChAmqrKzU8uXLtWrVKjk5sSgG2Cr+6wYA1JiUlBQFBQVVXQYoLi5OLVu2NHosALWMhhIAUCPeeOMN9erVSzk5OZo7d66SkpIIk4CdoKEEAFRLYWGhQkJCtHv3brVo0ULR0dHq27ev0WMBqEM0lACAOxYeHi5PT0/t3r1b48ePV05ODmESsEMESgDAbTObzXrwwQc1btw4VVRU6KuvvtKaNWs48QawU/yXDwC4LampqQoMDNSZM2fUs2dPxcfHq1WrVkaPBcBANJQAgFv2j3/8Qz169FB2drZefvllHT58mDAJgIYSAPDzioqKFBoaqp07d6p58+aKjIzUgAEDjB4LgIWgoQQA/KSIiAh5eHho586dGjt2rHJzcwmTAK5DoAQA3JTZbNYjjzyi0aNHq6ysTF988YU2bNjAiTcAbsCfCgCAG6SlpSkwMFCnT59W9+7dFR8fL3d3d6PHAmChaCgBANd555131L17d2VlZemFF15QcnIyYRLAT6KhBABIkoqLizVixAht375dzZo1U2RkpAYOHGj0WACsAA0lAEDR0dFyd3fX9u3bNWrUKOXk5BAmAdwyAiUA2DGz2axf/epXGjFihEpLS7VkyRJt2rRJDRo0MHo0AFaEJW8AsFPp6ekKDAzUyZMn5ePjo/j4eHl6eho9FgArREMJAHZo8eLF8vHx0alTp/Tss8/q6NGjhEkAd4yGEgDsSHFxsUaNGqUtW7aoadOm2rhxo4YMGWL0WACsHA0lANiJmJgYubu7a8uWLRoxYoRyc3MJkwBqBIESAGyc2WzWb37zG4WGhurKlSv6z3/+o6ioKE68AVBjWPIGABuWmZmpgIAAZWRkyNvbWyaTSe3atTN6LAA2hoYSAGzU+++/ry5duigjI0O/+93vdOzYMcIkgFpBQwkANqakpESjR4+WyWSSm5ubwsPDNWzYMKPHAmDDaCgBwIbEx8fL3d1dJpNJwcHBysnJIUwCqHUESgCwEb/97W8VGBioy5cv68MPP1RMTIycnZ2NHguAHWDJGwCs3KlTpxQQEKD09HR17txZ8fHxat++vdFjAbAjNJQAYMU++ugjde7cWenp6Zo9e7aOHz9OmARQ52goAcAKlZaWasyYMYqJiVHjxo21YcMGBQQEGD0WADtFoAQAK7N161aNHTtWhYWFCggIUEREBN+VBGAolrwBwIrMmTNHw4cP16VLl/Svf/1LJpOJMAnAcDSUAGAFsrKy5O/vr+PHj8vLy0vx8fHq2LGj0WMBgCQaSgCweB9//LE6duyo48eP67HHHlN6ejphEoBFoaEEAAtVWlqqcePGafPmzXJ1dVVERIRCQkKMHgsAbkCgBAALtGPHDo0aNUoFBQUaNmyYIiMj5eLiYvRYAHBTLHkDgIV57rnnNGTIEBUVFen//b//py1bthAmAVg0GkoAsBDZ2dkKCAhQamqqOnToIJPJpM6dOxs9FgD8LBpKALAAn332mby8vJSamqpZs2bpxIkThEkAVoOGEgAMVFpaqvHjxysiIkIuLi7asGGDRo4cafRYAHBbCJQAYJDExESFhYUpPz9fQ4YM0ebNm/muJACrxJI3ABjgxRdf1KBBg1RYWKiFCxdq27ZthEkAVouGEgDqUG5urgICApSSkqJ27drJZDLJ29vb6LEAoFpoKAGgjnz55Zdq3769UlJS9MgjjygzM5MwCcAm0FACQC0rLy/XhAkTFB4eLhcXF61bt06jRo0yeiwAqDEESgCoRbt27VJYWJguXLigu+++W9HR0WrcuLHRYwFAjWLJGwBqyR/+8AfdfffdKigo0FtvvaUdO3YQJgHYJBpKAKhh586dU0BAgI4cOaI2bdrIZDLJx8fH6LEAoNbQUAJADfr666/Vrl07HTlyRA8++KBOnTpFmARg82goAaAGlJeXa8qUKVq7dq0aNWqkDRs2aOzYsUaPBQB1gkAJANW0b98+jRgxQufPn9cvfvELxcTEyM3NzeixAKDOsOQNANXwyiuvqH///rpw4YL+9re/adeuXYRJAHaHhhIA7kBeXp4CAwN18OBBeXh4KDY2Vj179jR6LAAwBA0lANymFStWqG3btjp48KDuv/9+ZWVlESYB2DUaSgC4RWazWVOnTtWqVavk7OysNWvWaPz48UaPBQCGI1ACwC04ePCggoODde7cOfXv31+xsbF8VxIA/oclbwD4GfPmzZOfn5/y8vL0l7/8Rbt37yZMAsA1aCgB4Efk5+crMDBQBw4ckLu7u2JiYtS7d2+jxwIAi0NDCQA3sWrVKnl6eurAgQOaOnWqzpw5Q5gEgB9BoASAa5jNZk2bNk2TJ0+WJK1cuVLffvutHB354xIAfgxL3gDwP4cOHVJISIhyc3N11113KS4uTs2aNTN6LACwePwvNwBI+utf/yo/Pz+dPXtW8+bN0759+wiTAHCLaCgB2LX8/HyFhIRo7969atWqlWJjY9WnTx+jxwIAq0JDCcBurV27Vm3atNHevXs1adIkZWdnEyYB4A4QKAHYHbPZrOnTp2vChAmqrKzUt99+q5UrV6pevXpGjwYAVoklbwB25ciRIwoJCVF2drZ8fX0VFxenFi1aGD0WAFg1GkoAduONN95Qnz59lJOToz/96U86cOAAYRIAagANJQCbV1hYqJCQEO3evVstW7bU5s2b1bdvX6PHAgCbQUMJwKaFh4fL09NTu3fv1vjx45WdnU2YBIAaRqAEYJPMZrMefPBBjRs3ThUVFVq2bJnWrFkjJycWZgCgpvEnKwCbc/ToUQUGBio7O1u9evWSyWRSq1atjB4LAGwWDSUAm/KPf/xDPXv2VE5Ojl5++WUdOnSIMAkAtYyGEoBNKCoqUkhIiBITE9W8eXNt3rxZ/fv3N3osALALNJQArN7GjRvl4eGhxMREjRs3Trm5uYRJAKhDBEoAVstsNuuRRx7R2LFjVVZWpi+//FLr16/nxBsAqGP8qQvAKqWlpSkgIEBZWVnq0aOHTCaT3N3djR4LAOwSDSUAq/PPf/5T3bp105kzZ/Tiiy/qyJEjhEkAMBANJQCrUVxcrNDQUH333Xdq1qyZIiMjNXDgQKPHAgC7R0MJwCpERUWpdevW+u677zR69Gjl5OQQJgHAQhAoAVg0s9msWbNmKSwsTGVlZVqyZIk2btyoBg0aGD0aAOB/WPIGYLHS09MVEBCgU6dOycfHR/Hx8fL09DR6LADAD9BQArBIixcvlo+Pj06fPq1nn31WR48eJUwCgIWioQRgUYqLixUWFqatW7eqadOmioiI0KBBg4weCwDwE2goAViMmJgYubu7a+vWrRo5cqRyc3MJkwBgBQiUAAxnNpv12GOPKTQ0VFeuXNEnn3yiyMhITrwBACvBkjcAQ2VkZCggIECZmZny9vZWfHy82rZta/RYAIDbQEMJwDDvvfeevL29lZmZqTlz5ujYsWOESQCwQjSUAOpcSUmJwsLClJCQIDc3N4WHh2vYsGFGjwUAuEM0lADqVHx8vFq3bq2EhASFhIQoJyeHMAkAVo5ACaDOzJ49W4GBgSopKdGHH36o6OhoOTs7Gz0WAKCaWPIGUOsyMzMVGBioEydOqEuXLjKZTGrfvr3RYwEAaggNJYBa9eGHH8rb21snTpzQb3/7W6WlpREmAcDG0FACqBUlJSUaM2aM4uLi1KRJE61fv14BAQFGjwUAqAUESgA1bsuWLRo7dqwuXryowMBAbdq0ie9KAoANY8kbQI363e9+J39/fxUXF+u9995TXFwcYRIAbBwNJYAakZWVJX9/fx0/flwdO3ZUfHy8vLy8jB4LAFAHaCgBVNvHH3+sjh076vjx43r88cd1/PhxwiQA2BEaSgB3rLS0VGPHjlV0dLRcXV0VFRWloKAgo8cCANQxAiWAO7J9+3aNHj1ahYWFGj58uCIiIuTi4mL0WAAAA7DkDeC2Pfvssxo2bJguXbqkxYsXKyEhgTAJAHaMhhLALTtz5owCAgJ07NgxdejQQQkJCerYsaPRYwEADEZDCeCWLFmyRB07dtSxY8f06KOP6sSJE4RJAIAkGkoAP6O0tFTjx49XRESEXF1dtXHjRoWGhho9FgDAghAoAfyonTt3KiwsTAUFBRoyZIg2b97MdyUBADdgyRvATb344osaPHiwioqKtHDhQm3bto0wCQC4KRpKANfJyclRQECAjh49qnbt2slkMsnb29vosQAAFoyGEkCVL7/8Uh06dNDRo0f1yCOPKDMzkzAJAPhZNJQAVF5ervHjx2vjxo1ycXHRunXrNGrUKKPHAgBYCQIlYOd27dqlsLAwXbhwQXfffbeio6PVuHFjo8cCAFgRlrwBO/aHP/xBd999twoKCvTWW29px44dhEkAwG2joQTsUG5urgIDA5WcnKw2bdrIZDLJx8fH6LEAAFaKhhKwM19//bU6dOig5ORkPfjggzp16hRhEgBQLTSUgJ0oLy/XpEmTtH79ejVq1EgbNmzQ2LFjjR4LAGADCJSAHdi3b59CQ0OVl5enAQMGKDo6Wm5ubkaPBQCwESx5Azbuj3/8o/r376/8/Hz97W9/U2JiImESAFCjaCgBG3Xu3DkFBQXp0KFD8vT0VFxcnLp37270WAAAG0RDCdigb775Ru3atdOhQ4c0ffp0nT59mjAJAKg1NJSADSkvL9fUqVO1Zs0aOTs7a82aNRo/frzRYwEAbByBErARBw4cUEhIiM6fP6/+/fsrNjaW70oCAOoES96ADZg3b5769u2rCxcu6K9//at2795NmAQA1BkaSsCK5eXlKSgoSElJSXJ3d1dMTIx69+5t9FgAADtDQwlYqf/+979q27atkpKSNG3aNJ05c4YwCQAwBIESsDJms1lTpkzR1KlTJUkrV67UN998I0dH/nMGABiDJW/Aihw8eFAhISE6e/as7rrrLsXFxalZs2ZGjwUAsHNUGoCV+POf/yw/Pz+dO3dO8+fP1759+wiTAACLQEMJWLj8/HwFBwdr3759at26tWJiYtSnTx+jxwIAoAoNJWDB1qxZozZt2mjfvn2aPHmysrOzCZMAAItDoAQskNls1i9/+UtNnDhRlZWV+vbbb/Xf//6XE28AABaJJW/Awhw5ckRBQUHKzc2Vr6+v4uLi1KJFC6PHAgDgR1F3ABbkb3/7m/r06aOzZ8/qlVde0YEDBwiTAACLR0MJWIDCwkIFBwdrz549atmypWJiYuTn52f0WAAA3BIaSsBg69atk4eHh/bs2aMJEyYoOzubMAkAsCoESsAgZrNZDzzwgMaPHy+z2axly5Zp9erVcnJi4QAAYF34mwswQEpKioKCgpSdna1evXrJZDKpVatWRo8FAMAdoaEE6tjf//539erVSzk5OfrDH/6gQ4cOESYBAFaNhhKoI0VFRQoJCVFiYqJatGihqKgo9e/f3+ixAACoNhpKoA5s3LhR7u7uSkxM1Lhx45STk0OYBADYDAIlUIvMZrMefvhhjR07VhUVFfryyy+1fv16TrwBANgU/lYDaklqaqoCAwN15swZ9ejRQyaTSe7u7kaPBQBAjaOhBGrB22+/rR49eig7O1svvfSSjhw5QpgEANgsGkqgBhUVFWnEiBHasWOHmjVrpqioKA0YMMDosQAAqFU0lEANiYyMlIeHh3bs2KHRo0crJyeHMAkAsAsESqCazGazZs2apVGjRqmsrEyfffaZNm7cqAYNGhg9GgAAdYIlb6Aa0tPT5e/vr9OnT8vHx0fx8fHy9PQ0eiwAAOoUDSVwhxYtWiQfHx9lZWXpueee09GjRwmTAAC7REMJ3Kbi4mKNHDlS27ZtU9OmTRUREaFBgwYZPRYAAIahoQRuQ3R0tNzd3bVt2zaNHDlSubm5hEkAgN0jUAK3wGw267HHHtOIESN05coVffLJJ4qMjOTEGwAAxJI38LMyMjLk7++vkydPqmvXrjKZTGrbtq3RYwEAYDFoKIGf8O6778rb21snT57UnDlzlJqaSpgEAOAHaCiBm7h8+bLCwsK0ZcsWubm5KTw8XMOGDTN6LAAALBINJfADcXFxcnd315YtWxQaGqqzZ88SJgEA+AkESuAas2fPVnBwsEpKSvTvf/9bmzdv5sQbAAB+BkvegKTMzEwFBAQoIyNDXbp0kclkUvv27Y0eCwAAq0BDCbv3wQcfyNvbWxkZGXrqqaeUlpZGmAQA4DbQUMJulZSUaPTo0TKZTGrSpInCw8M1fPhwo8cCAMDq0FDCLm3ZskXu7u4ymUwKCgpSbm4uYRIAgDtEoITdefLJJ+Xv76/i4mK99957io2NlbOzs9FjAQBgtVjyht04deqUAgIClJ6ero4dOyo+Pl5eXl5GjwUAgNWjoYRd+Pe//63OnTsrPT1dTzzxhE6cOEGYBACghtBQwqaVlpZqzJgxiomJUePGjbVu3ToFBQUZPRYAADaFQAmbtW3bNo0ZM0aFhYXy9/fXpk2b5OLiYvRYAADYHJa8YZOefvppDRs2TJcuXdLixYsVHx9PmAQAoJbQUMKmZGVlKSAgQGlpaerQoYMSEhLUsWNHo8cCAMCm0VDCZnz66afq2LGj0tLS9Otf/1onTpwgTAIAUAdoKGH1SktLdc899ygqKkqurq7atGmTQkNDjR4LAAC7QaCEVduxY4dGjRqlgoICDR06VFFRUXxXEgCAOsaSN6zW888/ryFDhqioqEjvvPOOtm7dSpgEAMAANJSwOtnZ2QoMDNTRo0fVrl07mUwmeXt7Gz0WAAB2i4YSVuXzzz+Xl5eXjh49qpkzZyozM5MwCQCAwWgoYRXKy8t17733Vl2cfMOGDRo5cqTRYwEAABEoYQUSExMVFham/Px8DRo0SJs3b1bjxo2NHgsAAPwPS96waL///e81aNAgFRYW6u2339Z3331HmAQAwMLQUMIi5ebmKjAwUMnJyWrTpo1MJpN8fHyMHgsAANwEDSUszldffaUOHTooOTlZDz30kE6dOkWYBADAgtFQwmKUl5dr4sSJ2rBhgxo1aqTw8HCNGTPG6LEAAMDPIFDCIuzZs0cjR45UXl6eBgwYoOjoaLm5uRk9FgAAuAUsecNwf/zjHzVgwADl5+frzTffVGJiImESAAArQkMJw5w7d06BgYE6fPiwPD09FRcXp+7duxs9FgAAuE00lDDE8uXL1a5dOx0+fFjTp0/X6dOnCZMAAFgpGkrUqfLyck2ZMkVr166Vs7Oz1q1bp3vuucfosQAAQDUQKFFn9u/fr9DQUJ0/f179+/dXbGws35UEAMAGsOSNOvHqq6+qX79+unDhghYsWKDdu3cTJgEAsBE0lKhVeXl5CgoKUlJSktzd3RUXF6eePXsaPRYAAKhBNJSoNf/973/Vtm1bJSUladq0aTpz5gxhEgAAG0RDiRpnNps1depUrVq1Ss7Ozlq9erUmTJhg9FgAAKCWEChRow4ePKjg4GCdO3dOffv2VWxsrJo1a2b0WAAAoBax5I0aM3/+fPn5+en8+fOaP3++9u7dS5gEAMAO0FCi2vLz8xUUFKT9+/erdevWiomJUZ8+fYweCwAA1BEaSlTLqlWr1KZNG+3fv19TpkxRdnY2YRIAADtDoMQdMZvNmjZtmiZPnqzKykqtWLFCK1askKMj/0oBAGBvWPLGbTt8+LCCg4OVm5srX19fxcXFqUWLFkaPBQAADEKdhNvy+uuvy9fXV2fPntUrr7yiAwcOECYBALBzNJS4JYWFhQoKCtLevXvVsmVLxcTEyM/Pz+ixAACABaChxM9au3atPDw8tHfvXk2cOFHZ2dmESQAAUIVAiR9lNps1ffp0TZgwQWazWcuXL9eqVavk5ESxDQAA/g/JADeVkpKioKAgZWdnq3fv3oqLi1OrVq2MHgsAAFggGkrc4M0331SvXr2Uk5OjuXPn6uDBg4RJAADwo2goUaWwsFAhISHavXu3WrRooaioKPXv39/osQAAgIWjoYQkKTw8XJ6entq9e7fuuece5eTkECYBAMAtIVDaObPZrBkzZmjcuHGqqKjQV199pXXr1nHiDQAAuGWkBjuWmpqqwMBAnTlzRj169JDJZJK7u7vRYwEAACtDQ2mn3nrrLfXo0UPZ2dl66aWXdOTIEcIkAAC4IzSUdqaoqEihoaHauXOnmjdvrsjISA0YMMDosQAAgBWjobQjERER8vDw0M6dOzVmzBjl5uYSJgEAQLXZTaCsrKw0egTDmM1mPfLIIxo9erTKysr0xRdfKDw8nBNvAABAjbCLQHnw4EE1aNBADz30kI4ePWr0OHXq+PHj8vLy0ueff65u3bopMzNTM2bMMHosAABgQ+wiUGZnZ6u8vFxfffWVevToYTfB8p133lG3bt2UlZWlF154QSkpKfL09DR6LAAAYGMcKu1gLXjz5s0aOXJk1e/r1asns9mswMBALVq0SEVFRbp48aJcXV3Vp08fNWvWzLhha0BxcbFGjBih7du3q2nTpoqIiNCgQYOMHgsAANgou/gSXWlp6XW/r6iokCTFxcXp0Ucf1eHDh1VcXFz1eq9evTRkyBAFBwdr2rRpatCgQZ3OWx3R0dGaMGGCLl26pLCwMK1bt86q5gcAANbHppe8y8vL9Z///EePPPLIDa+1bt1ab775puLj45Wdna3MzEwdOHBAS5Yskb+/vxITEzVjxgx5e3vrX//6l0pKSgz4BLfObDbr0Ucf1YgRI1RaWqolS5YoIiKCMAkAAGqdzS55p6SkaNKkSTpy5IiCgoIUFxcnSWrTpo1ee+01zZw5Uw0bNvzJfRw+fFgLFizQ119/LU9PT3355ZcKDg6ug+lvz4kTJ+Tv769Tp06pa9euMplMatu2rdFjAQAAO2GTDeXWrVs1dOhQSdKePXv0xRdfaPjw4frggw+Unp6uxx9//GfDpHR16fvLL79UcnKyevbsqZEjR+pf//qXRV2CaPHixeratatOnTqlZ555RqmpqYRJAABQp2yuoYyIiNCECRM0aNAgrV69Ws2bN6+R/ZaXl+vFF1/UO++8o9/97ndatGiRHBwcamTfd6K4uFhhYWHaunWr3NzcFB4ermHDhhk2DwAAsF82FShPnjypvn37atCgQVq1atUttZC364MPPtDs2bO1ePFiPfXUUzW+/1sRGxure++9V5cuXVJoaKjCw8P5riQAADCMzQTK8vJyhYSEKD09Xfv27VPLli1r7VjPPvus3n33XcXExMjf37/WjvNDZrNZs2fP1kcffSQnJye9//77+vWvf11nxwcAALgZmwmUCxcu1AsvvKC4uLhaD3llZWUaOXKkUlJSlJqaqsaNG9fq8SQpIyNDAQEByszMVJcuXWQymdS+fftaPy4AAMDPsYmTckpKSvT3v/9dM2fOrJPGsH79+vrss890/vx5LVq0qNaP995778nb21uZmZl66qmnlJaWRpgEAAAWwyYayg8++EBPPvmkkpOT5ePjU2fHnTNnjj7//HOlp6fX2Mk/1yopKdGoUaMUHx+vJk2aKDw8XMOHD6/x4wAAAFSH1TeUlZWVevvttzV16tQ6DZOSNHfuXJWVlWnx4sU1vu/4+Hi5u7srPj5eQUFBys3NJUwCAACLZPWBMjk5WceOHdPMmTPr/Nienp6aMmWKvvnmmxrd75NPPqnAwEBdvnxZH3zwgWJjY+Xs7FyjxwAAAKgpVn8v740bN8rZ2VlBQUGGHH/SpEn64osvdPToUXXr1q1a+zp58qQCAgJ04sQJderUSSaTSV5eXjU0KQAAQO2w+oZy06ZNCgwMVKNGjQw5/qhRo9SoUSOtWrWqWvv56KOP1KVLF504cUJPPPGE0tPTCZMAAMAqWH1DuXfvXs2ZM8ew47u4uGjYsGHasWPHHb3/ypUrGjNmjGJjY9W4cWOtW7fOsLYVAADgTlh1Q1lUVKRz586pS5cuhs7RvXt3paSk3Pb7tm7dKnd3d8XGxiogIEBnz54lTAIAAKtj1YEyIyNDktSpUydD5+jevbuOHTumioqKW37PnDlzNHz4cF26dEn/+te/ZDKZOPEGAABYJate8j516pQkGX6R765du6q0tFSnT5/+2e89ZmVlKSAgQGlpafLy8lJ8fLw6duxYR5MCAADUPKtuKL/n4OBg6PG/bxbLy8t/crtPPvlEHTt2VFpamh577DGlp6cTJgEAgNWz6oayQYMGkq7eW9uSlZaWaty4cdq8ebNcXV21adMmhYaGGj0WAABAjbDqQFm/fn1Jlh0ov/vuO40ePVoFBQUaNmyYIiMj5eLiYvRYAAAANcaql7xbtmwpScrJyTF0jvPnz0uS3Nzcrnv+2Wef1dChQ1VUVKR33nlHW7ZsIUwCAACbY9UNZdeuXeXk5KRDhw4pMDDQsDlSUlLUokULtWrVSpKUnZ2tgIAApaamqn379oqPj1fnzp0Nmw8AAKA2WXVDWb9+fXXr1k2HDh0ydI6UlJSq2y5+9tln8vLyUmpqqmbNmqWMjAzCJAAAsGlWHSglydfXV3v27Knz46anp2vs2LE6fvy4kpKS1LVrV40ePVozZ85U/fr1FRkZqU8++USOjlb/IwYAAPhJDpWVlZVGD1Edn332mWbNmqVTp06pbdu2t/3+S1fKdeL8JZWWm9XAyVGdWrrKteHPfxPg/vvv1/Lly+Xr66ukpCS5uLiouLhYgwcPVlRUlBo3bnwnHwcAAMDqWH2gvHDhgjw8PPTPf/5TTz311C29JzXnopbuyFRsSq4y84p17Q/AQZJXCxcFd3fXg4O85OPR5Ib379u3T/369bvuOUdHR/3jH//Qc889V41PAwAAYH2sPlBK0tixY1VQUKCtW7f+5HYn84o1d1WSEo6dUz1HB1WYf/yjf/+6f9dWWjDJVx1a/N/Z2aNHj9bmzZuvu9Xi0qVL9cADD1T/wwAAAFgZmwiUq1ev1qRJkxQdHa2QkJCbbrMsMVOvrT2kcnPlTwbJH6rn6CAnRwfNH99b9w/0UkJCggICAq7bxsHBQZ6enjp06JCaN29erc8CAABgbWwiUFZWVmrw4MGSrl5I/Ie3Ynw3NlVvRR6t9nGeG+Gj16YOUn5+/k1fj4mJUXBwcLWPAwAAYE1s4hRkBwcH/e1vf9POnTv1zTffXPfassTMGgmTkvTPzakq9xooJycn9ejRQ5L0+OOPKyoqSqdPnyZMAgAAu2RxgfKJJ56Qg4ND1a833njjlt4XEhKiqVOn6je/+Y2Sk5MlXf3O5Gtra/AalZWV8rznaZl2HVROTo7Gjh2rxx9/XFu2bNFHH32kuLi4m76tsLBQv//97+Xt7a2GDRvKw8NDM2bMUFpaWs3NBgAAYBCLWvIuKytTmzZtqm5lKEl33XWX9u3bd0vvv3jxogYNGiSz2awdO3boqRXJ2nb8/G19Z/Ln1HOUHHJSVRm7WLt27dKaNWs0a9YsSdJrr72mefPmXbd9YWGh/P39deDAgRv21bx5c5lMJvn6+tbYfAAAAHXNohrKqKio68KkJO3fv7+qcfw5TZo00erVq5Wdna0RUx5SwrFzNRomJanCLJW39tHiz769pRNw5s2bVxUmAwICtHr1aj3++OOSrl7y6NFHH63R+QAAAOqaRTWUDz/8sL744gtJVy8cvmzZMkk3b/5WrFihefPm6dixY+ratateffVVHT58WPPnz5ckNesbJrewJ+XgWE+SVJqbroLt3+pKZpIqLl9UPRc3NeoyQE2HPyAnt1ZV+81PWKqCrV9LklqOfVrmK8W6uHu9yi+eVf0W7dU89DG5dr5LDw/upCVzxikjI+Omn+W1117T3Llz5eHhofz8fDk4OOj06dNq06aNKisr1atXr6qgvGvXLv3iF7+ouR8kAABAHbKYhrKkpESrV6+WJLVu3VrvvPOOnJyu3rHm+2D5vZUrV+qXv/ylDh06pCtXrujQoUO67777qt4vSa26+lWFyctpu3Tms+dUfCReFZcuSOZyVRTlqehApLI/e1Zl+dk3nalg23JdiP63yvPPSBXlKjt7QmdX/lVll4sUezT3Zz/TwYMHq84I79Spk9q0aSPp6klEQ4YMqdouISHhln5GAAAAlshiAuX69et18eJFSdLEiRPl4eGhoKAgSVJKSor27t0rSaqoqNAzzzyj74vVadOmacOGDZozZ472799ftb8LxeWSJHNZic5tWChVlEmO9dQs4GG53/cXuQ2acnV/ly4oL/L9m85Unp8tt8FT1XrKK6rv3lmSVFl6WcWH4pR5vlhffLVMc+fOrdp+1qxZSkhIUEJCgn71q1/pxIkTVa95eHhct293d/eqx+np6bf98wIAALAUFhMor20hp06det0/r3199+7dOnnypCTJ09NTS5cu1dixY7Vo0aKqa1FeqyR9r8zFBZIk50591bBDbzk4NVCjrnerXtOrIa/k+B5V/G+bazXyGazmQTPl4jNITYdMq3q+7MIZVUpq0amnfHx8qp738vLS8OHDNXz4cHl5eenSpUtVrzVo0OC6fV/7+2u3AwAAsDYWESgvXryoDRs2SJJatGhRdbebyZMnq169q8vWy5cvV2VlpY4fP171vv79+6t+/fpVv792Gfl7ZXmnqx6XHN+tnKW/r/pVUZDzv1cqVXb+1A3vde7Qp+qxYyO3qsfmK1cDYGm5+Sc/l6ura9XjK1euXPdaaWnpTbcDAACwNk5GDyBdvXViSUmJJCkvL++6kPi9jIwMbd++/brnfnhHnOqoLCu54TlH58bXHOua7P2/5fYGTj+dxzt16lT1OCcn57rXsrP/73ubnTt3vp1RAQAALIpFBMqvv/76lrZbtmyZHnrooarf7927VxUVFVUt5g8DpyTVb9Gu6rFrn1C1uufZG7Yxl5XIsb7zbc3sIKlTS1ftdvy/UGk2X99Y9unTR02bNlVBQYEyMjJ0+vRptWvXTpWVlfruu++qtvP397+tYwMAAFgSwwPl+fPnFRUVJenqdSQXLFhw3eulpaV6/vnnJUnffvutFi5cqA4dOujkyZPKysrSww8/rAcffFARERHXhbSWjRvoiiTnTv3k6NJU5uICXToYI8dGjdWoUz9VVppVXpCjK6eOqCw3XW0fu/mJOT/Gq6WLXBs6XXctyk2bNikgIEDOzs7y9fVV06ZN9atf/UoLFy5UZWWlpk+frhdeeEEbNmxQSkqKJGnAgAFcMggAAFg1w69D+eGHH+qJJ56QJE2ZMkUrVqy4YZt+/fpV3S1n8+bNKigo0NSpU/XD0X19fZWUlCRJmjDnr0pq3E8V5kpdTktU7soFV8/0vol6bu5q/9tPJP3wOpTPqLHfCElSScYB5Xx99Yzuxr6hev6vizRvfG+dO3dO7du3v+E7krGxsQoKCvrJO+U0a9ZM8fHx3CkHAABYNcNPyrl2uXv8+PE33ebee++terxs2TJNnjxZ33zzjXr16qUGDRqoZ8+e+uqrrxQaGlq1XXDv9lV3yWnkPVBtZi6Ua+9g1WvSSnJ0kmMjN9V376ImAyeq9aSXb2vmykppxmAvSVKrVq20evVq9evXT40aNbphWzc3NyUkJOjFF19U586d1aBBA7m7u+uBBx5QYmIiYRIAAFg9wxvKO1FZWXnTE3IGDx6sHTt2SJL27Nmjf+4prYV7eTtoaJeW+uLRQTW2TwAAAGtmeEN5JxISEjR9+nRFREQoIyND+/fv15NPPlkVJrt376677rpLCyb5ysmx5s4ElyQnRwctmESrCAAA8D2rbCjj4uIUHBx809eaNGmiyMjIqoucL0vM1Msrk2rs2G9O9tV9A71qbH8AAADWziobyi5dumjGjBny9vaWi4uLGjZsqK5du2r27Nnav3//dXfMuX+gl14I61Yjx30xrDthEgAA4AessqG8E8sSM/Xa2kMqN1fe1ncq6zk6yMnRQX8e35swCQAAcBN2Eygl6WReseauSlLCsXOq5+jwk8Hy+9f9u7bSgkm+6tDCpQ4nBQAAsB52FSi/l5pzUUt3ZCr2aK4yzxfr2h+Ag65etDy4m7tmDPZSV/cmRo0JAABgFewyUF7r0pVynTh/SaXlZjVwclSnlq5ybWj4DYQAAACsht0HSgAAAFSPVZ7lDQAAAMtBoAQAAEC1ECgBAABQLQRKAAAAVAuBEgAAANVCoAQAAEC1ECgBAABQLQRKAAAAVAuBEgAAANVCoAQAAEC1ECgBAABQLQRKAAAAVAuBEgAAANVCoAQAAEC1ECgBAABQLQRKAAAAVAuBEgAAANVCoAQAAEC1ECgBAABQLQRKAAAAVAuBEgAAANVCoAQAAEC1ECgBAABQLQRKAAAAVAuBEgAAANVCoAQAAEC1ECgBAABQLQRKAAAAVAuBEgAAANVCoAQAAEC1ECgBAABQLQRKAAAAVAuBEgAAANVCoAQAAEC1ECgBAABQLQRKAAAAVMv/BxQ6vA4HzihGAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEnklEQVR4nO3deVjVdeL+/xvEEyEiIh5QEVTEFc01l1Q2c8HKJU2nxbFtpmVqatqdqbRpbPI3TXv9mpopJytNc0tURIGDmhkuuKASIoKobCIgILJ+/3Dio6klgrzP8nxcV1dwzuFwy1/3db/OOW+n2traWgEAAABXydnoAAAAALBtFEoAAAA0CIUSAAAADUKhBAAAQINQKAEAANAgFEoAAAA0CIUSAAAADUKhBAAAQINQKAEAANAgFEoAAAA0CIUSAAAADUKhBAAAQINQKAEAANAgFEoAAAA0CIUSAAAADUKhBAAAQINQKAEAANAgFEoAAAA0CIUSAAAADUKhBAAAQINQKAEAANAgFEoAAAA0CIUSAAAADUKhBAAAQINQKAEAANAgFEoAAAA0CIUSAAAADUKhBAAAQINQKAEAANAgFEoAAAA0CIUSAAAADeIQhbK2tlaHDx9WbW2t0VEAAADsjkMUysTERAUGBmrQoEFau3YtxRIAAKAROUShLC4uliQlJSUpMjKSYgkAANCIHKJQ/qSmpkaStHv3bkVGRqpnz55atmyZFi5cqMzMTIPTAQAA2CYXowMYobq6Wk5OTkpJSdE///lPpaamysPDQ7t27ZK7u7vR8QAAAGyKQy2UktSsWTNJUrdu3SRJ33zzjSwWiw4dOqQVK1YYmAwAAMA2OVyhHDp0qOLi4jRp0iT5+fnJx8dHPXr00ODBg7V8+XKj4wEAANgchyiUAwYM0AMPPKC4uDht3rxZoaGh2rVrlwYMGFD3mEmTJmndunWqrq42MCkAAIDtcYjXUHp5eenjjz++4La8vDzdeOONdd/369dPZWVlOn78uDp27NjUEQEAAGyWQyyUl1JUVCRPT8+67wMDAyVJaWlpBiUCAACwTQ5bKAsLCy8olJ06dZKTkxOFEgAAoJ4cslDW1tZeVCivu+46+fn5USgBAADqySELZUlJiWpqai4olNK5Y+/Dhw8bEwoAAMBGOWShLCwslKSLCqWPj4/y8/ObPhAAAIANo1Cex8PDo+663wAAALgyDl0oW7VqdcHtFEoAAID6c8hCWVVVJUlq3rz5BbdTKAEAAOrPIQulyWSSJFVWVl5wO4USAACg/hyyUP60TF6qUJaWlnL5RQAAgHpw6EJZUVFxwe3u7u6SpNLS0ibPBAAAYKsculD+fKF0dj7356itrW3yTAAAALbKIQvl5V5DCQAAgPpzyEJ5uYUSAAAA9efQhfLnr6EEAABA/TlkoeTIGwAAoPE4ZKHkyBsAAKDxOHSh/PmR90+fP+nk5NTkmQAAAGyVQxbKyx15l5SUSJJatGjR5JkAAABslUMWyssdeRcXF8vd3V3NmjUzIhYAAIBNcjE6gBGcnJzUrFkzVVRUqPRslY6cLFVFVY3SCyvl4dXW6HgAAAA2xanWAS8Lk5pzWqEPviiv4FEqqb1OF/wBamsV0KaFwrqbddcQfwX5tDQqJgAAgE1wqEJ5tKBMs5fv1aZD+VJNteR8+aPtZs5Oqq6p1ciu3po3uY86erk1YVIAAADb4TCFclFipl5elayqmlpV11z5P7mZs5NcnJ0097bemjHY/xomBAAAsE0OUSjfi0vVP9b/2ODneXpMN/0hLKgREgEAANgPu3+X96LEzEYpk5L0j/U/anFiZqM8FwAAgL2wukL50EMPycnJqe6/v//971f9XEcLyvTyquRGTCe9tCpZRwvK6r5PSkrSnDlzNGfOHMXHx1/yZ4qLi/Xcc88pMDBQ1113nXx8fHT33XcrLS2tUbMBAAAYwaqOvCsrK9WuXTudPHmy7rYbbrhBSUlJV/V89/x7m747fLJer5n8Nc2cnTS8Sxt9fv8QSdJnn32me++9V5L08ssva86cORc8vri4WCNHjtSePXsueq7WrVvLYrGoT58+jZYPAACgqVnVQhkTE3NBmZSk3bt36+DBg/V+rtSc09p0KL9Ry6QkVdfUatOhfB3KPX1Fj58zZ05dmRw1apRWrFih3//+95KkU6dO6f7772/UfAAAAE3NqhbKmTNn6vPPP5ckzZgxQ4sWLZJ06eVv6dKlmjNnjg4dOqSuXbvqpZde0v79+zV37lxJ0sTHX9Ve9/51hbIiN11FW5fobOZeVZ85rWZuHrq+yyC1GnGnXDy86563cNMXKtrylSSpTeQfVXO2TKd3rFbV6Tw19/JT64gH5d6ln+4ZEqDPHp+gjIyMS/5bXn75Zc2ePVs+Pj4qLCyUk5OTjh07pnbt2qm2tla9evWqK8rbt2/XwIEDG+8PCQAA0ISsZqEsLy/XihUrJElt27bVW2+9JReXcxfy+alY/mTZsmW64447lJycrLNnzyo5OVnTp0+v+3lJOpBdXFcmz6Rt14kFf1LZgQRVl56SaqpUXVKgkj3rlb3gSVUWZl8yU9F3i3Vq48eqKjwhVVepMu+I8pa9qoqy04r7MfdX/0379u1TYWGhJKlTp05q166dpHNX6hk2bFjd4zZt2nRFfyMAAABrZDWFcvXq1Tp9+twx8qRJk+Tj46PQ0FBJUkpKinbt2iVJqq6u1hNPPKGfhtVp06YpKipKjz/+uHbv3l33fCdLKiRJNZXlyo96U6qulJybyXPUTJmn/1UeQ24/93ylp1Sw/sNLZqoqzJbH0Klqe/uLam7uLEmqrTijsuR4ZZ4s0+dfLtLs2bPrHn/vvfdq06ZN2rRpk+677z4dOXKk7j4fH58LnttsNtd9nZ6eXu+/FwAAgLWwmkJ5/go5derUC/5//v07duzQ0aNHJUm+vr764osvFBkZqbfffltDhw696HnL03eppqxIkuTaqZ+u69hbTi4mXd/1RjVrda7klR/eqer/PeZ81wcNVevQWXILGqJWw6bV3V556oRqJXl16qmgoP/7XEp/f3+NGDFCI0aMkL+/v0pLS+vuM5lMFzz3+d+f/zgAAABbYxWF8vTp04qKipIkeXl5KTw8XJI0ZcoUNWt27vKIixcvVm1trQ4fPlz3cwMGDFDz5s3rvj//GPknlQXH6r4uP7xDOV88V/dfdVHO/+6pVeXJrIt+1rVjcN3Xztd71H1dc/ZcAayoqvnFf1eLFi3qvj579uwF91VUVFzycQAAALbGxegAkrRixQqVl5dLkgoKCi4oiT/JyMjQ1q1bL7jNycmp0TLUVpZfdJuzq/t5v+u87v2/43aTyy/38U6dOtV9nZOTc8F92dn/97rNzp071ycqAACAVbGKQvnVV19d0eMWLVqke+65p+77Xbt2qbq6um7F/HnhlKTmXh3qvm4RHCHvW5686DE1leVybu5ar8xOkjq1aaEdzv9XKmtqLlwsg4OD1apVKxUVFSkjI0PHjh1Thw4dVFtbq++//77ucSNHjqzX7wYAALAmhhfKkydPKiYmRpLUsmVLzZs374L7Kyoq9NRTT0mSlixZojfffFMdO3bU0aNHdfz4cc2cOVN33XWXoqOjLyhpbdxNOivJtVN/Obu1Uk1ZkUr3xcr5endd36m/amtrVFWUo7NZB1SZm672D176jTmX49/GTS2uc1Hr1q3rblu3bp1GjRolV1dX9enTR61atdJ9992nN998U7W1tfrNb36jp59+WlFRUUpJSZEkDRo0iI8MAgAANs3wz6H86KOP9NBDD0mSbr/9di1duvSix/Tv37/uajkbNmxQUVGRpk6dqp9H79Onj/bu3Svpws+hPJOWqNxl88690/sSmnmY5ffIfyT9/HMon5B739GSpPKMPcr56tw7ut37ROipV9/WnNt6Kz8/X35+fhe9RjIuLk6hoaG/eKUcT09PJSQkcKUcAABg0wx/U875x9233XbbJR9z66231n29aNEiTZkyRV9//bV69eolk8mknj176ssvv1RERETd48J6+9V9DuX1gYPVbtabatE7TM1aekvOLnK+3kPNzV3UcvAktZ38fL0y19ZKdw/1lyR5e3trxYoV6t+/v66//vqLHuvh4aFNmzbpmWeeUefOnWUymWQ2m3XnnXcqMTGRMgkAAGye4Qvl1aitrb3kG3KGDh2qbdu2SZJ27typf+6saPRreTupVsO6tNGXD178jnIAAABHZJOFMiEhQR9++KFmzZqlHj16qLCwUP/617/0wQcfSJK6d++u/fv361hhuUa/adHZX/l4nytWW6uaqgqd+OQRmVs0U79+/dSzZ091795dPXv21E033dSo7zwHAACwBTZZKOPj4xUWFnbJ+1q2bKn169fXfcj5osRMPb9sb6P97mY7FulwzMK675s3b67KynOvzfz66681bdq0y/0oAACAXTL8NZRXo0uXLrr77rsVGBgoNzc3XXfdderatasefvhh7d69+4Ir5swY7K+nx3RrlN/7zJjuWvvei3I+76OCKisr1axZMwUEBGjcuHGN8nsAAABsiU0ulFdjUWKmXl6VrKqa2nq9prKZs5NcnJ30ym29NX3wuTfi/O53v9N//vMfVVdX1z1u/vz5euaZZxo9NwAAgLVzmEIpSUcLyjR7+V5tOpSvZs5Ov1gsf7p/ZFdvzZvcRx293OruO378uLp06VL3UUHNmjVTdXW1pk2bpkWLFl2wYAIAANg7hyqUP0nNOa0vtmUq7sdcZZ4s0/l/ACed+9DysG5m3T3UX13NLS/5HM8//7xef/113XjjjVq5cqXGjBmjvXv3qm3btoqNjVVwcPAlfw4AAMDeOGShPF/p2SodOVmqiqoamVyc1alNC7W47tcvIFRYWKjnnntOL7zwQt01u+fMmaNXXnlFkvTiiy9q7ty51zI6AACAVXD4QtnYkpOTFR4ertzcXPXu3Vvx8fHy9vY2OhYAAMA1w4v9Glnv3r114sQJzZgxQ8nJyerQocMFVwMCAACwNyyU19Dq1at1xx136MyZM4qMjNTKlSvl4vLrx+kAAAC2hEJ5jZWUlCgiIkI//PCDPD09tW7dOg0ZMsToWAAAAI2GI+9rzN3dXdu2bdMbb7yh06dPa9iwYXryySeNjgUAANBoWCib0OHDhxUSEqKsrCwFBgbKYrGoQ4cORscCAABoEBbKJtSlSxdlZGTogQceUFpamjp16qR//etfRscCAABoEBZKg8TGxmrixIkqKSlRSEiI1q1bJ1dXV6NjAQAA1BsLpUHCw8OVl5en0NBQWSwWtW3bVnFxcUbHAgAAqDcKpYFcXV0VFxenjz76SOXl5QoPD9cDDzygmpoao6MBAABcMY68rcTx48cVEhKiQ4cOyc/PT/Hx8QoMDDQ6FgAAwK9iobQS7du3V2pqqp588kkdO3ZM3bp10xtvvGF0LAAAgF/FQmmFEhMTNWbMGBUWFmrw4MHasGGDPDw8jI4FAABwSSyUVmjw4MHKy8tTZGSkEhMT5evrq9WrVxsdCwAA4JIolFbKxcVFUVFR+vLLL1VdXa1bb71VM2bM4A07AADA6nDkbQPy8/MVFhamffv2yWw2a+PGjQoODjY6FgAAgCQWSpvg7e2tvXv36qWXXlJeXp769u2rOXPmGB0LAABAEgulzdm3b1/dh6IHBwcrPj5ebdq0MToWAABwYCyUNiY4OFjZ2dmaPn269u3bp/bt22vx4sVGxwIAAA6MhdKGrVq1SjNmzNCZM2c0YcIErVixQi4uLkbHAgAADoZCaeOKi4s1evRoJSYmqnXr1oqOjtbgwYONjgUAABwIR942zsPDQz/88IP+8Y9/qKioSEOGDNFTTz1ldCwAAOBAWCjtSFpamkJDQ5WVlaWuXbvKYrGoffv2RscCAAB2joXSjgQGBiojI0P333+/Dh06pICAAH388cdGxwIAAHaOhdJOxcbGauLEiSopKVFoaKjWrl0rV1dXo2MBAAA7RKG0Y+Xl5Ro3bpwsFovc3d317bffKjQ01OhYAADAznDkbcdcXV0VHx+vjz76SOXl5QoLC9Pvfvc7rgcOAAAaFQulg8jKylJoaKjS0tLk5+enhIQEde7c2ehYAADADrBQOgg/Pz8dOnRITzzxhI4dO6agoCD985//NDoWAACwAyyUDmjbtm0aN26cCgsLdeONN2rjxo1yd3c3OhYAALBRLJQOaMiQIcrLy1NkZKR++OEHmc1mrV692uhYAADARlEoHZSLi4uioqK0cOFCVVdX69Zbb9WMGTN4ww4AAKg3jryh/Px8hYaGKjk5WWazWbGxserdu7fRsQAAgI1goYS8vb21b98+vfjii8rLy1OfPn00d+5co2MBAAAbwUKJC+zbt0/h4eF1xTI+Pl5eXl5GxwIAAFaMhRIXCA4OVnZ2tqZNm6a9e/eqXbt2Wrx4sdGxAACAFWOhxGWtWrVK06dPV3l5uSZMmKAVK1bIxcXF6FgAAMDKUCjxi4qLixUREaHt27erdevWio6O1uDBg42OBQAArAhH3vhFHh4eSkxM1Pz581VUVKQhQ4bo6aefNjoWAACwIiyUuGJpaWkKCQmpu3RjfHy82rdvb3QsAABgMBZKXLHAwEBlZmbq3nvvVWpqqgICAvTJJ58YHQsAABiMhRJXZePGjZo4caJKS0sVFhamNWvWyNXV1ehYAADAABRKXLWysjKNHz9eCQkJatmypb799luFhIQYHQsAADQxjrxx1dzc3GSxWPTBBx/ozJkzCg0N1e9+9zuuBw4AgINhoUSjyMrKUkhIiA4fPqyOHTvKYrGoc+fORscCAABNgIUSjcLPz09paWl6/PHHlZWVpaCgIL311ltGxwIAAE2AhRKNbtu2bRo7dmzd51Zu2LBB7u7uRscCAADXCAslGt2QIUOUm5urcePGadu2bTKbzVqzZo3RsQAAwDVCocQ1YTKZtHbtWi1cuFDV1dWaMGGC7rzzTt6wAwCAHeLIG9dcfn6+QkJCtH//fvn4+Gjjxo3q3bu30bEAAEAjYaHENeft7a3k5GT95S9/UW5urvr27atXXnnF6FgAAKCRsFCiSe3Zs0cRERHKz89Xnz59FB8fLy8vL6NjAQCABmChRJPq27evcnJyNHXqVO3du1ft27fX4sWLjY4FAAAagEKJJufs7KwlS5ZoxYoVcnJy0owZM3TbbbepqqrK6GgAAOAqcOQNQxUXFys8PFw7duyQl5eXoqOjNWjQIKNjAQCAemChhKE8PDy0fft2vf766yosLNSNN96oZ555xuhYAACgHlgoYTVSU1MVGhqq48ePKygoSAkJCfL19TU6FgAA+BUslLAaQUFBOnr0qGbNmqXU1FR17NhR//73v42OBQAAfgULJazSxo0bNXHiRJWWlio8PFxRUVFydXU1OhYAALgECiWsVllZmcaNG6dNmzapZcuWWr16tUaNGmV0LAAA8DMcecNqubm5KSEhQR988IHOnDmjkJAQPfTQQ1wPHAAAK8NCCZuQmZmpsLAwHT58WP7+/rJYLOrUqZPRsQAAgFgoYSP8/f2Vlpamxx57TJmZmerataveeusto2MBAACxUMIGbd26VePHj1dRUZGGDh2qmJgYubu7Gx0LAACHxUIJmzNs2DDl5uZq7Nix+v7772U2m7V27VqjYwEA4LAolLBJJpNJ69at0+eff67q6mpFRkbqrrvu4g07AAAYgCNv2Lzc3FyFhYVp//798vHxUVxcnHr27Gl0LAAAHAYLJWye2WxWcnKyZs+erdzcXAUHB+uvf/2r0bEAAHAYLJSwK3v27FFERITy8/N1ww03KDY2Vl5eXkbHAgDArrFQwq707dtXOTk5uv3227V79261b99eS5YsMToWAAB2jUIJu+Ps7KylS5dq2bJlcnJy0h133KGJEyeqqqrK6GgAANgljrxh1woLCzV69Gjt2LFDXl5eWr9+vQYOHGh0LAAA7AoLJeyap6entm/frtdee02FhYUaPHiwnn32WaNjAQBgV1go4TBSU1MVEhKiEydOqFu3brJYLPL19TU6FgAANo+FEg4jKChIWVlZ+u1vf6sff/xR/v7++vTTT42OBQCAzWOhhEOKiYnR5MmTVVpaqoiICK1Zs0Ymk8noWAAA2CQKJRxWWVmZxo4dq82bN6tly5aKiorSyJEjjY4FAIDN4cgbDsvNzU2bNm3S+++/r7KyMo0aNUoPP/ww1wMHAKCeWCgBSZmZmQoNDVV6err8/f2VkJCggIAAo2MBAGATWCgBSf7+/jp8+LD+8Ic/KDMzU4GBgXrnnXeMjgUAgE1goQR+ZsuWLZowYYKKioo0dOhQxcTEyN3d3ehYAABYLRZK4Gduuukm5ebmauzYsfr+++/l4+OjtWvXGh0LAACrRaEELsFkMmndunVasGCBKisrFRkZqbvvvps37AAAcAkceQO/Ijc3VyEhITp48KB8fX0VGxurnj17Gh0LAACrwUIJ/Aqz2awDBw7ohRdeUE5OjoKDg/Xqq68aHQsAAKvBQgnUQ1JSkkaPHq2TJ0/qhhtuUFxcnFq3bm10LAAADMVCCdRDv379lJ2drSlTpmj37t1q166dli5danQsAAAMRaEE6snFxUXffPONli1bJicnJ02bNk2TJk1SVVWV0dEAADAER95AAxQWFioiIkI7d+6Ul5eXYmJiNGDAAKNjAQDQpFgogQbw9PTUjh07NG/ePBUWFmrQoEF67rnnjI4FAECTYqEEGklKSorCwsJ04sQJde/eXfHx8fL19TU6FgAA1xwLJdBIunfvrqysLM2cOVMpKSny9/fXZ599ZnQsAACuORZK4BqIiYnR5MmTVVpaqtGjRysqKkomk8noWAAAXBMUSuAaKSsr05gxY7RlyxZ5eHgoKipKI0aMMDoWAACNjiNv4Bpxc3PT5s2b9e6776q0tFQjR47UI488YnQsAAAaHQsl0AQyMzMVEhKiI0eOKCAgQBaLRQEBAUbHAgCgUbBQAk3A399f6enpeuSRR5SRkaHAwEC9++67RscCAKBRsFACTWzLli2KjIxUcXGxhg8frvXr16tFixZGxwIA4KqxUAJN7KabblJeXp5uvvlmfffddzKbzVq3bp3RsQAAuGoUSsAAJpNJ69ev14IFC1RZWanx48dr5syZqqmpMToaAAD1xpE3YLDc3FyFhITo4MGD8vX1VXx8vLp37250LAAArhgLJWAws9msAwcO6Pnnn1dOTo569eqlv/3tb0bHAgDgirFQAlYkKSlJo0eP1smTJ9WvXz/FxcXJ09PT6FgAAPwiFkrAivTr10/Z2dmaPHmykpKS5Ovrq2+++cboWAAA/CIKJWBlXFxctGzZMi1dulSSNHXqVE2ePFlVVVUGJwMA4NI48gasWGFhocLDw7Vr1y55eXkpJiZGAwYMMDoWAAAXYKEErJinp6d27typefPmqbCwUIMGDdILL7xgdCwAAC7AQgnYiJSUFIWFhenEiRPq3r27LBaLfHx8jI4FAAALJWArunfvrqysLM2cOVMpKSnq2LGjFixYYHQsAABYKAFbFB0drSlTpqisrEyjR49WVFSUTCaT0bEAAA6KQgnYqLKysrrrgXt4eGjNmjW66aabjI4FAHBAHHkDNsrNzU1btmzRu+++q9LSUo0YMUKPPvqo0bEAAA6IhRKwAxkZGQoJCVFGRoYCAgJksVgUEBBgdCwAgINgoQTsQEBAgI4cOaKHH35YGRkZCgwM1HvvvWd0LACAg2ChBOzM5s2bNWHCBBUXF2v48OGKiYmRm5ub0bEAAHaMhRKwMyNGjFBeXl7dG3bMZrPWr19vdCwAgB2jUAJ2yGQyaf369frss89UUVGhsWPHaubMmaqpqTE6GgDADnHkDdi57OxshYWF6eDBg2rXrp3i4uLUvXt3o2MBAOwICyVg53x9fXXgwAE9++yzys7OVq9evfTaa68ZHQsAYEdYKAEHsnPnTt18880qKChQ//79FRsbK09PT6NjAQBsHAsl4EAGDBignJwcTZo0Sbt27VK7du30zTffGB0LAGDjKJSAg3FxcdHy5cu1ZMkS1dbWaurUqZoyZYqqqqqMjgYAsFEceQMOrLCwUGFhYUpKSlKbNm20YcMG9evXz+hYAAAbw0IJODBPT0/t2rVLr776qk6dOqUBAwZo9uzZRscCANgYFkoAkqQDBw4oPDxc2dnZ6tGjhywWi8xms9GxAAA2gIUSgCSpZ8+eOnbsmO666y4dPHhQfn5++u9//2t0LACADWChBHCR6OhoTZkyRWVlZRozZoy+/fZbmUwmo2MBAKwUhRLAJZWUlGjMmDHaunWrWrVqpaioKN10001GxwIAWCGOvAFckru7u7777ju98847Kikp0YgRI/TYY48ZHQsAYIVYKAH8qoyMDIWEhCgjI0OdOnWSxWKRv7+/0bEAAFaChRLArwoICNCRI0f08MMP68iRI+rSpYvef/99o2MBAKwECyWAetm8ebMmTJig4uJi3XTTTVq/fr3c3NyMjgUAMBALJYB6GTFihPLy8jR69Ght2bJFZrNZMTExRscCABiIQgmg3kwmk2JiYvSf//xHFRUVGjNmjH7729+qpqbG6GgAAANw5A2gQbKzsxUSEqIff/xR7dq1k8ViUVBQkNGxAABNiIUSQIP4+voqJSVFzz77bN1lG//+978bHQsA0IRYKAE0mp07d+rmm29WQUGBBgwYoI0bN8rT09PoWACAa4yFEkCjGTBggHJycjRx4kTt3LlT7dq10/Lly42OBQC4xiiUABqVi4uLVqxYoSVLlqi2tlZTpkzR7bffzht2AMCOceQN4JopKChQeHi4du/eLW9vb23YsEE33HCD0bEAAI2MhRLANePl5aWkpCT99a9/VUFBgfr3768///nPRscCADQyFkoATeLAgQMKDw9Xdna2evbsqfj4eJnNZqNjAQAaAQslgCbRs2dPHTt2THfeeacOHDggPz8/LVy40OhYAIBGwEIJoMmtXbtWU6dOVVlZmcaOHatVq1bJZDIZHQsAcJUolAAMUVJSojFjxmjr1q1q1aqV1q5dq2HDhhkdCwBwFTjyBmAId3d3fffdd3rrrbdUUlKi4cOH67HHHjM6FgDgKrBQAjBcenq6QkNDlZmZqc6dOys+Pl7+/v5GxwIAXCEWSgCG69y5s9LT0/XQQw8pPT1dXbp00QcffGB0LADAFWKhBGBVEhISdMstt+j06dMaMWKEoqOj5ebmZnQsAMAvYKEEYFVGjRql3NxcRUREaPPmzTKbzdqwYYPRsQAAv4BCCcDquLq6asOGDfrkk0909uxZ3XzzzZo1axbXAwcAK8WRNwCrlp2drZCQEP34449q37694uPjFRQUZHQsAMB5WCgBWDVfX1+lpKTomWee0YkTJ9SjRw/Nnz/f6FgAgPOwUAKwGdu3b9fYsWNVUFCggQMHKjY2Vh4eHkbHAgCHx0IJwGYMGjRIOTk5uu2227Rjxw75+Pho5cqVRscCAIdHoQRgU1xcXLRy5UotXrxYtbW1mjRpkqZOncobdgDAQBx5A7BZBQUFCgsL0549e+Tt7a2NGzeqb9++RscCAIfDQgnAZnl5eWn37t2aO3euCgoK1K9fP7344otGxwIAh8NCCcAuJCcnKyIiQjk5OerZs6fi4+NlNpuNjgUADoGFEoBd6N27t44fP64777xTBw4cUMeOHbVw4UKjYwGAQ2ChBGB31qxZo6lTp+rMmTMaN26cVq5cKZPJZHQsALBbFEoAdqmkpESjR4/Wtm3b1KpVK61du1bDhg0zOhYA2CWOvAHYJXd3d33//fd68803VVJSouHDh+uPf/yj0bEAwC6xUAKwe+np6QoJCdHRo0fVpUsXWSwW+fn5GR0LAOwGCyUAu9e5c2cdOXJEv//973X48GF17txZH374odGxAMBusFACcCgJCQm65ZZbdPr0aY0cOVLr1q2Tm5ub0bEAwKaxUAJwKKNGjVJubq7Cw8O1adMmmc1mbdy40ehYAGDTKJQAHI6rq6s2btyojz/+WGfPntXo0aN17733cj1wALhKHHkDcGjHjx9XaGioUlNT1aFDB8XFxSkoKMjoWABgU1goATi09u3b68cff9TTTz+t48ePq0ePHpo/f77RsQDAprBQAsD/JCYmauzYsTp16pQGDhyo2NhYeXh4GB0LAKweCyUA/M/gwYOVm5urW265RTt27JCPj49WrlxpdCwAsHoUSgA4j4uLi7799lstWrRINTU1mjRpkqZNm8YbdgDgF3DkDQCXUVBQoNDQUO3du1dt27bVhg0b1LdvX6NjAYDVYaEEgMvw8vLSnj17NGfOHOXn56tfv3566aWXjI4FAFaHhRIArkBycrLCw8OVm5urXr16yWKxyNvb2+hYAGAVWCgB4Ar07t1bJ06c0IwZM7R//3516NBBX3zxhdGxAMAqsFACQD1FRUVp2rRpOnPmjMaPH68VK1bIZDIZHQsADEOhBICrUFJSooiICP3www/y9PTUunXrNGTIEKNjAYAhOPIGgKvg7u6ubdu26Y033tDp06c1bNgw/fGPfzQ6FgAYgoUSABooPT1dISEhOnr0qLp06SKLxSI/Pz+jYwFAk2GhBIAG6ty5s44cOaIHH3xQhw8fVufOnfXRRx8ZHQsAmgwLJQA0IovFoltvvVWnT5/WqFGjFB0dLVdXV6NjAcA1xUIJAI0oJCREubm5CgsLU0JCgry9vRUbG2t0LAC4piiUANDIXF1dFRsbq48//lhnz55VRESE7r//fq4HDsBuceQNANfQ8ePHFRoaqtTUVHXo0EEWi0WBgYFGxwKARsVCCQDXUPv27fXjjz/qT3/6k44fP65u3brpjTfeMDoWADQqFkoAaCKJiYkaO3asTp06pYEDByo2NlYeHh5GxwKABmOhBIAmMnjwYOXm5uqWW27Rjh075OPjo1WrVhkdCwAajEIJAE3IxcVF3377rRYtWqSamhpNnDhRd9xxB2/YAWDTOPIGAIPk5+crPDxce/fuVdu2bRUbG6vg4GCjYwFAvbFQAoBBvL29tWfPHr388svKz89X37599dJLLxkdCwDqjYUSAKxAcnKywsPDlZubq969eys+Pl7e3t5GxwKAK8JCCQBWoHfv3jpx4oRmzJih5ORkdejQQV999ZXRsQDgirBQAoCVWb16te644w6dOXNG48eP16pVq+Ti4mJ0LAC4LAolAFihkpISRURE6IcffpCnp6fWrVunIUOGGB0LAC6JI28AsELu7u7atm2b3njjDZ0+fVrDhg3Tk08+aXQsALgkFkoAsHKHDx9WSEiIsrKyFBgYqPj4ePn5+RkdCwDqsFACgJXr0qWLMjIy9MADDygtLU2dO3fWv/71L6NjAUAdFkoAsCGxsbGaOHGiSkpKFBISonXr1snV1dXoWAAcHAslANiQ8PBw5eXlKTQ0VBaLpe4KOwBgJAolANgYV1dXxcXF6aOPPlJ5ebkiIiL0wAMPcD1wAIbhyBsAbNjx48cVEhKiQ4cOqUOHDrJYLAoMDDQ6FgAHw0IJADasffv2Sk1N1ZNPPqnjx4+rW7dueuONN4yOBcDBsFACgJ1ITEzUmDFjVFhYqMGDB2vDhg3y8PAwOhYAB8BCCQB2YvDgwcrLy1NkZKQSExPl6+ur1atXGx0LgAOgUAKAHXFxcVFUVJS+/PJLVVdX69Zbb9WMGTN4ww6Aa4ojbwCwU/n5+QoLC9O+fftkNpu1ceNGBQcHGx0LgB1ioQQAO+Xt7a29e/fqpZdeUl5envr27as5c+YYHQuAHWKhBAAHsG/fvroPRQ8ODlZcXJy8vb2NjgXATrBQAoADCA4OVnZ2tqZPn659+/apQ4cOWrx4sdGxANgJFkoAcDCrVq3SjBkzdObMGUVGRmrlypVycXExOhYAG0ahBAAHVFxcrNGjRysxMVGtW7dWdHS0Bg8ebHQsADaKI28AcEAeHh764Ycf9I9//ENFRUUaMmSI/vSnPxkdC4CNYqEEAAeXlpam0NBQZWVlqWvXrrJYLGrfvr3RsQDYEBZKAHBwgYGBysjI0P33369Dhw4pICBA//rXv4yOBcCGsFACAOrExsZq4sSJKikpUWhoqNauXStXV1ejYwGwchRKAMAFysvLNW7cOFksFrm7u+vbb79VaGio0bEAWDGOvAEAF3B1dVV8fLw++ugjlZeXKywsTA8++CDXAwdwWSyUAIDLysrKUmhoqNLS0uTn56eEhAR17tzZ6FgArAwLJQDgsvz8/HTo0CE98cQTOnbsmIKCgvTPf/7T6FgArAwLJQDgimzbtk3jxo1TYWGhBg8erNjYWLm7uxsdC4AVYKEEAFyRIUOGKC8vT5GRkUpMTJTZbNbq1auNjgXAClAoAQBXzMXFRVFRUVq4cKGqq6t16623asaMGbxhB3BwHHkDAK5Kfn6+QkNDlZycLLPZrNjYWPXu3dvoWAAMwEIJALgq3t7e2rdvn1588UXl5eWpT58+mjt3rtGxABiAhRIA0GD79u1TeHh4XbGMj4+Xl5eX0bEANBEWSgBAgwUHBys7O1vTpk3T3r171a5dOy1evNjoWACaCAslAKBRrVq1StOnT1d5ebkmTJigFStWyMXFxehYAK4hCiUAoNEVFxcrIiJC27dvV+vWrRUdHa3BgwcbHQvANcKRNwCg0Xl4eCgxMVHz589XUVGRhgwZoqeeesroWACuERZKAMA1lZaWppCQkLpLN8bHx6t9+/ZGxwLQiFgoAQDXVGBgoDIzM3XvvfcqNTVVAQEB+uSTT4yOBaARsVACAJrMxo0bNXHiRJWWliosLExr1qyRq6ur0bEANBCFEgDQpMrKyjR+/HglJCSoZcuWWrVqlUJDQ42OBaABOPIGADQpNzc3WSwWffjhhzpz5ozCwsL0u9/9juuBAzaMhRIAYJisrCyFhITo8OHD6tixoywWizp37mx0LAD1xEIJADCMn5+f0tLS9PjjjysrK0tBQUF66623jI4FoJ5YKAEAVmHbtm0aO3asioqKdOONN2rjxo1yd3c3OhaAK8BCCQCwCkOGDFFubq7Gjx+vH374QWazWWvWrDE6FoArQKEEAFgNk8mkNWvWaOHChaqurtaECRN055138oYdwMpx5A0AsEr5+fkKCQnR/v375ePjo40bN6p3795GxwJwCSyUAACr5O3treTkZP3lL39Rbm6u+vTpo1deecXoWAAugYUSAGD19uzZo4iICOXn56tPnz6Kj4+Xl5eX0bEA/A8LJQDA6vXt21c5OTmaOnWq9u7dq/bt22vx4sVGxwLwPxRKAIBNcHZ21pIlS7RixQo5OTlpxowZuvXWW1VVVWV0NMDhceQNALA5xcXFCg8P144dO9S6dWutX79egwYNMjoW4LBYKAEANsfDw0Pbt2/X66+/XvdB6M8884zRsQCHxUIJALBpqampCg0N1fHjxxUUFKSEhAT5+voaHQtwKCyUAACbFhQUpKNHj2rWrFlKTU1Vx44d9e9//9voWIBDYaEEANiNjRs3auLEiSotLVV4eLiioqLk6upqdCzA7lEoAQB2paysTOPGjdOmTZvUsmVLrV69WqNGjTI6FmDXOPIGANgVNzc3JSQk6IMPPtCZM2cUEhKihx56iOuBA9cQCyUAwG5lZmYqLCxMhw8fVseOHWWxWNS5c2ejYwF2h4USAGC3/P39lZaWpscff1xHjx5VUFCQ3nrrLaNjAXaHhRIA4BC2bt2q8ePHq6ioSEOHDlVMTIzc3d2NjgXYBRZKAIBDGDZsmHJzczVu3Dh9//33MpvNWrNmjdGxALtAoQQAOAyTyaS1a9fq888/V3V1tSZMmKA777yTN+wADcSRNwDAIeXm5iosLEz79++Xj4+P4uLi1LNnT6NjATaJhRIA4JDMZrOSk5M1e/Zs5ebmKjg4WK+88orRsQCbxEIJAHB4e/bsUUREhPLz89W3b1/FxcXJy8vL6FiAzWChBAA4vL59+yonJ0e333679uzZo/bt2+vrr782OhZgMyiUAABIcnZ21tKlS7Vs2TI5OTlp+vTpmjhxoqqqqoyOBlg9jrwBAPiZoqIiRUREaMeOHfLy8lJ0dLQGDRpkdCzAarFQAgDwM61atdL27dv12muvqbCwUDfeeKOeffZZo2MBVouFEgCAX5CamqrQ0FAdP35cQUFBSkhIkK+vr9GxAKvCQgkAwC8ICgrS0aNHNWvWLKWmpsrf31+ffvqp0bEAq8JCCQDAFYqJidHkyZNVWlqqiIgIrVmzRiaTyehYgOEolAAA1ENZWZnGjh2rzZs3q2XLllq9erVGjRpldCzAUBx5AwBQD25ubtq0aZPef/99lZWVKSQkRA8//DDXA4dDY6EEAOAqZWZmKjQ0VOnp6fL391dCQoICAgKMjgU0ORZKAACukr+/vw4fPqw//OEPyszMVGBgoN5++22jYwFNjoUSAIBG8N133ykyMlJFRUUaOnSoYmJi5O7ubnQsoEmwUAIA0AiGDx+u3NxcjR07Vt9//718fHy0du1ao2MBTYJCCQBAIzGZTFq3bp0WLFigyspKRUZG6q677uINO7B7HHkDAHAN5ObmKjQ0VAcOHJCvr69iY2PVs2dPo2MB1wQLJQAA14DZbNb+/fv1wgsvKCcnR8HBwXr11VeNjgVcEyyUAABcY0lJSRo9erROnjypG264QbGxsfLy8jI6FtBoWCgBALjG+vXrp+zsbE2ZMkW7d+9W+/bttXTpUqNjAY2GQgkAQBNwcXHRN998o2XLlsnJyUnTpk3TpEmTVFVVZXQ0oME48gYAoIkVFhYqIiJCO3fulJeXl2JiYjRgwACjYwFXjYUSAIAm5unpqR07dmjevHkqLCzUoEGD9NxzzxkdC7hqLJQAABgoJSVFYWFhOnHihLp37674+Hj5+voaHQuoFxZKAAAM1L17d2VlZWnmzJlKSUmRv7+/Pv30U6NjAfXCQgkAgJWIiYnR5MmTVVpaqtGjRysqKkomk8noWMCvolACAGBFysrKNGbMGG3ZskUeHh6KiorSiBEjjI4F/CKOvAEAsCJubm7avHmz3n33XZWWlmrkyJF65JFHjI4F/CIWSgAArFRmZqZCQkJ05MgRBQQEyGKxKCAgwOhYwEVYKAEAsFL+/v5KT0/Xo48+qoyMDAUGBurdd981OhZwERZKAABswJYtWxQZGani4mINGzZM69evl7u7u9GxAEkslAAA2ISbbrpJeXl5GjNmjLZu3SofHx+tXbvW6FiAJAolAAA2w2QyKTo6WgsWLFBlZaUiIyM1c+ZM1dTUGB0NDo4jbwAAbFBubq5CQkJ08OBB+fr6Kj4+Xt27dzc6FhwUCyUAADbIbDbrwIEDev7555WTk6NevXrpb3/7m9Gx4KBYKAEAsHFJSUkaPXq0Tp48qX79+ikuLk6enp5Gx4IDYaEEAMDG9evXT9nZ2Zo8ebKSkpLk6+urb775xuhYcCAUSgAA7ICLi4uWLVumpUuXSpKmTp2qyZMnq6qqyuBkcAQceQMAYGcKCwsVHh6uXbt2ycvLSzExMRowYIDRsWDHWCgBALAznp6e2rlzp+bNm6fCwkINGjRIL7zwgtGxYMdYKAEAsGMpKSkKCwvTiRMn1L17d1ksFvn4+BgdC3aGhRIAADvWvXt3ZWVlaebMmUpJSVHHjh21YMECo2PBzrBQAgDgIKKjozVlyhSVlZVp9OjRioqKkslkMjoW7ACFEgAAB1JWVqabb75Z3333nTw8PLRmzRrddNNNRseCjePIGwAAB+Lm5qYtW7bo3XffVWlpqUaMGKFHH33U6FiwcSyUAAA4qIyMDIWGhurIkSMKCAiQxWJRQECA0bFgg1goAQBwUAEBAUpPT9cjjzyijIwMBQYG6r333jM6FmwQCyUAANDmzZs1YcIEFRcXa/jw4YqJiZGbm5vRsWAjWCgBAIBGjBihvLy8ujfsmM1mrV+/3uhYsBEUSgAAIEkymUxav369PvvsM1VUVGjs2LGaOXOmampqjI4GK8eRNwAAuEh2drbCwsJ08OBBtWvXTnFxcerevbvRsWClWCgBAMBFfH19deDAAT333HPKzs5Wr1699NprrxkdC1aKhRIAAPyinTt3asyYMTp58qT69++v2NhYeXp6Gh0LVoSFEgAA/KIBAwYoOztbkyZN0q5du9SuXTt98803RseCFaFQAgCAX+Xi4qLly5dr6dKlqq2t1dSpUzVlyhRVVVUZHQ1WgCNvAABQL4WFhQoLC1NSUpLatGmjDRs2qF+/fkbHgoFYKAEAQL14enpq165devXVV3Xq1CkNGDBAs2fPNjoWDMRCCQAArtrBgwcVFham7Oxs9ejRQxaLRWaz2ehYaGIslAAA4Kr16NFDx44d0913362DBw/Kz89P//3vf42OhSbGQgkAABpFdHS0pkyZorKyMo0ZM0bffvutTCaT0bHQBFgoAQBAoxg7dqxyc3M1fPhwrV+/XmazWVu2bDE6VoOcPn1an3zyiQoKCoyOYtUolAAAoNG0aNFCW7Zs0TvvvKOSkhKNGDFCjz32mNGxrtq6dev04IMPyt/fXy+99BLF8jIolAAAoNE99thjSktLU0BAgN577z117txZmZmZRseqt5qaGklSaWmp/va3v1EsL4NCCQAAromAgAAdOXJEDz/8sI4cOaIuXbro/fffNzrWVaupqakrlr6+vnrhhRc0c+ZMbd682ehohqNQAgCAa+qDDz7Qpk2b1KJFC/3hD3/QiBEjVFZWZnSsq1ZbW6vKykpJ0oEDBzRp0iSdOnXK4FTGolACAIBrbsSIEcrLy9Po0aO1ZcsWmc1mxcTEGB2rXpycnNS6dWtFRkaqRYsWevXVV7V8+XKdPHlS3377rdHxDEWhBAAATcJkMikmJkaffvqpKioqNGbMGP32t7+te52iNXJxcZEktW7dWvPnz9fRo0fVokULDRw4UM2aNZOfn5+GDh2q5cuXG5zUWBRKAADQpGbNmqXMzEx169ZN//3vf+Xn56fU1FSjY13S+PHjtXjxYh09elRPP/20WrRooeTkZPXt27fuMRMmTFBcXJwc+aO9KZQAAKDJ+fr6KiUlRc8++2zdZRv//ve/Gx3rIm5ubrrjjjvUokWLuttOnTqlNm3a1H3fo0cPFRUVOfQ7vymUAADAMK+//rq2b98uT09PvfDCCxo4cKAKCwuNjvWLCgsL5enpWfd9YGCgJCktLc2gRMajUAIAAEMNGDBAOTk5mjhxonbu3Kl27dpZ7WsSKysrVVZWdkGh7NKliyQKJQAAgKFcXFy0YsUKLVmyRLW1tZoyZYpuv/12q3vDTlFRkSRdUChbtWqlNm3aUCgBAACswdSpU3XixAn169dPy5Ytk4+Pj3bv3m10rDo/HcefXyilcytlenp60weyEhRKAABgVVq3bq1du3bp1VdfVUFBgfr3768///nPRseSdPlC2aZNG6t/7ee1RKEEAABW6c9//rP27dsnHx8fzZs3T7169VJubq6hmX4qja1atbrgdg8PDxUXFxuQyDpQKAEAgNXq2bOnjh07prvuuksHDhyQn5+fFi5caFien15DSaG8EIUSAABYNWdnZy1cuFBr1qxR8+bNdc8992jcuHGqqKho8ixOTk6XvN3Dw0OnT59u4jTWg0IJAABswvjx45WTk6Nhw4YpOjpaZrNZW7dubdIMzZs3l3Tu44POx0IJAABgI9zd3fXdd9/prbfeUklJiYYPH67HHnusyX7/T4Xy5+sohRIAAMDG/PGPf9ShQ4fk7++v9957T126dFFmZuY1/70mk0nSxQvl9ddfr7Kysmv++60VhRIAANikTp06KT09XQ899JDS09PVpUsXffDBB9f0d17uyPtyr610FBRKAABgs5ydnfXhhx8qISFBbm5uevTRRzVy5MhrthZe7sjb0VEoAQCAzRs5cqRyc3MVERGhzZs3y2w2a8OGDY3+ey535O3oKJQAAMAuuLq6asOGDfrkk09UUVGhm2++WbNmzWrU64Ff7sjb0VEoAQCAXbn//vuVmZmpbt26acGCBerYsaNSU1Mb5bkplJdGoQQAAHbH19dXKSkpeuaZZ3TixAn16NFD8+fPb/Dz/nTkzWsoL0ShBAAAdmv+/Pn64Ycf5Onpqeeee06DBg1q0OdFXm6hrKyslIuLS4Oy2jIKJQAAsGuDBg1STk6ObrvtNu3YsUM+Pj5auXJl3f0FBQV68803dfbs2V99rssVyuLiYnl4eDRucBtCoQQAAHbPxcVFK1eu1OLFi1VbW6tJkyZp6tSpqq6u1n333ac//elPev/993/1eX468j59pkLJx4u0K/OUko8X6WRxiUMXSqfa2tpao0MAAAA0lYKCAoWFhWnPnj1yd3dXSUmJJKlVq1bKyMhQq1atLvlzqTmn9enmNC2ISVTz1u0knfdh5rW1cj5ToJkRA3XXEH8F+bRsgn+J9aBQAgAAh/TEE0/o7bffrvve2dlZs2fP1l//+tcLHne0oEyzl+/VpkP5aubspOqay1enn+4f2dVb8yb3UUcvt2uW35pQKAEAgMOprKzUkCFDtHv37gs+p9JkMikjI0O+vr6SpEWJmXp5VbKqamp/sUj+XDNnJ7k4O2nubb01Y7B/o+e3NryGEgAAOJzly5dr165dF12Du6KiQvfcc48k6b24VD2/bK/OVtXUq0xKUnVNrc5W1ej5ZXv1XlzjfAamNWOhBAAADufMmTP66quvdODAAR08eFD79u1TRkaGfqpF97z8oRLOdmy03/f6lD6absdLJYUSAADYhYceekgfffRR3fevvfaann/++Sv++YqKCu3du1evvPG+drW/Rc7Nr2u0bNe5OGvDkyEXvKYyKSlJK1askCSFhoYqNDT0gp85cuSI3nnnHX333XfatWtX3Yepv/zyy5ozZ06jZWsMHHkDAACbV1lZqaVLl15w26JFi+r1HCaTSQMHDpRHxO/V3NR4ZVKSqmpqNXv53gtuS0pK0ty5czV37lzFx8df9DNJSUl68803tW3bNqu/Mg+FEgAA2LyYmBidPHnygtt2796tgwcP1ut5UnNOa9OhfFU38vltdU2tNh3K16Hc01f8My1atNDNN9+sl19+WRMnTmzcQI2MQgkAAGze+WvkjBkzLnn7T5YuXarg4GC5uroqODhYX3/9tebMmSMnJyd18/VQ2b4NFzy+IjddeSvnK+vde5Qxf5Ky3pupk2veUVVx/gWPK9z0hTL+fosy/n6LSvbEqDhxpY79/w8q4/+bpOP//oMqMvdo4feZkqROnTrp3nvvrfvZuXPnysnJSU5OTnXH2TfffLPWr1+vOXPmqEePHg3+G11LFEoAAGDTysvL616L2LZtW7311lt119X+eaFctmyZ7rjjDiUnJ+vs2bNKTk7W9OnT635eks77FCGdSduuEwv+pLIDCaouPSXVVKm6pEAle9Yre8GTqizMvmSmou8W69TGj1VVeEKqrlJl3hFlL/2r1ielNeq/3VpQKAEAgE1bvXq1Tp8+d5Q8adIk+fj41L3BJSUlRbt27ZIkVVdX64knnqh7J/e0adMUFRWlxx9/XLt3777oeWsqy5Uf9aZUXSk5N5PnqJkyT/+rPIbcfu75Sk+pYP2Hl8xUVZgtj6FT1fb2F9Xc3FmSVFtxRimb16r0bJWWLl2q2bNn1z3+3nvv1aZNm7Rp0ybdd999jfOHaUIUSgAAYNPOXyGnTp16wf/Pv3/Hjh06evSoJMnX11dffPGFIiMj9fbbb2vo0KEXPW95+i7VlBVJklw79dN1HXvLycWk67veqGatfM495vBOVf/vMee7PmioWofOklvQELUaNq3u9spTJ3TkZKkGDRqkoKCgutv9/f01YsQIjRgxQv7+tvfxQhRKAABgs06fPq2oqChJkpeXl8LDwyVJU6ZMUbNmzSRJixcvVm1trQ4fPlz3cwMGDFDz5s3rvh82bNhFz11ZcKzu6/LDO5TzxXN1/1UX5fzvnlpVnsy66GddOwbXfe18vUfd1zVnS1VRVXPR422di9EBAAAArtaKFStUXl4uSSooKLigJP4kIyNDW7duveC2n18hpyFqK8svus3Z1f2833XefldbK5OL/e15FEoAAGCzvvrqqyt63KJFi+ouqShJu3btUnV1dd2K+fPCKUnNvTrUfd0iOELetzx50WNqKsvl3Ny1Xpk7tWkhSXJ2/r9ief71xG0RhRIAANikkydPKiYmRpLUsmVLzZs374L7Kyoq9NRTT0mSlixZojfffFMdO3bU0aNHdfz4cc2cOVN33XWXoqOj9f3331/0/K6d+svZrZVqyopUui9Wzte76/pO/VVbW6OqohydzTqgytx0tX/w0m/MuRT361zU4rpz9at169Z1t69bt06jRo2Sq6ur+vTpo1atWikvL08Wi0XSuTcX/WT//v11H+IeEhKitm3bXvHvv1a49CIAALBJH330kR566CFJ0u23337RlXIkqX///kpKSpIkbdiwQUVFRZo6dap+Xn/69OmjvXvPXcmm7S1PyC14tCTpTFqicpfNO/dO70to5mGW3yP/kXTucyiLtpxbTNtEPiH3vueeozxjj3K+OveO7hvCJypp4wpJUn5+vvz8/HT27NkLnjMuLk6hoaGKj49XWFjYL/4Nfnqs0ezvEB8AADiE84+7b7vttks+5tZbb637etGiRZoyZYq+/vpr9erVSyaTST179tSXX36piIiIusfVNvu/yy5eHzhY7Wa9qRa9w9Sspbfk7CLn6z3U3NxFLQdPUtvJV36tcEnq0rZF3dfe3t5asWKF+vfvr+uvv75ez2NtWCgBAIDDqK2tveQbcoYOHapt27ZJkiJfWqCDVd6qrmm8itTM2UnDu7TR5/cPabTntCYslAAAwGFs2rRJv/nNbxQdHa2MjAzt3r1bjz76aF2Z7N69uz54bIpcnBvvXeCS5OLspHmT+zTqc1oTFkoAAOAwful1iS1bttT69es1dOhQLUrM1PPL9jba7319Sh9NH2x7H1h+pVgoAQCAw+jSpYvuvvtuBQYGys3NTdddd526du2qhx9+WLt37667Ys6Mwf56eky3Rvmdz4zpbtdlUmKhBAAAuKxFiZl6eVWyqmpq6/WaymbOTnJxdtIrt/W2+zIpUSgBAAB+0dGCMs1evlebDuWrmbPTLxbLn+4f2dVb8yb3UUcvtyZMahwKJQAAwBVIzTmtL7ZlKu7HXGWeLNP5BcpJkn8bN4V1M+vuof7qam5pVExDUCgBAADqqfRslY6cLFVFVY1MLs7q1KZF3RVwHBGFEgAAAA3Cu7wBAADQIBRKAAAANAiFEgAAAA1CoQQAAECDUCgBAADQIBRKAAAANAiFEgAAAA1CoQQAAECDUCgBAADQIBRKAAAANAiFEgAAAA1CoQQAAECDUCgBAADQIBRKAAAANAiFEgAAAA1CoQQAAECDUCgBAADQIBRKAAAANAiFEgAAAA1CoQQAAECDUCgBAADQIBRKAAAANAiFEgAAAA1CoQQAAECDUCgBAADQIBRKAAAANAiFEgAAAA1CoQQAAECDUCgBAADQIBRKAAAANAiFEgAAAA1CoQQAAECDUCgBAADQIBRKAAAANAiFEgAAAA1CoQQAAECD/D9OkrAlDr4CyQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -282,12 +271,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABMQAAAP7CAYAAAC0u1IMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeViU9frH8c8MyC4iKOKGuGvu5FIWrpmaKy5paR7LrcVMbXVBUzuaZWmLmZ0WPWlKmgvmkidTkyzLfVdEFBcUAVF2HGZ+f3jiF8clF/AZmPfrurou55lnvs9nyCa4ub/3Y7LZbDYBAAAAAAAADsJsdAAAAAAAAADgXqIgBgAAAAAAAIdCQQwAAAAAAAAOhYIYAAAAAAAAHAoFMQAAAAAAADgUCmIAAAAAAABwKBTEAAAAAAAA4FAoiAEAAAAAAMChUBADAAAAAACAQ6EgBgAAAAAAAIdCQQwAAAAAAAAOhYIYAAAAAAAAHAoFMQAAAAAAADgUCmIAAAAAAABwKBTEAAAAAAAA4FAoiAEAAAAAAMChUBADAAAAAACAQ6EgBgAAAAAAAIdCQQwAAAAAAAAOhYIYAAAAAAAAHAoFMQAAAAAAADgUCmIAAAAAAABwKBTEAAAAAAAA4FAoiAEAAAAAAMChUBADAAAAAACAQ6EgBgAAAAAAAIdCQQwAAAAAAAAOhYIYAAAAAAAAHAoFMQAAAAAAADgUCmIAAAAAAABwKBTEAAAAAAAA4FAoiAEAAAAAAMChUBADAAAAAACAQ6EgBgAAAAAAAIdCQQwAAAAAAAAOhYIYAAAAAAAAHAoFMQAAAAAAADgUCmIAAAAAAABwKBTEAAAAAAAA4FAoiAEAAAAAAMChUBADAAAAAACAQ6EgBgAAAAAAAIdCQQwAAAAAHMCFCxf03HPPKTAwUK6urgoICFD79u31yy+/GB1NQUFBmjVr1m2/LjMzUwMHDlS9evXk7Oys7t2753s2AEWTs9EBAAAAAAAFr2fPnsrOztb8+fNVpUoVnT9/Xhs2bFBiYmKBXTM7O1suLi4Ftn5OTo7c3d01YsQIfffddwV2HQBFDx1iAAAAAFDEJScna8uWLZo+fbpat26tSpUqqWnTphozZoy6du2a57zBgwerdOnS8vb2Vps2bbRnz548a61atUpNmjSRm5ubSpUqpdDQ0NzngoKCNGXKFA0YMEDe3t4aOnSoJCkyMlIhISFyd3dXxYoVNWLECKWlpUmSWrVqpZMnT2rUqFEymUwymUy3/L48PT01Z84cDRkyRAEBAXfzJQLgYCiIAQAAAEAR5+XlJS8vL61YsUJZWVk3PK93796Kj4/X2rVrtWPHDgUHB6tt27ZKSkqSJK1evVqhoaF67LHHtGvXLm3YsEFNmzbNs8aMGTPUoEED7dq1S2FhYYqOjlaHDh3Us2dP7d27V+Hh4YqMjNTw4cMlScuWLVOFChU0efJkxcXFKS4uLnctk8mkefPm5f8XBIDDM9lsNpvRIQAAAAAABeu7777TkCFDlJGRoeDgYLVs2VJ9+/ZV/fr1JV3t4urUqZPi4+Pl6uqa+7pq1arptdde09ChQ9W8eXNVqVJFCxYsuO41goKC1KhRIy1fvjz32ODBg+Xk5KS5c+fmHouMjFTLli2VlpYmNzc3BQUFaeTIkRo5cmSe9WrVqqVp06bl6UK7kYEDByo5OVkrVqy4ja8KAEdFhxgAAAAAOICePXvq7NmzioiIUIcOHbRp0yYFBwfndmDt2bNHqamp8vPzy+0o8/LyUkxMjKKjoyVJu3fvVtu2bW96ncaNG+d5vGfPHs2bNy/Pmu3bt5fValVMTMxN1zp8+PAtFcMA4HYxVB8AAAAAHISbm5vatWundu3aKSwsTIMHD9bEiRM1cOBApaamqmzZstq0adM1r/Px8ZEkubu7/+01PD098zxOTU3VsGHDNGLEiGvODQwMvKP3AQB3i4IYAAAAADio++67L3eLYXBwsM6dOydnZ2cFBQVd9/z69etrw4YNevrpp2/5GsHBwTp48KCqVat2w3NcXFyUk5NzO9EB4K6wZRIAAAAAirjExES1adNGCxYs0N69exUTE6MlS5bonXfeUbdu3SRJjzzyiB588EF1795d69ev14kTJ7R161aNGzdO27dvlyRNnDhRixYt0sSJE3Xo0CHt27dP06dPv+m1X3/9dW3dulXDhw/X7t27FRUVpZUrV+YO1Zeuzh77+eefdebMGSUkJOQer1WrVp55ZNdz8OBB7d69W0lJSbp06ZJ2796t3bt33+FXCoCjoEMMAAAAAIo4Ly8vNWvWTDNnzlR0dLSuXLmiihUrasiQIRo7dqykq3d0XLNmjcaNG6enn35aFy5cUEBAgFq0aKEyZcpIklq1aqUlS5ZoypQpevvtt+Xt7a0WLVrc9Nr169fX5s2bNW7cOIWEhMhms6lq1arq06dP7jmTJ0/WsGHDVLVqVWVlZenPe78dOXJEly5duun6jz32mE6ePJn7uFGjRpIk7h8H4Ga4yyQAAAAAAAAcClsmAQAAAAAA4FAoiAEAAAAAAMChUBADAAAAAACAQ6EgBgAAAAAAAIdCQQwAAAAAAAAOhYIYAAAAAAAAHAoFMQAAAAAAADgUCmIAAAAAAABwKBTEAAAAAAAA4FAoiAEAAAAAAMChUBADAAAAAACAQ6EgBgAAAAAAAIdCQQwAAAAAAAAOhYIYAAAAAAAAHAoFMQAAAAAAADgUCmIAAAAAAABwKBTEAAAAAAAA4FAoiAEAAAAAAMChUBADAAAAAACAQ6EgBgAAAAAAAIdCQQwAAAAAAAAOhYIYAAAAAAAAHAoFMQAAAAAAADgUCmIAAAAAAABwKBTEAAAAAAAA4FAoiAEAAAAAAMChUBADAAAAAACAQ6EgBgAAAAAAAIdCQQwAAAAAAAAOxdnoAAAAAACAoicty6ITiWnKtljl4mxWkJ+nPF35ERSAfeDTCAAAAACQL6LOp2jhtlhtPBKv2KR02f7ynElSoK+HWtf0V79mgapeprhRMQFAJpvNZvv70wAAAAAAuL5TSekau3yfthxLkJPZpBzrjX/M/PP5kGqlNDW0nir6etzDpABwFQUxAAAAAMAdW/xHrCZGHJDFartpIex/OZlNcjabNKlrHfVtEliACQHgWhTEAAAAAAB35OONUZqx/uhdr/PKozU0vHX1fEgEALeGu0wCAAAAAG7b4j9i86UYJkkz1h9V+B+x+bIWANwKOsQAAAAAALdl1OvjNOudqXkPmswyuxeXS+lK8qzXTl51W+c+lRm7T6n7f1LWmUOyJJ6R/jtuv8wTU+VWqb4kydXZrB9HtWSmGIB7gg4xAAAAAMBt2XDo/LUHbVZZ0y8p8+ReJX7/ni5tW5b7VPrRX5W29z+yJJ6WdP2eDIvVprHL9xVQYgDIi4IYAAAAAOCWRZ1PUWxSeu5jtyr3q0y/6fLv+5bcazyYezxlx/e5f3by9JFHzYdUss0gOfuWv+66OVabthxL0LH4lIILDwD/5Wx0AAAAAABA4bFwW6xMJlPuYycPH7lVrHP1z54llXH0V0lSTtrF3HNKPPh47p/TDkfecG0ns0kLfovVm13r5HdsAMiDDjEAAAAAwC3beCRe1xtFbcu5ooyo33Ifu5SudNtr51ht2ng0/q7yAcCtoEMMAAAAAHBLUrMsebZLSlLa/g1K278hzzGzRwmVfGTYHV0jNjFdaVkWebry4yqAgkOHGAAAAADglpxMTLvBSPy8TM4usmWn//2J12GTdCIx7Y5eCwC3ioIYAAAAAOCWZFus1xz7c6h+mSemqkRIP0km5Vy+oAvLpion9eK1i9zhdQAgP1EQAwAAAADcEhfna3+E/HOovlul+vJ56Am5VQmWJNksWUo/ti3frgMA+YlPGQAAAADALQny85Tp7076y8B9a0bKbV/D9N/rAEBBYkohAAAAAOCWeLo6K9DXQ3/dCJmTnqzMUwcka46yzhxW5onduc8V8y0vScpOiNWVhFhJeYtkmaf2Kyfj8tW1az0sSQr082CgPoACx6cMAAAAAOCWta7pr72m/+8Tyzy+Q5nHd1xznkuZqnKv1lSSlH5oiy79suiacy5FfpP7Z883vpfZJLWu4Z/nHJvNJpvNJpPJJJPpb/vTAOCWsGUSAAAAAHDL+jULlM12/XtNmpxdVax0JXk376MyT06Tyen2ejCsNumfz3SQk5OTnJ2d5eTkJLPZLCcnJz377LP5ER8AJNEhBgAAAAC4DdXLFFeXp1/S1pb9lWO9fmHsf/mE9JNPSL+bnuNkNskt+aQsiaevf93q1W87KwDcCB1iAAAAAIDbMjW0npzN+bt90dls0trJA9SjR49rtka6ublp6NCh+Xo9AI6NghgAAAAA4LZU9PXQpK518nXNyV3rKNDPU1999ZUqV64sJyen3OcyMzNVtmxZjR07VlarNV+vC8AxURADAAAAANy2vk0C9cqjNfJlrVcfrak+TQIlSd7e3lqxYoWcna9O+ClevLgmTZqkYsWKadq0afL09NTo0aNlsVjy5doAHBMFMQAAAADAHRneurre7lFPrs5mOd3mDkons0muzmZN71FPL7Sulue5evXqae7cuZKk0aNHa8KECUpOTtYHH3wgDw8PzZw5U15eXnrhhReUnZ2dX28HgAMx2W50exAAAAAAAG7BqaR09Xh7iS44lZKT2XTTYft/Ph9SrZSmhtZTRV+PG567detWNWnSRMWKFctz/LPPPtP48eN14cIFFStWTAMGDNCHH34oD48brwUAf0VBDAAAAABwVzZu3Kg2bdqobK1gDZ3+b208Gq/YxHT99YdNk6RAPw+1ruGv/g8Eqpp/8bu+7tdff63XXntN586dk7Ozs/r06aNPPvlE3t7ed702gKKNghgAAAAA4I6tXr1aXbt2ldVqVaNGjbRz505JUlqWRScS05RtscrF2awgP095ujoXSIalS5dq1KhROn36tJycnBQaGqp//etf8vHxKZDrASj8mCEGAAAAALgjCxcuVLdu3XLv/Ggy/f8gMU9XZ9UpV0KNAkuqTrkSBVYMk6RevXrp1KlTioiIUMWKFbV06VL5+fmpW7duunDhQoFdF0DhRUEMAAAAAHDbPv74Y/Xv3185OTm5x+Li4gxMJHXp0kUxMTFav369qlatqoiICJUpU0YdO3bU2bNnDc0GwL6wZRIAAAAAcFsiIyMVEhJyzXFnZ2dlZWXJbLaP3ovIyEgNHTpUhw4dkslkUqtWrfTVV1+pUqVKRkcDYDD7+JQCAAAAABQa999/v8aNG6eAgIA8xy0WixISEgxKda2HH35YBw8e1LZt21SvXj1t3LhRQUFBCgkJUVRUlNHxABiIghgAAAAA4La4u7vrrbfe0pdffilJql69ulxcXCRJycnJBia7vqZNm2rPnj3avXu37r//fkVGRqpGjRpq1qyZDhw4YHQ8AAZgyyQAAAAA4I489NBD2rp1q5KSkmQymbRz5061bt06z3B9e3To0CENGjRIv/76qySpUaNG+vzzzxUcHGxwMgD3CgUxAAAAAMBty87OloeHh2rWrFlou6yio6P1zDPP6Oeff5Yk1a1bV5999pkefPBBg5MBKGhsmQQAAAAA3LYZM2YoJydHr7zyitFR7ljVqlW1efNmnTx5Uo888ogOHDig5s2bq1atWtq0aZPR8QAUIDrEAAAAAAC3rVKlSjp37pwyMjLs5q6Sd+vcuXMaNGiQ1q5dK5vNpqpVq2r27Nlq37690dEA5LOi8akFAAAAALhnTpw4odjYWD3yyCNFphgmSQEBAVq9erXi4+PVvXt3xcTEqEOHDgoKCtLKlSuNjgcgHxWdTy4AAAAAwD0xduxYSdLUqVMNTlIwSpUqpeXLlysxMVF9+vTR6dOn1b17d1WoUEHh4eFGxwOQD9gyCQAAAAC4LV5eXvL09NT58+eNjnJPpKam6oUXXtA333wji8WiMmXKaPr06frHP/5hdDQAd4gOMQAAAADALVu1apXS0tL01FNPGR3lnvHy8tL8+fOVkpKiIUOGKCkpSQMHDlSpUqU0Z84co+MBuAN0iAEAAAAAblmzZs30xx9/6NKlSypevLjRcQyRnZ2tV155RZ999pmysrLk4+OjiRMnasSIEUVqphpQlFEQAwAAAADckszMTHl6eqpu3bras2eP0XEMZ7FYNGbMGM2ePVsZGRny9vbWG2+8oddff53CGGDn+C8UAAAAAHBL3n77bVmtVr3++utGR7ELzs7Oevfdd5WamqqwsDDl5ORo7Nix8vb21oQJE2S1Wo2OCOAG6BADAAAAANySChUqKDExUWlpaXRAXYfVatXbb7+t6dOn6/Lly3J3d9fw4cM1depUOTs7Gx0PwF/wCQYAAAAA+FtRUVE6c+aM2rdvTzHsBsxms8aOHauLFy/q/fffl6urq9599115eXnppZdeUnZ2ttERAfwXHWIAAAAAgL/Vu3dvLV26VAcPHlTt2rWNjlNozJkzR2FhYUpMTJSLi4sGDhyoDz74QG5ubkZHAxwaBTEAAAAAwN/y8PCQj4+Pzp49a3SUQumrr77SmDFjdP78eTk7O+vJJ5/U7Nmz5eXlZXQ0wCHR5woAAAAAuKklS5YoIyNDTz/9tNFRCq2nn35a586d0+LFi1WmTBn9+9//lo+Pj/r27atLly4ZHQ9wOBTEAAAAAAA3NW3aNJlMJo0bN87oKIVenz59dPr0aS1fvlzly5dXeHi4fH191aNHDyUkJBgdr1C5cOGCnnvuOQUGBsrV1VUBAQFq3769fvnlF6OjKSgoSLNmzbrt123atEndunVT2bJl5enpqYYNG2rhwoX5HxAUxAAAAAAAN5aWlqbdu3erUaNG8vDwMDpOkdG9e3edPHlSa9euVeXKlbV8+XL5+/urU6dOOnfunNHxCoWePXtq165dmj9/vo4ePaqIiAi1atVKiYmJBXbNgr4xwtatW1W/fn1999132rt3r55++mkNGDBA33//fYFe1xExQwwAAAAAcENjxozR22+/raVLl6pnz55GxymyNm3apGeffVZHjhyRyWRS27Zt9cUXXygwMNDoaHYpOTlZJUuW1KZNm9SyZcubnvfKK69o5cqVysrKUuPGjTVz5kw1aNAg95xVq1Zp8uTJ2rdvn7y8vBQSEqLly5dLutrpNWjQIEVFRWnFihXq0aOH5s2bp8jISI0ZM0bbt29XqVKlFBoaqmnTpsnT01OtWrXS5s2b8+S4m9JLp06dVKZMGX355Zd3vAauRYcYAAAAAOCG5s2bJw8PD4phBaxVq1Y6fPiwtm7dqjp16ujHH39UUFCQWrZsqePHjxsdz+54eXnJy8tLK1asUFZW1g3P6927t+Lj47V27Vrt2LFDwcHBatu2rZKSkiRJq1evVmhoqB577DHt2rVLGzZsUNOmTfOsMWPGDDVo0EC7du1SWFiYoqOj1aFDB/Xs2VN79+5VeHi4IiMjNXz4cEnSsmXLVKFCBU2ePFlxcXGKi4vLXctkMmnevHm39V4vXbokX1/f23oN/h4dYgAAAACA69q/f7/q1aun3r1769tvvzU6jkPZuXOnBg8erF27dkmSHnzwQX3xxReqXbu2wcnsx3fffachQ4YoIyNDwcHBatmypfr27av69etLkiIjI9WpUyfFx8fL1dU193XVqlXTa6+9pqFDh6p58+aqUqWKFixYcN1rBAUFqVGjRrkdY5I0ePBgOTk5ae7cubnHIiMj1bJlS6WlpcnNzU1BQUEaOXKkRo4cmWe9WrVqadq0aQoNDb2l9/jtt9/qqaee0s6dO1WnTp1b/dLgFtAhBgAAAAC4rj+H6E+dOtXgJI4nODhYO3fu1L59+9S0aVP9+uuvuu+++9S4cWPt2bPH6Hh2oWfPnjp79qwiIiLUoUMHbdq0ScHBwbkdWHv27FFqaqr8/PxyO8q8vLwUExOj6OhoSdLu3bvVtm3bm16ncePGeR7v2bNH8+bNy7Nm+/btZbVaFRMTc9O1Dh8+fMvFsI0bN+rpp5/Wv/71L4phBcDZ6AAAAAAAAPtjtVr1ww8/qEKFCqpWrZrRcRxW3bp1tW3bNkVFRemZZ55RZGSkGjZsqPr16+vzzz9XkyZNjI5oKDc3N7Vr107t2rVTWFiYBg8erIkTJ2rgwIFKTU1V2bJltWnTpmte5+PjI0lyd3f/22t4enrmeZyamqphw4ZpxIgR15ybXzPfNm/erC5dumjmzJkaMGBAvqyJvOgQAwAAAABcY9GiRcrKytLgwYONjgJJ1atX15YtW3TixAm1bt06t3OsTp06ioyMNDqe3bjvvvuUlpYm6WqX3blz5+Ts7Kxq1arl+adUqVKSpPr162vDhg23dY3g4GAdPHjwmjWrVasmFxcXSZKLi4tycnLu6D1s2rRJnTp10vTp0zV06NA7WgN/j4IYAAAAAOAa06dPl9ls1uuvv250FPxFpUqV9NNPP+nUqVPq0KGDDh06pJCQENWoUeO2CzuFWWJiotq0aaMFCxZo7969iomJ0ZIlS/TOO++oW7dukqRHHnlEDz74oLp3767169frxIkT2rp1q8aNG6ft27dLkiZOnKhFixZp4sSJOnTokPbt26fp06ff9Nqvv/66tm7dquHDh2v37t2KiorSypUrc4fqS1dnj/388886c+aMEhISco/XqlUrzzyy/7Vx40Z16tRJI0aMUM+ePXXu3DmdO3cu9yYAyD8UxAAAAAAAeVy+fFn79+9XkyZN5ObmZnQcXEf58uW1du1anTt3Tl27dlV0dLQeeeQRVa5cWatXrzY6XoHz8vJSs2bNNHPmTLVo0UJ169ZVWFiYhgwZoo8//ljS1Ts6rlmzRi1atNDTTz+tGjVqqG/fvjp58qTKlCkj6erdPZcsWaKIiAg1bNhQbdq00e+//37Ta9evX1+bN2/W0aNHFRISokaNGmnChAkqV65c7jmTJ0/WiRMnVLVqVZUuXTr3+JEjR3Tp0qUbrj1//nylp6dr2rRpKlu2bO4/PXr0uJsvF66Du0wCAAAAAPJ4+eWX9f777+v7779Xp06djI6DW5CUlKRhw4Zp+fLlysnJUYUKFTRr1iz17NnT6GiAXaIgBgAAAADIw9/fXxkZGUpJSTE6Cm7T5cuX9fzzzys8PFwWi0Vly5bVu+++q379+hkdDbArbJkEAAAAAOTatWuXLly4oK5duxodBXfA29tbCxYs0KVLl/TMM88oISFB/fv3l7+/vz7//HOj4wF2gw4xAAAAAECuxx57TGvXrtWJEydUqVIlo+PgLmVmZurll1/W559/ruzsbPn6+urNN9/Uiy++aHQ0wFAUxAAAAAAAkiSr1Sp3d3eVLVtWJ06cMDoO8pHFYtHrr7+uTz75RJmZmSpRooTGjh2rV155RWYzm8fgePhbDwAAAACQJH311VfKzs7Ws88+a3QU5DNnZ2e99957SklJ0ZgxY3TlyhW9/vrrKlGihCZPniyr1Wp0ROCeokMMAAAAACBJuu+++3T06FGlp6fLxcXF6DgoQFarVW+99ZbeffddpaamysPDQy+99JLeeustOsbgEPhbDgAAAABQUlKSDh06pAceeIBimAMwm82aMGGCLl26pHfeeUfFihXTtGnT5OnpqdGjR8tisRgdEShQFMQAAAAAAJo4caIk6c033zQ2CO4ps9msV199VcnJyfrwww/l4eGhmTNnytPTU88//7wyMzONjggUCLZMAgAAAABUqlQpXblyRZcuXTI6Cgz2+eefa+zYsbpw4YKKFSum/v376+OPP5aHh4fR0YB8Q4cYAAAAADi4bdu2KTExUT169DA6CuzA4MGDFR8fr6+//lqlSpXSV199pRIlSqh///66fPmy0fGAfEGHGAAAAAA4uHbt2unHH3/UmTNnVK5cOaPjwM4sXbpUo0eP1qlTp+Tk5KTQ0FB99tlnKlmypNHRgDtGQQwAAAAAHJjVapWbm5sqVqyo6Ohoo+PAjn3//fcaMWKEYmJiZDab1blzZ/3rX/+Sv7+/0dGA28aWSQAAAABwYJ9++qmuXLmi4cOHGx0Fdq5z5846fvy4fvzxR1WtWlUREREKCAhQhw4ddPbsWaPjAbeFDjEAAAAAcGA1a9bU8ePHlZGRIWdnZ6PjoBCJjIzUsGHDdPDgQZlMJrVq1UpfffWVKlWqZHQ04G/RIQYAAAAADio+Pl5Hjx7VQw89RDEMt+3hhx/WgQMH9Pvvv6tevXrauHGjgoKCFBISoqioKKPjATdFQQwAAAAAHFRYWJgkacqUKQYnQWHWpEkT7dmzR3v27NH999+vyMhI1ahRQ82aNdOBAweMjgdcF1smAQAAAMBB/XmXwIsXLxqcBEXJoUOHNGjQIP3666+SpEaNGunzzz9XcHCwwcmA/0eHGAAAAAA4oJ9//lnJycl6/PHHjY6CIqZ27draunWrjh07ppYtW2rXrl26//77Va9evdwiGWA0OsQAAAAAwAG1atVKmzdv1vnz5+Xv7290HBRhsbGxGjRokDZs2CCbzaaaNWvq008/VatWrYyOBgdGQQwAAAAAHIzFYpG7u7uqVKmiI0eOGB0HDuLcuXMaNGiQ1q5dK5vNpipVqujjjz9Wx44djY4GB8SWSQAAAABwMB999JEsFoteeuklo6PAgQQEBGj16tWKj49XaGioTpw4occee0yVKlXSypUrjY4HB0OHGAAAAAA4mKpVq+rUqVPKzMyU2UyfBIyRnJys5557TkuWLFFOTo7Kly+v9957T3369DE6GhwAn3wAAAAA4EDOnj2r48ePq2XLlhTDYCgfHx8tWrRIycnJ+sc//qHz58+rb9++CggI0Pz5842OhyKOTz8AAAAAcCDjxo2TJL311lsGJwGu8vLy0rx585SSkqKhQ4cqKSlJAwcOVKlSpTRnzhyj46GIYsskAAAAADiQEiVKqFixYkpISDA6CnBd2dnZevXVVzV37lxlZWXJx8dHEydO1IgRI+hqRL7hbxIAAAAAOIgff/xRly9f1hNPPGF0FOCGXFxc9MEHHyg1NVWvvvqqsrKyNGrUKJUsWVLTpk2T1Wo1OiKKADrEAAAAAMBBPPzww/rll1+UmJgoX19fo+MAt8RqterNN9/U+++/r7S0NHl6emr06NF688036RjDHaMgBgAAAAAOIDs7Wx4eHqpZs6YOHDhgdBzgtlmtVk2fPl1vv/22Ll++LHd3dw0fPlxTp06Vs7Oz0fFQyFBKBQAAAAAH8P777ysnJ0ejR482OgpwR8xms8aMGaOLFy9q5syZcnV11bvvvisvLy+NGDFC2dnZRkdEIUKHGAAAAAA4gKCgIMXFxSkjI4NtZigy5syZo7CwMCUmJsrFxUUDBw7UBx98IDc3t3y/VlqWRScS05RtscrF2awgP095utKZVlhREAMAAACAIu7kyZMKCgpSx44dtWbNGqPjAPnuq6++0pgxY3T+/Hk5OzvrySef1OzZs+Xl5ZXnvLi4OBUvXvya4zcSdT5FC7fFauOReMUmpeuvBRSTpEBfD7Wu6a9+zQJVvUzx/HtDKHAUxAAAAACgiOvXr5+++eYb7dy5U40aNTI6DlBgwsPD9fLLL+vMmTNycnJSr169NHfuXJUoUUKZmZkKCgpSmTJltG3btpt2kZ1KStfY5fu05ViCnMwm5VhvXDr58/mQaqU0NbSeKvp6FMRbQz6jIAYAAAAARVzx4sXl7u6u+Ph4o6MA98SKFSv00ksvKTY2VmazWd26ddMDDzygN954QyaTSYMHD9bcuXOv+9rFf8RqYsQBWay2mxbC/peT2SRns0mTutZR3yaB+fVWUEAoiAEAAABAEfb999+rS5cuGj16tN577z2j4wD31Lp16zR8+HBFR0df89zXX3+t/v375zn28cYozVh/9K6v+8qjNTS8dfW7XgcFh4IYAAAAABRhzZo10x9//KHk5GR5e3sbHQcwxKuvvqoZM2bkOebi4qKdO3eqTp06kq52hr2xbF++XXN6j3rqQ6eY3aIgBgAAAABFVGZmpjw9PVWnTh3t3bvX6DiAISwWi6pWrarY2NhrnnNzc9OBAwf00dwvNOudqXmfNJlldi8ul9KV5Fmvnbzqts59KnX/T8o8sVvZ544pJyVRVkuWnIuXlnvVxirxUF85eZSQq7NZP45qyUwxO8W9dgEAAACgiJo+fbqsVqtef/11o6MAhjl9+rTOnj173ecyMzNVp04drfjj2LVP2qyypl9S5sm9Svz+PV3atiz3qcS1Hylt/0+6khAra1aalGORJTlOKTtW6dz80crJSJHFatPY5fnXcYb8RYcYAAAAABRRFStWVEJCgtLS0mQ20w8Bx3Xx4kVlZWXJbDbLyclJZrNZZrNZFy9e1IzPFmjBzwd16ZdFkiS3KverxIOPy5ZzRSk7Vyvj6K+SJCdvf1V4/ktJUuyMHnIJqCbPOq3lXLKsss4c1qWti6UciySpxENPyCeknyTpx1EtVM2/uAHvGjfjbHQAAAAAAED+O3bsmE6fPq2uXbtSDIPDK1my5HWPlyhRQqUeCJVpy6HcY04ePnKreHWumJNnydyCWE7axdxzSvccL/fKwbmP3YMaypqRopTtKyVJWXFXB/M7mU1a8Fus3uxaJ3/fEO4an4oAAAAAUASNHTtWkjR16tS/ORNwbBuPxOt6m+dsOVeUEfVb7mOX0pVy//zXYtifivmWy/2zuZibJCnHatPGo/H5GRf5hA4xAAAAACiCVq9erYCAgNw76AG4VmqWRbFJ6XmOpe3foLT9G/IcM3uUUMlHht10rfQjW3P/7F7l/tw/xyamKy3LIk9XSjD2hA4xAAAAAChivvvuO6Wnp2vgwIFGRwHs2snENN3KYHWTs4ts2ek3fP7iz18r8+QeSZJLuZryrNc29zmbpBOJaXeZFPmN8iQAAAAAFDFTp06VyWRSWFiY0VEAu5ZtsV5z7M+h+rLmKPP0AV3a8o1yLl/QhWVTVf7Zz+XklXce2cWfvtDl35dLkpz9Ksi/1wSZzE5/ex0Yiw4xAAAAAChC0tPTtWvXLjVs2FAeHh5GxwHsmovztWWRP4fqu1WqL5+HnpBblavzwmyWLKUf25Z7ns1mVeK6j3OLYcVKByngyWly8ihxS9eBsegQAwAAAIAi5J///KdsNlvuUH0ANxbk5ynT3530l4H71oyUq4esOUr4/n2lH9ws6eo2Sf/HJ8nJzeual5v+ex3YFwpiAAAAAFCEfPXVV3J3d1evXr2MjgLYPU9XZwX6eujiX47lpCcr89QByZqjrDOHlXlid+5zxXzLS5IuLJuqjP92izl5l5bPw0/qyoWTuvLf88yunnLxD5IkBfp5MFDfDvFvBAAAAACKiAMHDiguLo5iGHAbWtf0117T//eJZR7foczjO645z6VMVblXaypJucUwScq5fEHx307Mc65rxboK6Pe2nMwmta7hX0DJcTcoiAEAAABAETFu3DhJV4fqA7g1/ZoFapbt+veaNDm7yrlkgNyrP6ASzXrK5HR7ZZQcq039HwjMj5jIZyab7Qb/1gEAAAAAhYbVapWnp6f8/Px0+vRpo+MAdstmsyk5OVnx8fE6ePCgFixYoF+KNZJnlUbKyccKiZPZpOZV/PT1oGb5tyjyDR1iAAAAAFAELF68WJmZmRo8eLDRUQC7ExERoTFjxig+Pl4XL15UTk5OnufHTX1YS9LNyrFY8+2azmaTpobWy7f1kL+47ycAAAAAFAHTp0+X2WzWG2+8YXQUwO6kpKTo4MGDSkhIuKYY9tprr+mtMaM0qWudfL3m5K51VNHXI1/XRP5hyyQAAAAAFHKXL1+Wj4+PGjdurN9//93oOIDdsVqtatasmbZv3557zGQyqXHjxvrtt99kNl/tF/p4Y5RmrD9619d79dGaeqF1tbteBwWHLZMAAAAAUMhNmTJFNptNYWFhRkcB7NLUqVO1a9euPMfMZrO++OKL3GKYJA1vXV2lvFw1MeKALFabcqy33kPkZDbJ2WzS5K511KcJg/TtHR1iAAAAAFDIlSlTRmlpaUpNTTU6CmBX/vjjD4WGhurMmTMqWbKk2rRpo+XLl0uSXn31Vb399tvXfd2ppHSNXb5PW44lyMlsumlh7M/nQ6qV0tTQemyTLCQoiAEAAABAIbZ79241atRITzzxhL755huj4wB2IT09XX369NH3338vs9msF154QbNmzVJ6erqqV6+uYsWK6fDhw/LwuHnxKup8ihZui9XGo/GKTUzXXwsoJkmBfh5qXcNf/R8IVDX/4gX6npC/KIgBAAAAQCHWqVMnrVmzRjExMQoKCjI6DmC4OXPmaPTo0crMzFSDBg0UERGhwMD/38J48uRJOTk5qUKFCre1blqWRScS05RtscrF2awgP095ujKJqrCiIAYAAAAAhZTVapW7u7sCAgJ08uRJo+MAhjpy5Ii6dOmiqKgoeXp6au7cuerXr5/RsWCnzH9/CgAAAADAHs2fP1/Z2dkaNmyY0VEAw1gsFg0YMEC1a9fWsWPH1K9fPyUnJ1MMw03RIQYAAAAAhVSdOnV05MgRpaeny8XFxeg4wD0XHh6uwYMHKzU1VdWqVdOKFStUp04do2OhEKBDDAAAAAAKoeTkZB08eFDNmjWjGAaHc/r0aTVq1Eh9+/bVlStX9NFHHykqKopiGG4ZBTEAAAAAKIQmTJggSZo4caLBSYB7x2q16qWXXlKlSpW0e/duderUSUlJSRo+fLjR0VDIsGUSAAAAAAqhUqVKKTs7W5cvXzY6CnBP/PDDD3ryySeVlJSkcuXKadmyZWrWrJnRsVBI0SEGAAAAAIXMH3/8ocTERIWGhhodBShwSUlJatGihTp06KDLly/rzTff1JkzZyiG4a7QIQYAAAAAhcyjjz6q//znPzp16pQqVKhgdBygwEyePFlTpkyRxWJRSEiIVqxYIV9fX6NjoQigIAYAAAAAhYjVapWbm5sqVqyo6Ohoo+MABWLbtm3q0aOHzp49K19fXy1cuFAdOnQwOhaKELZMAgAAAEAhMnfuXF25ckXPP/+80VGAfJeenq7OnTvrgQce0Llz5zRixAhduHCBYhjyHR1iAAAAAFCI1KxZU9HR0crMzJSzs7PRcYB888knn2j06NHKyspSw4YNtWrVKrYEo8Dw6QkAAAAAhUR8fLyOHj2qFi1aUAxDkXHo0CF17dpVx44dk5eXl+bPn68+ffoYHQtFHFsmAQAAAKCQmDBhgiRpypQpBicB7p7FYlH//v1Vp04dRUdH66mnntLFixcphuGeYMskAAAAABQSvr6+stlsunjxotFRgLuyaNEiDRkyRGlpaapevbpWrlyp2rVrGx0LDoQOMQAAAAAoBCIjI3Xx4kX17t3b6CjAHTt9+rQaNmyoJ598UhaLRbNnz9bRo0cphuGeo0MMAAAAAAqBNm3aaOPGjTp//rz8/f2NjgPcFqvVqpEjR2r27NmyWq3q3LmzwsPD5eHhYXQ0OCgKYgAAAABg5ywWi9zd3VW5cmUdPXrU6DjAbVm3bp369eunpKQklS9fXt99952aNWtmdCw4OLZMAgAAAICd+/jjj2WxWDRixAijowC3LCkpSSEhIerYsaMuX76sSZMm6fTp0xTDYBfoEAMAAAAAO1etWjWdPHlSWVlZMpvpa4D9e/PNN/XPf/5TFotFLVq00PLly+Xr62t0LCCXs9EBAAAAAAA3dvbsWUVHR6tt27YUw2D3fv31V/Xs2VNxcXHy9fXVokWL9OijjxodC7gGn6YAAAAAYMfGjx8vSXrrrbcMTgLcWHp6ujp16qTmzZvr/PnzGjlypC5cuEAxDHaLLZMAAAAAYMdKlCghZ2dnJSYmGh0FuK6PPvpIr776qrKystSoUSNFRESoQoUKRscCbooOMQAAAACwUxs2bNDly5fVt29fo6MA1zhw4ICqVaumESNGqFixYlq8eLF27txJMQyFAh1iAAAAAGCnQkJCFBkZqYSEBPn5+RkdB5AkWSwW/eMf/9CiRYskSU899ZS++OILOTszphyFBwUxAAAAALBD2dnZ8vDwUPXq1XXo0CGj4wCSpIULF2rYsGFKS0tT9erVtWrVKtWsWdPoWMBtY8skAAAAANihWbNmKScnRy+//LLRUQDFxsaqQYMG6t+/v3JycvTJJ5/o6NGjFMNQaNEhBgAAAAB2KCgoSHFxccrIyJDZTC8DjGG1WjVixAjNmTNHVqtVXbt21aJFi+Th4WF0NOCusMEXAAAAAOxMbGysTp48qQ4dOlAMg2HWrl2rfv366eLFiypfvryWL1+uJk2aGB0LyBd8sgIAAACAnRk7dqwk6Z///KfBSeCIEhIS9NBDD+mxxx5TSkqKpkyZotOnT1MMQ5HClkkAAAAAsDPFixeXu7u74uPjjY4CBzNx4kRNnTpVFotFLVu21LJly+Tr62t0LCDfsWUSAAAAAOzImjVrlJqaqsGDBxsdBQ7k119/Vc+ePRUXFyc/Pz8tWrRI7dq1MzoWUGDoEAMAAAAAO/LAAw/o999/V1JSknx8fIyOgyIuNTVVvXv31rp162Q2m/XSSy9pxowZzK5DkUdBDAAAAADsRHZ2ttzd3VWnTh3t3bvX6Dgo4j744AO9/vrrysrKUnBwsCIiIlS+fHmjYwH3BFsmAQAAAMBOvP3227JarXr11VeNjoIi7MCBA+ratauOHz8uLy8v/fvf/9bjjz9udCzgnqJDDAAAAADsRMWKFXXhwgWlp6ezZQ35Ljs7W//4xz8UHh4uSRowYIA+//xzOTvTKwPHw996AAAAALAD0dHROn36tLp06UIxDPluwYIFevbZZ5WWlqYaNWooIiJCNWvWNDoWYBg+ZQEAAADADowdO1aSNHXqVIOToCg5efKk6tevr6eeeko5OTn69NNPdeTIEYphcHhsmQQAAAAAO+Dp6Slvb2/FxcUZHQVFgNVq1fDhwzV37lxZrVZ169ZNixcvlpubm9HRALvAlkkAAAAAMNjy5cuVnp6uF1980egoKAJWr16t/v37Kzk5WRUqVNDy5cvVuHFjo2MBdoUOMQAAAAAwWOPGjbVz505dvnxZXl5eRsdBIZWQkKBu3bpp69atKlasmCZOnKhx48YZHQuwS3SIAQAAAICB0tPTtXPnTjVo0IBiGO7YhAkTNHXqVOXk5KhVq1Zavny5fHx8jI4F2C0KYgAAAABgoKlTp8pms2nMmDFGR0Eh9Msvv6hXr146d+6c/Pz8FB4errZt2xodC7B7bJkEAAAAAAOVK1dOycnJSk9PNzoKCpHU1FT17t1b69atk9ls1siRI/Xuu+/KbDYbHQ0oFPgvBQAAAAAMcujQIcXFxaljx45GR0EhMmvWLPn5+WndunW6//77derUKb333nsUw4DbwJZJAAAAADDInwPPp06danASFAb79+9X165dFRMTo+LFi2vhwoXq1auX0bGAQoktkwAAAABgEHd3d/n6+urMmTNGR4Edy87O1oABAxQeHi6TyaSBAwfqs88+k7MzPS7AneK/HgAAAAAwwOLFi5WZmalBgwYZHQV27N///reee+45paenq1atWoqIiFD16tWNjgUUenSIAQAAAIABGjZsqH379iktLU1ubm5Gx4GdOXnypDp37qz9+/fLzc1NH3zwgYYOHWp0LKDIYOIeAAAAANxjqamp2rt3r4KDgymGIQ+r1arnnntOlStX1v79+9W9e3ddvHiRYhiQz9gyCQAAAAD32OTJk2Wz2RQWFmZ0FNiRVatW6amnntKlS5dUsWJFLVu2TI0bNzY6FlAksWUSAAAAAO6xMmXKKC0tTampqUZHgR24cOGCunbtqt9++03FihXTpEmTNGbMGKNjAUUaWyYBAAAA4B7au3ev4uPj1aVLF6OjwA6MGzdOZcuW1W+//abWrVsrPj6eYhhwD9AhBgAAAAD3UOfOnbV69WodP35clStXNjoODBIZGalevXrp/PnzKlWqlMLDw9WmTRujYwEOg4IYAAAAANwjVqtVHh4e8vf3V2xsrNFxYIDU1FT17NlT69evl9ls1ujRozV9+nSZzWzgAu4lhuoDAAAAwD3y9ddfKysrS8OGDTM6Cgzw3nvvaezYscrOzlbjxo21cuVKlStXzuhYgEOiQwwAAAAA7pG6devq0KFDysjIkIuLi9FxcI/s3btX3bp104kTJ+Tt7a0vv/xSPXv2NDoW4NDoyQQAAACAeyA5OVkHDx5Us2bNKIY5iOzsbD3++ONq0KCBTp48qWeeeUaJiYkUwwA7wJZJAAAAALgHJk6cKJvNpokTJxodBffA/Pnz9fzzzys9PV21atVSRESEqlevbnQsAP/FlkkAAAAAuAdKly6trKwsXb582egoKEAxMTHq0qWLDhw4IHd3d3344YcaPHiw0bEA/A+2TAIAAABAAdu+fbsSEhLUvXt3o6OggFitVg0bNkxVq1bVgQMH1KNHDyUlJVEMA+wUHWIAAAAAUMA6dOigH374QadOnVKFChWMjoN8FhERoQEDBujSpUsKDAzU8uXLFRwcbHQsADdBQQwAAAAACpDVapWbm5sqVKig48ePGx0H+Sg+Pl5du3bVtm3bVKxYMU2ePFlvvPGG0bEA3AKG6gMAAABAAfrXv/6lK1eu6Pnnnzc6CvKJzWbT2LFj9e677yonJ0dt27bVsmXL5O3tbXQ0ALeIDjEAAAAAKEC1atXSsWPHlJmZKWdnehIKuy1btqh37946f/68SpcurW+//VatWrUyOhaA28RQfQAAAAAoIAkJCTpy5IiaN29OMayQS0lJ0aOPPqoWLVooISFBr776qs6dO0cxDCik+EQGAAAAgAISFhYmSZo0aZLBSXA3ZsyYoXHjxik7O1tNmjRRRESEAgICjI4F4C6wZRIAAAAACoivr6+sVquSk5ONjoI7sGfPHnXr1k0nT56Ut7e35s2bp9DQUKNjAcgHbJkEAAAAgALwyy+/6OLFi+rVq5fRUXCbsrOz1bt3bzVs2FCxsbEaNGiQLl68SDEMKELoEAMAAACAAtC2bVv99NNPiouLY3tdIfLVV1/phRdeUEZGhmrXrq1Vq1apatWqRscCkM8oiAEAAABAPrNYLHJ3d1dQUJCioqKMjoNbEBMTo86dO+vgwYNyd3fXRx99pEGDBhkdC0ABYcskAAAAAOSzTz75RBaLRSNGjDA6Cv6G1WrV0KFDVbVqVR08eFA9e/ZUUlISxTCgiKNDDAAAAADyWfXq1XXixAllZWXJbKYPwV6tXLlSAwYM0OXLlxUYGKiVK1eqYcOGRscCcA/wyQwAAAAA+ejcuXM6duyYWrRoQTHMTp0/f17NmjVT9+7dlZGRoXfeeUcnT56kGAY4ED6dAQAAACAfjR8/XpL01ltvGZwE/8tqteqNN95Q+fLl9fvvv+uRRx5RQkKCXn31VaOjAbjH2DIJAAAAAPnIx8dHTk5OSkxMNDoK/mLz5s16/PHHFR8fr9KlS+vbb79Vq1atjI4FwCB0iAEAAABAPvnpp5906dIl9enTx+go+K/Lly/rkUceUatWrZSYmKg33nhD586doxgGODg6xAAAAAAgn7Ro0UJbtmzRhQsXVKpUKaPjOLx33nlH48eP15UrV9S0aVOtXLlSAQEBRscCYAcoiAEAAABAPrBYLHJzc1P16tV16NAho+M4tN27d6tbt26KjY2Vt7e35s2bp9DQUKNjAbAjbJkEAAAAgHwwc+ZM5eTkaNSoUUZHcViZmZnq1auXGjVqpFOnTmnIkCG6ePEixTAA16BDDAAAAADyQeXKlXX27FllZGTIbKb34F774osv9OKLLyojI0P33XefVq1apSpVqhgdC4Cd4lMaAAAAAO5SbGysTpw4odatW1MMu8eio6N13333afDgwZKkL7/8UgcOHKAYBuCm+KQGAAAAgLs0fvx4SdJbb71lcBLHYbVaNXjw4NyZbb169VJycrKefvppo6MBKATYMgkAAAAAd8nb21uurq66cOGC0VEcwvLlyzVw4EBdvnxZlSpVUkREhOrXr290LACFCB1iAAAAAHAX1q5dq5SUFPXr18/oKEXeuXPn1LRpU/Xo0UOZmZmaMWOGTpw4QTEMwG2jQwwAAAAA7kLz5s3122+/KSkpST4+PkbHKZKsVqvGjBmj9957Tzk5OWrXrp2WLl0qb29vo6MBKKQoiAEAAADAHcrOzpa7u7tq166t/fv3Gx2nSNq0aZMef/xxXbhwQf7+/lqyZIlatGhhdCwAhRxbJgEAAADgDr3zzjuyWq169dVXjY5S5Fy+fFlt27ZV69atlZSUpDFjxiguLo5iGIB8QYcYAAAAANyhwMBAxcfHKz09XWYz/Qb5Zfr06QoLC9OVK1fUrFkzRUREyN/f3+hYAIoQZ6MDAAAAAEBhFBMTo1OnTqlz584Uw/LJzp071b17d506dUolSpTQv//9b3Xt2tXoWACKID61AQAAAOAOjBkzRpL0z3/+0+AkhV9mZqZ69Oih+++/X6dPn9awYcOUlJREMQxAgWHLJAAAAADcAS8vL3l5eencuXNGRynUPv/8c40YMUIZGRmqW7euIiIiVLlyZaNjASji6BADAAAAgNu0cuVKpaWl6R//+IfRUQqtY8eOqXbt2hoyZIhMJpPmzZunffv2UQwDcE/QIQYAAAAAt6lJkybasWOHLl++LC8vL6PjFCoWi0VDhw7VvHnzZLPZ1Lt3by1YsEAuLi5GRwPgQBiqDwAAAAC3IT09XTt37lSDBg0oht2m7777Ts8884wuX76sypUra8WKFapfv77RsQA4ILZMAgAAAMBtePvtt2W1WvXGG28YHaXQiIuLU5MmTdSrVy9lZmbqvffe0/HjxymGATAMWyYBAAAA4DaUL19eSUlJysjIMDqK3bNarXr99dc1c+ZM5eTk6NFHH9V3331HZx0Aw7FlEgAAAABu0ZEjR3T27FmFhoYaHcXu/fTTT+rTp48SEhJUpkwZLV26VA8//LDRsQBAElsmAQAAAOCWjR07VpI0depUg5PYr+TkZLVp00Zt27bVxYsXNXbsWJ07d45iGAC7wpZJAAAAALhFHh4eKlmypM6cOWN0FLs0bdo0TZw4UVeuXNEDDzyglStXyt/f3+hYAHANtkwCAAAAwC0IDw9XRkaGXn75ZaOj2J0dO3YoNDRUp06dko+Pj+bPn6+uXbsaHQsAbogOMQAAAAC4BY0aNdLevXuVkpIiDw8Po+PYhczMTPXt21crV66UyWTSsGHDNHv2bJnNTOcBYN/oEAMAAACAv5Gamqo9e/YoODiYYth/ffbZZ3rppZeUmZmpunXr6vvvv1elSpWMjgUAt4SCGAAAAAD8jSlTpshms2n8+PFGRzFcVFSUunTpoiNHjsjDw0Pz58/XgAEDjI4FALeFLZMAAAAA8DcCAgKUkpKitLQ0o6MYxmKxaMiQIZo/f75sNpv69u2r+fPny8XFxehoAHDb2NgNAAAAoEBduHBBzz33nAIDA+Xq6qqAgAC1b99ev/zyi9HRFBQUpFmzZt30nH379un8+fPq0qVL7rEjR46odevWKlOmjNzc3FSlShWNHz9eV65cKeDExli6dKl8fX01b948Va5cWfv27dOiRYsohgEotNgyCQAAAKBA9ezZU9nZ2Zo/f76qVKmi8+fPa8OGDUpMTCywa2ZnZ+dbsWbs2LGSpKlTp+YeK1asmAYMGKDg4GD5+Phoz549GjJkiKxWa57zCruzZ8+qa9eu2rFjh1xcXDRz5kyNHDnS6FgAcNfYMgkAAACgwCQnJ6tkyZLatGmTWrZsedPzXnnlFa1cuVJZWVlq3LixZs6cqQYNGuSes2rVKk2ePFn79u2Tl5eXQkJCtHz5cklXO70GDRqkqKgorVixQj169NC8efMUGRmpMWPGaPv27SpVqpRCQ0M1bdo0eXp6qlWrVtq8eXOeHP/745HVapWHh4f8/f0VGxt70/c6evRo/fHHH9qyZcvtfpnsjtVq1auvvqpZs2bJarWqQ4cOWrJkiby8vIyOBgD5gi2TAAAAAAqMl5eXvLy8tGLFCmVlZd3wvN69eys+Pl5r167Vjh07FBwcrLZt2yopKUmStHr1aoWGhuqxxx7Trl27tGHDBjVt2jTPGjNmzFCDBg20a9cuhYWFKTo6Wh06dFDPnj21d+9ehYeHKzIyUsOHD5ckLVu2TBUqVNDkyZMVFxenuLi43LVMJpPmzZunBQsWKCsrS0OGDLnp+zx27JjWrVt306JfYbFhwwb5+/vr/fffl7+/vyIjI7V27VqKYQCKFDrEAAAAABSo7777TkOGDFFGRoaCg4PVsmVL9e3bV/Xr15ckRUZGqlOnToqPj5erq2vu66pVq6bXXntNQ4cOVfPmzVWlShUtWLDgutcICgpSo0aNcjvGJGnw4MFycnLS3Llzc49FRkaqZcuWSktLk5ubm4KCgjRy5MhrtgHWqlVL06ZN04QJE3Tw4EFlZGRcdwtm8+bNtXPnTmVlZWno0KGaM2eOzObC2XeQnJys0NBQbdq0SU5OThozZoymTJlidCwAKBCF85MaAAAAQKHRs2dPnT17VhEREerQoYM2bdqk4OBgzZs3T5K0Z88epaamys/PL7ejzMvLSzExMYqOjpYk7d69W23btr3pdRo3bpzn8Z49ezRv3rw8a7Zv315Wq1UxMTE3Xevw4cNq3bq1Dhw4oKZNm95wHll4eLh27typb775RqtXr9aMGTNu8atiX6ZNmyZ/f39t2rRJzZs317lz5yiGASjSGKoPAAAAoMC5ubmpXbt2ateuncLCwjR48GBNnDhRAwcOVGpqqsqWLatNmzZd8zofHx9Jkru7+99ew9PTM8/j1NRUDRs2TCNGjLjm3MDAwL9db9KkSbLZbJowYcINz6lYsaIk6b777lNOTo6GDh2ql19+WU5OTn+7vj3Yvn27QkNDdfr0afn4+GjBggXq1KmT0bEAoMBREAMAAABwz913331asWKFJCk4OFjnzp2Ts7OzgoKCrnt+/fr1tWHDBj399NO3fI3g4GAdPHhQ1apVu+E5Li4uysnJue5zCxYskJeXlzp27HhL17Narbpy5YqsVqvdF8QyMzPVp08fRUREyGw26/nnn9dHH31UaLd7AsDtoiAGAAAAoMAkJiaqd+/eeuaZZ1S/fn0VL15c27dv1zvvvKNu3bpJkh555BE9+OCD6t69u9555x3VqFFDZ8+ezR2k37hxY02cOFFt27ZV1apV1bdvX1ksFq1Zs0avv/76Da/9+uuv64EHHtDw4cM1ePBgeXp66uDBg/rPf/6jjz/+WNLV2WM///yz+vbtK1dXV5UqVSr3eEJCgvr373/dtRcuXKhixYqpXr16cnV11fbt2zVmzBj16dNHxYoVy+evYv769NNPNWrUKGVmZqpevXpatWqVKlWqZHQsALinKIgBAAAAKDBeXl5q1qyZZs6cqejoaF25ckUVK1bUkCFDNHbsWElX7+i4Zs0ajRs3Tk8//bQuXLiggIAAtWjRQmXKlJEktWrVSkuWLNGUKVP09ttvy9vbWy1atLjptevXr6/Nmzdr3LhxCgkJkc1mU9WqVdWnT5/ccyZPnqxhw4apatWqysrK0p/3HDt58qQk6Z///Od113Z2dtb06dN19OhR2Ww2VapUScOHD9eoUaPu+mtWUI4ePaouXbro6NGj8vDw0Ndff33Dgh8AFHXcZRIAAAAA/sJqtcrd3V3lypX72+H7hYHFYtGgQYP09ddfy2azqW/fvpo/f/4NbxQAAI6ADjEAAAAA+IsvvvhC2dnZeu6554yOcte+/fZbDRo0SKmpqapSpYpWrlypunXrGh0LAAxHhxgAAAAA/EXt2rUVFRWlzMxMOTsXzh6Cs2fPqkuXLtq5c6dcXV01ffp0vfTSS0bHAgC7wS1EAAAAAOC/EhISdPjwYT344IOFshhmtVo1atQoVaxYUTt37lTHjh2VkJBAMQwA/kfh+4QHAAAAgAIyceJESdKkSZMMTnL7/vOf/+iJJ55QYmKiypYtq6VLl6p58+ZGxwIAu8SWSQAAAAD4Lz8/P1ksFl26dMnoKLcsOTlZ3bt31+bNm+Xs7KwxY8Zo8uTJRscCALvGlkkAAAAAkPTrr78qKSlJvXr1MjrKLXvrrbdUunRpbd68WQ899JDi4uIohgHALaBDDAAAAAAktW3bVj/99JPOnj2rsmXLGh3npv744w+FhobqzJkzKlmypBYuXKiOHTsaHQsACg0KYgAAAAAcntVqlaurqypVqqRjx44ZHeeG0tPT9cQTTygiIkJms1nPPfecPvzwQ5nNbP4BgNvBUH0AAAAADm/27NmyWCx68cUXjY5yQ3PmzNHo0aOVmZmp+vXra9WqVQoMDDQ6FgAUSnSIAQAAAHB4NWrUUExMjDIyMuTsbF99A0eOHFGXLl0UFRUlT09PzZ07V/369TM6FgAUavTVAgAAAHBo586dU1RUlEJCQuyqGGaxWDRgwADVrl1bx44d05NPPqmkpCSKYQCQD+zn0x4AAAAADBAWFiZJdnV3xvDwcA0ePFipqamqWrWqVq5cqTp16hgdCwCKDLZMAgAAAHBoPj4+MpvNSkpKMjqKTp8+rS5dumj37t1ydXXVu+++a9dzzQCgsGLLJAAAAACHtWnTJl26dEl9+vQxNIfVatVLL72kSpUqaffu3erUqZOSkpIohgFAAaFDDAAAAIDDatmypX7++WdduHBBpUqVMiTDDz/8kDsfrFy5cvruu+/0wAMPGJIFABwFHWIAAAAAHJLFYtEvv/yimjVrGlIMS0pKUosWLdShQwddvnxZEydO1JkzZyiGAcA9wFB9AAAAAA7pgw8+UE5OjkaOHHnPrz158mRNmTJFFotFDz/8sFasWCE/P797ngMAHBUdYnbqwoULeu655xQYGChXV1cFBASoffv2+uWXX4yOpqCgIM2aNeuu1jh27JiKFy8uHx+ffMkEAAAA3K7Zs2erWLFiGjp06D275rZt21ShQgVNnDhRxYsX15o1a7RlyxaKYQBwj9EhZqd69uyp7OxszZ8/X1WqVNH58+e1YcMGJSYmFtg1s7Oz5eLiUmDr/+nKlSt64oknFBISoq1btxb49QAAAID/derUKcXExOjRRx+V2VzwfQLp6el6/PHHtXr1apnNZr344ouaNWvWPbk2AOBafPraoeTkZG3ZskXTp09X69atValSJTVt2lRjxoxR165d85w3ePBglS5dWt7e3mrTpo327NmTZ61Vq1apSZMmcnNzU6lSpRQaGpr7XFBQkKZMmaIBAwbI29s79zdjkZGRCgkJkbu7uypWrKgRI0YoLS1NktSqVSudPHlSo0aNkslkkslkuu33N378eNWqVUuPP/74nXx5AAAAgLs2fvx4SdJbb71V4Nf65JNP5Ovrq9WrV6tBgwaKiYnRhx9+SDEMAAzEJ7Ad8vLykpeXl1asWKGsrKwbnte7d2/Fx8dr7dq12rFjh4KDg9W2bVslJSVJklavXq3Q0FA99thj2rVrlzZs2KCmTZvmWWPGjBlq0KCBdu3apbCwMEVHR6tDhw7q2bOn9u7dq/DwcEVGRmr48OGSpGXLlqlChQqaPHmy4uLiFBcXl7uWyWTSvHnzbvrefvrpJy1ZskSzZ8++w68OAAAAcPeWL18uPz8/NWnSpMCucejQIVWvXl0vvPCCnJ2dtXDhQu3evVuBgYEFdk0AwK1hy6QdcnZ21rx58zRkyBB9+umnCg4OVsuWLdW3b1/Vr19f0tUurt9//13x8fFydXWVdLW4tWLFCi1dulRDhw7VP//5T/Xt21eTJk3KXbtBgwZ5rtWmTRu9/PLLuY8HDx6sfv365Q4WrV69uj788EO1bNlSc+bMka+vr5ycnFS8eHEFBATkWatmzZoqUaLEDd9XYmKiBg4cqAULFsjb2/uuvkYAAADAnfrhhx+UkpKiESNGFMj6FotFAwcO1DfffCNJ6tevn+bNmydnZ378AgB7QYeYnerZs6fOnj2riIgIdejQQZs2bVJwcHBuB9aePXuUmpoqPz+/3I4yLy8vxcTEKDo6WpK0e/dutW3b9qbXady4cZ7He/bs0bx58/Ks2b59e1mtVsXExNx0rcOHD+fZkvm/hgwZoieffFItWrS4ha8AAAAAkH8WL16s4OBgvfvuu7nbJf/6i+P8smjRIvn4+GjhwoWqWrWq9u/frwULFlAMAwA7w6eyHXNzc1O7du3Url07hYWFafDgwZo4caIGDhyo1NRUlS1bVps2bbrmdX/eudHd3f1vr+Hp6ZnncWpqqoYNG3bd35bdbWv3Tz/9pIiICM2YMUOSZLPZZLVa5ezsrM8++0zPPPPMXa0PAAAA3Eh0dLR27dqlPXv2yGq1ytPTUxs2bFDnzp1zd1zcjdOnT6tz587as2ePXF1d9fHHH+uFF17Ih+QAgIJAQawQue+++7RixQpJUnBwsM6dOydnZ2cFBQVd9/z69etrw4YNevrpp2/5GsHBwTp48KCqVat2w3NcXFyUk5NzO9ElSb/++mue161cuVLTp0/X1q1bVb58+dteDwAAALhVf36/abVaJUkZGRnq1auXqlevriNHjtzRzaL+XG/kyJGaPXu2rFarOnfurPDwcHl4eORbdgBA/mPLpB1KTExUmzZttGDBAu3du1cxMTFasmSJ3nnnHXXr1k2S9Mgjj+jBBx9U9+7dtX79ep04cUJbt27VuHHjtH37dknSxIkTtWjRIk2cOFGHDh3Svn37NH369Jte+/XXX9fWrVs1fPhw7d69W1FRUVq5cmXuUH3p6t0pf/75Z505c0YJCQm5x2vVqqXly5ffcO3atWurbt26uf+UL19eZrNZdevWVcmSJe/mSwYAAADc1P/+AvbPwliPHj3uuBj2ww8/qHTp0vroo48UEBCg3377TatWraIYBgCFAAUxO+Tl5aVmzZpp5syZatGiherWrauwsDANGTJEH3/8saSrd3Rcs2aNWrRooaefflo1atRQ3759dfLkSZUpU0aS1KpVKy1ZskQRERFq2LCh2rRpo99///2m165fv742b96so0ePKiQkRI0aNdKECRNUrly53HMmT56sEydOqGrVqipdunTu8SNHjujSpUsF8BUBAAAA7s5fv5/907Rp0zRt2rTbXispKUkhISHq0KGDLl++rEmTJunMmTNq1qxZfkQFANwDJpvNZjM6BAAAAAAUpOTk5NxdCSaTSXPnztWQIUNue51JkybprbfeksViUUhIiFasWCFfX9/8jgsAKGAUxAAAAAAUeTabTWbz1Q0yS5YsUa9evW547oEDB1S6dGn5+/vnHtu2bZtCQ0MVFxcnX19fffPNN2rfvn2B5wYAFAyG6gMAAAAoUtKyLDqRmKZsi1UuzmYF+XnqZPRRSdILL7xw02LYqVOn1LRpU9WoUUPbt29XVlaWevfurTVr1shsNuull17S+++/n1tcAwAUTnSIAQAAACj0os6naOG2WG08Eq/YpHT99YcckyRfV6sS9/2sNR+M0X0VbrzFsVu3bvr+++9ltVr1+OOPa+XKlcrKylLDhg21atUqVahQocDfCwCg4FEQAwAAAFBonUpK19jl+7TlWIKczCblWG/8482fz4dUK6WpofVU0Tfv3SBXrFih0NDQPMc8PDz05Zdfqk+fPgWSHwBgDApiAAAAAAqlxX/EamLEAVmstpsWwv6Xk9kkZ7NJk7rWUd8mgZKklJQU1ahRQ+fOncs9z2Qy6YknntDChQvzPTsAwFgUxAAAAAAUOh9vjNKM9Ufvep1XHq2h4a2rq2PHjlq3bt11z9m6dasefPDBu74WAMB+MFQfAAAAQKGy+I/YfCmGSdKM9Uf1w4ql1xTDPDw85Ofnp4CAALm4uOTLtQAA9oMOMQAAAACFxqjXx2nWO1PzHjSZZXYvLpfSleRZr5286rbO8/SVi2eVvGWhMk/skTUrVc7FS8mj5kMq0byPzK4eslmy1fziBr0wsK8CAwNVunRpubu738N3BQC41+gQAwAAAFBobDh0/tqDNqus6ZeUeXKvMk/uVU7aRZVo1kOSlH3+uM59M0a2rLTc0y3J53R523fKiNmlgH5vq5i7p5wffEoPP9zsXr0NAIDBzEYHAAAAAIBbEXU+RbFJ6bmP3arcrzL9psu/71tyr/H/M75Sdnyf++fENR/kFsO8GnZQ6Z5hcq1YV5J0Jf64Lv2yWDlWm7YcS9Cx+JR79E4AAEajIAYAAACgUFi4LVYmkyn3sZOHj9wq1pF7UEP5hPTPPZ6TdlGSlHX2iLLPR0uSivlVlG/7F+RRvZlKdXtN0tV1Uveuly3HIiezSQt+i713bwYAYCgKYgAAAAAKhY1H4nW9Eci2nCvKiPot97FL6UqSpKzTB///WLmaucU0Zy9fOZfwlyRZM1N1JSFWOVabNh6NL8j4AAA7wgwxAAAAAHYvNcuSZ7ukJKXt36C0/RvyHDN7lFDJR4ZJkiyX/r/A5eTpk/c8Tx/p0tV5ZJbkc3IpU0WxielKy7LI05UfkwCgqKNDDAAAAIDdO5mYpmt7w65lcnaRLftq4cx6JfP/jzsVy3ue+f+LXtYrWZIkm6QTiWkCABR9/OoDAAAAgN3LtlivOeZW5X6VePBxyZqjzNMHdGnLN8q5fEEXlk1V+Wc/l7mYW+65tpwreV5rs1py/2wu5nrT6wAAih4KYgAAAADsnovztZtb/hyqL0luleor68xhZR7fIZslS+nHtuXOCZOknLTkPK/NSb2Y+2dnn4CbXgcAUPTwaQ8AAADALthsNqWkpFz3uSA/T5mu+0yeBXL/aM1IkWuF+3IfZ505nDuQ35KSoJzLFyRJZjcvFSsVKOnqfSeD/DzvOD8AoPCgQwwAAACAXXjzzTc1efJkeXl5qXz58qpSpYoqVaqklJQUJSUlyVStb57zc9KTlXnqgGTNudoddmJ37nPFfMvLtVxNuZSpquzz0bIknVbSuo/lXq2pLv++XPrvRDKv+o/K5HT1x6JAPw8G6gOAg+DTHgAAAIBdqFGjhiQpNTVVR44c0ZEjR/I832LUY7r4lzaxzOM7lHl8xzXruJSpKvdqTSVJfo+9pHPfjJEtK02pe35Q6p4fcs8r5l9FJR66WmRzMpvUuob/NWsBAIomCmIAAAAA7MLDDz8sJycn5eTk5Dnu7u6urVu3yrNsVTXpufW6rzU5u8q5ZIDcqz+gEs165nZ9uZSporL/eF/Jkd8o88QeWbNS5ezlJ49aD6tE8z4yu3pIknKsNvV/ILBg3yAAwG6YbDbbrdy9GAAAAADyncVi0QcffKBPP/1Ux44dy/Oc2WyWl5eXtmzZovr160uSnvpim7YeT1SONf9+jHEym9S8ip++HtQs39YEANg3huoDAAAAuOdWrlypBx54QG5ubnrllVd08uRJtWrVSu+++64kyWQyydXVVevXr88thknS1NB6cjb/7Xj92+JsNmlqaL18XRMAYN8oiAEAAAC4J/bu3avu3bvLw8ND3bt31++//65atWpp7ty5yszM1MaNGzVq1Cj5+/urWLFiWrNmjZo1y9u1VdHXQ5O61snXXJO71lFFX498XRMAYN/YMgkAAACgwCQkJGjSpEkKDw/XhQsXJEnlypXTgAEDNG7cOHl5eV3zml9++UXOzs7XFMP+6uONUZqx/uhd53v10Zp6oXW1u14HAFC4UBADAAAAkK+uNxesePHi6tKliyZPnqyqVavmy3UW/xGriREHZLHabmummJPZJGezSZO71lGfJgzSBwBHREEMAAAAQL5YuXKlpk2bpu3btysnJ0fOzs56+OGHFRYWpjZt2hTINU8lpWvs8n3acixBTmbTTQtjfz4fUq2UpobWY5skADgwCmIAAAAA7tjevXs1YcIErV+/XhkZGTKZTKpdu7ZeeuklDR48WGbzvRlbHHU+RQu3xWrj0XidTEiTTP8/eN8kKdDPQ61r+Kv/A4Gq5l/8nmQCANgvCmIAAAAAbsuN5oI99dRTGjdunIoXN67glJycLL8y5VTMt5x++XWb3FycFeTnKU9XZ8MyAQDsD/9XgCQpLcuiE4lpyrZY5eJs5psGAAAA5HGjuWBPPPGEpkyZkm9zwe7WxIkTZc3OUNa5aJ078Js6depkdCQAgB2iQ8yB5baVH4lXbFK6/voXwSQp0NdDrWv6q1+zQFUvQ1s5AACAI4qIiNC0adP0xx9/3LO5YHdq3759atiwoaxWqySpQ4cOWrt2rcGpAAD2iIKYA2LwKAAAAG5m//79CgsL0w8//GDoXLDbYbPZ1KJFC/3222+yWCySJJPJpOjoaFWuXNngdAAAe2N//ydDgVr8R6wemblZW48nStLf3p76z+e3Hk/UIzM3a/EfsQWeEQAAAPdeQkKCXnzxRfn7+6tevXpasWKFfHx89Nprryk5OVkHDhzQ0KFD7bIYJknh4eGKjIzMLYZJktls1ty5cw1MBQCwV3SIOZCPN0Zpxvqjd73OK4/W0PDW1fMhEQAAAIx0o7lgnTt3tqu5YLeidevW2rRpU+5js9ksm80mHx8fJSYmyvSXu04CAMDUdAex+I/YfCmGSdKM9UdV2stVfZoE5st6AAAAuLeuNxesZcuWCgsLU9u2bY2Od0cWLlyonTt36ueff9a7776rNm3aqHr16vL29qYYBgC4BgUxB3AqKV0TIw5IkqzZmUrdvU7pR3/VlYRYWa9kysnLVy6lAuVRu4U8az8sk1MxXd62TJmx+5R19oisGZclSU7e/qrw/JeSpAkRB9S8ailmigEAABQShXEu2O0oV66cypUrp/Pnz0uShg0bpl69ehmcCgBgryiIOYCxy/fJYrUpOyFWF5ZOliX5XJ7ncy6dV8al88qI/kMupSvJpUwVJW8Nly0r7YZrWqw2jV2+T18PalbQ8QEAAHCHEhISNGnSJIWHh+vChQuSpLJly+rFF1/UuHHj5O3tbXDC/HfmzBlJUqVKlQxOAgCwZxTEirio8ynacixBORkpiv92onIuX/1GyMnLV97NeqpY6UqyZWcoM3a/Uvf9mPs6F//KKlYqUM7epZS8+d/XrJtjtWnLsQQdi09RNf/i9+z9AAAA4OYsFos+/PBDffrpp4qKipJ0dS5Y3759NWXKFFWrVs3ghAUrLi5OkgrV/DMAwL1HQayIW7gtVk5mky7+viy3GGZy9VTAP96Xc/FSued51HhQJR7sLZmdJEkB/d6WJF1JPHXdgpgkOZlNWvBbrN7sWqeA3wUAAAD+TlGcC3Yn/twy6evra3ASAIA9K9yDAvC3Nh6JV47VpvRDW3KPeTfplqcY9icnTx85ud96t1eO1aaNR+PzJScAAABu3/79+xUaGioPDw9169ZN27ZtU82aNfXpp58qKytLmzZtcqhimCQlJiYW+nloAICCR4dYEZaaZVFsUrqs2Rl55oa5Vsi/jq7YxHSlZVnk6cpfJQAAgHshMTFRb775pkPNBbsdFy9elIuLi9ExAAB2jipGEXYyMU02Sdb/GY7vXDz/2sdtkk4kpqlOuRL5tiYAAADyut5cMC8vL/Xt21eTJ09W9erVDU5oPy5duiQ3NzejYwAA7BwFsSIs22KVJJldPfMct6QkqZhfxXy/DgAAAPIXc8FuX1pamjw9Pf/+RACAQ2NzfRHm4nz1X6/ZxV3OPgG5x7POHCyQ6wAAAODuHThwQD169JCnp2eeuWBz5sxx2LlgtyMjI0PFi3MXdADAzVHJKMKC/Dxl+u+fPWqH5B5P+X2FLCmJ15yfk5asnIyU27qG6b/X+av09HTt2rVLR48evd3IAAAADikpKUkjRoyQv7+/6tatq+XLl6tEiRJ67bXXlJycrAMHDujZZ59lWPwtyM7Olo+Pj9ExAAB2ji2TRZinq7MCfT10Mild3k17KO3AJuVcviBrVprO/ftleTcNVbHSQbJlZygzdp9S9/2ogCenycm9uDKit8t6JVM5qUm569ksWUo7HClJci5RRq5lq8vdmqaXXxqu4sWL6+DBg9q3b59Onz4tm82mWrVq6dChQ0a9fQAAALvGXLCCYbFY5OfnZ3QMAICdoyBWxLWu6a+vt52U3IvL//FJurB0sizJ55STkqCLG/51w9cl/vCJci7H5zlmTb+khBVvS5I867aVW6eXFL97o+aun3vN681ms5o3b56/bwYAAKAIWLVqlaZNm6bff/89dy5YixYtFBYWpkceecToeIVaRkaGJKl06dIGJwEA2Dt6rou4fs0ClWO1SZJcSgWq7DMfq2SbwXKtcJ/MbsUlJ2c5eZeWW+Vg+XUapWKlbn3Yvs1k1g+zx1/3t5dWq1Xx8fE6depUvr0XAACAwuqvc8G6du2q3377TTVq1NAnn3yirKwsbd68mWJYPoiJiZEkBQQE/M2ZAABHZ7LZbDajQ6BgPfXFNm09nphbGMsPTmaTmlfx09eDmikrK0u9evXS999/f91z/fz81K5dO73yyiu6//778y0DAACAPUtKStKbb76pxYsX68KFC5KksmXLqn///ho/fry8vb0NTlj0rFmzRp06ddJHH32k4cOHGx0HAGDH6BBzAFND68nZbPr7E2+Ds9mkqaH1JEmurq5atmyZevXqJZPJJJPJpG7duikyMlI9e/aU1WrV4sWL1bhxY3l5ealdu3aKiIiQ1WrN10wAAABGs1gsmjlzpmrUqCE/Pz999NFHysjIUN++fXX06FGdPXtW77zzDsWwAhIbGytJCgwMNDgJAMDeURBzABV9PTSpa518XXNy1zqq6OuR+7hYsWJavHixnnrqKdlsNvXo0UMPPfSQli5dqqSkJB07dkzPPvusfHx89OOPP6pbt25yc3NTkyZN9Mknnyg7Oztf8wEAANxL33//vZo3by43NzeNHj1aMTExatGihdavX6+UlBQtWrSIIfn3wJkzZyRJQUFBxgYBANg9tkw6kI83RmnG+qN3vc6rj9bUC62rXfc5q9WqDRs2qE2bNnJycrruOcnJyZo1a5bCw8N19OhRWa1WmUwmVa9eXb1799bo0aPl6+t71zkBAAAK0oEDBxQWFqYffvhB6enpMplMqlWrll588UUNGzZMZjO/e77XBg8erC+++EIpKSny8vIyOg4AwI5REHMwi/+I1cSIA7JYbbc1U8zJbJKz2aTJXeuoT5P8a0G3WCz68ssv9eWXX2rnzp26cuWKpKvzNTp37qxXX32V36YCAAC7kZSUpEmTJmnRokW5c8ECAgLUv39/hYWFsRXSYN26dVNERIT4EQcA8HcoiDmgU0npGrt8n7YcS5CT2XTTwtifz4dUK6WpofXybJMsCGvWrNFHH32kyMhIpaamSpJKlCih1q1ba9SoUWrRokWBXh8AAOB/WSwWffzxx/rkk08UFRUlSfLy8lKnTp00ZcoUfnlnRx566CFt27ZNFovF6CgAADtHQcyBRZ1P0cJtsdp4NF4nEtJkMv3/4H2TpEA/D7Wu4a/+DwSqmn/xe55v9+7dmjFjhtavX5/7G9g/544NGzZMTzzxBFsRAABAgfn+++81depU/f7778rJyZGzs7OaN2+u8ePHq127dkbHw3XUqVNHMTExSk9PNzoKAMDOURCDjh8/rmq16mjwqDF67oUX5eJsVpCfpzxdnY2Oluvs2bOaMWOGli9frhMnTkiSnJycVKdOHfXr10/Dhw+Xh0fBdq8BAICi70ZzwYYPH65nn32WX8bZuYoVKyo9PV2JiYlGRwEA2DkKYtAjjzyiDRs26MEHH9TWrVuNjvO30tPTNXv2bH399dc6ePCgcnJyZDKZVKlSJfXo0UMvv/yyypUrZ3RMAABQSNxsLtj48eNVokQJgxPiVvn6+srLy0uxsbFGRwEA2DkKYg5u/fr1at++vSTJ3d1dSUlJcnNzMzjVrbNarVq0aJHmzp2rP/74Q5mZmZKk0qVL69FHH9Vrr72m+vXrG5wSAADYG+aCFU0eHh6qUqWK9u/fb3QUAICdo+fbgaWmpuqZZ57JfZyRkaHvv//ewES3z2w2q1+/fvr555+VkZGhzZs3q3v37srOztbChQvVoEEDFS9eXB07dtSaNWuMjgsAAAy2evVqPfTQQ3Jzc9OoUaMUExOjkJAQrV+/XikpKVq8eDHFsEIsOztbPj4+RscAABQCFMQc2NixYxUXF5f72MnJSfPmzTMuUD5o0aKFli9fruTkZB05ckRDhgxR8eLFtW7dOnXq1Emurq564IEH9Nlnn3H3IQAAHMSBAwfUs2dPeXp6qnPnzvr1119Vo0YNzZ49W1lZWfr5558Zkl9E5OTkqFSpUkbHAAAUAmyZdFA7duxQkyZN9L//+p2cnHT27Fn5+/sblKxgJCUlaebMmQoPD9exY8dks9lkNptVo0YN9enTRyNHjuS3iQAAFCF/zgVbvHix4uPjJf3/XLBx48bx//0iKCUlRd7e3hoyZIg+++wzo+MAAOwcHWIOymw2q379+ipZsmSe4zk5OfrPf/5jUKqC4+vrqylTpujo0aPKzMzU7Nmz1ahRIx07dkyTJk1SyZIlVaFCBT333HOKiYkxOi4AALgDFotFs2bNUo0aNeTn56cPP/xQ6enpevzxx3XkyBHFxcXp3XffpRhWREVHR0u6WvgEAODvUBBzUI0aNdLu3buVlJQkFxcX1ahRQxs3blR4eLg6depkdLwC5eLioueff17bt29XVlaWVqxYoXbt2ik5OVmffvqpqlSpIl9fX/Xq1Uu//vqr0XEBAMDfuNFcsB9++EEpKSkKDw9XjRo1jI6JAnbixAlJUoUKFYwNAgAoFCiIQdnZ2apSpYpatWqlxx9/3KF+a2o2m9WtWzetX79eqamp+uOPP9S3b1+ZzWZ99913at68uTw8PNS6dWt9++23slqtRkcGAAC6/lyw6tWr55kL9uijjxodE/fQqVOnJEkVK1Y0OAkAoDCgIObgzp49K0mqXLmywUnsQ+PGjbVo0SIlJCTo5MmTGjFihEqXLq1NmzapT58+cnV1VaNGjTRr1ixlZmYaHRcAAIeSlJSkkSNHqkyZMqpbt66WLVsmb29vvfzyy0pKStKhQ4f0/PPPy2zmW1xHdObMGUl8XwsAuDV8t+Dgdu7cKUmqXbu2wUnsT2BgoD744AOdPHlSKSkpmjp1qmrWrKm9e/dq1KhR8vDwUNWqVfXaa6/lDusFAAD5y2Kx6IMPPlDNmjXl5+enDz74QGlpaerdu7cOHz6suLg4zZgxw6E63HF9586dkyQFBQUZGwQAUChQEHNw+/fvlyTVq1fP4CT2zcvLS2PGjNH+/fuVlZWlefPmqXnz5jpz5ozeffddlSlTRgEBARo4cKAOHDhgdFwAAAq9NWvW5M4FGzlypI4fP66QkBCtW7dOqamp+vbbb1WzZk2jY8KOXLhwQZLk5uZmcBIAQGFAQczBHTlyRJIUHBxscJLCw9nZWf/4xz8UGRmpzMxM/fjjj+rcubMyMjI0f/581a1bV97e3urcuXORvGMnAAAF5a9zwTp16qStW7deMxesffv2RseEnUpMTJSzs7PRMQAAhYTJZrPZjA4B47Ru3Vo///yzcnJyjI5SJBw4cEAzZszQunXrctv2XVxcdP/992vIkCF66qmn+EYNAIC/SEpK0uTJk7Vo0aLcEQQBAQHq16+fxo8fz1ZI3LJatWrp1KlTSktLMzoKAKAQoCDm4PjGoeDEx8fr/fff19KlS3X8+HHZbDaZzWbVqlVLTzzxhEaMGCFvb2+jYwIAcM9ZLBbNnj1bn3zyiY4ePSpJ8vT01GOPPaYpU6awFRJ3pHz58srKylJCQoLRUQAAhQAFMQdXqlQpubi45N5tEgUjMzNTc+fO1fz587Vv3z5ZLBZJV28L3q1bN7366qsKDAw0OCUAAAVrzZo1+uc//6lt27YpJydHzs7OeuCBBzR+/Hi2QuKu+fj4yMfHRydOnDA6CgCgEKAg5uDc3NxUs2ZN7dmzx+goDsNqtWr58uX65JNP9Ntvvyk9PV2S5Ovrq3bt2unll19WkyZNDE4JAED+OHjwoCZMmKC1a9fm/j+vVq1aGj58uJ599lk5OTkZnBBFhbu7u6pXr669e/caHQUAUAgwVN/BZWVlqXz58kbHcChms1k9e/bUhg0blJaWpq1bt6pXr16SpPDwcDVt2lSenp565JFHtHz5clmtVoMTAwBwe5KSkjRq1CiVKVNGderU0XfffSdvb2+NHj1aFy9e1KFDh/TCCy9QDEO+ys7Olq+vr9ExAACFBAUxB3b69GlJUtWqVQ1O4tgefPBBLVmyRImJiYqJidHzzz8vX19fbdiwQT169JCrq6saN26sjz76SNnZ2UbHBQDguiwWiz788EPVrFlTfn5+mjVrltLS0tS7d28dOnRIcXFxeu+99xiSjwJjtVpVqlQpo2MAAAoJCmIObOfOnZLE4Fo7EhQUpNmzZ+vUqVO6dOmSJk2apGrVqmnXrl0aMWKE3NzcVL16dY0dO5aBsQAAu7B27Vo99NBDcnNz00svvaTjx4/r4Ycf1tq1a5Wamqpvv/1WtWrVMjomirjExERJkr+/v8FJAACFBQUxB7Zv3z5JUsOGDY0Nguvy9vbWhAkTdOjQIWVlZelf//qXmjVrptjYWE2bNk2lS5dW2bJlNXjwYB05csTouAAAB3Lw4EH16tUr986QW7duVfXq1fXRRx8pIyNDW7ZsUYcOHYyOCQcSHR0tSSpbtqzBSQAAhQUFMQcWFRUliYJYYeDs7KzBgwfr119/VVZWltasWaOOHTsqLS1NX3zxhWrVqiUfHx9169ZNmzZtMjouAKAIunjx4t/OBRs+fLicnZ2NjgoH9OedJStUqGBsEABAoUFBzIGdOHFCZrNZXl5eRkfBberYsaPWrFmjy5cva+/evXrqqafk6uqqiIgItW7dWu7u7goJCdGCBQsYyg8AuGN/nQvm6+vLXDDYrVOnTkmSAgMDDU4CACgsKIg5sLNnz8rd3d3oGLhL9erV07///W+dP39ecXFxeuWVV1S2bFn98ssveuqpp+Ti4qL69evr7bffVmpqqtFxAQCFwI3mgq1Zs4a5YLBLZ8+elSRVqVLF4CQAgMLCZLPZbEaHgDFKlSolV1dXnTlzxugoKADp6emaM2eOvv76a+3fv185OTmSpEqVKik0NFQvv/wy2woAALkOHTqksLAwrVu3TmlpaZKu3nhn+PDhevbZZ9kKCbvWv39/LVy4UFeuXOHvKgDgllAQc2Curq6qXbu2du/ebXQUFDCr1arw8HDNnTtX27ZtU2ZmpqSrRdF27drplVdeUXBwsMEpAQD32sWLFzV58mQtWrRI58+flySVKVNG/fr1U1hYGFshUWi0b99e//nPfxgVAQC4ZWyZdGDZ2dl0CDkIs9msJ554Qps2bcq9+1doaKgsFosWLVqk+++/X15eXmrfvr2+//57vpkEgCLMYrHoo48+yjMXLDU1Vb169dLBgwd17tw55oKh0ElKSqIzDABwWyiIOajY2FhJzFlwVA8//LCWLVumixcvKioqSkOHDlWJEiW0fv16denSRW5ubmratKnmzJmj7Oxso+MCAPLB2rVr9fDDD8vNzU0jRoxQdHR0nrlgS5YsUe3atY2OCdyRS5cuydXV1egYAIBChIKYg9qxY4ck8Y0vVK1aNc2dO1dnzpxRYmKiwsLCVLlyZW3fvl3PP/+83NzcVKtWLU2YMEFJSUlGxwUA3IbDhw+rd+/e8vLy0mOPPaZffvlF1apV04cffqjMzExt2bJFHTt2NDomcNdSUlK4WRQA4LZQEHNQBw4ckCQ1bNjQ2CCwK76+vpo8ebKOHDmizMxMzZkzR40bN9bx48c1ZcoU+fn5qXz58nr22WcVHR1tdFwAwHUkJydr1KhRCggIUO3atbV06VJ5eXlp1KhRunjxog4fPqwXX3yR7WUoUtLT01W8eHGjYwAAChEKYg7q6NGjkqQGDRoYnAT2ysXFRc8++6x+//13ZWZmatWqVXr00Ud16dIlzZ07V9WqVVPJkiXVo0cPRUZGGh0XABzan3PBatWqpZIlS153Ltj777/PXDAUWZmZmfL29jY6BgCgEKEg5qBOnjwps9ksDw8Po6OgEDCbzercubN++OEHpaamaseOHXriiSfk7Oys5cuXKyQkRO7u7mrVqpUWLVrEUH4AuEfWrVuXZy7YsWPH9NBDDzEXDA7HYrHI19fX6BgAgELEZLPZbEaHwL1Xo0YNnT17VqmpqUZHQSF3+vRpvffee1q+fLlOnjwpSXJyclLdunX11FNP6bnnnqPwCgD56PDhwwoLC9PatWuVlpYmSapZs6ZeeOEFPffcc2yFhMOxWq1ycnLS448/rvDwcKPjAAAKCQpiDsrPz0/u7u46ffq00VFQhKSmpurjjz/WwoULdfDgQVmtVplMJgUFBalnz556+eWXFRAQYHRMACh0kpOTNXnyZH3zzTc6f/68JKlMmTJ68sknNWHCBLZCwqGdPXtW5cuX14gRI/TBBx8YHQcAUEiwZdJBpaamyt/f3+gYKGK8vLz0xhtvaN++fbpy5Yr+/e9/66GHHtLZs2c1Y8YMlS1bVmXKlNGAAQO0b98+o+MCgF3737lgM2fOZC4YcB3Hjx+XJJUtW9bgJACAwoSCmAOyWq3Kzs5W+fLljY6CIsxsNuupp57Sli1blJmZqZ9++kldu3ZVVlaWvv76a9WvX1/e3t567LHHtG7dOqPjAoDdYC4YcHv+HNlQsWJFg5MAAAoTCmIOKDY2VpJUrVo1g5PAkbRu3VorV65UcnKyDh06pEGDBsnT01Nr165Vx44d5erqqgcffFCff/65LBaL0XEB4J46cuSIevfuLS8vL3Xs2FG//PKLqlWrpg8//FCZmZmKjIxUx44djY4J2KU/R4BUqlTJ4CQAgMKEgpgD2rFjhyTx22UYplatWvr8888VFxenCxcuaMyYMQoMDNS2bds0ZMgQubq6qnbt2po8ebIuX75sdFwAKBDJyckaPXq0AgICVKtWLS1dulReXl4aNWqULl68qMOHD+vFF19kSD7wN86ePStJqly5ssFJAACFCQUxB7R//35JUoMGDQxOAkilSpXS1KlTFRUVpfT0dH344Ydq1KiRjh07pokTJ6pEiRKqWLGiXnjhBZ04ccLouLBjFy5c0HPPPafAwEC5uroqICBA7du31y+//GJ0NAUFBWnWrFm3/bojR46odevWKlOmjNzc3FSlShWNHz9eV65cyf+QuCeYCwbkvz9vNMEMMQDA7aAg5oCioqIkURCD/XFzc9OLL76o7du3KysrS8uWLVPbtm2VlJSkTz75RJUrV5afn5969+6tbdu2GR0XdqZnz57atWuX5s+fr6NHjyoiIkKtWrVSYmJigV0zOzu7wNaWpGLFimnAgAFav369jhw5olmzZulf//qXJk6cWKDXRf774YcfFBISInd3d+aCAfnswoULMpvNMpv50QYAcOtMNpvNZnQI3FshISH69ddfmdOEQuX333/Xe++9px9//FFJSUmSJHd3dz344IN6/vnnFRoayjfCDiw5OVklS5bUpk2b1LJly5ue98orr2jlypXKyspS48aNNXPmzDy/IFi1apUmT56sffv2ycvLSyEhIVq+fLmkq51egwYNUlRUlFasWKEePXpo3rx5ioyM1JgxY7R9+3aVKlVKoaGhmjZtmjw9PdWqVStt3rw5T467+V/v6NGj9ccff2jLli13vAbujSNHjigsLExr1qxRWlqaJKlGjRp64YUX9Pzzz7MVEsgnwcHBOnDggLKysoyOAgAoRPjp0QHFxcXJ3d3d6BjAbWnatKnCw8OVmJioEydOaPjw4SpVqpR++ukn9erVS66urgoODtYHH3ygzMxMo+PiHvPy8pKXl5dWrFhx0x+Ievfurfj4eK1du1Y7duxQcHBwbheiJK1evVqhoaF67LHHtGvXLm3YsEFNmzbNs8aMGTPUoEED7dq1S2FhYYqOjlaHDh3Us2dP7d27V+Hh4YqMjNTw4cMlScuWLVOFChU0efJkxcXFKS4uLnctk8mkefPm3fL7PHbsmNatW3fToh+MlZycrJdffjl3LtiSJUvk6empkSNHKikpSUeOHNGIESMohgH56NKlS3JzczM6BgCgkKFDzAH5+vrK09NTp06dMjoKcNcuX76sDz/8UIsWLdLhw4dltVplMplUpUoV9erVSy+//LJKly5tdEzcA999952GDBmijIwMBQcHq2XLlurbt6/q168vSYqMjFSnTp0UHx8vV1fX3NdVq1ZNr732moYOHarmzZurSpUqWrBgwXWvERQUpEaNGuV2jEnS4MGD5eTkpLlz5+Yei4yMVMuWLZWWliY3NzcFBQVp5MiRGjlyZJ71atWqpWnTpik0NPSm76158+bauXOnsrKyNHToUM2ZM4eOSDtisVj06aefavbs2Tp8+LAkydPTUx06dNCUKVPYCgkUsDJlyshsNuf5hQMAAH+H76YdUGpqqvz9/Y2OAeQLb29vjR8/PnerxJdffqkHHnhAp0+f1vTp0+Xv76+AgAA9/fTTOnTokNFxUYB69uyps2fPKiIiQh06dNCmTZsUHByc24G1Z88epaamys/PL7ejzMvLSzExMYqOjpYk7d69W23btr3pdRo3bpzn8Z49ezRv3rw8a7Zv315Wq1UxMTE3Xevw4cN/WwyTpPDwcO3cuVPffPONVq9erRkzZvzta1Dw/joX7MUXX1RUVJQeeughrV69WqmpqVq6dCnFMOAeSE9Pl5eXl9ExAACFDP36DsZqterKlSuq+H/s3XlYlOXixvHvDMOAgIigCC4I7iiuueGGC7hVrtWx1NLSylb7tZ3qaKV1Sutk2WanTU0rU3PJLdHEFU3NXRRccWUVEBBwmPn94YmTxxYX8IXh/lxXVzDzzPveg8U49zzv89SqZXQUkWJnsVgYOXIkI0eOBC69WZ06dSrr169n+vTpTJ8+HW9vb7p06cLYsWP/sviQssfd3Z2oqCiioqIYN24co0aN4uWXX2bEiBFkZ2cTGBhITEzMFY/7dUe/q7mc3NPT87Lvs7Ozeeihh3jiiSeuGBsUFHRdz+N//fo7u3HjxhQWFvLggw/y9NNP4+LiUizHl6undcFESp/8/HwqVapkdAwRESlj9Le2cubX2Qp169Y1OIlIyevVqxe9evUCYO/evbz99tssX76cJUuWsGTJEtzc3GjdujWjR49m2LBhKhecUOPGjVm4cCFwadHls2fPYrFYCA4O/t3xzZo1Y/Xq1UWl6tVo1aoV+/fvp169en84xmq1UlhYeC3R/9CvH2zY7Xb9N3uTZGRkMHHiRGbPnk1SUhIA/v7+jB49mvHjx1O5cmWDE4qUbzabDT8/P6NjiIhIGaNLJsuZ7du3A+gSDil3wsLCmD59OklJSZw5c4Znn32WGjVqsGnTJkaMGIHVaiUsLIw33niD7Oxso+PKNUpLS6N79+7MmjWL3bt3c/ToUebOncvkyZPp378/AJGRkYSHhzNgwABWrlzJsWPH2LRpEy+99BLbtm0D4OWXX+abb77h5ZdfJi4ujj179jBp0qQ/Pffzzz/Ppk2beOyxx9i5cycJCQksWrSoaFF9uLT22Lp16zh16hSpqalFtzdq1Oiy9cj+1+zZs/nuu++Ii4vjyJEjfPfdd7zwwgv87W9/w9XV9UZ+ZPIXCgsL+eCDDwgNDaVy5cq88847nD9/nsGDB7N//36SkpKYMmWKyjARg9lsNhwOB1WqVDE6ioiIlDEqxMqZ/fv3A9CiRQtjg4gYKCAggMmTJ3P48GFyc3N55513aNasGQcOHODFF1+kYsWK1K5dmyeffFKbT5QRXl5etGvXjilTptClSxfCwsIYN24co0eP5oMPPgAu7ei4bNkyunTpwsiRI2nQoAFDhgzh+PHjVKtWDYCuXbsyd+5cFi9eTIsWLejevTs///zzn567WbNmrF27lvj4eDp37kzLli0ZP3481atXLxozYcIEjh07Rt26dS/b5OHgwYNkZmb+4bEtFguTJk2ibdu2NGvWjFdffZXHHnuMzz777EZ+XPInVq5cSefOnXF3dy9aF6xDhw4sXbqUnJwcrQsmUsqcPHkSuPTaLiIici20y2Q5c8899/DNN9+Qn5+P1Wo1Oo5IqWK325k3bx4ff/wxW7Zs4cKFCwD4+fkRFRXF008/fcWC6iJS9v3RumCPPPIIjz76qNYFEynFfvrpJ3r06MHbb7/N008/bXQcEREpQzRDrJxJTEzExcVFZZjI7zCbzdx1112sWbOG3NxcNmzYwODBg7Hb7Xz77be0adMGLy8voqKiWLRoEXa73ejIInKdMjIyePrppwkMDKRRo0bMnTsXT09Pxo4dS1paGgcPHuTJJ59UGSZSyiUmJgJQs2ZNg5OIiEhZo0KsnDlz5gweHh5GxxApEzp27Mi8efNIT0/n0KFDPPzww/j4+LBq1SoGDBiAu7s7rVu35qOPPqKgoMDouCLyF+x2Ox9++CGhoaH4+vryzjvvkJWVdcW6YL6+vkZHFZGr9OslkyEhIQYnERGRskaXTJYzlStXpmLFikWfponItcvIyODdd99lzpw5xMfHY7fbMZlM1KtXj7/97W889dRTekMtUopER0czceJEYmNjsdlsuLi40K5dO1566SX69u1rdDwRuQGPPvooH330ESkpKVpYX0RErokKsXLGarXSrFmzoh3VROTGXLx4kS+//JLPP/+cHTt2cPHiRQACAwO59dZbee6556hfv77BKUXKH60LJlI+3HHHHcyfP7/owykREZGrpUsmyxG73c7FixepVauW0VFEnIarqysPPvggW7ZsoaCggKVLl9K7d2/Onz/PZ599RoMGDfDx8WHgwIGsW7fO6LgiTi0zM5NnnnnminXBnnzySa0LJuKkUlNTMZvNKsNEROSaqRArRw4fPgxAvXr1DE4i4rz69u3L8uXLOX/+PDt27GDo0KFYrVYWLlxIREQEFSpUoEuXLsyePVuL8osUA7vdzkcffURoaCiVK1fmX//6V9G6YPv27SMpKYl3331XlzGLOKlz587h6upqdAwRESmDVIiVI7/88gsAjRs3NjiJSPnQokULZs2aRXJyMqdOneKpp54iICCA9evXM2zYsKJLmCdPnkxubq7RcUXKlOjoaLp06YKbmxuPPvooCQkJhIeHs3TpUnJycpg3b55e70TKgczMTNzd3Y2OISIiZZAKsXJk7969ADRv3tzgJCLlT/Xq1XnnnXc4evQoOTk5TJ48mcaNG7N//36ef/55vLy8CAkJ4f/+7/84ffq00XFFSqX4+Hj+9re/UbFiRXr27Mn69eupU6cO7777Lnl5eWzcuFGL5IuUMzk5OXh6ehodQ0REyiAtql+O3H333Xz77bfk5+djtVqNjiMiXLrc65tvvuGTTz5h69at5OXlAVC1alV69uzJc889R7NmzQxOKWKcrKwsJk6cyKxZszh79iwA/v7+DBkyhJdfflmXQoqUc15eXtSsWZMDBw4YHUVERMoYFWLlSIcOHfj555+x2WxGRxGRP7B27VqmTJlCTEwMmZmZwKW/7Hfq1InHH39cs1+kXLDb7UybNo3333+fgwcP4nA48PDwoHfv3kyYMIEmTZoYHVFESglXV1duueUWNm/ebHQUEREpY3TJZDmSlJSEh4eH0TFE5E9ERESwcOFCMjIyOHDgAKNGjaJixYqsWLGCW2+9FTc3N9q3b8+///1vldvidP5oXbAlS5aQk5PD/PnzVYaJyGUKCws1U1RERK6LZoiVI5UrV8bb25vjx48bHUVErlFaWhpTpkzhu+++49ChQzgcDsxmMw0aNOBvf/sbY8eOxcfHx+iYItcsISGBcePGsXTpUrKzswFo0KABY8aM4bHHHsNisRicUERKq/z8fNzd3bn33nuZMWOG0XFERKSM0QyxciQ7O5tq1aoZHUNEroOfnx+vvfYa8fHx5OXl8eGHH9KyZUsOHTrEq6++SuXKlalZsyZjxozh6NGjRscV+VNZWVk8++yzBAYG0qBBA+bMmYOHhwdPPPEEaWlpHDx4kLFjx6oME5E/dezYMQACAgKMDSIiImWSCrFywm63Y7PZqFWrltFRROQGWa1WHnnkEbZt20Z+fj4LFy4kMjKSjIwMpk2bRp06dfD19eWOO+4gNjbW6LgiwKXXoY8++ojQ0FB8fHx4++23ycrKYtCgQezdu5ekpCTee+89XfokIlft1w+AatSoYXASEREpi1SIlRMHDx4EoF69egYnEZHiZDab6d+/P9HR0WRnZ7N161aGDBmC2Wxm/vz5dOjQAQ8PD7p168Z3332H3W43OrKUM9HR0URERFyxLtgPP/ygdcFE5IYkJiYC6ANfERG5LirEyokdO3YA0LhxY4OTiEhJat26Nd988w2pqakcP36cxx9/nKpVqxITE8Pf/vY33NzcaNmyJe+++y55eXlGxxUnlZCQwJAhQ6hYsSI9e/Zk3bp1hISEMGXKFPLy8ti4cSO33Xab0TFFpIw7deoUAMHBwcYGERGRMkmFWDmxb98+AFq2bGlwEhG5WYKCgpg6dSrHjx8nKyuL119/nYYNG7J7926eeuopPDw8qFu3Ls899xzJyclGx5Uy7q/WBYuPj9e6YCJSrM6cOQNAnTp1DE4iIiJlkXaZLCfuuusu5s6dy8WLF/VmRKScs9lszJ49m3//+99s376d/Px8AKpVq0bv3r159tlndQmbXBW73c4nn3zC+++/z4EDB3A4HHh4eNCrVy8mTpyo/45EpEQNGDCARYsWobczIiJyPTRDrJw4ceIEFotFZZiIYLFYuO+++9i4cSN5eXmsWrWK2267jQsXLjBjxgzCwsLw9vbmtttuIzo62ui4UgqtWrWqaF2wRx55hPj4+MvWBfv+++9VholIiUtLS8PFxcXoGCIiUkZphlg5ERISQnp6OpmZmUZHEZFSbN++fbz99tssX76cpKQkANzc3GjVqhWjR49m+PDhKtbLqYSEBMaNG8fSpUvJzs4GoH79+jzyyCM89thj+u9CRG66sLAwjhw5Qm5urtFRRESkDFIhVk74+Pjg4+PDsWPHjI4iImVEcnIy//rXv5g/fz5HjhzB4XBgNptp1KgR99xzD0888QQVK1Y0OqaUoKysLF577TVmzZpVtFZP1apVufvuuxk/fjx+fn4GJxSR8iwoKIjs7GzS09ONjiIiImWQCrFywtXVlVatWrFlyxajo4hIGZSXl8cnn3zCjBkz2LNnDzabDbi01X3//v159tlnCQoKMjilFIc/WxdswoQJhIWFGR1RRAQAPz8/PDw8OHHihNFRRESkDNIaYuWAzWbDZrPpzaqIXDd3d3eefPJJfvnlF/Lz85k7dy7dunUjNTWVDz74gNq1a+Pn58eQIUPYunWr0XHlOqxevfqKdcHat29/2bpgKsNEpDS5cOEC3t7eRscQEZEySoVYOXDw4EEA6tWrZ3ASEXEGZrOZO+64g59++onc3Fw2bdrEHXfcAcCcOXNo27Ytnp6eREZGsmDBAux2u8GJ5Y8kJCQwZMgQKlasSGRkJOvWrSMkJIQpU6aQl5fHpk2buO2224yOKSLyuwoKCvDx8TE6hoiIlFEqxMqBHTt2AGjHLxEpEeHh4cydO5e0tDSOHDnCmDFj8PX1ZfXq1QwaNAg3Nzdat27N+++/T0FBgdFxy72srCyee+45qlevToMGDZgzZw4VKlTgiSeeIDU1lfj4eMaOHatF8kWk1CssLNRahiIict1UiJUD+/btA6BFixbGBhERpxcSEsJHH33EiRMnOHfuHK+++ir16tVjx44dPPHEE7i7u9OgQQNefPFFUlNTjY5bbtjtdj7++GMaN26Mj48Pb731FpmZmQwcOJA9e/aQnJzMe++9pzeWIlJm/Lrbrb+/v8FJRESkrFIhVg4cOnQIgEaNGhmcRETKEx8fH8aPH09cXBz5+fl8+umntG3bluPHj/PGG29QtWpVAgMDGTVqVNGl3VK8/mhdsMWLF2tdMBEp044ePQpAQECAwUlERKSsUiFWDiQmJmKxWHT5i4gYxmKxMGrUKDZv3kx+fj7Lli2jT58+ZGdn8/nnn9OoUSN8fHzo378/MTExRsct0w4dOsTdd999xbpg77zzTtG6YLfffrvRMUVEbsivhViNGjUMTiIiImWVCrFyICkpCU9PT6NjiIgU6dOnD8uWLeP8+fPs2rWL4cOHY7VaWbx4Md26daNChQp07tyZWbNmaVH+q/DbdcHq16/Pt99+S4UKFXj88cdJSUkhPj6ep556Sh+MiIjTOHHiBIB2URcRkeumQqwcOHfuHJUrVzY6hojI72rWrBkzZ84kOTmZ06dP8/TTTxMYGMjGjRuLirJmzZoxadIkcnJyjI5bJCffxr7TmexIPMe+05nk5Ntu6vntdjuffPIJTZo0+cN1waZOnUqVKlVuai4RkZvh1KlTAAQHBxsbREREyiyTw+FwGB1CSparqyutW7cmNjbW6CgiIlctNzeXjz/+mJkzZ7Jv3z4KCwsBqF27NgMHDuTpp5+mZs2aNzVTQtJ5Zm9JZM3BZBLTc/ntC6gJCPL1oFtDf4a2C6J+tYolkmH16tVMnDiRjRs3YrPZcHFxoW3btrzwwgu6FFJEyo3777+fL7/8ktzcXCpUqGB0HBERKYNUiDk5m82Gq6srd955J999953RcURErovdbmfOnDl88sknbNmyhby8PACqVKlCz549efbZZ0t0J90T6bm8uGAP6w+l4mI2UWj/45fOX+/vXK8K/xzYlFq+Hjd8/sOHD/OPf/yDJUuWFO2sVr9+fcaMGcPjjz+uSyFFpNy57bbbWLp0KXorIyIi10uXTDq5/fv3A5feOImIlFVms5m7776bmJgYLly4wPr16xk4cCA2m42vv/6ali1b4uXlRa9evViyZEmxrjv27dZEIqesZdORNIA/LcN+e/+mI2lETlnLt1sT/3BsXl4eo0ePZvny5Vfc99t1werVq6d1wUREfiM9PV2//0RE5IaoEHNyO3bsAKBx48YGJxERKT6dOnXi+++/59y5c8THxzN69GgqVarEypUruf3223F3d6dt27ZMmzaNgoKCKx6/du1aGjZsyC+//PKn5/lgTQJ//34P+Tb7XxZh/6vQ7iDfZufv3+/hgzUJV9x/8eJF7rzzTj777DPGjRsH/PG6YAMGDNC6YCIiv3Hu3DmsVqvRMUREpAxTIebkfp0h1qpVK4OTiIiUjPr16/Pvf/+bU6dOkZaWxrhx4wgJCWHbtm2MGTMGd3d3GjVqxPjx4zl37hwAn332GfHx8URERPzh+orfbk3k7ZXxxZLx7ZXxzPnNTLHCwkLuvfdeli5dCsD27dtp27Ytbm5uPPzwwxw8eJB27dqxaNEicnJyWLBgAWFhYcWSRUTEGZw/f15rh4mIyA3RGmJObvDgwXz//fcUFhZiNqv/FJHyo6CggM8//5wvv/ySnTt3cvHiRQACAwNJTU3l4sWLmM1mrFYry5cvp2vXrkWPPZGeS+SUteTb7NgL8sjeuYLc+FgupiZiv5iHi5cv1ipBeIR2wTO0EyYXVwBy4tZxftsPFCQfBcDqH0LF1v3wDO2Mm8XMqqciqFm5Ag899BCffvrpFZnr16/Pww8/zBNPPKFLgURE/kTlypXx9vbm+PHjRkcREZEySoWYk2vbti07duwoeiMoIlIe2e12li5dygcffMC6deuKFuX/lcViYcmSJfTq1QuA4Z9vYdORNC4kHydl3gRsGWf/8NiBI6dirVaHjPWzydz4ze+OqdR5GH6d76Z9cGWOfPF/bN68+YoxAQEBnDp1Sh9eiIhchQoVKlC/fn12795tdBQRESmj9LduJ5eUlISXl5fRMUREDGU2m7n99tv58ccfefDBB3FxcbnsfpvNRu/evenfvz8rt1zaTbIgJ4vk714uKsNcvHyp3GM0/kNeo+qgl6jYuj8mN08ACpKOkLlpDgAmawX8+j6JX98nMVkvXc6TueFrLpw9wsYj6WxLOFl0XpPJhKvrpdllZ8+eZePGjSX+sxARcQYXL17Ex8fH6BgiIlKG6XoMJ3fu3Dktviwi8hvz588vuoz8190oXV1dMZvNrFy5kt2uDXFp2JVzP39PYVYKACY3TwLuewdLxf/+PvVoEE6l8DvB7ELGuq/AcelYlcLvwqtZFACFORlkrJ0BDjvZO3/Er+dDjHjtc0a1rMSJEydITEzkxIkTHD9+nKSkJCpWrHiTfxoiImVTYWGh/o4rIiI3RIWYk8vNzSUgIMDoGCIipcaQIUPIzs6mcePGRf8EBgZiMpkoKCig+5T1nMzIIzdufdFjvNv0v6wM+5WLpw8A+Sf3F93mViP0d7/OO7kPBybis11p164d7dq1K4FnJyLi/NLT0wHw9/c3OImIiJRlKsScWEFBAYWFhdSuXdvoKCIipcbbb7/9h/cVOMycysjDXnDhsnXD3Go2+dNj2jKTir7+tSS79HWlK8YkpuWSk2/D000vwSIi1+PIkSPApU1SRERErpfWEHNie/fuBaBevXoGJxERKR0cDgdbtmzh/Pnzv3v/8bQcHIA9P+ey2y0Vff/8uBfz//uNy2+Krv/sPgngKLi0kL8DOJZ2+fFFROTq/bqzZM2aNQ1OIiIiZZkKMSe2a9cuAMLCwgxOIiJSOuzfv5/27dvj6+tLnz59+PTTTzl79r8zwQpsl9YBM/9nsfxf2c6n/+lxTa5u//2m8OLvfm2yul9xHhERuXYnTpwAICgoyOAkIiJSlul6DSe2f/+lNW1atGhhbBARkVLi1zUVbTYbK1euZMWKFUW316xZkxph7SCgD2ZrBSw+AUWXTeaf2k+F4OZ/eFxLpWpcTDkGXFpI39Wv1qWvs89dNuZXVos+jxIRuV6nTp0CICQkxOAkIiJSlulv5E7s8OHDANSvX9/gJCIixkpPT+e7777jlVdewWK59FnQrztMApw9e5Zt27aRfHhf0W0eoZ2Lvj7/80Js59OuOG5hTgaFF87jVrNx0W35p+L++/XpA0Vfu/9nHTITEOx3+Qw0ERG5eklJl9Zk1AwxERG5EZoh5sQSExNxdXXFbFbvKSLlw5kzZ1i5ciUbNmxgz549HDt2jLS0NGw2258+rl27dixYsIDAwEAi3lrD8fRcvNsOImdfDIVZKdjzczg782m82w7EtWowjoIL5CXuIXvPKgLueYOKzXuRvXMFOOxkxs7FxcMHTCYyY+deOoHJjFeLXgAE+XloQX0RkRuQkpKCyWTCarUaHUVERMow/Y3ciSUnJ+PpqVkIIuJ8jh49yo8//khsbCx79+7l+PHjZGRkUFhYWDTGxcWFypUr07x5c8LCwujQoQO9evXirbfeYtq0aQCYTCbeeOMN/u///q/ow4NuDf35astxqFAR/7teJWXeBGwZZyk8n8q51Z/+bh5rQF0qdfgbmRu/wVFwgbTlUy+7v1Kne7D6h+BiNtGtgX8J/VRERMqHtLS0otm+IiIi10uvJMUsJSWF8ePHs3TpUpKSkorejI0fP56OHTve1CwZGRlUrVq16Pvg4GDGjh3L2LFjr+k4eXl5PPzww2zfvp24uDhuu+02Fi5cWLxhRUT+h91uJy4ujujoaDZv3sz+/fs5efIkmZmZl13u6Orqip+fH23atKFp06Z06tSJnj17Fq0X9r9CQ0MpLCwkJCSEuXPncsstt1x2/9B2QUyPPQaAtUoQgfd/QPbOFeTGb+Ji6gnsFy/g4lkZV79aeDaOwLXKpfXCfDoPxbVKLc5vW0xB8n8e7x9Mxdb98fzP5ZeFdgdrPn0V884wLBYLZrMZs9mMyWSic+fOtG/fvph/iiIiziczM1Ozw0RE5IapECtmgwcPpqCggBkzZlCnTh2SkpJYvXo1aWlXrj1TXAoKCn73LwW5ubl/+IbwWhQWFlKhQgWeeOIJ5s+ff8PHExH5Lbvdzvbt21m1ahVbt24lLi6O06dPc/78eRwOR9E4Nzc3qlSpQlhYGC1atKBLly5ERkbi4+NzTee75557KCgoYPTo0Xh5eV1xf/1qFelcrwqbjqRRaHdgtrrj3XYA3m0H/OWxPUO74Bna5XfvM5vgwrGdrFsyl3VL5haVYQ6Hg8LCQgYNGqTfsSIiV+H8+fN4eHgYHUNERMo4k+O37zbkhmRkZFC5cmViYmKIiIj403HPPPMMixYtIj8/n9atWzNlyhSaN//vDmY//PADEyZMYM+ePXh5edG5c2cWLFgAXJrp9cADD5CQkMDChQsZNGgQ06dPZ8OGDbzwwgts27aNKlWqcPLkSe68806+++47unbtytq1ay/LcT1/9CNGjCAjI0MzxETkmtlsNjZu3MiaNWvYunUr8fHxnDlzhpycnMvGubu7U61aNerVq0erVq3o0qUL3bt3v6lvfk6k5xI5ZS35NvtfD75KbhYzs+5pSJdWTcjLy7vi/r967RARkUsqVaqEr68vR48eNTqKiIiUYZohVoy8vLzw8vJi4cKFtG/fHjc3t98dd+edd1KhQgWWL19OpUqV+OSTT+jRowfx8fH4+vqydOlSBg4cyEsvvcTMmTMpKChg2bJllx3j7bffZvz48bz88svApR0le/fuzWuvvcYXX3zBunXrGDVqFAkJCQB8//33NG/enAcffJDRo0dfdiyTycSXX37JiBEjiv+HIiLlTl5eHmvWrCEmJoZffvmFQ4cOkZSUxIULFy4b5+npSUBAAA0aNOCWW26hW7dudOrUqVRcBlPL14NX+zXh79/vKbZjTujXhDahQSxcuJDevXtfdp/FYuHgwYMqxERErkJ+fv41zw4WERH5X5ohVszmz5/P6NGjuXDhAq1atSIiIoIhQ4bQrFkzADZs2MCtt95KcnLyZYVZvXr1eO6553jwwQfp0KEDderUYdasWb97juDgYFq2bFk0Ywxg1KhRuLi48MknnwDw2WefMXr0aEwmE7m5ubi7u//hGmKNGjXijTfeYODAgX/5/DRDTER+lZWVRXR0NBs2bGDHjh0cPnyYlJQU8vPzi8aYTCa8vLyoXr06jRo1ok2bNkRGRtKmTZsysQPuB2sSeHtl/A0f59meDXm0W72i7//+978zefLkopm6rq6uXLx4kSpVqvDWW2/pAwoRkT/h4uJCly5dWLNmjdFRRESkDNMMsWI2ePBgbr31VtavX8/mzZtZvnw5kydP5rPPPmPEiBHs2rWL7Oxs/Pz8LnvchQsXOHz4MAA7d+68YhbX/2rduvVl3+/atYvdu3cze/Zs4NK6YnDpssijR48SGhr6h8c6cODANT9PESk/UlJSWLlyJRs2bGDXrl0cO3aM1NRULl68WDTGbDbj7e1N/fr1CQ0NpV27dkRFRREWFlYmiq8/8li3+lTxcuPlxfuw2R0U2q/+MyQXswmL2cSEfk34W5ugy+6bOHEiP/30E1u3bqVHjx6sWLGCZ555ho8//piRI0fy97//nXfeeYd77rmnuJ+SiEiZZrfbsdvtl20cJSIicj1UiJUAd3d3oqKiiIqKYty4cYwaNYqXX36ZESNGkJ2dTWBgIDExMVc87tep3xUqVPjLc3h6el72fXZ2Ng899BBPPPEEAA8//DCrV6/m4MGDBAcH3+hTEpFyIDExkZUrV7Jp0yb27NnD8ePHOXfuHDabrWiMi4sLPj4+hIWF0bhxYzp06EBUVBT169c3MHnJGtImiI51q/Digj2sP5SKi9n0p8XYr/d3qOPHPwc2pZbvlWufubq6Mm/ePIYOHcpbb72FxWLh3XffZfLkyTz11FN8+umnDB06lGeeeYb333+fwYMHl+RTFBEpM5KTkwGoVq2awUlERKSsUyF2EzRu3LjoEsNWrVpx9uxZLBbLHxZVzZo1Y/Xq1YwcOfKqz9GqVSv2799PvXqXLsk5d+4crq6uNGjQoGiM1WqlsLDwup+HiDiHgwcPEh0dTWxsLPv27ePEiRNkZGRgt/93AXmLxYKvry8tW7akWbNmdOzYkaioKGrWrGlgcuPU8vXgqwfakZB0ntlbElkTn0xiWi6/rcVMQJCfB90a+DOsfRD1/Cv+6TGDgoJYv379ZbdZrVY+/PBD/vWvf/H4448zffp07rjjDmrWrMmHH35Iv379iv/JiYiUIb8upB8YGGhwEhERKetUiBWjtLQ07rzzTu6//36aNWtGxYoV2bZtG5MnT6Z///4AREZGEh4ezoABA5g8eTINGjTg9OnTRQvpt27dmpdffpkePXpQt25dhgwZgs1mY9myZTz//PN/eO7nn3+e9u3b89hjjzFq1ChOnTqF1Wrlscce44MPPgAurT22bt06hgwZgpubG1WqVAGubg2x/fv3U1BQQHp6OufPn2fnzp0AtGjRonh+eCJSrOx2O7t37yY6OpotW7Zw4MABTp48SVZW1mU7zFqtVvz8/AgPD6d58+Z06tSJqKioot8Pcrn61SrySr8mvEITcvJtHEvLocBmx2oxE+zniadb8bysuru78+mnn/Lee+8xZswYZs+eTf/+/alduzYff/wxffr0KZbziIiUNceOHQMotx/QiIhI8VEhVoy8vLxo164dU6ZM4fDhw1y8eJFatWoxevRoXnzxReDSAtPLli3jpZdeYuTIkaSkpBAQEECXLl2Kpn537dqVuXPnMnHiRN588028vb3p0qXLn567WbNmrF27lpdeeonOnTuTnZ2N1WqlevXqRWMmTJjAQw89RN26dcnPzy96U3zw4EEyMzP/9Ph9+/bl+PHjRd+3bNkSAO3JIGIsm83Gli1bWL16Ndu3b+fAgQOcPn2a7Ozsy8a5u7tTtWpVWrZsScuWLYmIiKBHjx54eXkZlLzs83Sz0KR6pRI9h4eHBzNmzODDDz/koYceYs6cOfTt25c6derw73//mx49epTo+UVESpsTJ04AULt2bYOTiIhIWaddJp2Ui4sLHTp0uOJyHBEpmwoKCli3bh1r1qxh+/btJCQkcPbsWXJzcy8b5+HhQbVq1ahfvz633HILXbt2pUuXLri7uxuUXIpTZmYmo0aN4vvvv8dut9OgQQM+++wzOnfubHQ0EZGb4qmnnuLdd9/l+PHjBAUF/fUDRERE/oBmiDmhvLw87Ha7PjkTKYOys7P56aefWLt2LTt27ODw4cMkJyeTl5d32TgvLy9q1KhBw4YNadOmDd27d6d9+/ZYLPq17swqVarE3LlzSU9P54EHHmDRokV06dKF0NBQPv/8c8LDw42OKCJSos6ePQvokkkREblxeufkhHbt2gXg1Lu+iZR16enpREdHs2HDBnbu3MmRI0dITU2loKCgaIzJZMLb25s6derQqFEj2rVrR2RkJC1atMBsNhuYXozm6+vLggULSE5O5v7772fZsmV06NCBsLAwvvzyS1q3bm10RBGREpGamorJZNLroIiI3DAVYk7o10IsLCzM4CQicvr06aLia8+ePRw7doy0tDRsNlvRGLPZjI+PD40aNaJJkya0b9+eqKgoQkNDDUwuZYG/vz9Llizh7NmzjBgxgpUrV9KmTRtatGjB9OnTad68udERRUSKVXp6Oq6urkbHEBERJ6BCzAnFxcUB0KpVK4OTiJQfR48eZcWKFcTGxrJv3z6OHz9ORkYGhYWFRWNcXFzw9fWlefPmNG3alPDwcHr16qXLm+WGBQQEsGLFCk6ePMl9993HTz/9RIsWLbjllluYMWMGTZo0MTqiiEixyMzMxM3NzegYIiLiBLSovhO6/fbbWbJkCYWFhZpOLlKM7HY7+/fvZ9WqVWzevJn9+/dz4sQJsrKysNvtReNcXV3x8/MjJCSEZs2a0alTJ6Kioop2khUpacePH+fee+9l3bp1ALRr144ZM2bQsGFDg5OJiNyYgIAA4L9riYmIiFwvFWJOqFWrVuzbt4/8/Hyjo4iUSXa7ne3bt7Nq1Sp+/vlnDhw4wOnTpzl//jy//ZXp5uZGlSpVqFu3Li1atKBLly706NEDHx8f48KL/Mbhw4e599572bRpEwAdO3Zk5syZ1KlTx+BkIiLXx9vbG39/fw4dOmR0FBERKeNUiDmhmjVrcuHCBdLS0oyOIlKq2Ww2NmzYQExMDFu3biU+Pp4zZ86Qk5Nz2bgKFSrg7+9PvXr1uOWWW4iIiKBr1654eHgYlFzk2sTFxTFixAh+/vlnACIiIpgxY4Yu1xWRMsfNzY2wsDC2b99udBQRESnjtIaYE8rIyKB69epGxxApNfLy8lizZg0xMTH88ssvHDp0iKSkJC5cuHDZOE9PTwICAmjQoAGtW7emW7dudOzYEavValBykeIRGhrKli1b2Lt3L/fddx9r164lJCSE7t27M2PGDGrUqGF0RBGRq3Lx4kV8fX2NjiEiIk5AhZgTunDhQtH6CiLlSVZWFtHR0axbt45du3Zx+PBhUlJSLrt82GQyUbFiRWrXrk3Dhg1p27YtkZGRtG7dWmvuidP7dVbFjh07GDFiBKtXr6ZWrVr06tWLL7/8Uq8dIlKq2e12HA4HVapUMTqKiIg4ARViTiY3Nxe73U5wcLDRUURKTHJyMtHR0WzYsIFdu3Zx9OhR0tLSuHjxYtEYs9mMt7c39evXp3HjxrRr146ePXvSuHFjFV9S7rVs2ZJdu3axdetWRo4cyYoVK6hevTq33norX375pd5sikipdPLkSQCV9yIiUixUiDmZXbt2AdCgQQODk4jcuMTERFauXMnGjRvZu3cvx48f59y5c9hstqIxLi4u+Pj4EBYWRlhYGO3bt6dnz57Uq1fPwOQiZUObNm3Yu3cvGzduZNSoUSxZsoRq1arRv39/vvjiC20QISKlypEjRwC0NIiIiBQLFWJOZufOnQA0adLE2CAi1+DgwYOsXLmSzZs3s2/fPk6cOEFGRgZ2u71ojMViwdfXl1atWtG0aVM6depEVFSU1j4SKQYdO3YkLi6OmJgYRo8ezYIFC1i0aBF33HEHn376Kd7e3kZHFBEhMTERgFq1ahmcREREnIEKMScTFxcHwC233GJwEpHL2e12du3axapVq9iyZQtxcXGcOnWKrKwsfrvZrdVqpUqVKoSHh9OiRQs6d+5MZGQkfn5+BqYXKR+6du1KQkIC0dHRPPTQQ3z33XfMnz+fIUOGMG3aNLy8vIyOKCLl2IkTJwC0Q66IiBQLFWJO5tep5DVr1jQ4iZRXNpuNLVu2sHr1arZt28bBgwc5ffo02dnZl41zd3fH39+fVq1a0bJlSyIiIujevbvecIuUAlFRURw5coQlS5bw6KOPMnv2bObMmcOwYcP46KOPqFChgtERRaQcOnPmDAB16tQxOImIiDgDk+O3UzOkzGvRogVxcXGX7aonUhIKCgpYu3YtMTExbN++nYSEBM6ePUtubu5l4zw8PKhWrRoNGjTglltuoVu3bnTu3Bk3NzeDkovItVqwYAGPP/44p06dwmKxcP/99/Pee+/h7u5udDQRKUfuvPNO5s2bR2FhoTbIERGRG6ZCzMnUqFGD/Px8UlNTjY4iTiI7O5uffvqJtWvXsmPHDg4fPkxycjJ5eXmXjfPy8qJ69eo0bNiQ1q1b0717d9q3b4/FoomoIs7iu+++48knn+Ts2bO4urry4IMP8s4772C1Wo2OJiLlQLdu3Vi3bh2FhYVGRxERESegQszJ/FpKxMfHGx1Fypj09HSio6NZt24du3fv5siRI6SmplJQUFA0xmQy4e3tTY0aNQgNDaVt27ZERUXRvHlzfVIrUo7MmjWLp59+muTkZKxWK4888ghvvfWWCnARKVEtWrTgwIEDV3woJyIicj1UiDkZFxcXOnfuTExMjNFRpJQ6ffo00dHRbNiwgd27d3Ps2DHS09Ox2WxFY8xmMz4+PtSqVYsmTZrQvn17oqKiaNSokYHJRaS0+eKLL3j++edJTU3F3d2dJ554gjfeeEMFuYiUiJCQENLT08nMzDQ6ioiIOAEVYk4kOzubihUrcu+99zJjxgyj44jBDh8+zMqVK4mNjWXv3r0kJiaSkZFx2WUGLi4u+Pr6Urt2bcLCwujQoQM9e/bU7k0ick0+/vhjXnrpJc6dO0eFChV4+umnefXVV1WMiUix8vf3x2KxcPr0aaOjiIiIE1Ah5kQ2bNhA586dee2113jppZeMjiM3gd1uZ//+/axcuZKff/6Z/fv3c+LECbKysrDb7UXjXF1d8fPzIyQkhGbNmtG5c2ciIyOpVq2agelFxNm89957vPzyy2RmZuLh4cHf//53XnrpJRVjIlIsvLy8qFGjBgcPHjQ6ioiIOAEVYk7kgw8+4PHHH2fRokX069fP6DhSjOx2O1u3buWnn37i559/5sCBA5w+fZrz58/z2/+F3dzcqFq1KnXq1KFly5ZFxVelSpUMTC8i5Yndbuedd95hwoQJnD9/Hi8vL/7xj3/w7LPPqhgTkRtitVpp2bIlW7ZsMTqKiIg4ARViZVxeXh4vvvgiVquVTZs2sX79epYtW8Ytt9xC1apVMZlMRkeUa2Cz2diwYQM//fQT27ZtIyEhgTNnzpCTk3PZuAoVKlCtWjXq1atHq1at6Nq1KxEREXh4eBiUXETkcna7nTfffJN//vOf5OTk4O3tzSuvvMJTTz1ldDQRKaPMZjO9evVi+fLlRkcREREnoEKsjEtLS8Pf3x+Hw8H//lE+99xzTJo0yaBk8mdyc3OJiYlh7dq1/PLLLyQkJJCcnMyFCxcuG+fp6UlAQAANGzakdevWdOvWjQ4dOmC1Wg1KLiJybex2OxMmTGDy5MlcuHABHx8fXn/9dR555BGjo4lIGVJQUICbmxvDhw9n5syZRscREREnoELMCfTs2ZOffvrpssXSARYuXEj//v0NSiUAWVlZREdHs27dOnbu3MmRI0dISUkhPz+/aIzJZKJixYpUr16dRo0a0aZNGyIjI2ndurUuLxIRp2G32/nHP/7BlClTyMvLw9fXlzfffJPRo0cbHU1EyoCEhAQaNGjAs88+y+TJk42OIyIiTkCFmBP45ptvuOeee4q+d3FxYeDAgcydO9fAVOVLcnIyK1euZMOGDezevZujR4+SlpbGxYsXi8aYzWa8vb2pWbMmjRs3pn379kRFRdG4cWMVXyJSbthsNl544QXef/998vPzqVq1Km+99Rb33Xef0dFEpBSLjo6mZ8+eTJkyhbFjxxodR0REnIAKMSeQm5tL1apVyc3NBaBSpUocPHhQOwiWgOPHj7Ny5Uo2bdrEnj17SExMJD09/bLZeS4uLvj4+BAUFERYWBgdOnSgZ8+e1KlTx8DkIiKli81m4+mnn2batGkUFBRQrVo1pkyZwt133210NBEphT777DNGjx7NvHnzGDx4sNFxRETECagQcxL3338/X375JQAzZ85k+PDhBicq2w4cOEB0dDSxsbHs37+fEydOkJGRgd1uLxpjsVjw8/MjODiYsLAwOnXqRFRUFDVq1DAwuYhI2VJQUMCTTz7J559/zsWLF6levTpTp07VG14Rucyrr77KK6+8wrZt27jllluMjiMiIk5AhZiTWLFiBX369CEwMJBTp05pd8mrYLfb2blzJ6tWreLnn38mLi6OU6dOkZWVddkGBVarlSpVqhASEkKLFi3o3LkzUVFR+Pr6GpheRMS55OXl8dhjjzFjxgxsNhu1atXigw8+oF+/fkZHE5FS4OGHH+aTTz4hPT2dypUrGx1HREScgAqxMi4n38axtByOHEtk8MD+vPfaPxgz+n6jY5UqNpuNzZs389NPP7F161YOHjzImTNnyM7Ovmycu7s7/v7+1K1bl5YtWxIREUH37t3x8vIyKLmISPmTm5vLmDFjmD17NoWFhdSuXZuPP/6YPn36GB1NRAw0aNAgFixYcMWu6iIiItdLhVgZlJB0ntlbEllzMJnE9Fx++wdoAoJ8PejW0J+h7YKoX62iUTFvuvz8fNatW8eaNWv45ZdfiI+PJykpqWhttV95eHgQEBBA/fr1ueWWW+jWrRudO3fGzc3NoOQiIvK/srOzefDBB5kzZw52u526devy73//m+7duxsdTUQM0KVLFzZt2oTNZjM6ioiIOAkVYmXIifRcXlywh/WHUnExmyi0//Ef3a/3d65XhX8ObEotX4+bmLRkZWdns3r1atatW8cvv/zC4cOHSUlJIS8v77JxXl5eVK9enYYNG9KmTRu6detG+/btsVgsBiUXEZFrlZGRwejRo/n++++x2+00aNCAzz//nE6dOhkdTURuoqZNm3Lo0CEuXLhgdBQREXESKsTKiG+3JvLy4n3Y7I4/LcL+l4vZhMVs4tV+TRjSJqgEExa/tLQ0oqOjWb9+Pbt27eLo0aOkpqZSUFBQNMZkMuHt7U2NGjUIDQ2lbdu2REVF0bx5c8xms4HpRUSkOKWnp3P//fezePFiHA4HoaGhfPnll7Rr187oaCJyE9SuXZusrCzOnTtndBQREXESKsTKgA/WJPD2yvgbPs4zPRvwWLf6xZCoeJ06dYqVK1eyceNG9uzZw7Fjx0hPT79sSrzZbMbHx4datWrRpEkT2rdvT1RUFI0aNTIwuYiI3GzJycmMHDmS5cuX43A4aNq0KV988QWtW7c2OpqIlKAqVarg7u7OyZMnjY4iIiJOQoVYKfft1kT+/v2eYjvepEFN+ZtBM8UOHz7Mjz/+SGxsLPv27SMxMZGMjAwKCwuLxri4uODr60vt2rVp2rQp4eHh9OzZk9q1axuSWURESqfTp08zcuRIoqOjcTgctGjRghkzZtCsWTOjo4lICfD09CQoKIi4uDijo4iIiJNQIVaKnUjPJXLKWvJtduwFeWTvXEFufCwXUxOxX8zDxcsXa5UgPEK74BnaicIL58nZ+xN5x3dxMf009pxzYHbBtUoQFVv0xqtZFG4WM6ueivjDNcUuXLhAhQoVrjuz3W5n3759rFy5ki1bthAXF8fJkyfJysrCbrcXjXN1dcXPz486derQtGlTOnfuTFRUFP7+/td9bhERKX9OnDjBiBEj+OmnnwBo3bo1M2fOJDQ01OBkIlKcXF1dadOmDZs2bTI6ioiIOAkVYqXY8M+3sOlIGheSj5MybwK2jLN/ODZw5FQupp0gdfFbfzimYut+VO35EB3q+PHVA5evuXLx4kXGjRvHW2+9RWxsLG3btv3TbHa7na1bt7J69Wp+/vlnDhw4wOnTp8nOzr5sO2w3NzeqVq1KnTp1aNmyJV26dKFHjx5UqlTpKn8KIiIif+3o0aPcd999rF+/HoD27dszc+ZM6tcvfUsFiMi1M5lM3HrrrSxZssToKCIi4iS03V4plZB0nvWHUim8cJ7k716mMCsFABcvX7zbDca1am0cBRfIS9xL9p5VRY8zWax4Nu5KhbqtwcWV7B1LuXB4GwDnt/1Axdb9WG93cCj5PPX8KwKXLmW866672LFjBwCbN28uKsQKCgrYuHEja9asYdu2bcTHx3P27FlycnIuy1uhQgWqVatGu3btaNWqFV27dqVr1643NNtMRETkaoWEhLBu3ToSEhK47777iI2NpUGDBnTq1ImZM2cSEhJidEQRuU65ubkAupJARESKlWaIlVKvLN7HV1uOk7pmOlmxcwEwuXlSfdSHWCpWuWxsYU4GmF2w52RgslbA4v3f+x22i5z8eCT2nAwAqvR/Hu8mXRjerjav9GvCV199xUMPPURBQQGFhYWYzWYCAwOxWCwkJSWRl5d32bk8PT0JDAykQYMGtG7dmu7du9OhQwdcXV1L9OchIiJyLeLi4rjvvvvYunUrAF27dmXGjBkEBZWtHZdFBPbt20dYWBgvvvgir7/+utFxRETESWiGWCm15mAyhXYHuXHri27zbtP/ijIMwMXT59K/K1S84j6TxRWLd1UK/lOImVzdKbQ7WLz9MP9+OIozZ85cNt5ut3Pq1Cm8vb0JDg6mUaNGtG3blh49etC6dWvMZnPxPUkREZESEhoays8//8zu3bsZOXIkMTExBAcHExkZyfTp06levbrREUXkKh09ehSAGjVqGJxERESciQqxUig730Ziei72gguXrRvmVrPJNR/rYsZZCpKOAGCyVsC91qVjpOWbOZt67ncfU6lSJTIyMq49uIiISCnTrFkztm/fzi+//FK0K2XNmjXp3bs306dP1yVYImXAiRMnAKhVq5bBSURExJlouk8pdDwtBwdgz798nS5LRd9rOk7hhSxS5r8G9kIAfCLuxex2aXdJk8nE7iNn2LRpE8899xx16tQpelxmZiYpKSk39iRERERKkVatWrFr1y42b95MaGgoy5cvJyAggP79+5Oammp0PBH5EydPngTQWoAiIlKsVIiVQgU2OwBmN8/LbredT7/qY9iy00ma/XcuphwDoGKbAXjfcvtlYy7aHYSHhzNp0iQOHz5MXFwcb7zxBsOHD9cukCIi4pTatWvHvn37WL9+PQ0aNGDx4sVUq1aNwYMHa3a0SCmVlJQEqBATEZHipUKsFLJaLv2xmK0VsPgEFN2ef2r/VT3elplM0qznuZiaCIB3+zvw7THqD8/zq0aNGvH3v/+dmTNnYrVarze+iIhIqdepUycOHDjA6tWrqVOnDt9//z1+fn4MGTKErKwso+OJyG/8Woh5enr+xUgREZGrp0KsFAr288T0n689QjsX3X7+54XYzqddMb4wJ4PCC+cBuJh2krOzn8eWcWmxfJ+I+6jcdcQVjzH95zwiIiLlWffu3UlISGDFihUEBQUxZ84cfH19uffee8nNzTU6nogA6enpuLi4GB1DREScjAqxUsjTzUKQ76W1vrzbDsLFuypwaU2xszOfJmvrIi4c20Vu/GbSV33KqX8/RGFWyn/KsL9TmHVp/S/PJl1xq9mYvBP7iv4p/M9uk0F+Hni6aU8FERERgF69enH06FF++OEHqlevzldffUWlSpW4//77ycvLMzqeSLl27tw5Xb0gIiLFzuRwOBxGh5ArvbJ4H19tOU6h3UFBaiIp8yZctuPk/wocOZWCpCOkLXv3T4/r13cslVpEMbxdbV7pd+27VoqIiJQH8+fP58knn+TUqVO4urpy//33M3XqVL0pFzFArVq1yM3NJS3tyislRERErpdmiJVSQ9sFUWi/1FVaqwQReP8HVO4+CreajTG7VwQXCy7eVXEPaYXfrU/hWuXqt6EutDsY1j6opKKLiIiUeYMHD+bkyZN8++23+Pn58cknn1CxYkUef/xxCgoKjI4nUq7k5ORo/TARESl2miFWig3/fAubjqQVFWPFwcVsokMdP756oF2xHVNERMTZffXVVzzzzDMkJyfj5ubGI488wuTJk7FYtPyASEmrUKEC9erVY8+ePUZHERERJ6IZYqXYPwc2xWI2/fXAa2Axm/jnwKbFekwRERFnN3z4cJKSkvjss8/w8vJiypQpVKxYkRdeeAG73W50PBGndvHiRXx8fIyOISIiTkaFWClWy9eDV4t5na8J/ZpQ6z8L9ouIiMi1eeCBB0hNTeXDDz+kQoUKvPnmm3h5eTF+/HgVYyIlpLCwkCpVqhgdQ0REnIwKsVJuSJsgnunZoFiO9WzPhvytjdYOExERuVGPPPII6enpTJkyBVdXVyZOnIi3tzevvfaaijGRYpSRkQFA1apVjQ0iIiJOR4VYGfBYt/q8OagpbhYzLtd4CaWL2YSbxcykQU15tFu9EkooIiJSPo0dO5Zz584xefJkTCYT48aNo1KlSkyePFnFmEgxOHLkCADVq1c3OImIiDgbFWJlxJA2Qax6KoIOdfwA/rIY+/X+DnX8WPVUhGaGiYiIlBCz2cyzzz5LZmYmr732Gg6Hg+effx5fX1/ee+89o+OJlGnHjx8HVIiJiEjxUyFWhtTy9eCrB9oRPbYLw9vVprafB/9bi5mA2n4eDG9Xm1VPdeGrB9ppzTAREZGbwGw289JLL5GVlcX48eMpKChg7Nix+Pr68tFHHxkdT6RMSkxMBKB27doGJxEREWdjcjgcDqNDyPXLybdxLC2HApsdq8VMsJ8nnm7aAl5ERMRodrudl156iXfffZe8vDz8/Px48803GTVqlNHRRMqM559/nsmTJ3Pw4EEaNCiedXVFRERAM8TKPE83C02qV6JlUGWaVK+kMkxERKSUMJvNvPHGG5w/f57/+7//Izs7m9GjR+Pv78/MmTONjidSJpw9exaA4OBgY4OIiIjTUSEmIiIiUoIsFgv/+te/yMrK4vHHHyczM5P77ruPwMBA5syZY3Q8kVItJSUFk8mE1Wo1OoqIiDgZFWIiIiIiN4HVamXq1KmcP3+ehx9+mLS0NIYMGUKNGjVYsGCB0fFESqW0tDRcXFyMjiEiIk5IhZiIiIjITWS1Wvn444/Jyspi5MiRJCcnM2jQIIKCgliyZInR8URKlczMTNzc3IyOISIiTkiFmIiIiIgB3N3d+eKLL8jMzGT48OGcPn2a22+/nZCQEH788Uej44mUCllZWVSoUMHoGCIi4oRUiImIiIgYyMPDg5kzZ5Kens6QIUNITEykd+/e1KtXjzVr1hgdT8RQubm5eHl5GR1DRESckAoxERERkVLA29ubb775hrS0NAYPHszRo0fp3r07DRs2ZMOGDUbHEzFEXl4e3t7eRscQEREnpEJMREREpBTx8fFh3rx5pKSk0K9fPxISEujcuTNNmjRhy5YtRscTuakuXryIr6+v0TFERMQJqRATERERKYV8fX1ZtGgRZ8+epU+fPsTFxdG+fXuaNWvGL7/8YnQ8kRJnt9ux2+34+fkZHUVERJyQCjERERGRUszf359ly5Zx8uRJoqKi2Lt3L7fccgutWrVi9+7dRscTKTGpqakAVKtWzeAkIiLijFSIiYiIiJQB1atXZ+XKlRw7doxu3bqxY8cOmjdvTps2bYiLizM6nkixO3r0KACBgYEGJxEREWekQkxERESkDAkKCuKnn37iyJEjdOrUiW3bttG4cWM6dOhAQkKC0fFEis2xY8cAqFWrlrFBRETEKakQExERESmDQkJCWL9+PfHx8bRv357Y2FgaNGhAly5dimbWiJRlJ0+eBFSIiYhIyVAhJiIiIlKG1a9fn9jYWPbu3Uvr1q1Zv349derUoXv37iQmJhodT+S6nTp1CoC6desanERERJyRCjERERERJ9CkSRO2bt3Krl27aNmyJWvWrCE4OJiePXty+vRpo+OJXLOkpCQAatSoYXASERFxRirERERERJxIs2bN+OWXX9i6dSthYWFER0dTs2ZNbr31VpKTk42OJ3LVUlJSMJlMWCwWo6OIiIgTUiEmIiIi4oRat27N7t272bx5M6GhoSxbtoyAgAD69+9Penq60fFE/lJ6errKMBERKTEqxEREREScWLt27di3bx/r16+nfv36LF68mKpVq3LHHXeQkZFhdDyRP5SZmYmbm5vRMURExEmpEBMREREpBzp16sTBgwdZvXo1ISEhzJ8/Hz8/P+6++26ysrKMjidyhezsbDw8PIyOISIiTkqFmIiIiEg50r17dw4dOsSKFSsICgri22+/xdfXl3vvvZfc3Fyj44kUycnJwcvLy+gYIiLipFSIiYiIiJRDvXr14ujRoyxatIjq1avz1VdfUalSJR544AHy8vKMjidCfn4+Pj4+RscQEREnpUJMREREpBzr168fiYmJzJs3D39/f7744gu8vb0ZM2YMBQUFRseTcuzixYtUrlzZ6BgiIuKkVIiJiIiICIMHD+bUqVN8/fXX+Pn5MW3aNCpWrMgTTzyBzWYzOp6UM3a7HYfDQdWqVY2OIiIiTkqFmIiIiIgUufvuuzlz5gwzZsygUqVKvP/++3h5efHMM8+oGJOb5vTp0wD4+/sbnERERJyVCjERERERucK9995LcnIyn376KV5eXvzrX/+iYsWKvPDCC9jtdqPjiZM7cuQIADVq1DA4iYiIOCsVYiIiIiLyh0aNGkVqaioffvghFSpU4M0338TLy4tXXnlFxZiUmMTERECFmIiIlBwVYiIiIiLylx555BHS09OZMmUKrq6uvPrqq3h7e/P666+rGJNid+LECQCCg4ONDSIiIk5LhZiIiIiIXLWxY8dy7tw5Jk2ahMlk4h//+Ac+Pj689dZbKsak2Jw5cwaAkJAQg5OIiIizUiEmIiIiItfEbDbz3HPPkZmZycSJE7Hb7Tz33HP4+voydepUo+OJEzh79iwAAQEBBicRERFnpUJMRERERK6L2WzmH//4B1lZWYwbN46CggKefPJJfH19mTZtmtHxpAxLS0vDbDZjNuvtioiIlAy9woiIiIjIDTGbzUyYMIHs7Gyee+45Lly4wJgxY6hSpQqff/650fGkDEpPT8fV1dXoGCIi4sRUiImIiIhIsTCbzUyaNInz58/z1FNPkZ2dzahRo6hWrRqzZs0yOp6UIVlZWbi5uRkdQ0REnJgKMREREREpVhaLhXfeeYesrCwee+wxzp07x/DhwwkMDGTOnDlGx5My4Pz583h4eBgdQ0REnJgKMREREREpEVarlffff5+srCweeughUlNTGTJkCDVr1mTBggVGx5NS7MKFC1SsWNHoGCIi4sRUiImIiIhIiXJ3d2fatGlkZmYyYsQIkpKSGDRoELVr12bZsmVGx5NSKD8/n0qVKhkdQ0REnJgKMRERERG5KTw8PPjyyy85d+4cQ4cO5dSpU9x6663UqVOH6Ohoo+NJKWKz2fDz8zM6hoiIODEVYiIiIiJyU3l5eTFr1izS09P529/+xvHjx+nZsyf169cnJibG6HhiMJvNhsPhoEqVKkZHERERJ6ZCTEREREQM4e3tzbfffktaWhqDBg3iyJEjdOvWjUaNGrFx40aj44lBjh8/DkBgYKDBSURExJmpEBMRERERQ/n4+DB//nySkpK4/fbbiY+Pp1OnToSFhbF161aj48lNduzYMUCFmIiIlCwVYiIiIiJSKlSpUoXFixdz5swZevfuzf79+2nbti3Nmzdnx44dRseTm+TXQiwoKMjYICIi4tRUiImIiIhIqVKtWjWWL19OYmIikZGR7Nmzh1atWnHLLbewd+9eo+NJCTt16hQAtWvXNjiJiIg4MxViIiIiIlIq1axZk+joaI4dO0bXrl355ZdfaNq0Ke3atePAgQNGx5MScubMGQDq1q1rcBIREXFmKsREREREpFQLCgpizZo1HD58mI4dO/Lzzz8TGhpKx44dOXTokNHxpJglJycD4Ovra3ASERFxZirERERERKRMqFOnDhs2bODAgQO0a9eOTZs2Ub9+fSIiIop2JpSyLzU1FbNZb1NERKRk6ZVGRERERMqUhg0bsnnzZvbu3cstt9zCunXrCA4OpkePHpw8edLoeHKDzp07h9VqNTqGiIg4ORViIiIiIlImNWnShG3btrFjxw5atGjBTz/9RFBQEL179+bs2bNGx5PrlJWVhbu7u9ExRETEyakQExEREZEyrUWLFuzYsYOtW7cSFhbGjz/+SPXq1bnttttITU01Op5co+zsbDw8PIyOISIiTk6FmIiIiIg4hdatW7N79242bdpEo0aNWLp0KdWqVWPgwIGkp6cbHU+u0oULF/D29jY6hoiIODkVYiIiIiLiVMLDw9m/fz9r166lbt26LFy4kKpVq3LnnXeSmZlpdDz5CwUFBfj4+BgdQ0REnJwKMRERERFxSl26dCE+Pp5Vq1YRHBzMvHnz8PPz45577iE7O9voeKVSSkoKY8aMISgoCDc3NwICAujVqxcbN268aRlsNhu+vr5X3B4cHMy77757zcfLy8tjxIgRNG3aFIvFwoABA248pIiIlHkqxERERETEqfXo0YPDhw+zbNkyatasyTfffIOPjw/33Xcfubm5RscrVQYPHsyOHTuYMWMG8fHxLF68mK5du5KWllZi5ywoKCj6Oi8vDwB/f/9iO35hYSEVKlTgiSeeIDIystiOKyIiZZsKMREREREpF/r06cOxY8dYtGgRgYGBzJw5k0qVKjF69OiiIqY8y8jIYP369UyaNIlu3bpRu3Zt2rZtywsvvEC/fv0uGzdq1CiqVq2Kt7c33bt3Z9euXZcd64cffqBNmza4u7tTpUoVBg4cWHRfcHAwEydO5N5778Xb25sHH3wQgA0bNtCxY0cA5s+fzxNPPEFOTg4AXbt25fjx4zz11FOYTCZMJtNVPy9PT08+/vhjRo8eTUBAwHX/fERExLmoEBMRERGRcqVfv36cOHGCuXPnUrVqVT777DO8vb155JFHLputVN54eXnh5eXFwoULyc/P/8Nxd955J8nJySxfvpzt27fTqlUrevToUbRxwdKlSxk4cCB9+/Zlx44drF69mrZt2152jLfffpvmzZuzY8cOxo0bx+HDh+nduzetW7cGYNSoUWzYsIHHHnsMgO+//56aNWsyYcIEzpw5w5kzZ4qOZTKZmD59ejH/NERExNmZHA6Hw+gQIiIiIiJGmT17Nk8//TRJSUlYrVYefvhh/vWvf2GxWIyOdtPNnz+f0aNHc+HCBVq1akVERARDhgyhWbNmwKVZXLfeeivJycm4ubkVPa5evXo899xzPPjgg3To0IE6deowa9as3z1HcHAwLVu2ZMGCBUW3jRo1ChcXF1q1asXDDz/MwoUL8fPzIyIigpycHNzd3QkODmbs2LGMHTv2suM1atSIN95447JZaH9kxIgRZGRksHDhwmv/4YiIiFPRDDERERERKdeGDh3K2bNnmT59OpUqVWLq1Kl4eXnx7LPPYrPZjI53Uw0ePJjTp0+zePFievfuTUxMDK1atSqagbVr1y6ys7Px8/MrmlHm5eXF0aNHOXz4MAA7d+6kR48ef3qeX2eC/WrXrl1Mnz6dxx9/HIC7776bXr16YbfbOXr06J8e68CBA1dVhomIiPyWCjEREREREeC+++4jOTmZTz75BE9PT95++20qVqzISy+9hN1uNzreTePu7k5UVBTjxo1j06ZNjBgxgpdffhmA7OxsAgMD2blz52X/HDx4kGeffRaAChUq/OU5PD09L/s+Ozubhx56qGgHyNjYWHbt2kVCQgJ169Yt3icoIiKCCjERERERkcs8+OCDpKWl8f777+Pu7s4///lPKlasyKuvvlquirFfNW7cuGhx+1atWnH27FksFgv16tW77J8qVaoA0KxZM1avXn1N52jVqhX79+8vWrusefPmRce1Wq0AWK1WCgsLi/GZiYhIeaZCTERERETkdzz22GOcO3euaD2xV155BW9vb9544w2nLMbS0tLo3r07s2bNYvfu3Rw9epS5c+cyefJk+vfvD0BkZCTh4eEMGDCAlStXcuzYMTZt2sRLL73Etm3bAHj55Zf55ptvePnll4mLi2PPnj1MmjTpT8/9/PPPs2nTJn7++WfMZjMJCQksWrSoaFF9uLT22Lp16zh16hSpqalFtzdq1Oiy9ch+z/79+9m5cyfp6elkZmYWzWwTEZHyS4WYiIiIiMif+L//+z/OnTvHG2+8AcCLL76Ij48P//rXv3Cm/am8vLxo164dU6ZMoUuXLoSFhTFu3DhGjx7NBx98AFza0XHZsmV06dKFkSNH0qBBA4YMGcLx48epVq0aAF27dmXu3LksXryYFi1a0L17d37++ec/PXezZs1Yu3Yt58+fx26307JlS8aPH0/16tWLxkyYMIFjx45Rt25dqlatWnT7wYMHyczM/NPj9+3bl5YtW/LDDz8QExNDy5Ytadmy5fX+qERExAlol0kRERERkatkt9t57bXXmDRpErm5uVSqVImJEycWLQYvNyYoKIicnBzS0tKMjiIiIk5OM8RERERERK6S2Wxm/PjxnD9/npdeeon8/HyeeOIJ/Pz8+Pe//210vDIvOzv7igX3RURESoIKMRERERGRa2Q2m3nttdc4f/48zz77LDk5OTz00ENUrVqVL7/80uh4ZVZeXh4VK1Y0OoaIiJQDKsRERERERK6TxWJh8uTJZGdnM3bsWLKysrj//vupVq0aX3/9tdHxypyCggIqV65sdAwRESkHVIiJiIiIiNwgi8XClClTOH/+PI888gjnzp1j6NChVK9enblz5xodr8woLCzEz8/P6BgiIlIOqBATERERESkmVquVDz/8kKysLEaPHk1KSgp33XUXtWrVYtGiRUbHK9XOnz8PgL+/v8FJRESkPFAhJiIiIiJSzNzd3fn3v/9NZmYm9913H2fOnGHAgAHUrl2b5cuXGx2vVDpy5AgAgYGBBicREZHyQIWYiIiIiEgJ8fDwYPr06WRkZHDPPfdw6tQp+vbtS926dVm9erXR8UqVY8eOAVCjRg1jg4iISLmgQkxEREREpIR5eXkxe/Zs0tPTufPOOzl27BiRkZE0aNCAtWvXGh2vVEhMTAQgKCjI4CQiIlIeqBATEREREblJvL29+e6770hJSWHgwIEcPnyYrl27EhoayqZNm4yOZ6jTp08DEBISYnASEREpD1SIiYiIiIjcZL6+vnz//fckJSVx2223cfDgQTp27EjTpk3ZunWr0fEMcebMGQCCg4ONDSIiIuWCCjEREREREYNUqVKFH374gdOnT9O7d2/27dtH27ZtadGiBTt37jQ63k2VkpICXNqQQEREpKSpEBMRERERMVhAQADLly8nMTGRHj16sHv3blq2bEnr1q3Zt2+f0fFuirS0NCwWi9ExRESknFAhJiIiIiJSStSsWZNVq1Zx9OhRIiIi2L59O2FhYbRv356DBw8aHa9EZWZmYrVajY4hIiLlhAoxEREREZFSpnbt2sTExHDo0CE6dOjAli1baNSoER07duTw4cNGxysRWVlZVKhQwegYIiJSTqgQExEREREpperWrcvGjRs5cOAAbdu2ZdOmTdSrV4+uXbty/Phxo+MVq9zcXLy8vIyOISIi5YQKMRERERGRUq5hw4Zs2bKFPXv2cMstt7B27VpCQkKIjIzk1KlTRscrFnl5eXh7exsdQ0REygkVYiIiIiIiZURYWBjbtm1jx44dNGvWjNWrV1OrVi369OnD2bNnjY53QwoKCqhcubLRMUREpJxQISYiIiIiUsa0aNGCnTt38vPPP9OkSRNWrFhB9erVuf3220lNTTU63nWx2+1UqVLF6BgiIlJOqBATERERESmj2rRpw549e9iwYQMNGzZkyZIlVKtWjUGDBnHu3Dmj4121tLQ0APz9/Q1OIiIi5YUKMRERERGRMq5jx47ExcURExND3bp1WbBgAVWqVOGuu+4iKyvL6Hh/6ciRIwAEBgYanERERMoLFWIiIiIiIk4iIiKC+Ph4Vq5cSXBwMHPnzsXX15dhw4aRnZ1tdLw/dOzYMQBq1qxpbBARESk3VIiJiIiIiDiZqKgoDh8+zNKlS6lRowazZ8/Gx8eHkSNHkpuba3S8Ih999BFvvvkm3333HQDnzp1j9+7dpSqjiIg4J5PD4XAYHUJERERERErOwoULefzxxzl58iQWi4WRI0cydepU3N3dDctkt9vx8vLiwoULV9zXs2dPfvzxRwNSiYhIeaEZYiIiIiIiTm7AgAGcOHGC7777jqpVq/Lpp5/i7e3No48+SkFBgSGZzGYzw4cPx2KxXHHfwIEDDUgkIiLliWaIiYiIiIiUM7NmzeLpp58mOTkZq9XKI488wltvvfW75VRJ2rVrFy1atCj63sXFhSZNmvDLL7/g4uJyU7OIiEj5ohliIiIiIiLlzLBhw0hKSuKLL77A29ubd999Fy8vL55//nkKCwtvWo7mzZvTrl27ou8LCwuZNm2ayjARESlxKsRERERERMqpkSNHkpKSwrRp0/D09GTy5MlUrFiRcePGYbfbb0qGJ554oujr++67j/Dw8JtyXhERKd90yaSIiIiIiAAwdepUxo8fT2ZmJh4eHjz//PP84x//wGwuuc/R8/PzqVChAg6Hg7Nnz1KtWrUSO5eIiMivNENMRERERESAS7O10tPTefvtt3FxceHll1+mUqVKvPnmmyUyYywn38ahtDyCWnahecStePn4Ffs5REREfo9miImIiIiIyBXsdjuTJk3i9ddfJycnB29vb1555RWeeuqpy8ZlZGRw6NAhWrdufVXHTUg6z+wtiaw5mExiei6/fTNiAoJ8PejW0J+h7YKoX61i8T0hERGR31AhJiIiIiIif8hutzNx4kQmT55Mbm4uPj4+vPbaazz66KMADBgwgB9++IH169fToUOHPzzOifRcXlywh/WHUnExmyi0//HbkF/v71yvCv8c2JRavh7F/rxERKR8UyEmIiIiIiJ/yW63M27cON555x3y8vLw9fVlzJgxvP7665hMJgIDA9mzZw++vr5XPPbbrYm8vHgfNrvjT4uw/+ViNmExm3i1XxOGtAkqzqcjIiLlnAoxERERERG5ajabjRdeeIH333+f/Pz8ottdXFy49dZbWbhwISaTqej2D9Yk8PbK+Bs+7zM9G/BYt/o3fBwRERFQISYiIiIiItchNjb2dy+RfP/993nssceASzPD/v79nmI756RBTfmbZoqJiEgxUCEmIiIiIiLXrFevXqxcufJ37/v444+59a57iZyylnybnbQVH5C9c0XR/T4R91Ep/M4rHmfPzyVz0xxyD27Edj4Vs5sXFUJaUKnTUFwrB+JmMbPqqQitKSYiIjfMbHQAEREREREpe1JTU3Fzc8PV1RVXV1dcXFyKLpUcM2YMA9/4DpvdgaPQRu7BTZc9Nidu3RXHs+fncnbWc2RtmY8t4ywU2rDnZpCzL4azM56iIPkYNruDFxcU34wzEREpv1SIiYiIiIjINdu+fTt5eXkUFBRQUFCAzWbDbrdTUFDAPz/8klRLVQrtDvKO7cB+Ieuyx15MPsrFtBOX3ZaxYTYXU44B4FYrjKqD/oFXi94A2POySVv+HoV2B+sPpXIo+fxNeY4iIuK8VIiJiIiIiEixcXV1Jb9mG1zMl2aL5ez/72wwj9AuRV//9nZH4UVydq/6z3cmqvR/Do8G7fHt9SgWv5oAFJxJIP/sIVzMJmZtTiz5JyIiIk5NhZiIiIiIiBSrNQeTKbQ7cNgKyE3YDIDZoxK+kaPB7AJATtz6ovEFKcex5+cAYKnkj8XLFwCTyYRb9UZF4/JP7KPQ7mBNfPLNeioiIuKkVIiJiIiIiEixyc63kZieC0DuoZ9xFFwAwKN+e1w8K+Me1BQAW/pJCs4eBqAw878Fl9nT57Ljufzme1vGWQAS03LJybeV1FMQEZFyQIWYiIiIiIgUm+NpOfy6jX3ubxbP92jU8dK/G3Ysuu3XxfXtF/OKbjO5uF52PJPZUvS142L+pX8Dx9JyijO2iIiUMyrERERERESk2BTY7MClXSMvHN4GgNm9Iu61mwPg0bADmC69DcmJW4/D4cDs6l70eEfhxcuO57D/dyaYydXtivOIiIhcD8tfDxEREREREbk6Vsulsis3YTMOWwEA9rzzJE7uf8XYwqxk8k8dwKWS/39vy8m4fEz2uaKvLT4BV5xHRETkeuhVREREREREik2wnycmIGf/2qsanxu3DmvV2pjcPIFL64nZzqcC4HA4yD99sGisW60mAJj+cx4REZHrpRliIiIiIiJSbDzdLAS6XeTYsZ0AmKwV8Im49/JBhTbO/fQ5ALkHNlA5cjRezSI5v3UR4CB10Vt4txvEhcNbsaWfBMAaUB+3gHoABPl54OmmtzIiInL99CoiIiIiIiLFyjd5B9gLAagQ0hLvW26/Ykz23jVcTD5CYc458o7vxqfTUPKO7eJiyjHyT+4j5eS+orFmN0/8+j4JgIvZRLcG/lccT0RE5FrokkkRERERESlWKTt/Kvq6Qr12vzvGo17boq9z49ZhdvMgYNhkvNsNwlKpGrhYMHv44NE4goARU7D6BwNQaHcwrH1QieYXERHnZ3I4HI6/HiYiIiIiInL1hn++hU1H0ii0F9/bDReziQ51/Pjqgd8v2URERK6WZoiJiIiIiEix++fApljMpuI7oMOByWHnnwObFt8xRUSk3FIhJiIiIiIixa6Wrwev9mtSfAc0mUhaOpU61SrRr18/3njjDVasWEFSUlLxnUNERMoNXTIpIiIiIiIl5oM1Cby9Mv6Gj/Nsz4a8P+Y2Dh48CIDZbMZutwPg7+/PZ599xu23X7l4v4iIyO/RDDERERERESkxj3Wrz5uDmuJmMeNyjZdQuphNuFnMTBrUlEe71WPJkiWYTJeO8WsZBpCcnEyFChWKNbeIiDg3FWIiIiIiIlKihrQJYtVTEXSo4wfwl8XYr/d3qOPHqqci+FubS7tK1qtXj3vuuQcXF5fLxj/zzDNERkaWQHIREXFWumRSRERERERumoSk88zeksia+GQS03L57ZsRh8OBr7WQ/q3rMax9EPX8K17x+AMHDtC4cWMcDgcmkwmHw4GXlxdr1qyhdevWN++JiIhImaZCTEREREREDJGTb+NYWg4FNjtWi5nWDWvj6WYhJSWl6NLI33PnnXcyb948qlatyrPPPsvf//53HA4HkyZN4tlnn72Jz0BERMoqFWIiIiIiImK4ixcv4ubmhsPh4PXXX+fFF1/8w7H79u2jX79+TJ8+nc6dOxMXF0enTp1IT08nMjKS5cuXY7FYbmJ6EREpa1SIiYiIiIiI4WJjY+nQoQMAJpOJRYsWXdOukQUFBfTs2ZO1a9dStWpVNm7cSP369UsqroiIlHFaVF9ERERERAwXExOD2Xzp7YnD4WDIkCHExcVd9eOtVisxMTFMnDiR1NRUQkND+fLLL0sqroiIlHEqxERERERExHA//fQTv714JT8/n1tvvZWMjIxrOs4//vEPYmNjqVChAvfffz933XUXdru9mNOKiEhZp0JMREREREQMdfHiRTZs2MD/ruZy9OhRZs6cec3Ha9euHWfOnKFFixbMnTuXkJAQzp49W1xxRUTECagQExERERERQx04cIC8vDyAot0ln3jiCebNm8dDDz10Xcf08vJix44djB07lsTERGrXrs3ixYuLLbOIiJRtKsRERERERMRQDRs25Ouvv2bz5s289tprAHTv3p3Bgwfj5uZ2Q8eeMmUKy5Ytw2Qy0b9/fx555JHiiCwiImWcdpkUEREREZFS4+TJk9SqVYsRI0YU66L4ycnJhIeHc+TIERo3bszGjRvx8fEptuOLiEjZohliIiIiIiJSatSsWRN3d3diY2OL9bj+/v4kJCQwfPhw9u/fT40aNdiwYUOxnkNERMoOFWIiIiIiIlKqBAcHc+zYsWI/rtlsZubMmcyaNYuCggK6dOnC+PHji/08IiJS+qkQExERERGRUqVjx47k5+eTmJhYIscfOnQo8fHxVKtWjYkTJ9KhQ4eiRf1FRKR8UCEmIiIiIiKlyuDBgwGYPXt2iZ0jJCSEU6dO0adPH2JjYwkMDGT37t0ldj4RESldVIiJiIiIiEip0rNnT0wmEytXrizR85jNZpYtW8bUqVPJysqiZcuWvP/++yV6ThERKR20y6SIiIiIiJQ6/v7+OBwOUlJSbsr5du/eTUREBBkZGfTp04clS5ZgNmv+gIiIs9JveBERERERKXWaNm1KWloaNpvtppyvWbNmnDlzhvDwcJYvX06NGjVKZGF/EREpHVSIiYiIiIhIqdOrVy8cDgcrVqy4aed0d3dn06ZNjBs3jqSkJOrXr1+i65iJiIhxVIiJiIiIiEipc8899wAwf/78m37uCRMmEBMTg9VqZdiwYQwbNgy73X7Tc4iISMnRGmIiIiIiIlIqVahQgdq1a3PgwAFDzp+VlUWHDh3Yt28fderUITY2Fn9/f0OyiIhI8dIMMRERERERKZWCg4MNXcfL29ubvXv3MmbMGI4cOUJQUBDLly83LI+IiBQfFWIiIiIiIlIqdejQgfz8fBITEw3N8dFHH7Fo0SIcDgd9+/blqaeeMjSPiIjcOBViIiIiIiJSKg0ePBiAr7/+2uAk0K9fP44fP05QUBDvvvsuLVq0IDs72+hYIiJynVSIiYiIiIhIqdSzZ09MJhMrV640OgoAAQEBHD16lLvuuotdu3YREBBAbGys0bFEROQ6qBATEREREZFSyWKxUKVKFfbs2WN0lCJms5k5c+bwxRdfkJeXR8eOHXn99deNjiUiItdIu0yKiIiIiEip1aNHD9asWUNBQQEWi8XoOJdJSEigY8eOpKSk0KVLF6Kjo7FarUbHEhGRq6AZYiIiIiIiUmr16tULh8PBjz/+aHSUK9SvX5/Tp08TGRnJunXrCAwMJC4uzuhYIiJyFVSIiYiIiIhIqXXPPfcAMH/+fIOT/D6LxUJ0dDSTJ0/m3LlzhIWF8cknnxgdS0RE/oIumRQRERERkVLN3d2dkJCQUj/7atu2bfTo0YOsrCz69+/P999/j9msOQgiIqWRCjERERERESnVQkNDOXr0KHl5eUZH+Uu5ublERESwbds2atSoQWxsLLVq1TI6loiI/A99XCEiIiIiIqVaeHg4+fn5JCYmGh3lL3l4eLB161aee+45Tp06Rd26dZk7d67RsURE5H+oEBMRERERkVLtjjvuAODrr782OMnVmzRpEqtWrcLFxYW77rqLUaNGGR1JRER+Q5dMioiIiIhIqWaz2bBarXTt2pWffvrJ6DjXJD09nfDwcOLj42nQoAGxsbH4+voaHUtEpNzTDDERERERESnVLBYLfn5+7Nmzx+go18zX15eDBw/ywAMPEB8fT40aNVi9erXRsUREyj0VYiIiIiIiUuo1bdqUtLQ0bDab0VGuy2effcbcuXMpLCwkMjKS559/3uhIIiLlmgoxEREREREp9Xr27InD4WDlypVGR7lud9xxB4cOHaJGjRpMnjyZNm3akJuba3QsEZFySYWYiIiIiIiUesOGDQNg3rx5Bie5MUFBQSQmJjJgwAC2bdtGYGAg27ZtMzqWiEi5o0JMRERERERKvZo1a+Lm5kZsbKzRUW6Y2WxmwYIFTJs2jezsbNq2bctbb71ldCwRkXJFu0yKiIiIiEiZEBoaytGjR8nLyzM6SrGJi4ujU6dOpKen06NHD1asWIHFYjE6loiI09MMMRERERERKRPCw8PJz8/nxIkTRkcpNqGhoZw5c4aIiAhWr15N9erVSUhIMDqWiIjTUyEmIiIiIiJlwuDBgwH4+uuvDU5SvKxWKzExMbz22mukpqYSGhrKl19+aXQsERGnpksmRURERESkTLDZbFitVrp168bq1auNjlMitmzZQmRkJNnZ2dx55518++23mM2axyAiUtxUiImIiIiISJlRtWpVTCYTycnJRkcpMdnZ2XTu3JmdO3cSFBTE5s2bCQwMNDqWiIhT0UcNIiIiIiJSZjRt2pTU1FRsNpvRUUqMl5cXO3bsYOzYsSQmJhIcHMzixYuNjiUi4lRUiImIiIiISJnRs2dPHA4HK1euNDpKiZsyZQrLli3DZDLRv39/Hn30UaMjiYg4DRViIiIiIiJSZgwdOhSAefPmGZzk5ujTpw+JiYnUqVOHjz76iCZNmpCZmWl0LBGRMk+FmIiIiIiIlBm1atXCzc2N2NhYo6PcNP7+/iQkJDB8+HD2799P9erVWb9+vdGxRETKNBViIiIiIiJSpgQHB3Ps2DGjY9xUZrOZmTNnMmvWLAoKCoiIiGD8+PFGxxIRKbNUiImIiIiISJkSHh5OXl4eJ0+eNDrKTTd06FDi4+OpVq0aEydOpEOHDuTl5RkdS0SkzFEhJiIiIiIiZcrgwYMB+Prrrw1OYoyQkBBOnTpF3759iY2NJTAwkN27dxsdS0SkTFEhJiIiIiIiZUrv3r0xmUz8+OOPRkcxjNlsZunSpUydOpWsrCxatmzJ1KlTjY4lIlJmmBwOh8PoECIiIiIiIteiatWqmEwmkpOTjY5iuN27dxMREUFGRgZ9+vThhx9+wMXFxehYIiKlmmaIiYiIiIhImdO0aVNSU1MpLCw0OorhmjVrxpkzZwgPD2f58uXUrFmz3G06ICJyrVSIiYiIiIhImRMVFYXD4WDlypVGRykV3N3d2bRpE+PGjSMpKYn69esze/Zso2OJiJRaKsRERERERKTMGTp0KADz5883OEnpMmHCBGJiYrBarQwbNoxhw4Zht9uNjiUiUupoDTERERERESmT3N3dCQkJIS4uzugopU5WVhYdOnRg37591KlTh9jYWPz9/Y2OJSJSamiGmIiIiIiIlEnBwcFaK+sPeHt7s3fvXsaMGcORI0cICgpi+fLlRscSESk1VIiJiIiIiEiZFB4eTl5eHidPnjQ6Sqn10UcfsWjRIhwOB3379uWpp54yOpKISKmgQkxERERERMqkwYMHA/D1118bnKR069evH8ePHycoKIh3332XFi1akJ2dbXQsERFDqRATEREREZEyqXfv3phMJn788Uejo5R6AQEBHD16lLvuuotdu3YREBBAbGys0bFERAyjQkxERERERMoki8WCn58fe/bsMTpKmWA2m5kzZw5ffPEFeXl5dOzYkddff93oWCIihtAukyIiIiIiUmZ169aNtWvXYrPZMJv1ef/VSkhIoGPHjqSkpNClSxeio6OxWq1GxxIRuWn0iiEiIiIiImVWz549cTgcumzyGtWvX5/Tp08TGRnJunXrCAwMJC4uzuhYIiI3jQoxEREREREps4YOHQrA/PnzDU5S9lgsFqKjo5k8eTLnzp0jLCyMadOmGR1LROSm0CWTIiIiIiJSprm7uxMSEqIZTjdg27Zt9OjRg6ysLPr378/333+vS1BFxKmpEBMRERERkTKtUaNGHD9+nAsXLhgdpUzLzc0lIiKCbdu2Ub16dTZv3kytWrWMjiUiUiJU+YuIiIiISJkWHh5OXl4ep06dMjpKmebh4cHWrVt57rnnOH36NHXr1mXu3LlGxxIRKREqxEREREREpEwbOHAgAF9//bXBSZzDpEmTWLVqFS4uLtx111088MADRkcSESl2umRSRERERETKNJvNhtVqpXv37qxatcroOE4jPT2d8PBw4uPjadCgAbGxsfj6+hodS0SkWGiGmIiIiIiIlGkWiwVfX192795tdBSn4uvry8GDB3nggQeIj4+nRo0arF692uhYIiLFQoWYiIiIiIiUeU2bNiU1NRW73W50FKfz2WefMXfuXAoLC4mMjOT55583OpKIyA1TISYiIiIiImVez549cTgc/Pjjj0ZHcUp33HEHhw4dokaNGkyePJnWrVuTm5trdCwRkeumQkxERERERMq8e+65B4D58+cbnMR5BQUFkZiYyIABA9i+fTuBgYFs27bN6FgiItdFhZiIiIiIiJR5tWvXxs3NjU2bNhkdxamZzWYWLFjAtGnTyM7Opm3btrz11ltGxxIRuWbaZVJERERERJxCw4YNSUxM5MKFC0ZHKRfi4uLo1KkT6enp9OjRgxUrVmCxWIyOJSJyVTRDTEREREREnEJ4eDh5eXmcPn3a6CjlQmhoKGfOnCEiIoLVq1dTvXp1EhISjI4lInJVVIiJiIiIiIhTGDRoEACzZ882OEn5YbVaiYmJ4bXXXiM1NZXQ0FC++OILo2OJiPwlXTIpIiIiIiJOwWaz4erqSo8ePVi1apXRccqdLVu2EBkZSXZ2NnfeeSfffvstZrPmYIhI6aRCTEREREREnEaVKlUwm80kJycbHaVcys7OpnPnzuzcuZOgoCA2b95MYGCg0bFERK6gul5ERERERJxGWFgYqamp2O12o6OUS15eXuzYsYOxY8eSmJhIcHAwixcvNjqWiMgVVIiJiIiIiIjTiIqKwuFwEB0dbXSUcm3KlCksW7YMk8lE//79eeSRR4yOJCJyGRViIiIiIiLiNIYNGwbAvHnzDE4iffr04cSJE9SpU4ePP/6YJk2akJmZaXQsERFAhZiIiIiIiDiR2rVr4+bmxsaNG42OIkDVqlVJSEhg+PDh7N+/n+rVq7N+/XqjY4mIqBATERERERHnUrt2bY4ePWp0DPkPs9nMzJkzmTVrFgUFBURERDB+/HijY4lIOadCTEREREREnEp4eDh5eXmcPn3a6CjyG0OHDiU+Pp5q1aoxceJEOnToQF5entGxRKScUiEmIiIiIiJOZdCgQQB8/fXXBieR/xUSEsKpU6fo27cvsbGxBAQEsHv3bqNjiUg5pEJMREREREScSt++fQH48ccfDU4iv8dsNrN06VKmTp3K+fPnadmyJVOnTjU6loiUMyaHw+EwOoSIiIiIiEhxqlKlCi4uLiQlJRkdRf7E7t27iYiIICMjgz59+vDDDz/g4uJidCwRKQc0Q0xERERERJxOWFgYKSkp2O12o6PIn2jWrBlnzpwhPDyc5cuXU7NmTY4dO2Z0LBEpB1SIiYiIiIiI04mKisLhcBAdHW10FPkL7u7ubNq0iXHjxpGUlET9+vWZPXu20bFExMmpEBMREREREaczbNgwAObNm2dwErlaEyZMYO3atVitVoYNG8awYcM0w09ESozWEBMREREREafk5uZGvXr12Ldvn9FR5BpkZmbSsWNH9u3bR506dYiNjcXf39/oWCLiZDRDTEREREREnFJwcDBHjhwxOoZco0qVKrF3717GjBnDkSNHCAoKYvny5UbHEhEno0JMREREREScUvv27cnLy+P06dNGR5Hr8NFHH7Fo0SIcDgd9+/Zl7NixRkcSESeiQkxERERERJzSoEGDAPjmm28MTiLXq1+/fhw/fpygoCDee+89WrRoQXZ2ttGxRMQJqBATERERERGndOuttwKwYsUKg5PIjQgICODo0aPcdddd7Nq1i4CAAGJjY42OJSJlnAoxERERERFxShaLBT8/P3bv3m10FLlBZrOZOXPm8MUXX5CXl0fHjh15/fXXjY4lImWYdpkUERERERGn1bVrV9atW4fNZsNs1nwAZ5CQkEDHjh1JSUmhS5cuREdHY7VajY4lImWMXhFERERERMRpRUVF4XA4WLVqldFRpJjUr1+f06dPExkZybp16wgMDGT//v1GxxKRMkaFmIiIiIiIOK2hQ4cCMG/ePIOTSHGyWCxER0fz1ltvce7cOZo2bcq0adOMjiUiZYgumRQREREREafm5uZGvXr12Ldvn9FRpARs27aNHj16kJWVRf/+/fn+++91eayI/CUVYiIiIiIi4tQaNGjAiRMnuHDhgtFRpITk5uYSERHBtm3bqF69Ops3b6ZWrVpGxxKRUky1uYiIiIiIOLXw8HDy8vI4ffq00VGkhHh4eLB161aee+45Tp8+Td26dZk7d67RsUSkFFMhJiIiIiIiTm3QoEEAfPPNNwYnkZI2adIkVq1ahYuLC3fddRcPPPCA0ZFEpJTSJZMiIiIiIuLUbDYbrq6uREZGEh0dbXQcuQnS09MJDw8nPj6eBg0aEBsbi6+vr9GxRKQU0QwxERERERFxahaLBT8/P3bv3m10FLlJfH19OXjwIA888ADx8fHUqFGD1atXGx1LREoRFWIiIiIiIuL0mjRpQkpKCna73egochN99tlnzJ07l8LCQiIjI3n++eeNjiQipYQKMRERERERcXpRUVE4HA7NEiqH7rjjDg4dOkSNGjWYPHkyrVu3Jjc31+hYImIwFWIiIiIiIuL0hg4dCqCdB8upoKAgEhMTGTBgANu3bycgIIBt27YZHUtEDKRCTEREREREnF5ISAhWq5WNGzcaHUUMYjabWbBgAdOmTSMnJ4e2bdvy1ltvGR1LRAyiXSZFRERERKRcaNCgASdOnODChQtGRxGDxcXF0alTJ9LT0+nRowcrVqzAYrEYHUtEbiLNEBMRERERkXKhffv25OXlcebMGaOjiMFCQ0M5c+YMERERrF69murVq5OQkGB0LBG5iVSIiYiIiIhIuTBo0CAAvvnmG4OTSGlgtVqJiYnhtddeIzU1ldDQUL744gujY4nITaJLJkVEREREpFyw2Wy4uroSFRXFypUrjY4jpciWLVuIjIwkOzubO++8k2+//RazWfNHRJyZCjERERERESk3/Pz8sFgsJCUlGR1FSpns7Gw6d+7Mzp07CQoKYvPmzQQGBhodS0RKiCpvEREREREpN8LCwkhJScFutxsdRUoZLy8vduzYwdixY0lMTCQ4OJhFixYZHUtESogKMRERERERKTeioqJwOBysXr3a6ChSSk2ZMoVly5ZhMpkYMGAAY8aMMTqSiJQAFWIiIiIiIlJuDB06FIB58+YZnERKsz59+pCYmEidOnWYNm0aTZo0ISMjw+hYIlKMVIiJiIiIiEi5ERISgtVqZcOGDUZHkVLO39+fhIQEhg8fzv79+6lRowbr1683OpaIFBMVYiIiIiIiUq7Url2bI0eOGB1DygCz2czMmTOZNWsWBQUFREREMH78eKNjiUgxUCEmIiIiIiLlSvv27cnLy+Ps2bNGR5EyYujQocTHx1OtWjUmTpxIeHg4eXl5RscSkRugQkxERERERMqVgQMHAvD1118bnETKkpCQEE6dOkXfvn3ZvHkzAQEB7N692+hYInKdVIiJiIiIiEi5cvvttwOwYsUKg5NIWWM2m1m6dClTp07l/PnztGzZkqlTpxodS0Sug8nhcDiMDiEiIiIiInIz+fn54erqqssm5brt3r2biIgIMjIy6NOnD4sXL8ZisRgdS0SukmaIiYiIiIhIudOkSROSk5Ox2+1GR5EyqlmzZpw5c4bw8HCWL19OrVq1OHr0qNGxROQqqRATEREREZFyJzIyEofDwZo1a4yOImWYu7s7mzZtYty4cSQlJdGgQQNmz55tdCwRuQoqxEREREREpNwZPnw4AHPnzjU4iTiDCRMmEBMTg9VqZdiwYQwbNkyzD0VKORViIiIiIiJS7oSEhGC1WtmwYYPRUcRJdOnShdOnT9OkSRNmz55N/fr1SU5ONjrWFVJSUhgzZgxBQUG4ubkREBBAr1692Lhxo9HRCA4O5t13373mx8XExNC/f38CAwPx9PSkRYsWmqknf0mFmIiIiIiIlEu1a9fmyJEjRscQJ1KpUiX27t3LmDFjOHLkCEFBQSxfvtzoWJcZPHgwO3bsYMaMGcTHx7N48WK6du1KWlpaiZ2zoKCgxI4NsGnTJpo1a8b8+fPZvXs3I0eO5N5772XJkiUlel4p27TLpIiIiIiIlEv33nsvX331FWfOnCEgIMDoOOJkFi9ezJ133klBQQFPPvnkdc18Km4ZGRlUrlyZmJgYIiIi/nTcM888w6JFi8jPz6d169ZMmTKF5s2bF4354YcfmDBhAnv27MHLy4vOnTuzYMEC4NJMrwceeICEhAQWLlzIoEGDmD59Ohs2bOCFF15g27ZtVKlShYEDB/LGG2/g6elJ165dWbt27WU5bqSuuPXWW6lWrRpffPHFdR9DnJtmiImIiIiISLk0YMAAAL755htjg4hT6tevH8ePHycoKIj33nuPFi1akJ2dbWgmLy8vvLy8WLhwIfn5+X847s477yQ5OZnly5ezfft2WrVqRY8ePUhPTwdg6dKlDBw4kL59+7Jjxw5Wr15N27ZtLzvG22+/TfPmzdmxYwfjxo3j8OHD9O7dm8GDB7N7927mzJnDhg0beOyxxwD4/vvvqVmzJhMmTODMmTOcOXOm6Fgmk4np06df03PNzMzE19f3mh4j5YtmiImIiIiISLlUUFCAm5sbPXv25McffzQ6jjgpu93O3XffzXfffYenpyfR0dGEh4cblmf+/PmMHj2aCxcu0KpVKyIiIhgyZAjNmjUDYMOGDdx6660kJyfj5uZW9Lh69erx3HPP8eCDD9KhQwfq1KnDrFmzfvccwcHBtGzZsmjGGMCoUaNwcXHhk08+Kbptw4YNREREkJOTg7u7O8HBwYwdO5axY8dedrxGjRrxxhtvMHDgwKt6jt999x3Dhw/nl19+oUmTJlf7o5FyRjPERERERESkXLJarfj6+rJr1y6jo4gTM5vNzJkzhy+++IK8vDw6duzIa6+9ZliewYMHc/r0aRYvXkzv3r2JiYmhVatWRTOwdu3aRXZ2Nn5+fkUzyry8vDh69CiHDx8GYOfOnfTo0eNPz9O6devLvt+1axfTp0+/7Ji9evXCbrdz9OjRPz3WgQMHrroMW7NmDSNHjuTTTz9VGSZ/ymJ0ABEREREREaM0adKEDRs2YLfbMZs1X0BKzsiRI+nUqRMdO3Zk3LhxREdHEx0djdVqvelZ3N3diYqKIioqinHjxjFq1ChefvllRowYQXZ2NoGBgcTExFzxOB8fHwAqVKjwl+fw9PS87Pvs7Gweeugh/r+9O4+qsk78OP65F7ysLuCCK6WihialY6LTuESUqZWQNbnlr6ZytF95qimddJQ0zXSazMYpO1m/mp+KaGNqk/arTBTENUXMBXFBSlkEcuFeluC5vz8sRnJJ4eKjPu/XORwvz/J9PpejnHM/fp/vM3bs2HOODQ0Nrdb7+KV169bpvvvu0+zZszVy5EiPjInrF7/xAQAAAFhWdHS03G631q5da3YUWEC7du107NgxRUdHa/369WrWrJn27Nljdix17NhRTqdTktS1a1fl5OTI29tbYWFhVb4aNWokSYqIiNCaNWsu6xpdu3bVnj17zhkzLCysshR0OByqqKio1ntITEzUwIEDNXPmTI0aNapaY8BaKMQAAAAAWNYjjzwiSVq6dKnJSWAV3t7e+vLLLzVr1iz98MMP6ty5s+bNm3dFrl1QUKCoqCgtWLBAaWlpOnz4sJYuXapZs2Zp0KBBks6UxD179lRMTIy++OILZWZmKiUlRRMnTtS2bdskSXFxcYqPj1dcXJz27t2rXbt2aebMmRe99vjx45WSkqKnn35aqampysjI0IoVKyoX1ZfOrD22fv16HT16VPn5+ZXbb7rppirrkf3S2rVrNXDgQI0dO1aDBw9WTk6OcnJyKh8CAJwPhRgAAAAAy2rdurUcDoeSk5PNjgKLefHFF7VlyxYFBgZqzJgxiomJkWEYtXrNwMBARUZGavbs2erdu7duvvlmTZo0SU8++aTmzp0r6cwTHVetWqXevXvrscceU/v27TVkyBAdOXJEISEhkqS+fftq6dKlWrlypW699VZFRUVpy5YtF712RESE1q1bp/3796tXr17q0qWLJk+erObNm1ceM3XqVGVmZqpt27Zq3Lhx5fb09HSdPHnygmN/9NFHcrlcmjFjhpo1a1b59cADD9Tkx4XrHE+ZBAAAAGBp7dq109GjR+VyucyOAgtyuVzq06ePtm3bpubNm2vjxo0eW1MLwIUxQwwAAACApUVGRqq4uFh5eXlmR4EF+fv7a+vWrRo3bpyOHTumsLAwLVmyxOxYwHWPQgwAAACApcXGxkqSFi1aZHISWNnMmTP11VdfycvLSw8//LAef/xxsyMB1zVumQQAAABgaWVlZfLx8dHdd9+t//u//zM7DiyusLBQPXv21P79+9WuXTtt2rRJwcHBZscCrjvMEAMAAABgaQ6HQ8HBwdq5c6fZUQAFBwcrPT1djz/+uDIyMtSiRQutWbPG7FjAdYdCDAAAAIDlderUSXl5ebX+lD/gUs2fP19Lly5VRUWFoqOjNX78eLMjAdcVCjEAAAAAlhcdHS232621a9eaHQWo9OCDD+rAgQNq0aKFZs2apW7duvE0VMBDKMQAAAAAWN7w4cMlSUuXLjU5CVBVaGiosrKyFBMTo2+++UZNmzbVtm3bzI4FXPMoxAAAAABYXtu2beVwOLRhwwazowDnsNvt+uSTTzRv3jw5nU51795df/3rX82OBVzTeMokAAAAAEhq166djh49yi1puKrt3btXv/vd71RYWKg777xTn3/+uby9vc2OBVxzmCEGAAAAAJIiIyNVXFysvLw8s6MAFxQeHq7s7Gz16dNHa9asUfPmzZWRkWF2LOCaQyEGAAAAAJJiY2MlSYsWLTI5CXBxDodDiYmJmjZtmvLz8xUeHq4PPvjA7FjANYVbJgEAAABAUllZmXx8fNSvXz99/vnnZscBLsnmzZsVHR2toqIiPfjgg0pISJDdztwX4NdQiAEAAADAT4KDg+VwOJSTk2N2FOCSFRUVqVevXkpNTVVoaKg2btyo5s2bmx0LuKpRGwMAAADATzp16qS8vDwZhmF2FOCSBQYGaseOHXr22WeVlZWl1q1ba8WKFWbHAq5qFGIAAAAA8JPo6Gi53W4lJiaaHQW4bLNnz9aqVatks9kUExOjMWPGmB0JuGpRiAEAAADAT0aMGCFJWrp0qclJgOrp37+/srKy1KZNG82bN0+dOnXSiRMnzI4FXHUoxAAAAADgJ23btpXD4VBycrLZUYBqa9KkiTIyMvTII49oz549atGihdavX292LOCqQiEGAAAAAGcJDQ3VwYMHzY4B1Ijdbtc///lPLViwQGVlZerbt68mTZpkdizgqkEhBgAAAABn6d69u4qLi5WXl2d2FKDGhg8frv379yskJETTpk1Tz549VVJSYnYswHQUYgAAAABwltjYWElSfHy8yUkAz2jdurWOHj2qAQMGaNOmTWratKnS0tLMjgWYikIMAAAAAM5y//33S5JWr15tchLAc+x2uz777DPNmTNHp0+fVpcuXTRnzhyzYwGmsbndbrfZIQAAAADgahIcHCwfHx9lZ2ebHQXwuLS0NPXp00cnTpzQPffco08//VTe3t5mxwKuKGaIAQAAAMAvdOrUSbm5uTIMw+wogMdFREQoOztbPXv21Oeff65WrVrp8OHDZscCrigKMQAAAAD4hejoaLndbiUmJpodBagVvr6+SklJ0aRJk5Sbm6v27dtr4cKFZscCrhgKMQAAAAD4hWHDhkmSli5danISoHZNnTpViYmJcjgcGjFihEaMGMHMSFgCa4gBAAAAwHk4HA516NBBu3btMjsKUOtOnjyp22+/Xbt371abNm20ceNGNWnSxOxYQK1hhhgAAAAAnEdoaKgOHjxodgzgiqhfv76+/fZbjRkzRocOHVJoaChPWsV1jUIMAAAAAM4jMjJSxcXFysvLMzsKcMW8/fbbWrFihdxutwYMGKDnnnuucp9hGEpISNDp06dNTAh4BoUYAAAAAJxHbGysJCk+Pt7kJMCVdf/99+vIkSMKDQ3Vm2++qVtuuUVFRUV6/fXXNWTIEMXFxZkdEagx1hADAAAAgPMoKyuTj4+P+vXrp88//9zsOMAVZxiGhg4dqiVLlsjX11elpaVyu93y9fVVVlaWGjdu/KtjOEvLlVngVFm5IYe3XTc2DFCAj/cVSA9cHIUYAAAAAFxAcHCwfHx8lJ2dbXYUwDRvvvlmlVsnvby8NG7cOL366qvnPT4j97QWbs7S2vQ8ZRW6dHbpYJMUGuyvOzo00fDIULULqVu74YELoBADAAAAgAv43e9+p5SUFJWXl8tuZ8UZWE95ebmioqK0YcMGGYZRud3Pz0/ff/+9goODK7d9V+jShE92KelAvrzsNlUYF64bft7fK6yRXo3trFbB/rX6PoBf4jc6AAAAAFxAdHS03G631q9fb3YUwBSffvqpkpKSZLPZqmwvLi7WX/7yl8rvF2/NUvTsdUo5VCBJFy3Dzt6fcqhA0bPXafHWLA8nBy6OGWIAAAAAcAEZGRlq3769xowZo7ffftvsOMAVV1ZWpkWLFmn79u3atm2bUlNTVVxcXLl//fr12lneVK9/sb/G13rh7vZ6+o52NR4HuBQUYgAAAABwEQ6HQzfddJPS0tLMjgKYzjAMHTx4UP/617/097//XUUhEQrq97THxp/5QGc9fFuox8YDLoRCDAAAAAAuIiwsTMeOHZPL5TI7CnBVOZR3Une/maRyt00Fn89VUep/nsbaoM9/qX7Ph6ocX34iV6e+WanSo/tUlntQqiiXJNW/faga9BouSfLxtuur5/qwphhqHWuIAQAAAMBFREZGqri4WHl5eWZHAa4qcZ/uk9tml7uiXK70lCr7nHvPXXevLO+QTm9dobJj6ZVl2C+VG25N+GRXreQFzkYhBgAAAAAXERMTI0lavHixuUGAq0hG7mklHchXheFWSeYOGcWnquz/Me+wfiz4rso2Wx1f+d7YRfVvHyq/dj3OO26F4VbSgXwdyDtda9kBiUIMAAAAAC5q0KBBkqTVq1ebnAS4eizcnCUv+5knTzr3/Gc2mH9478rXZ2+XJL/WXRQy5BU16DVcdRq2vODYXnabFmziqZOoXRRiAAAAAHARDodDQUFBSk1NNTsKcNVYm56nCsMtd3mZXBmbJEl2//oKjn5SsntJkpx7k6o1doXh1tr93KKM2kUhBgAAAAC/omPHjsrNzZVhGGZHAUxXVFqurMIzD5lwHdgid1mxJMm/XQ95BQTJN7SzJKm88HuV5Rys1jWyClxylp5/nTHAEyjEAAAAAOBXREdHy+12a/36cxcKB6zmSIFT7p9eu85aPN//ptvP/Nnh9spt51tc/1K4JWUWOKsbEfhVFGIAAAAA8CuGDRsmSVqyZInJSQDzlZWfmSlplLpUfHCbJMnuW1e+N9wiSfLv8FvJdqZucO5NktvtPv9Al3gdoDZ4mx0AAAAAAK527du3V506dZScnGx2FMB0Du8zZZcrY5Pc5WWSJKPktLJmDTrn2IpTeSo9uk++LcOrfR2gNvC3CwAAAAAuQatWrXTwYPXWQwKuJzc2DJBNknPPuks63lWN2yZtP10HqC3MEAMAAACASxAZGan4+Hjl5+erUaNGZscBalVOTo4WLlyohg0bqkWLFmrRooWaN2+u+vXry2F3q4H7lDIzUyVJNoefGvQZWXWAinL98PX7kiTXvmQFRT8po/i0SrJ2SZJ+LPi+8tAfC76Tc9+Z2Ze+oZ3l5V9foQ39FeBDZYHaw98uAAAAALgEMTExio+PV3x8vJ555hmz4wC1Kjk5WS+88MI52202m9xut/xv+p1kVEiS/Fp3Ub3f3HfOsUXfrtWPeYdU4fxBJUfSZLPZlb/8tXOOc+1LluunQixk6KtytL5Fd7Rv4uF3BFTFLZMAAAAAcAliYmIkSatWrTI3CHAF9OvXT76+vudsd7vdqlu3rtr4uiq3+YVFnncM/7Dula8v57bJCsOtET1CLyMtcPls7uo+7gEAAAAALCYoKEi+vr7Kzs42OwpQa0pKSvTaa69p1qxZKi4urtxus9kUERGhpKQk1a1bV4+8v1kphwpUYXiuVvCy2/TbNg31v4+fv2QDPIUZYgAAAABwiTp27Kjc3FwZhmF2FMDjVq5cqe7duysgIEBTpkxReXl55T4vLy+FhYXpq6++Ut26dSVJr8Z2lrfd5tEM3nabXo3t7NExgfOhEAMAAACASxQdHS23262kpCSzowAecfjwYQ0dOlSBgYEaNGiQtm3bps6dOys+Pl4lJSVq2bKlJCkkJERff/11lQdKtAr215T7O3k0z9T7O6lVsL9HxwTOh0IMAAAAAC7RsGHDJElLliwxOQlQfWVlZZo2bZpCQ0PVpk0bLV68WIGBgXrxxRd16tQppaamasiQIbLb7XruuecUEhKitWvXVpZjZxtyW6heuLu9R3K9eHcHPXwba4fhymANMQAAAAC4DA6HQzfddJPS0tLMjgJcltWrV2vq1KnasmWLDMOQj4+P7rrrLk2fPl0RERHnPcftdquiokLe3t4XHXvx1izFrdytcsN9WWuKedlt8rbbNPX+TpRhuKIoxAAAAADgMrRt21Y5OTlyOp1mRwF+VVZWliZOnKjly5erqKhINptNnTp10osvvqgRI0bIbvfcjWPfFbo04ZNdSjqQLy+77aLF2M/7e4U10quxnblNElcchRgAAAAAXIZhw4YpPj5ex48fr7KeEnC1KC8v1xtvvKF33nlHmZmZkqTGjRtr+PDhiouLU4MGDWr1Z5a7QgAAGYpJREFU+hm5p7Vwc5bW7s9TVoFLZ5cONkmhDf11R/smGtEjVGFN6tZqFuBCKMQAAAAA4DIkJCRoyJAheuutt/TMM8+YHQeotGbNGr388svauHGjKioq5HA4FBUVpenTp6tr166mZHKWliuzwKmyckMOb7tubBigAJ+L334JXAkUYgAAAABwGUpLS+Xr66t77rlHq1evNjsOLO7YsWOaOHGili1bplOnTkmSwsPD9fzzz+sPf/iDR2+JBK4nFGIAAAAAcJmCgoLk6+ur7Oxss6PAgsrLy/X3v/9dc+fO1aFDhyRJwcHBGjZsmKZMmaLg4GCTEwJXP+YpAgAAAMBl6tixozZt2iTDMJiBgytm/fr1mjx5sjZs2KDy8nLVqVNH0dHRmjZtmiIjI82OB1xT+M0NAAAAAJfpzjvvlGEYSk5ONjsKrnN5eXkaNWqUgoKC1KdPH61bt05t2rTRP/7xD5WUlOjLL7+kDAOqgUIMAAAAAC7T8OHDJZ1ZYB/wNMMwNHfuXLVv314hISF67733ZLPZ9Mc//lG5ublKT0/XU089xexEoAb41wMAAADAco4fP64xY8YoNDRUPj4+atq0qfr166cNGzZc0vkdOnRQnTp1lJSU5PFsN954o958883LPi8xMVGDBg1Ss2bNFBAQoFtvvVULFy70eD7Uno0bNyo6Olo+Pj565plndPjwYd1xxx1KSkpSYWGh5s2bpyZNmpgdE7gusIYYAAAAAMsZPHiwysrK9NFHH6lNmzbKzc3VmjVrVFBQcMljtGrVSgcPHrzk48vKyuRwOKoT95KkpKQoIiJC48ePV0hIiP79739r5MiRql+/vu69995auy5qJj8/X5MnT1ZCQoIKCwslSW3bttUzzzyj//7v/5a3Nx/bgdrAUyYBAAAAWMqJEycUFBSkxMRE9enT56LHvfDCC1qxYoVKS0vVrVs3zZ49W7fccoskaejQoVq8eLFuvfVW7d27V4GBgerVq5c++eQTSWdmej3++OPKyMjQ8uXL9cADD+jDDz9UcnKyXnrpJW3btk2NGjVSbGysZsyYoYCAAPXt21fr1q2rkqMmH9kGDhyokJAQffDBB9UeA55nGIbee+89vfnmm9q3b58kqX79+nrwwQf1yiuvqFmzZiYnBK5/3DIJAAAAwFICAwMVGBio5cuXq7S09ILHPfTQQ8rLy9Pq1av1zTffqGvXrrrzzjsrZ/GEhoZKkpo2baodO3ZozZo16t69e5UxXn/9dd1yyy3asWOHJk2apIMHD+qee+7R4MGDlZaWpoSEBCUnJ+vpp5+WJC1btkwtW7bU1KlTlZ2drezs7MqxbDabPvzww8t6rydPnlRwcPBlnYPas23bNvXr10++vr4aPXq0MjIy1KtXL61Zs0YnTpzQ/PnzKcOAK4S5lwAAAAAsxdvbWx9++KGefPJJzZs3T127dlWfPn00ZMgQRURESJKSk5O1ZcsW5eXlycfHR9KZcmv58uX6+OOPNWrUqMqZXDabTeHh4ZJUOXvsZ1FRUfrTn/5U+f0TTzyh4cOH69lnn5UktWvXTm+99Zb69Omjd955R8HBwfLy8lLdunXVtGnTKmN16NBB9evXv+T3uWTJEm3dulXvvvvu5f2A4FEnTpxQXFycFi5cWHlLbuvWrTVmzBg999xz3BIJmIR/eQAAAAAsZ/DgwRo4cKCSkpK0adMmrV69WrNmzdL8+fP16KOPaufOnSoqKlLDhg2rnFdcXFy5blhaWpr8/PyUmpp6wet069atyvc7d+5UWlpalcXu3W63DMPQ4cOHK4u18/n51rpLsXbtWj322GN677331KlTp0s+D55hGIY++ugjvf7669q7d6/cbrfq1q2rkSNH6pVXXqmcXQjAPBRiAAAAACzJ19dXd911l+666y5NmjRJTzzxhOLi4vToo4+qqKhIzZo1U2Ji4jnnNWjQQJLk5+enoKAgHT58WIZhyG4/d0WagICAKt8XFRXpj3/8o8aOHXvOsZ4qSdatW6f77rtPs2fP1siRIz0yJi5NamqqJk6cqDVr1qi0tFR2u109e/bU5MmT1a9fP7PjATgLhRgAAAAASOrYsaOWL18uSeratatycnLk7e2tG2+88bzHR0REKD8/X4ZhKDk5Wb179/7Va3Tt2lV79uxRWFjYBY9xOByqqKiozltQYmKi7r33Xs2cOVOjRo2q1hi4PKdOndKUKVO0YMEC5eXlSTpTbo4ePVp/+tOfavXJogCqj0X1AQAAAFhKQUGBoqKitGDBAqWlpenw4cNaunSpZs2apUGDBkmSoqOj1bNnT8XExOiLL75QZmamUlJSNHHiRG3btk2SFBcXpz179kiS3nnnHe3atUszZ8686LXHjx+vlJQUPf3000pNTVVGRoZWrFhRuai+dObplOvXr9fRo0eVn59fuf2mm26qfILl+axdu1YDBw7U2LFjNXjwYOXk5CgnJ6fyIQDwHMMwtHDhQkVERKhBgwZ644035HQ6NXToUGVmZurIkSN66aWXKMOAqxiFGAAAAABLCQwMVGRkpGbPnq3evXvr5ptv1qRJk/Tkk09q7ty5ks4slL9q1Sr17t1bjz32mNq3b68hQ4boyJEjCgkJkST17dtXS5culSQlJCQoKipKW7Zsuei1IyIitG7dOu3fv1+9evVSly5dNHnyZDVv3rzymKlTpyozM1Nt27ZV48aNK7enp6fr5MmTFxz7o48+ksvl0owZM9SsWbPKrwceeKDaPytUtXv3bg0aNEgBAQEaMWKEdu/erdtuu02ffvqpioqKtGjRIt1www1mxwRwCWxut9ttdggAAAAAuFa1bdtWOTk5cjqdZkdBLSgqKtL06dP14YcfKicnR5LUsmVLPfHEExo/frx8fX1NTgigOpghBgAAAAA10L17d7lcLm5NvM4sWbJEXbt2Vb169fTaa6/p1KlTeuihh7R//3599913iouLowwDrmEUYgAAAABQAz+vO7Zo0SKTk6Cm0tPTNXjwYPn7++vhhx9Wamqqunbtqo8//lhOp1NLlixRu3btzI4JwAO4ZRIAAAAAaqCkpER+fn7q37+/Vq1aZXYcXKaf11374IMPdOzYMUlSs2bN9Ic//EETJkyQv7+/yQkB1AYKMQAAAACooaCgIPn5+VUWKrj6rVixQq+88op27NghwzDk6+ur/v37a/r06QoPDzc7HoBaxi2TAAAAAFBDHTt2VG5urgzDMDsKLuLgwYMaMmSIAgICFBMTo+3btysiIkKLFy9WcXGxli1bRhkGWASFGAAAAADUUFRUlAzD0IYNG8yOgl8oKSnR1KlT1apVK4WFhSkhIUF169bVuHHjdOrUKe3YsUMPP/yw2TEBXGEUYgAAAABQQ8OGDZN05smEuDqsWrVKPXr0UEBAgOLi4nT8+HHde++92rVrl3JycjRz5kwFBgaaHROASVhDDAAAAAA8wOFwKDw8XDt37jQ7imUdOXJEEyZM0MqVK1VUVCSbzaabb75Z48aN07Bhw2S3MycEwBkUYgAAAADgAW3atFFubq6cTqfZUSylrKxMf/vb3/Tuu+/qyJEjkqTGjRtrxIgRevnll1WvXj2TEwK4GlGPAwAAAIAHdO/eXS6XS4WFhWZHsYQvv/xSt99+u/z9/TVhwgRlZ2erf//++uabb5SXl6c33niDMgzABVGIAQAAAIAHxMTESJIWLVpkbpDr2Pfff69HH31U9erV0913362UlBR16NBB8+fPV3FxsVatWqWuXbuaHRPANYBbJgEAAADAA0pKSuTn56cBAwbos88+MzvOdaO8vFxz5szRP/7xDx0+fFiS1LBhQw0bNkwvv/yygoODTU4I4FpEIQYAAAAAHhIUFCQ/Pz8dO3bM7CjXvMTERMXFxWnDhg2qqKhQnTp11LdvX02fPl233Xab2fEAXOO8zQ4AAAAAANeL8PBwbd68WYZh8ETDasjJydFf/vIXffzxxzp58qQkqUOHDnr22Wc1atQofqYAPIbfJgAAAADgIVFRUTIMQykpKWZHuWYYhqE5c+aoXbt2atasmd5//33Z7XaNHj1aeXl52rdvn0aPHk0ZBsCj+I0CAAAAAB4ybNgwSVJCQoLJSa5+GzZsUFRUlHx8fPTss88qMzNTUVFRSk5OVmFhod555x01btzY7JgArlOsIQYAAAAAHuRwOBQeHq6dO3eaHeWqk5+fr0mTJikhIUE//PCDJCksLExjx47VU089JS8vL5MTArAKCjEAAAAA8KA2bdooNzdXTqfT7ChXBcMw9O6772rOnDlKT0+XJNWvX18PPfSQXnnlFTVt2tTkhACsiFsmAQAAAMCDunfvLpfLpcLCQrOjmGrz5s26++675evrq6eeekoHDhxQ7969tXbtWp04cULvvfceZRgA01CIAQAAAIAH3X///ZKkxYsXm5zkyissLNQzzzyjRo0aqUePHvryyy/VqlUrvf766yopKdG6devUt29fs2MCALdMAgAAAIAnlZSUyM/PTwMGDNBnn31mdpxaZxiG/ud//kd/+9vftHfvXklSvXr1FBsbq2nTpqlly5YmJwSAc1GIAQAAAICHNWjQQP7+/jp27JjZUWrN9u3bNXHiRH399dcqKyuTl5eXevToobi4ON11111mxwOAi/I2OwAAAAAAXG/Cw8O1efNmzZ07V5s3b1aXLl30/PPPmx2rxk6ePKkpU6ZowYIFOn78uCTphhtu0OjRo/X888/L4XCYnBAALg0zxAAAAADAQ95++20tXrxYGzduVHl5eeX2/v37a9WqVSYmqz7DMLRgwQL99a9/1e7du+V2uxUYGKhBgwZp+vTpuuGGG8yOCACXjRliAAAAAOAh77//vrZv315lm91uV1RUlEmJqm/Xrl2aMGGCvvzyS5WWlsput6t79+6aPHmyBgwYYHY8AKgRZogBAAAAgIekp6erW7ducjqdOvuj1tatW9WtWzcTk12aoqIiTZ06Vf/85z+Vm5srSWrVqpWeeOIJjRs3Tr6+viYnBADPoBADAAAAAA9avXq1Bg4cWFmIBQQE6MSJE/L2vnpv0ElISNCMGTOUlpYmt9stf39/3XfffZo+fbratm1rdjwA8Di72QEAAAAA4HrSv39/zZgxo/L7Hj16XJVl2N69exUbGys/Pz8NGTJEu3bt0m9+8xstW7ZMTqdTixcvpgwDcN2iEAMAAAAADxs3bpwiIyMlSfXq1TM5zX+4XC5NnDhRzZs3V8eOHbV8+XIFBwdr0qRJOn36tLZu3arY2FizYwJArbv6/psCAAAAAK5xNptNq1evVqNGjdSmTRs5S8uVWeBUWbkhh7ddNzYMUIDPlfs49q9//UszZszQ9u3b5Xa75efnp8GDB2v69Onq0KHDFcsBAFcL1hADAAAAgFqQkXtaQyb9QyVBbeWy++vsD142SaHB/rqjQxMNjwxVu5C6nr9+RoYmTJigVatWyeVyyWaz6dZbb9Wf//xn/f73v/f49QDgWkIhBgAAAAAe9F2hSxM+2aWkA/nyskkVF/nE5WW3qcJwq1dYI70a21mtgv1rdO2SkhK99tprmj9/vo4ePSpJatq0qR599FFNnDhRgYGBNRofAK4XrCEGAAAAAB6yeGuWomevU8qhAkkXL8MkqcI4c0DKoQJFz16nxVuzLnjst99+q5iYGOXm5p6zb+XKlerevbsCAgI0ZcoUFRQUaNCgQfr222+VnZ2tGTNmUIYBwFlYQwwAAAAAPGDu2gy9/sX+ap1bYbhVYbj152W7lF9UqqfvaFdl/6FDhxQVFaXjx48rMjJSL730kg4fPqwJEybo008/ldPplM1mU+fOnTVu3DgNHTpUdjvzHwDgQrhlEgAAAABqaPHWLP152S6PjTfzgc56+LZQSVJOTo569Oih77//XhUVFWrQoIHq1q2r7777TpLUpEkTjRw5UpMmTbqqnmgJAFczCjEAAAAAqIHvCl2Knr1Ox/79lopSP6/c3qDPf6l+z4eqHFuStUuu9BSVHt2r8tP5MoqL5OVXVz6tblb93/5ejiatJUk+3nZ99Vwf1bWX6fbbb9e+fftkGEblOHXq1NFdd92l6dOn69Zbb70i7xMArifMoQUAAACAGpjwyS79+OOPcqWnVNnu3Lv+nGNPblyq0998qrKcAzKcJySjXBXOH+Tal6Scf/5JpUf3SpLKDbeej9+qsLAw7dmzp0oZZrfbNXLkSH322WeUYQBQTRRiAAAAAFBNGbmnlXQgX85D22UUn6qy78e8w/qx4LtzzvFu0FQN+oxUk4dfUXD/sfIKDJYkucvL9EPiR5LOrCm29fsinZRf5Xl2u1116tSRYRiKj49XSUlJLb4zALi+sag+AAAAAFTTws1Z8rLb5Nzzn9lg/uG95fppdphzz3o16DW8cl+9yMHyDb1ZNrtX5TYvv3o6vmyaJKksO6Nyu01uPTLlPY0Id+jo0aM6duxY5Z8VFRUsmg8ANUAhBgAAAADVtDY9T+VlpXJlbJIk2f3rKzj6SbnSN0hGhZx7k6oUYn433nLOGN7BzStf2+r4VL52y6aDxT6KirqjFt8BAFgT/6UAAAAAANVQVFqurEKXXAe2yF1WLEnyb9dDXgFB8g3tLEkqL/xeZTkHLzqOK31D5Wu/Nr+psi+rwCVnabmHkwMAKMQAAAAAoBqOFDjllipvj5Qk/5tuP/Nnh9srt51vcf2fFR/cqpMpCZIku29dNej9SJX9bkmZBU7PhQYASKIQAwAAAIBqKSs3ZJS6VHxwm6QzhZbvDWduifTv8FvJdubjlnNvktxu9znnO/dtUN6y6VJFuWwOPzV5aLK86zc573UAAJ7FGmIAAAAAUA0Ob7tcGZvkLi+TJBklp5U1a9A5x1WcylPp0X3ybRleua1o1xoVrJojuQ3ZfQLU5Pcvy6dF+Dnn/nwdAIBn8ZsVAAAAAKrhxoYBcu1Zd0nHnn1b5elv/q2Cz948U4b5N1DIsBkXLMNsP10HAOBZzBADAAAAgGooKTqpksxUSZLN4acGfUZWPaCiXD98/b4kybUvWUHRT+r01pX64ev5Z/Z71VFQn5EyyopV8t3uytN8W3WqfB3a0F8BPnxsAwBP4zcrAAAAAFTDxx9/LLdRIUnya91F9X5z3znHFH27Vj/mHVKF8weVHEmTK2PTf3ZW/KiC1W+dc84Nf/63JMnLbtMd7c9dUwwAUHPcMgkAAAAA1RAfH1/52i8s8rzH+Id1r3ztusjTJs+nwnBrRI/Q6oUDAFyUzX2+x50AAAAAAC7JI+9vVsqhAlUYnvto5WW36bdtGup/Hz9/0QYAqBlmiAEAAABADbwa21nedptHx/S22/RqbGePjgkA+A8KMQAAAACogVbB/ppyf6dfP/AyTL2/k1oF+3t0TADAf1CIAQAAAEANDbktVC/c3d4jY714dwc9fBtrhwFAbWINMQAAAADwkMVbsxS3crfKDfdlrSnmZbfJ227T1Ps7UYYBwBVAIQYAAAAAHvRdoUsTPtmlpAP58rLbLlqM/by/V1gjvRrbmdskAeAKoRADAAAAgFqQkXtaCzdnae3+PGUVuHT2By+bpNCG/rqjfRON6BGqsCZ1zYoJAJZEIQYAAAAAtcxZWq7MAqfKyg05vO26sWGAAny8zY4FAJZFIQYAAAAAAABL4SmTAAAAAAAAsBQKMQAAAAAAAFgKhRgAAAAAAAAshUIMAAAAAAAAlkIhBgAAAAAAAEuhEAMAAAAAAIClUIgBAAAAAADAUijEAAAAAAAAYCkUYgAAAAAAALAUCjEAAAAAAABYCoUYAAAAAAAALIVCDAAAAAAAAJZCIQYAAAAAAABLoRADAAAAAACApVCIAQAAAAAAwFIoxAAAAAAAAGApFGIAAAAAAACwFAoxAAAAAAAAWAqFGAAAAAAAACyFQgwAAAAAAACWQiEGAAAAAAAAS6EQAwAAAAAAgKVQiAEAAAAAAMBSKMQAAAAAAABgKRRiAAAAAAAAsBQKMQAAAAAAAFgKhRgAAAAAAAAshUIMAAAAAAAAlkIhBgAAAAAAAEuhEAMAAAAAAIClUIgBAAAAAADAUijEAAAAAAAAYCkUYgAAAAAAALAUCjEAAAAAAABYCoUYAAAAAAAALIVCDAAAAAAAAJZCIQYAAAAAAABLoRADAAAAAACApVCIAQAAAAAAwFIoxAAAAAAAAGApFGIAAAAAAACwFAoxAAAAAAAAWAqFGAAAAAAAACyFQgwAAAAAAACWQiEGAAAAAAAAS6EQAwAAAAAAgKVQiAEAAAAAAMBSKMQAAAAAAABgKRRiAAAAAAAAsBQKMQAAAAAAAFgKhRgAAAAAAAAshUIMAAAAAAAAlkIhBgAAAAAAAEuhEAMAAAAAAIClUIgBAAAAAADAUijEAAAAAAAAYCkUYgAAAAAAALAUCjEAAAAAAABYCoUYAAAAAAAALIVCDAAAAAAAAJZCIQYAAAAAAABLoRADAAAAAACApVCIAQAAAAAAwFIoxAAAAAAAAGApFGIAAAAAAACwFAoxAAAAAAAAWAqFGAAAAAAAACyFQgwAAAAAAACWQiEGAAAAAAAAS6EQAwAAAAAAgKVQiAEAAAAAAMBSKMQAAAAAAABgKRRiAAAAAAAAsBQKMQAAAAAAAFgKhRgAAAAAAAAshUIMAAAAAAAAlkIhBgAAAAAAAEuhEAMAAAAAAIClUIgBAAAAAADAUijEAAAAAAAAYCkUYgAAAAAAALAUCjEAAAAAAABYyv8D9bLNsdcPQoYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMQAAAP7CAYAAAC0u1IMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1yVZePH8e85ICDDAYjiQFQ09yBHmri3pqI5srIsR8MMzTIzs+xJ0wamttO0NDVzp7lIHGmmOXMPBBeyRJaMw+H3h0/88knFAd7A+bxfL18P5z73ue7vwSeEL9d13aasrKwsAQAAAAAAADbCbHQAAAAAAAAA4H6iEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQAwAAAAAAgE2hEAMAAAAAAIBNoRADAAAAAACATaEQA2Co6OhoPf/88/Lx8ZGjo6PKlCmjjh076rfffjM6mnx9fTVt2rQ7fl1oaKh69Oghb29vubi4qH79+po/f37uBwQAAAAA3BV7owMAsG29e/dWenq65s6dq8qVK+vSpUsKCQlRbGxsnl0zPT1dDg4OeTb+9u3bVbduXY0ZM0alS5fWzz//rIEDB6p48eLq1q1bnl0XAAAAAHB7TFlZWVlGhwBgm+Lj41WyZEmFhoaqZcuWtzxv9OjRWrFihdLS0tSwYUMFBwerXr162eesWrVKEydO1MGDB+Xq6qqAgAAtW7ZM0rWZXs8++6xOnDih5cuXq1evXpozZ462bdumsWPHavfu3fL09FRgYKAmT54sFxcXtWrVSps3b74ux718uezatatKly6t2bNn3/UYAAAAAIDcwZJJAIZxdXWVq6urli9frrS0tJue16dPH0VFRemXX37Rn3/+KX9/f7Vt21ZxcXGSpNWrVyswMFBdunTR3r17FRISosaNG183xocffqh69epp7969Gj9+vE6dOqVOnTqpd+/eOnDggBYtWqRt27Zp+PDhkqSlS5eqfPnymjhxoi5evKiLFy9mj2UymTRnzpw7eq9XrlyRu7v7Hb0GAAAAAJA3mCEGwFBLlizRkCFDdPXqVfn7+6tly5bq37+/6tatK0natm2bunbtqqioKDk6Oma/zs/PT6+99pqGDh2qZs2aqXLlypo3b94Nr+Hr66sGDRpkzxiTpMGDB8vOzk5ffvll9rFt27apZcuWSk5OlpOTk3x9fRUUFKSgoKDrxqtevbomT56swMDA23qPP/74o5588knt2bNHtWrVut1PDQAAAAAgjzBDDIChevfurQsXLmjlypXq1KmTQkND5e/vnz0Da//+/UpKSpKHh0f2jDJXV1eFhYXp1KlTkqR9+/apbdu2t7xOw4YNr3u8f/9+zZkz57oxO3bsKKvVqrCwsFuOdfTo0dsuwzZt2qRBgwbp66+/pgwDAAAAgHyCTfUBGM7JyUnt27dX+/btNX78eA0ePFgTJkzQ008/raSkJHl7eys0NPRfrytRooQkqWjRojlew8XF5brHSUlJGjZsmEaMGPGvc318fO7qffyvzZs365FHHlFwcLAGDhyYK2MCAAAAAO4dhRiAfKdmzZpavny5JMnf31+RkZGyt7eXr6/vDc+vW7euQkJCNGjQoNu+hr+/vw4fPiw/P7+bnuPg4KDMzMw7iZ4tNDRU3bp105QpUzR06NC7GgMAAAAAkDdYMgnAMLGxsWrTpo3mzZunAwcOKCwsTIsXL9bUqVPVo0cPSVK7du3UtGlT9ezZU+vXr9eZM2e0fft2jRs3Trt375YkTZgwQQsWLNCECRN05MgRHTx4UFOmTLnltceMGaPt27dr+PDh2rdvn06cOKEVK1Zkb6ovXdt7bMuWLTp//rxiYmKyj1evXv26/cj+16ZNm9S1a1eNGDFCvXv3VmRkpCIjI7NvAgAAAAAAMBaFGADDuLq6qkmTJgoODlaLFi1Uu3ZtjR8/XkOGDNHMmTMlXbuj45o1a9SiRQsNGjRI1apVU//+/RUeHq7SpUtLklq1aqXFixdr5cqVql+/vtq0aaM//vjjlteuW7euNm/erOPHjysgIEANGjTQW2+9pbJly2afM3HiRJ05c0ZVqlRRqVKlso8fO3ZMV65cuenYc+fOVUpKiiZPnixvb+/sP7169bqXTxcAAAAAIJdwl0kAAAAAAADYFGaIAQAAAAAAwKZQiAEAAAAAAMCmUIgBAAAAAADAplCIAQAAAAAAwKZQiAEAAAAAAMCmUIgBAAAAAADAplCIAQAAAAAAwKZQiAEAAAAAAMCmUIgBAAAAAADAplCIAQAAAAAAwKZQiAEAAAAAAMCmUIgBAAAAAADAplCIAQAAAAAAwKZQiAEAAAAAAMCmUIgBAAAAAADAplCIAQAAAAAAwKZQiAEAAAAAAMCmUIgBAAAAAADAplCIAQAAAAAAwKZQiAEAAAAAAMCmUIgBAAAAAADAplCIAQAAAAAAwKZQiAEAAAAAAMCmUIgBAAAAAADAplCIAQAAAAAAwKZQiAEAAAAAAMCmUIgBAAAAAADAplCIAQAAAAAAwKZQiAEAAAAAAMCm2BsdAADup+Q0i87EJivdYpWDvVm+Hi5yceRLIQAAAADYEn4KBFDonbiUqPk7I7TpWJQi4lKU9Y/nTJJ83J3V+gEvPd7ER1VLuxkVEwAAAABwn5iysrKycj4NAAqes3EpemPZQW09GSM7s0mZ1pt/ufv7+QA/T00KrKMK7s73MSkAAAAA4H6iEANQKC3cFaEJKw/JYs26ZRH2v+zMJtmbTXqney31b+SThwkBAAAAAEahEANQ6MzcdEIfrj9+z+OM7lBNw1tXzYVEAAAAAID8hLtMAihUFu6KyJUyTJI+XH9ci3ZF5MpYAAAAAID8gxliAAqNs3Epahe8WWkWq6zpqUrat1Ypx3coIyZC1oxU2bm6y8HTR841WsilRnNlXk1U8l+/KjV8vzLiLsiafFky26mIp4/c6neSa932crQ3a+PIluwpBgAAAACFCIUYgELjyVk7tf10rK5GhSv6p4myxEfe9FzvQdOVEXtWMSs/uOk5bg27q1SHYWpW2UPfP9skLyIDAAAAAAxgb3QAAMgNJy4lauvJGGVeTVTUjxOUmRAtSbJzdVexJr1VpFRFZaVfVWrEX0o6uDH7dSZ7B7nUbKWiVRpKdkWUtHe1rp7aLUlK3L1Kbg27a6s1SyejEuXn5WbIewMAAAAA5C4KMQCFwvydEbIzm3T5j6XZZZjJ0UVlnvpY9m6e2ec5V2uq4k37SGY7meyKqOzQr2Rf7P+fL+pbX+c+HyRrcrykLKVfPCEnd2/N+z1Cb3evdZ/fFQAAAAAgL7CpPoBCYdOxKGVas5RyZGv2sWKNelxXhv3NzqWE7Iq6qYhnhevKMEky2ReRfbFS//+4iJMyrVnadDwq78IDAAAAAO4rCjEABV5SmkURcSmypl+9bt8wx/J3PqMrIz5S6ZdOS5JMDkXlVOHaGBGxKUpOs+ROYAAAAACAoSjEABR44bHJypJkTUu+7ri9m/sdjZN5NUHRS/4jWTMlSSVaDpTZ8drdJbMknYlNvsWrAQAAAAAFBYUYgAIv3WKVJJkdXa47bkmMu+0xLElxujT/dWVEn5EkuTXqqWIPPnLD6wAAAAAACjYKMQAFnoP9tS9lZoeisi9RJvt42vnDt/V6y5UoXZo3RhkxEZKkYg89Kve2g296HQAAAABAwcZPdwAKPF8PF5n++7FzjYDs44l/LJclMfZf52cmxyvzaqIkKSP2nCLnj5El/qIkqUTLp1Sy1dP/eo3pv9cBAAAAABR89kYHAIB75eJor3IlnHQuPlXFGvdS8qFQZSZEy5qWrMjvXlGxxoEqUspXWelXlRpxUEkHN6rMgMmyplxR5PzXZU2JvzZOrVZyLF9TqWcPZY9dxL2c7FxKyMfDWS6OfMkEAAAAgMKAn+4AFAjr16/XU089JScnJxUvXlwlS5ZUiRIlFBkZqYiICKXW6q5iD3aVXVE3efV9R9E/TZQlPlKZiTG6HPL1DcdMO380uwyTpORDoUo+FHrdOR5dglS8fnu1ruaVh+8OAAAAAHA/UYgBKBBcXFwUGRl50+fHBdXWvLhrCycdPH3k/cxMJe1bq5Tj25URc1bWjKuycympIh4V5FKzpYp4VlD6pdO3de1Ma5aeeMgnV94HAAAAAMB4pqysrCyjQwBATrKyslStWjWdPHnyuuNms1lbt25Vs2bN9OSsndp+OlaZ1tz7smZnNqlZZQ99/2yTXBsTAAAAAGAsNtUHkK9ZrVZ9+eWXqlix4r/KMElasGCBmjVrJkmaFFhH9mbTv865F/ZmkyYF1snVMQEAAAAAxqIQA5AvJSQkaOjQoXJzc9Nzzz2nyMhI9ezZUyVKlMg+591331Xfvn2zH1dwd9Y73Wvlao6J3Wupgrtzro4JAAAAADAWhRiAfGXPnj1q0aKFSpQooa+//lrOzs565513lJKSomXLlumll16SJA0YMEDjxo371+v7N/LR6A7VciXLqx0eUL9G7B0GAAAAAIUNe4gBMJzVatXs2bP1n//8R+Hh4ZKkOnXqaMqUKercufN158bHx+vbb7/V888/Lycnp5uOuXBXhCasPCSLNeuO9hSzM5tkbzZpYvdalGEAAAAAUEhRiAEwTEJCgsaMGaPvv/9eycnJsre31yOPPKJp06bJx+fey6izcSl6Y9lBbT0ZIzuz6ZbFmJ1JysySAvw8NSmwDsskAQAAAKAQoxADcN/t27dPL7/8srZt2yar1SoPDw8NHz5cb775puzt7XP9eicuJWr+zghtOh6liNgU/fOLnklSetwFuadd1LKpI+Xn5Zbr1wcAAAAA5C8UYgDum1mzZundd9/NXhZZu3ZtTZ48Wd26dbtvGZLTLDoTm6x0i1UO9mYVM6XJp2zp7HzPPPPMfcsCAAAAADAGhRiAPJWUlKTXXntN3333XfayyG7dumnatGmqWLGi0fEUGhqq1q1bZz9evHixHn30UQMTAQAAAADyGneZBJAnDhw4oNatW6t48eL6/PPP5ejoqPHjxys5OVnLli3LF2WYJB08ePC6x4899pjWrVtnUBoAAAAAwP1AIQYgV82dO1eVK1dWvXr1FBoaqho1amjFihWKjY3VxIkT5eDgYHTE6xw8eFB2dnbZjzMzM9WjRw/t2LHDwFQAAAAAgLxEIQbgniUlJWn48OFyc3PT008/rbNnz6p79+4KCwvTX3/9pe7duxsd8ab27t2rzMzM7Mcmk0lpaWlavny5caEAAAAAAHmKPcQA3LW//vpLI0aM0ObNm2W1WlWyZEk9//zzmjBhQr6bCXYjWVlZcnNzU3Jycvaxvn376rXXXlODBg1kNvM7AwAAAAAojOyNDgCg4Pnuu+/0zjvv6PTp05KkGjVqaPLkyerRo4fBye6MyWTSpEmT5OLioubNm6t69eq6fPmyHnzwQaOjAQAAAADyEDPEANyWlJQUvf766/r222+VlJQke3t7derUSdOnT1elSpWMjpcrypUrp4SEBCUmJhodBQAAAACQh1gPBOCW/vrrL7Vt21Zubm6aMWOGihQporFjxyo5OVmrVq0qNGWYJHXs2FFJSUk6fPiw0VEAAAAAAHmIQgzADc2bN09+fn6qU6eOfv31V1WrVk1Lly5VXFycJk2aVCD2CLtTo0aNkiRNmzbN2CAAAAAAgDzFkkkA2VJSUjR27Fh9++23SkxMlJ2dnTp27Kjp06erSpUqRse7L1xdXVWyZEmdPXvW6CgAAAAAgDzCDDEAOnLkiNq3by83NzdNnz5ddnZ2eu2115SUlKTVq1fbTBkmSU2aNNG5c+eUlJRkdBQAAAAAQB6hEANs2A8//KCqVauqZs2a2rhxo6pWrarFixfr8uXLmjJlipycnIyOeN8NHjxYkvTFF18YnAQAAAAAkFdYMgnYmJSUFI0bN06zZ89WQkKC7Ozs1KFDB33yySeqWrWq0fEMZ7VaVaRIEdWrV0979uwxOg4AAAAAIA9QiAE24siRI3r55Zf166+/KjMzU8WLF9fQoUM1ceJEm5wJdis1atTQqVOnlJaWJpPJZHQcAAAAAEAuY8kkUMgtXLhQ1apVU82aNbVhwwZVqVJFixYtUnx8vKZOnUoZdgOPPvqoMjIytG7dOqOjAAAAAADyAIVYPhIdHa3nn39ePj4+cnR0VJkyZdSxY0f99ttvRkeTr6+vpk2bdsevO3bsmFq3bq3SpUvLyclJlStX1ptvvqmMjIzcD4lsqampeuWVV1S8eHE99thjOn36tDp27KijR4/q2LFj6tu3r9ER87WXX35ZkvTZZ58ZnAQAAAAAkBfsjQ6A/9e7d2+lp6dr7ty5qly5si5duqSQkBDFxsbm2TXT09Pl4OCQZ+MXKVJEAwcOlL+/v0qUKKH9+/dryJAhslqtmjRpUp5d11YdO3ZML7/8sjZu3Ji9LHLUqFF67733mAl2Bzw9PVWqVClt3brV6CgAAAAAgDzADLF8Ij4+Xlu3btWUKVPUunVrVaxYUY0bN9bYsWPVvXv3684bPHiwSpUqpWLFiqlNmzbav3//dWOtWrVKjRo1kpOTkzw9PRUYGJj9nK+vr959910NHDhQxYoV09ChQyVJ27ZtU0BAgIoWLaoKFSpoxIgRSk5OliS1atVK4eHhGjlypEwm0x3tqVS5cmUNGjRI9erVU8WKFdW9e3c9/vjjFA257Mcff9QDDzyg6tWra926dapcubIWLlyo+Ph4ffTRR5Rhd6Ft27aKj49XeHi40VEAAAAAALmMQiyfcHV1laurq5YvX660tLSbntenTx9FRUXpl19+0Z9//il/f3+1bdtWcXFxkqTVq1crMDBQXbp00d69exUSEqLGjRtfN8aHH36oevXqae/evRo/frxOnTqlTp06qXfv3jpw4IAWLVqkbdu2afjw4ZKkpUuXqnz58po4caIuXryoixcvZo9lMpk0Z86c236fJ0+e1Nq1a9WyZcs7+OzgRlJTU/Xqq6+qRIkS6tevn06ePKkOHTro6NGjOn78uPr162d0xAJtxIgRkqTg4GCDkwAAAAAAcht3mcxHlixZoiFDhujq1avy9/dXy5Yt1b9/f9WtW1fStVlcXbt2VVRUlBwdHbNf5+fnp9dee01Dhw5Vs2bNVLlyZc2bN++G1/D19VWDBg20bNmy7GODBw+WnZ2dvvzyy+xj27ZtU8uWLZWcnCwnJyf5+voqKChIQUFB141XvXp1TZ48+bpZaDfSrFkz7dmzR2lpaRo6dKg+//xzmc30sXfjxIkTGjFihDZs2KDMzEwVK1ZMzz77rP7zn//I2dnZ6HiFStGiReXt7a3Tp08bHQUAAAAAkItoJPKR3r1768KFC1q5cqU6deqk0NBQ+fv7Z8/A2r9/v5KSkuTh4ZE9o8zV1VVhYWE6deqUJGnfvn1q27btLa/TsGHD6x7v379fc+bMuW7Mjh07ymq1Kiws7JZjHT16NMcyTJIWLVqkPXv26IcfftDq1av14Ycf5vgaXO+nn35S9erVVa1aNa1du1aVKlXSvHnzdOXKFX388ceUYXnA399fZ86cUXp6utFRAAAAAAC5iE318xknJye1b99e7du31/jx4zV48GBNmDBBTz/9tJKSkuTt7a3Q0NB/va5EiRKSrs1oyYmLi8t1j5OSkjRs2LDsJWL/5OPjc1fv439VqFBBklSzZk1lZmZq6NCheuWVV2RnZ5cr4xdWaWlpeuutt/TVV18pPj5eZrNZ7du31yeffKIaNWoYHa/Qe+qpp7R9+3bNnj1bzz33nNFxAAAAAAC5hBli+VzNmjWzN7f39/dXZGSk7O3t5efnd90fT09PSVLdunUVEhJyR9fw9/fX4cOH/zWmn59f9h0oHRwclJmZmSvvyWq1KiMjQ1arNVfGK4xOnTqlrl27ysXFRVOnTlVmZqaCgoKUmJio9evXU4bdJ08//bRMJpO+++47o6MAAAAAAHIRhVg+ERsbqzZt2mjevHk6cOCAwsLCtHjxYk2dOlU9evSQJLVr105NmzZVz549tX79ep05c0bbt2/XuHHjtHv3bknShAkTtGDBAk2YMEFHjhzRwYMHNWXKlFtee8yYMdq+fbuGDx+uffv26cSJE1qxYkX2pvrStb3HtmzZovPnzysmJib7ePXq1a/bj+x/zZ8/Xz/++KOOHDmi06dP68cff9TYsWPVr18/FSlS5F4+ZYXS0qVLVaNGDfn5+WnNmjXy9fXV999/r4SEBAUHB7Ms8j5zcHBQpUqVtGfPHqOjAAAAAAByEUsm8wlXV1c1adJEwcHBOnXqlDIyMlShQgUNGTJEb7zxhqRrd3Rcs2aNxo0bp0GDBik6OlplypRRixYtVLp0aUlSq1attHjxYr377rt6//33VaxYMbVo0eKW165bt642b96scePGKSAgQFlZWapSpcp1dymcOHGihg0bpipVqigtLU1/34vh2LFjunLlyk3Htre315QpU3T8+HFlZWWpYsWKGj58uEaOHHmvn7JCIz09XRMmTNAXX3yRvSyybdu2+uSTT1SrVi2j49m8nj176uOPP9a2bdvUvHlzo+MAAAAAAHIBd5kEDBIWFqaXXnpJ69atk8VikaurqwYNGqTJkyf/a583GOfs2bPy8fFR3759tWjRIqPjAAAAAAByAYUYcJ+tWLFCY8eO1ZEjRyRJlStX1ltvvaWnnnrK4GS4GXd3d9nZ2Sk6OtroKAAAAACAXMAeYsB9kJ6ernHjxsnd3V09e/bUsWPH1Lp1ax08eFCnTp2iDMvnWrZsqZiYGEVGRhodBQAAAACQCyjEgDx05swZde/eXS4uLpo0aZIyMjI0fPhwXblyRb/++qtq165tdETchr9vMDF9+nSDkwAAAAAAcgNLJoE8sHLlSo0dO1aHDx+WJFWqVEnjx4/XoEGDDE6Gu+Xo6KhKlSrp6NGjRkcBAAAAANwj7jIJ5JL09HS9++67+uyzzxQXFyez2axWrVrpk08+Ud26dY2Oh3tUp04d7d27VxaLRfb2fOkEAAAAgIKMJZPAPQoPD1fPnj3l4uKi//znP0pLS9Pzzz+vK1euaNOmTZRhhcQTTzwhq9WqhQsXGh0FAAAAAHCPWDIJ3KWff/5Zr7/+ug4dOiRJ8vX11Ztvvqlnn33W4GTICykpKXJxcVGrVq20adMmo+MAAAAAAO4BhRhwBywWi9599119+umnio2NldlsVkBAgKZNm6b69esbHQ95zMfHR7GxsUpOTjY6CgAAAADgHrBkErgNERERCgwMVNGiRTVx4kRdvXpVzz33nC5fvqzQ0FDKMBvRtWtXpaSkaN++fUZHAQAAAADcAwox4BbWrFmjunXrqmLFilq+fLnKlSunb775RklJSfr8889VrFgxoyPiPgoKCpIkTZs2zdAcAAAAAIB7w5JJ4H9YLBb95z//0cyZMxUbGyuTyaSAgAAFBwfL39/f6HgwWLFixeTq6qoLFy4YHQUAAAAAcJeYIQb819mzZ9WrVy85OzvrnXfe0dWrVzVs2DDFx8dr8+bNlGGQJDVr1kwXL15UfHy80VEAAAAAAHeJQgw2b+3atapXr558fHy0bNkyeXt768svv1RiYqK++OILlkXiOsOGDZMkffrppwYnAQAAAADcLZZMwiZZLBZNmjRJM2bMUExMjEwmkx5++GEFBwerYcOGRsdDPma1WuXg4KCaNWvqwIEDRscBAAAAANwFCjHYlHPnzikoKEgrV65URkaGihYtqieeeEJTp05ViRIljI6HAqJu3bo6cuSI0tLSZDYz0RYAAAAAChp+koNNWL9+verXr68KFSpoyZIlKlOmjL744gslJSXpq6++ogzDHenbt68sFotWrVpldBQAAAAAwF1ghhgKLYvFoilTpuiTTz5RdHS0TCaTmjVrpuDgYDVq1MjoeCjA4uPjVbJkSXXq1Em//PKL0XEAAAAAAHeIQgyFzoULFxQUFKTly5dnL4scMGCAPvzwQ2aCIdd4e3srJSVFV65cMToKAAAAAOAOsWQShUZISIgaNGigcuXKafHixSpdurQ+/fRTJSUl6ZtvvqEMQ67q0KGDEhISdOLECaOjAAAAAADuEIUYCrTMzExNmjRJpUuXVrt27bR//341a9ZMO3fu1NmzZ/XCCy+w6TnyxMsvvyxJCg4ONjgJAAAAAOBOsWQSBdLFixezl0Wmp6fLyclJjz32mD788EO5u7sbHQ82wsXFRZ6engoPDzc6CgAAAADgDjB1BgVKSEiI/P39VbZsWf34448qVaqUZsyYoeTkZM2ePZsyDPdVo0aNdPbsWaWkpBgdBQAAAABwByjEkO9ZrVZNmTJFZcqUUbt27bRv3z41bdpUO3bs0Llz5zR8+HCWRcIQzzzzjLKysvT1118bHQUAAAAAcAdYMol8KzIyUiNHjtTSpUuzl0X2799fH330ETPBkC9YLBY5OjrK399fu3btMjoOAAAAAOA2UYgh39m0aZNGjx6tPXv2SJLKlSunMWPG6MUXX2QmGPKdBx54QGfOnFFaWprRUQAAAAAAt4l2AfmC1WrV1KlTVaZMGbVp00Z79+5VkyZN9Ntvv+ncuXN66aWXKMOQL/Xq1Uvp6ekKCQkxOgoAAAAA4DYxQwyGioqKUlBQkJYuXaq0tDQ5OTmpb9+++uijj+Tp6Wl0PCBHkZGR8vb2VmBgoJYuXWp0HAAAAADAbaAQgyG2bNmiUaNGac+ePcrKylLZsmX16quvasSIEcwEQ4Hj6emprKwsxcbGGh0FAAAAAHAbaB5sWHKaRYcuXNHeiMs6dOGKktMseXo9q9WqDz/8UN7e3mrZsqX27NmjRo0aadu2bTp//ryCgoIow1AgtW7dWnFxcTp37pzRUQAAAAAAt4EZYjbmxKVEzd8ZoU3HohQRl6J//uWbJPm4O6v1A156vImPqpZ2y5VrRkdHa+TIkfrpp5+UlpYmR0dH9e3bVx9//DHLIlEobNmyRS1bttTo0aP1wQcfGB0HAAAAAJADCjEbcTYuRW8sO6itJ2NkZzYp03rzv/a/nw/w89SkwDqq4O5803OtVqs+/fRT9erVS+XKlbvuuW3btmnUqFHavXu3srKy5O3trdGjRzMTDIWSk5OTKlSooBMnThgdBQAAAACQA1oJG7BwV4TaBW/W9tPX9je6VRn2z+e3n45Vu+DNWrgr4qbnjhkzRiNGjNCbb74p6VpB9vHHH6ts2bIKCAjQ7t279eCDD2rz5s26cOGCRo0aRRmGQql+/fo6deqULJa8XXoMAAAAALh3NBOF3MxNJ/T60oNKs1hzLML+V6Y1S2kWq15felAzN/171susWbP04YcfSpLmz5+vvn37ytnZWa+88ori4uL0+OOPKzIyUrt27VKLFi1y5f0A+dXAgQOVlZWluXPnGh0FAAAAAJADlkwWYgt3Rej1pQdzbbwpveqoXyMfSVJoaKjatWunzMzM684pU6aMRo8erZEjRzITDDYlNTVVzs7Oevjhh7V161aj4wAAAAAAboFCrJA6G5eidsGblWaxypqeqqR9a5VyfIcyYiJkzUiVnau7HDx95FyjhVxqNJfJrogSdi5VasRBpV04JuvVBEmSXTEvlX9htiTJ0d6sjSNbKjkqQvXr11daWtp11yxZsqQuXbqkIkWK3Pf3C+QHlSpV0qVLl5SSkmJ0FAAAAADALTCFp5B6Y9lBWaxZSo+J0MXZw3X512+Udu6QrKmJUmaGMq9c0tVTuxT780fKiDkrSYrfvkhXT+3KLsP+l8WapYEzf1GtWrX+VYZJ0uXLl7Vs2bI8fV9AfvbII4/o6tWr2rVrl9FRAAAAAAC3YG90AOS+E5cStfVkjDKvJirqxwnKTIiWJNm5uqtYk94qUqqistKvKjXiLyUd3Jj9OgevSiri6SP7Yp6K3/zdv8bNtGYp7KqTylb3l7eLSb6+voqPj9fly5d1+fJlJSUlKSMj4769TyC/GTlypGbMmKFp06Zp/vz5RscBAAAAANwESyYLobdXHtL3O8MVs2mOEnYsliSZHF1UdvCnsnfzvO7czOR4yWwnu6Ju2ccyYs/qwtfPS7p+yaQk2ZmkJx/y1dvda+X9GwEKoBIlSsjR0VGXLl0yOgoAAAAA4CZYMlkIbToWpUxrllKO/P/G3sUa9fhXGSZJdi4lrivDcpKZJW06HpUrOYHCqHnz5oqKilJMTIzRUQAAAAAAN0EhVsgkpVkUEZcia/pVWeIjs487ls+9GV0RsSlKTrPk2nhAYfLCCy9IkmbOnGlwEgAAAADAzVCIFTLhscnKkmRNS77uuL2be65dI0vSmdjkHM8DbFGnTp1kb2+vxYsXGx0FAAAAAHATFGKFTLrFKkkyO7pcd9ySGJcn1wFwPbPZrNq1a+vYsWOyWvnvBAAAAADyIwqxQsbB/tpfqdmhqOxLlMk+nnb+cJ5cB8C/PfbYY8rMzNRPP/1kdBQAAAAAwA3QahQyvh4uMv33Y+caAdnHE/9YLkti7L/Oz0yOV+bVxDu6hum/1wFwY3/vI/b1118bnAQAAAAAcCP2RgdA7nJxtJePu7PC41JUrHEvJR8KVWZCtKxpyYr87hUVaxyoIqV8lZV+VakRB5V0cKPKDJgsu6Juunpqt6wZqcpM+v/llVmWNCUf3SZJsi9eWo7eVeXj4SwXR/6vA9yMq6urypUrp99//93oKAAAAACAG6DVKIRaP+Cl73eGS0Xd5NX3HUX/NFGW+EhlJsbocsjNZ6zErvtMmQlR1x2zplxRzPL3JUkutdvKufsota7mlaf5gcKgU6dOmjVrlg4dOqRatXLvLq8AAAAAgHvHkslC6PEmPsq0ZkmSHDx95P3MTJVsM1iO5WvK7OQm2dnLrlgpOVXyl0fXkSriWeG2x860ZumJh3zyKjpQaAQFBUmSpk2bZmgOAAAAAMC/mbKysrKMDoHc9+Ssndp+Oja7GMsNpiyrGvuW0KLnAnI+GYBcXV1VokQJnTt3zugoAAAAAIB/oBArpM7Gpahd8GalWay5NmaWJV0XvnlB3m5F1LFjR1WqVEmVK1dW5cqVVaVKFXl4eOTatYDCoF27dgoJCVFiYqJcXV2NjgMAAAAA+C8KsUJs4a4Ivb70YK6NN/JhL43s3kR//1/GbDbLar1WuNnZ2Wnfvn2qXbt2rl0PKOgWLVqk/v37a+rUqXr11VeNjgMAAAAA+C/2ECvE+jfy0egO1XJlrFc7PKCXuzXSZ599ln3s7zLMbDbL19dXVapUyZVrAYVFnz59ZDabtWDBAqOjAAAAAAD+gRliNmDhrghNWHlIFmvWHe0pZmc2yd5s0sTutdSv0bWN9C0Wi+rUqaNjx47pn//XWblypR555JFczw4UdDVr1tSJEyeUlpYms5nfQQAAAABAfsBPZzagfyMfbRzZUs0qX9vjy85suuX5fz/frLKHNo5smV2GSZK9vb2mT5+u/+1RAwMD9dFHH+VycqDge/TRR2WxWLRu3TqjowAAAAAA/osZYjbmxKVEzd8ZoU3HoxQRm6J//uWbJPl4OKt1NS898ZCP/LzcbjpOp06dtG7dOtWoUUMzZszQo48+qvj4eNWpU0cbN26Ul5dXnr8XoCCIiYlRqVKl1K1bN61atcroOAAAAAAAUYjZtOQ0i87EJivdYpWDvVm+Hi5ycbS/rdcePXpUAwYM0OzZs1W/fn1ZLBb1799fS5YsyZ5F9vzzz+fxOwAKhtKlSystLU3x8fFGRwEAAAAAiEIMuWzDhg3q3bu3EhMT9eCDD2r9+vVyd3c3OhZgqAEDBmjBggUKCwuTr6+v0XEAAAAAwOaxhxhyVfv27RUTE6OuXbvqzz//lLe3t7799lujYwGGevnllyVJwcHBBicBAAAAAEjMEEMeWrlypR577DGlpKSoWbNm+uWXX1SsWDGjYwGGKFq0qMqUKaOwsDCjowAAAACAzWOGGPJM9+7dFRsbq7Zt22r79u0qXbq0Fi1aZHQswBAPPvigwsPDlZaWZnQUAAAAALB5FGLIU05OTtq4cWN2Eda/f3+1bdtWKSkpBicD7q9BgwYpKytLs2bNMjoKAAAAANg8lkzivklKSlLnzp21bds2OTs764cfflCPHj2MjgXcFxkZGXJ0dFSTJk20Y8cOo+MAAAAAgE1jhhjuG1dXV23dulVz5syRxWJRz5491aVLF6WnpxsdDchzRYoUUeXKlbV3716jowAAAACAzaMQw3331FNP6dKlS2rUqJF++eUXeXh4aN26dUbHAvJcz549lZaWpq1btxodBQAAAABsGoUYDFGiRAn98ccf+uyzz5SWlqZOnTqpV69eslgsRkcD8kxQUJAkacaMGcYGAQAAAAAbxx5iMFxUVJTat2+vAwcOqHjx4lq5cqVatGhhdCwgT3h4eMhsNis6OtroKAAAAABgs5ghBsN5eXlp//79+uijj5SUlKSWLVvq8ccfl9VqNToakOtatGihmJgYRUZGGh0FAAAAAGwWhRjyjVGjRikiIkLVq1fXDz/8IC8vL+3cudPoWECuGj58uCTpk08+MTgJAAAAANguCjHkK2XLltWRI0f07rvv6vLly3rooYc0ePBgZouh0Gjbtq0cHBy0dOlSo6MAAAAAgM1iDzHkW+Hh4WrTpo1Onz6t0qVLa+3atapfv77RsYB71qhRI+3Zs0dpaWmyt7c3Og4AAAAA2BxmiCHfqlixok6dOqU33nhD0dHR8vf314gRI5gthgLv7z3yFixYYHQUAAAAALBJzBBDgXDs2DG1b99eZ8+eVbly5bRhwwbVqFHD6FjAXUlJSZGLi4tatmyp0NBQo+MAAAAAgM1hhhgKhAceeEAREREKCgrShQsXVKtWLY0ZM8boWMBdcXZ2lo+Pj3bt2mV0FAAAAACwSRRiKFCCg4N14MABlS5dWlOnTlWlSpUUFhZmdCzgjnXp0kUpKSnau3ev0VEAAAAAwOZQiKHAqV27ts6fP69hw4bpzJkz8vPz0zvvvGN0LOCOjBw5UpI0bdo0Y4MAAAAAgA1iDzEUaLt371bnzp0VExOjatWqKSQkROXLlzc6FnBbihcvLmdnZ128eNHoKAAAAABgU5ghhgKtYcOGunTpkgYOHKjjx4/L19dXH3zwgdGxgNvSrFkzRUZGKj4+3ugoAAAAAGBTKMRQ4JnNZs2dO1dbt26Vm5ubXnvtNdWpU0eRkZFGRwNuadiwYZKkTz/91OAkAAAAAGBbWDKJQsVisWjAgAFavHix7O3tFRwcrOHDhxsdC7ghq9UqBwcH1axZUwcOHDA6DgAAAADYDAoxFEohISEKDAxUYmKi/P39tWHDBrm7uxsdC/iXunXr6vDhw0pPT5fZzKRdAAAAALgf+OkLhVLbtm0VExOjbt26ac+ePfL29tasWbOMjgX8S79+/ZSZmamVK1caHQUAAAAAbAYzxFDo/fzzz+rfv7+Sk5PVtGlTrV27VsWKFTM6FiBJio+PV8mSJdWpUyf98ssvRscBAAAAAJtAIQabkJqaqu7du2vDhg1ycnLS7Nmz9dhjjxkdC5AkeXt7KyUlRVeuXDE6CgAAAADYBJZMwiY4OTlp/fr1+vHHHyVJAwYMUOvWrZWSkmJwMkDq0KGDEhISdPz4caOjAAAAAIBNoBCDTenTp4+io6MVEBCg0NBQeXp6atmyZUbHgo0LCgqSJAUHBxsbBAAAAABsBEsmYbO+++47DR06VGlpaerUqZNWrFghBwcHo2PBRrm4uMjT01Ph4eFGRwEAAACAQo8ZYrBZAwcOVGRkpBo3bqy1a9fKw8ODTc1hmEaNGikiIoJlvAAAAABwH1CIwaaVKFFCO3fu1Jdffqm0tDR16dJFgYGBslgsRkeDjXn22WclSV999ZXBSQAAAACg8GPJJPBfMTExateunfbv36/ixYtr+fLlatWqldGxYCMsFoscHR3l7++vXbt2GR0HAAAAAAo1ZogB/+Xp6al9+/YpODhYycnJat26tR577DFZrVajo8EG2Nvby8/PTwcOHDA6CgAAAAAUehRiwP8ICgpSeHi4atSooYULF6pUqVL6/fffjY4FG9CrVy+lp6dr48aNRkcBAAAAgEKNQgy4gbJly+rw4cOaNGmSrly5oqZNm+qZZ55hthjy1MsvvyxJ+vTTTw1OAgAAAACFG3uIATkIDw9Xu3btdPLkSXl5eWndunWqX7++0bFQSJUqVUqZmZmKi4szOgoAAAAAFFrMEANyULFiRZ04cUJvvvmmYmJi5O/vrxdffJHZYsgTrVu31uXLl3Xu3DmjowAAAABAoUUhBtymd999V0ePHlWFChX02WefqUKFCjp06JDRsVDIvPTSS5KkadOmGRsEAAAAAAoxCjHgDlStWlXh4eEaNWqULl68qDp16ujVV181OhYKkYCAADk6Omr58uVGRwEAAACAQos9xIC79Ndff6lDhw66ePGiKlasqJCQEFWpUsXoWCgEmjZtqp07dyo1NVUODg5GxwEAAACAQocZYsBdql27ts6dO6fnn39eERERqlatmt5++22jY6EQGDhwoLKysvTdd98ZHQUAAAAACiVmiAG5YPfu3erSpYuio6NVtWpVbdy4UT4+PkbHQgGVnp4uJycnNWvWTNu2bTM6DgAAAAAUOswQA3JBw4YNFRkZqaeeekonTpxQ5cqV9f777xsdCwWUg4ODfH199eeffxodBQAAAAAKJQoxIJeYzWbNmTNH27ZtU7FixTR27FjVrl1bkZGRRkdDAfTII48oNTVVO3fuNDoKAAAAABQ6FGJALnv44YcVFRWlfv366dChQ6pQoYJmzJhhdCwUMKNGjZIkffLJJwYnAQAAAIDChz3EgDwUEhKiXr16KSEhQQ0aNNCGDRvk4eFhdCwUECVLlpSDg4MuXbpkdBQAAAAAKFSYIQbkobZt2yo6Olrdu3fX3r175e3trW+++cboWCggmjdvrqioKMXExBgdBQAAAAAKFQoxII85ODhoxYoVWr16tRwcHDRkyBA99NBDSkhIMDoa8rkXXnhBkjR9+nSDkwAAAABA4cKSSeA+Sk1NVY8ePbR+/Xo5Ojrqm2++0RNPPGF0LORTVqtVTk5O8vPz0+HDh42OAwAAAACFBjPEgPvIyclJ69at008//SSz2awnn3xSLVu2VFJSktHRkA+ZzWbVrl1bx44dk9VqNToOAAAAABQaFGKAAXr37q2YmBi1bNlSW7ZskZeXl5YsWWJ0LORDjz32mKxWqxYvXmx0FAAAAAAoNFgyCRhs3rx5Gjx4sNLS0tShQwetWLFCTk5ORsdCPpGUlCQ3Nze1bdtWGzduNDoOAAAAABQKFGJAPpCQkKAOHTpo586dcnFx0Y8//qguXboYHQv5RPny5RUfH8/SWgAAAADIJSyZBPKBYsWK6ffff9dXX32l9PR0de3aVT169FB6errR0ZAPdO7cWcnJyfrrr7+MjgIAAAAAhQKFGJCPDBkyRBcuXFCDBg20cuVKlSpVSr/++qvRsWCwoKAgSdK0adMMzQEAAAAAhQVLJoF8avr06XrllVdksVjUr18/zZs3T/b29kbHgkHc3NxUvHhxnTt3zugoAAAAAFDgMUMMyKdGjBihs2fPqmbNmlq0aJG8vLy0Y8cOo2PBIA899JDOnz/PPmIAAAAAkAsoxIB8rEyZMjp06JAmT56shIQENWvWTE8//bSsVqvR0XCfDRkyRJL02WefGZwEAAAAAAo+lkwCBURERITatWunEydOqFSpUlq7dq38/f2NjoX7xGq1ysHBQXXq1NHevXuNjgMAAAAABRozxIACwsfHR8ePH9f48eMVGxurhg0b6oUXXmC2mI0wm8164IEH9Ndff/F3DgAAAAD3iEIMKGAmTpyoo0ePysfHR59//rnKly+vv/76y+hYuA/69Okji8WitWvXGh0FAAAAAAo0CjGgAKpatarOnDmj0aNHKzIyUnXr1tUrr7xidCzksREjRkhiHzEAAAAAuFfsIQYUcIcOHVKHDh104cIF+fj4aOPGjapatarRsZBHSpcurbS0NMXHxxsdBQAAAAAKLGaIAQVcrVq1dPbsWb3wwgs6e/asqlevrvHjxxsdC3mkXbt2unLlisLCwoyOAgAAAAAFFoUYUAiYzWZ9+umn2r17tzw9PfWf//xHfn5+Cg8PNzoacllQUJAkKTg42NggAAAAAFCAUYgBhYi/v78uXryoQYMG6dSpU6pSpYomT55sdCzkokaNGqlo0aJatWqV0VEAAAAAoMBiDzGgkNqxY4e6deumuLg41ahRQxs3blTZsmWNjoVcEBAQoN9++00pKSlycnIyOg4AAAAAFDjMEAMKqaZNmyo6Olr9+/fXkSNHVLFiRU2bNs3oWMgFTz/9tLKysjR79myjowAAAABAgcQMMcAGhIaGqmfPnrpy5Yrq1aunjRs3ytPT0+hYuEsWi0UODg5q3Lixfv/9d6PjAAAAAECBwwwxwAa0atVKMTEx6tmzp/bv36+yZcvqyy+/NDoW7pK9vb2qVKmiffv2GR0FAAAAAAokCjHARtjb22vZsmVas2aNHB0d9dxzz6lJkyaKj483OhruQs+ePZWWlqYtW7YYHQUAAAAAChwKMcDGdO7cWdHR0erYsaP++OMPlSlTRvPmzTM6Fu7Qyy+/LEmaMWOGwUkAAAAAoOBhDzHAhi1btkyPP/64rl69qoCAAK1Zs0aurq5Gx8Jt8vDwkMlkUkxMjNFRAAAAAKBAYYYYYMMCAwMVExOjVq1aaevWrfLy8tJPP/1kdCzcppYtWyo2NlaRkZFGRwEAAACAAoVCDLBxzs7O2rRpk+bNmyer1ao+ffqoffv2Sk1NNToacjB8+HBJ0ieffGJwEgAAAAAoWFgyCSBbQkKCOnXqpB07dsjFxUULFy5Ut27djI6FW3B0dJSvr6+OHTtmdBQAAAAAKDCYIQYgW7FixbR9+3Z98803ysjI0COPPKJHHnlE6enpRkfDTdStW1cnT56UxWIxOgoAAAAAFBgUYgD+5dlnn9XFixfl7++vn3/+WZ6engoJCTE6Fm7giSeekNVq1Q8//GB0FAAAAAAoMCjEANyQu7u7/vzzT02fPl1Xr15Vu3bt1KdPH2Yi5TNDhgyRyWTS7NmzjY4CAAAAAAUGe4gByFFkZKTat2+vv/76SyVLltTKlSvVvHlzo2PhvypWrKiYmBglJycbHQUAAAAACgRmiAHIUZkyZXTw4EFNmTJFCQkJCggI0FNPPSWr1Wp0NEjq1q2bUlJS9OeffxodBQAAAAAKBGaIAbgjERERateunU6cOKFSpUppzZo1atiwodGxbNrJkydVtWpVPfnkk/ruu++MjgMAAAAA+R4zxADcER8fHx0/flwTJkxQbGysGjdurOeee47ZYgby8/NTsWLFtGHDBqOjAAAAAECBwAwxAHft1KlTateunc6cOaMyZcpow4YNql27ttGxbFKXLl30yy+/KC4uTiVLljQ6DgAAAADka8wQA3DXqlSporCwML322mu6dOmS6tatq1GjRhkdyyY999xzkqSZM2canAQAAAAA8j9miAHIFUeOHFH79u11/vx5VahQQRs2bNADDzxgdCybYbVa5ejoqOrVq+vgwYNGxwEAAACAfI0ZYgByRY0aNRQREaHhw4fr3LlzqlmzpsaNG2d0LJthNptVs2ZNHTlyhP3cAAAAACAHFGIAco3ZbNaMGTO0Z88eeXp6atKkSapSpYrCw8ONjmYT+vXrp8zMTC1fvtzoKAAAAACQr1GIAch19evX18WLF/Xss8/q9OnTqly5st577z2jYxV6L774oiTpq6++MjgJAAAAAORv7CEGIE/t3LlTXbp0UVxcnKpXr66QkBCVLVvW6FiFVtmyZZWUlKSEhASjowAAAABAvsUMMQB5qkmTJoqOjtaAAQN09OhR+fj46OOPPzY6VqHVsWNHJSYm6tixY0ZHAQAAAIB8i0IMQJ4zm82aP3++Nm3aJFdXV73yyiuqV6+eoqKijI5W6AQFBUmSgoODjQ0CAAAAAPkYSyYB3FcWi0V9+/bVsmXLVKRIEU2fPl3PPfec0bEKFRcXF3l4eCgiIsLoKAAAAACQLzFDDMB9ZW9vr6VLl2rt2rVydHTU888/r0aNGik+Pt7oaIVG48aNdfbsWaWkpBgdBQAAAADyJQoxAIbo2LGjYmNj1blzZ+3evVulS5fW3LlzjY5VKAwePFiS9OWXXxqcBAAAAADyJ5ZMAjDcihUrNGDAAKWkpOjhhx/W2rVr5erqanSsAiszM1MODg5q0KCBdu/ebXQcAAAAAMh3mCEGwHA9evRQdHS0Wrdurd9++02lSpXSjz/+aHSsAsvOzk5Vq1bVgQMHjI4CAAAAAPkShRiAfMHZ2Vm//vqrfvjhB0lSv3791K5dO6WmphqcrGDq3bu3MjIytH79eqOjAAAAAEC+w5JJAPlOQkKCOnfurO3bt8vZ2VkLFixQ9+7djY5VoFy6dEllypRRjx49tHz5cqPjAAAAAEC+QiEGIN/69ttv9dxzzyk9PV1du3bV0qVL5eDgYHSsAqNUqVLKzMxUXFyc0VEAAAAAIF9hySSAfGvQoEG6ePGiHnzwQa1evVqenp7asGGD0bEKjDZt2ujy5cuKiIgwOgoAAAAA5CsUYgDyNXd3d+3evVuffvqprl69qg4dOujRRx+VxWIxOlq+99JLL0mSpk2bZmwQAAAAAMhnWDIJoMCIiopSu3btdPDgQZUoUUKrVq1S8+bNjY6Vrzk5OalcuXI6deqU0VEAAAAAIN9ghhiAAsPLy0sHDhzQ1KlTlZiYqICAAD3xxBOyWq1GR8u3/P39FRYWpvT0dKOjAAAAAEC+QSEGoMB59dVXdebMGT3wwAOaP3++vLy8tGvXLqNj5UsDBw5UVlaW5syZY3QUAAAAAMg3KMQAFEjly5fX0aNH9c477+jy5ctq3Lixhg4dymyx//HMM8/IZDJp7ty5RkcBAAAAgHyDPcQAFHhhYWFq27atwsLCVLp0aa1fv15169Y1Ola+UblyZV28eFFXr141OgoAAAAA5AvMEANQ4FWqVEmnT5/W66+/rqioKNWvX18vv/yy0bHyje7duys1NVU7duwwOgoAAAAA5AvMEANQqBw7dkzt2rXTuXPnVL58eW3cuFEPPPCA0bEMFR4eLl9fX/Xv318LFiwwOg4AAAAAGI4ZYgAKlQceeEBnz57ViBEjdP78edWoUUNjx441OpahKlasqBIlSigkJMToKAAAAACQL1CIASiUPvnkE+3bt0+lS5fW+++/r8qVKyssLMzoWIZp0aKFoqOjFRUVZXQUAAAAADAchRiAQqtu3bo6f/68Bg8erLCwMPn5+endd981OpYhXnjhBUnSjBkzDE4CAAAAAMZjDzEANmHXrl3q3LmzYmNj9cADD2jjxo0qX7680bHuKwcHB1WpUkVHjhwxOgoAAAAAGIoZYgBsQqNGjRQVFaXHH39cx44dk6+vrz766COjY9216OhoPf/88/Lx8ZGjo6PKlCmjjh076rfffrvpa+rUqaPjx4/LarXmaTZfX19Nmzbtjl937NgxtW7dWqVLl5aTk5MqV66sN998UxkZGbkfEgAAAIBNoxADYDPMZrPmzZunrVu3ys3NTaNHj1bdunUL5L5avXv31t69ezV37lwdP35cK1euVKtWrRQbG3vT1wwYMEBWq1WLFi26q2ump6ffbdzbUqRIEQ0cOFDr16/XsWPHNG3aNH399deaMGFCnl4XAAAAgO1hySQAm2SxWNS/f38tWbJE9vb2+uSTT7L32crv4uPjVbJkSYWGhqply5a3PG/06NFasWKF0tLS1KBBA23ZskVt2rTJvuPkqlWrNHHiRB08eFCurq4KCAjQsmXLJF2b6fXss8/qxIkTWr58uXr16qU5c+Zo27ZtGjt2rHbv3i1PT08FBgZq8uTJcnFxUatWrbR58+brctzLPzOjRo3Srl27tHXr1rseAwAAAAD+FzPEANgke3t7/fTTT1q/fr2cnJz04osvqmHDhoqLizM6Wo5cXV3l6uqq5cuXKy0t7abn9enTR1FRUfrll1/0559/qlGjRjKbzfr9998lSatXr1ZgYKC6dOmivXv3KiQkRI0bN75ujA8//FD16tXT3r17NX78eJ06dUqdOnVS7969deDAAS1atEjbtm3T8OHDJUlLly5V+fLlNXHiRF28eFEXL17MHstkMmnOnDm3/T5PnjyptWvX3rL0AwAAAIC7wQwxADYvPT1dgYGBWrNmjRwcHPTFF19o0KBBRse6pSVLlmjIkCG6evWq/P391bJlS/Xv319169aVJG3btk1du3ZVVFSUHB0ds19XvHhxJSQk6ODBgxo6dKgqV66sefPm3fAavr6+atCgQfaMMUkaPHiw7Ozs9OWXX2Yf27Ztm1q2bKnk5GQ5OTnJ19dXQUFBCgoKum686tWra/LkyQoMDLzle2vWrJn27NmjtLQ0DR06VJ9//rnMZn5/AwAAACD38BMGAJvn4OCg1atXa8WKFbK3t9czzzyjhx9+WAkJCUZHu6nevXvrwoULWrlypTp16qTQ0FD5+/tnz8Dav3+/kpKS5OHhkT2jzNXVVUlJSZKkjz/+WPv27VPbtm1veZ2GDRte93j//v2aM2fOdWN27NhRVqtVYWFhtxzr6NGjOZZhkrRo0SLt2bNHP/zwg1avXq0PP/wwx9cAAAAAwJ2wNzoAAOQX3bt3V0xMjB555BGFhISodOnSmjNnjvr162d0tBtycnJS+/bt1b59e40fP16DBw/WhAkT9PTTTyspKUne3t4KDQ391+vq16+vdevWqWjRojlew8XF5brHSUlJGjZsmEaMGPGvc318fO76vfxThQoVJEk1a9ZUZmamhg4dqldeeUV2dna5Mj4AAAAAMEMMAP6haNGi2rhxY/adGPv37682bdooJSXF4GQ5q1mzppKTkyVJ/v7+ioyMlL29vfz8/K7706xZM124cEG1atXK3lz/dvn7++vw4cP/GtPPz08ODg6Srs24y8zMzJX3ZLValZGRIavVmivjAQAAAIBEIQYAN9S3b19FR0erefPm2rRpk0qVKqUVK1YYHUuSFBsbqzZt2mjevHk6cOCAwsLCtHjxYk2dOlU9evSQJLVr105NmzZVz549tX79ep05c0bbt2/XuHHjspdJVq9eXQsWLNCECRN05MgRHTx4UFOmTLnltceMGaPt27dr+PDh2rdvn06cOKEVK1Zkb6ovXdt7bMuWLTp//rxiYmKyj1evXv26/cj+1/z58/Xjjz/qyJEjOn36tH788UeNHTtW/fr1U5EiRe7lUwYAAAAA16EQA4CbcHV11datWzVnzhxZLBb17NlTXbp0UXp6uuG5mjRpouDgYLVo0UK1a9fW+PHjNWTIEM2cOVPStTs6rlmzRi1atNCgQYNUrVo19e/fX+Hh4erfv7/s7Oz0xx9/aPHixVq5cqXq16+vNm3a6I8//rjltevWravNmzfr+PHjCggIUIMGDfTWW2+pbNmy2edMnDhRZ86cUZUqVVSqVKns48eOHdOVK1duOra9vb2mTJmixo0bq27dunrnnXc0fPhwffPNN/f4GQMAAACA63GXSQC4DfHx8Wrfvr12794tV1dX/fTTT+rYsaPRse5a7dq1dezYMaWlpXEHRwAAAAA2h5+CAOA2lChRQrt27dJnn32mtLQ0derUSb169ZLFYjE62l3p06ePLBaL1qxZY3QUAAAAALjvmCEGAHcoKipK7du314EDB1S8eHGtXLlSLVq0MDrWHYmLi5OHh4e6dOmi1atXGx0HAAAAAO4rZogBwB3y8vLS/v379dFHHykpKUktW7bU448/XqDuhOju7q7SpUvrt99+MzoKAAAAANx3FGIAcJdGjRqliIgIVa9eXT/88IO8vLy0c+dOo2Pdtnbt2unKlSs6deqU0VEAAAAA4L6iEAOAe1C2bFkdOXJE7777ri5fvqyHHnpIgwcPLhCzxYKCgiRJ06ZNMzQHAAAAANxv7CEGALkkPDxcbdq00enTp1W6dGmtXbtW9evXNzrWLTk7O8vLy0tnzpwxOgoAAAAA3DfMEAOAXFKxYkWdOnVKY8eOVXR0tPz9/fXSSy/l69liDRs2VEREhFJTU42OAgAAAAD3DYUYAOSySZMm6fDhwypfvrxmzpwpHx8fHTlyxOhYNzRo0CBlZWXpm2++MToKAAAAANw3FGIAkAceeOABRUREKCgoSBcuXFCtWrU0ZswYo2P9y5NPPimTyaTvv//e6CgAAAAAcN+whxgA5LG//vpL7du3V2RkpHx9fRUSEqLKlSsbHStbtWrVWDYJAAAAwKYwQwwA8ljt2rV1/vx5DRs2TGfOnFHVqlX1zjvvGB0rW8+ePZWWlqbQ0FCjowAAAADAfcEMMQC4j3bv3q3OnTsrJiZG1apV08aNG1WhQgVDM124cEHlypVT79699dNPPxmaBQAAAADuB2aIAcB91LBhQ126dEkDBw7U8ePHValSJU2dOtXQTGXLlpW7uzszxAAAAADYDAoxALjPzGaz5s6dq61bt8rNzU1jxoxR7dq1FRkZaVimVq1aKTY2VhcuXDAsAwAAAADcLxRiAGCQ5s2bKzo6Wn369NGhQ4dUoUIFzZw505AsL774oiTpk08+MeT6AAAAAHA/sYcYAOQDISEhCgwMVGJiovz9/bVhwwa5u7vf1wyOjo6qWLGijh8/fl+vCwAAAAD3GzPEACAfaNu2rWJiYtStWzft2bNH3t7emjVr1n3NUK9ePZ06dUoWi+W+XhcAAAAA7jcKMQDIJxwcHLRq1SqtWrVKRYoU0eDBg9WsWTMlJCTcl+s/+eSTslqtmj9//n25HgAAAAAYhSWTAJAPpaamqnv37tqwYYMcHR01e/ZsDRgwIM+v6ezsrICAAG3evDlPrwUAAAAARqIQA4B87Mcff9RTTz2l1NRUtWrVSqtXr5azs3OeXc/X11dRUVFKSUnJs2sAAAAAgNFYMgkA+Vjfvn0VHR2tgIAAhYaGytPTU8uXL8+z63Xt2lVXr17V7t278+waAAAAAGA0CjEAyOdcXV21ZcsWzZ07V1arVYGBgercubPS0tJy/VqjRo2SJE2fPj3XxwYAAACA/IIlkwBQgMTHx6tjx476448/5OrqqsWLF6tTp065eo3ixYuraNGiWr16tdasWaMHH3xQXbp0ydVrAAAAAICRmCEGAAVIiRIltHPnTn3xxRdKS0tT586dFRgYKIvFcs9jJycna8WKFSpWrJguXbqkhg0b6q233tJ3332XC8kBAAAAIP+gEAOAAmjYsGG6cOGC6tWrp+XLl8vDw0ObNm26pzEbN26snj176uLFi9nH7OzsVKtWrXuNCwAAAAD5CoUYABRQnp6e2rdvn4KDg5WSkqI2bdrosccek9VqvavxBg8eLEnKzMzMPpaZmak6derkSl4AAAAAyC/YQwwACoELFy6oXbt2OnLkiNzd3bV69Wo99NBDdzzOm2++qffee++6YydPnlSVKlVyKyoAAAAAGI4ZYgBQCJQtW1aHDx/We++9pytXrqhp06Z65pln7ni22LvvvqsXX3wx+3GRIkVUqVKl3I4LAAAAAIZihhgAFDLh4eFq166dTp48KS8vL61du1YNGjSQJKWmpmrBggXq37+/ihYtesPXW61WPfbYY/rxxx/l5uamhISE+xkfAAAAAPIcM8QAoJCpWLGiTpw4oTfffFMxMTF68MEH9eKLL8pqtWr8+PF65plnNGXKlJu+3mw2a/78+SpevLgcHR0lSclpFh26cEV7Iy7r0IUrSk6797taAgAAAIBRmCEGAIXYiRMn1K5dO0VERMjT01OxsbHKysqSk5OTTp48qXLlyt30tVO//F5TlmxXrfZ9dDbuqv75j4VJko+7s1o/4KXHm/ioamm3PH8vAAAAAJBbKMQAwAaMGDFCM2bMyH5sZ2enJ554QnPmzPnXuWfjUvTGsoPaejJGZpNkvcW/EnZmkzKtWQrw89SkwDqq4O6cB+kBAAAAIHexZBIAbIDJZJLZ/P9f8jMzM/Xdd99pz5491523cFeE2gVv1vbTsZJuXYZJUuZ/T9h+Olbtgjdr4a6I3A0OAAAAAHmAGWIAUMidOnVKfn5+MplM+t8v+T4+Pjpz5oxMJpNmbjqhD9cfv+frje5QTcNbV73ncQAAAAAgr1CIAUAhd/XqVc2YMUNHjhzR8ePHderUKUVFRWWXY506dVLfsZ/onV9O5No1p/Sqo36NfHJtPAAAAADITRRiAGCDUlNTFRYWpmnTpmnBqvXyenq6LFlmWdNTlbRvrVKO71BGTISsGamyc3WXg6ePnGu0kEuN5jLZFZEkJR/ZosTdq5QeFSZJcvCqJLeG3eVSI0CO9mZtHNmSPcUAAAAA5EsUYgBg4wZ8vV07z8TralS4on+aKEt85E3P9R40XQ6lKyt+63xd+W3BDc8pHvCEPAIeU7PKHvr+2SZ5FRsAAAAA7pq90QEAAMY5cSlR209fVubVREX9OEGZCdGSJDtXdxVr0ltFSlVUVvpVpUb8paSDGyVJ6ZdO68r2RZIkk0NRubcbKkmK2/iVstKv6sq2H+RctYm2WrN0MipRfl5uxrw5AAAAALgJCjEAsGHzd0bIzmzS5T+WZpdhJkcXlXnqY9m7eWaf51ytqYo37SOZ7RS/5XspyypJKt60r1zrtpckZSbHK37zXCnLqqR961Sq0/Oa93uE3u5e6/6/MQAAAAC4BbPRAQAAxtl0LEqZ1iylHNmafaxYox7XlWF/s3MpIbuibko7dzj7mGO5Gjf8OPXcIWVas7TpeFQeJQcAAACAu0chBgA2KinNooi4FFnTr163b5hj+VvP6LJcuZT9sZ1LiX98XPxf50TEpig5zZJLiQEAAAAgd1CIAYCNCo9NVpYka1rydcft3dxv+bqsjLT/f2D3j5X3/737pCRlpade+19JZ2KvHx8AAAAAjEYhBgA2Kt1ybR8ws6PLdcctiXG3fJ2piOP/P8jMuOHHJgenf10HAAAAAPILCjEAsFEO9tf+CTA7FJV9iTLZx9POH77ZSyRJ9sVLZ3+cmRz//x8nXb7hOX9fBwAAAADyC35KAQAb5evhItN/P3auEZB9PPGP5bIkxv7r/MzkeGVeTZRj+ZrZx9LOH/n/jy8czf7Y6b/7kJn+ex0AAAAAyE/scz4FAFAYuTjay8fdWeFxKSrWuJeSD4UqMyFa1rRkRX73ioo1DlSRUr7KSr+q1IiDSjq4UWUGTJZbvY5K2rdWyrLqyo7FsnMuIZlMurJj8bWBTWa51u8oSfLxcJaLI//UAAAAAMhfTFlZWVlGhwAAGOPtlYf0/c5wZVqzlB4ToeifJl53x8n/5T1ouhxKV1b81vm68tuCG55TPOAJlXi4v5RllU/aGT1Rw1EJCQmKjY1VXFyc4uLilJmZqa+//loeHh559dYAAAAA4KYoxADAhp24lKj207ZkP7ampypp31qlHN+ujJizsmZclZ1LSRXxqCCXmi3lUrOFTP+9m2TykS1K3L1S6VFnJEkOXr5ya9hDLv9Yfnn+6+dkiT0nSbK3vzZTzGKxyGw26/z58ypT5v/3LgMAAACA+4VCDABs3JOzdmr76VhlWnPvnwM7s0lNK3vo/LzXFRoaet1zZrNZjzzyiJYvX55r1wMAAACAO8Gm+gBg4yYF1pG92ZTziXfA3mzS5MA62rBhgzp06CCz+f//ubFarVqzZo0GDBigCxcu5Op1AQAAAOB2UIgBgI2r4O6sd7rXytUxJ3avpQruzrK3t9dPP/2kmjVrys7OTpLk7u4uT09PLViwQOXKlVOdOnWYLQYAAADgvqIQAwCofyMfje5QLVfGerXDA+rXyCf7sZubm9auXatSpUpJksaPH68LFy7o999/V/PmzXX48GEFBgaqRIkSevnll5WUlJQrOQAAAFA4RUdH6/nnn5ePj48cHR1VpkwZdezYUb/99pvR0eTr66tp06bd0xgnT56Um5ubSpQokSuZcGMUYgAASdLw1lX1fq86crQ3y+4Ol1DamU1ytDdrSq86erG137+eL1eunNavX68BAwZo0KBBkqQmTZpo69atunLlil5++WVJ0vTp01W8eHEFBARo586d9/6mAAAAUOj07t1be/fu1dy5c3X8+HGtXLlSrVq1UmxsbJ5dMz09Pc/G/qeMjAw99thjCggIyPlk3BM21QcAXOdsXIreWHZQW0/GyM5suuVm+38/H+DnqUmBdVTB3fmerr18+XK99dZbOnjwoCTJ29tbI0aM0OjRo7PvUgkAAADbFR8fr5IlSyo0NFQtW7a85XmjR4/WihUrlJaWpoYNGyo4OFj16tXLPmfVqlWaOHGiDh48KFdXVwUEBGjZsmWSrs30evbZZ3XixAktX75cvXr10pw5c7Rt2zaNHTtWu3fvlqenpwIDAzV58mS5uLioVatW2rx583U57rRyGTNmjC5cuKC2bdsqKChI8fHxd/R63D5miAEArlPB3VnfP9tEG4Ja6MkmFVXRw1n/O1/MJKmih7OebFJRG0e20PfPNrnnMkySevbsqQMHDuj8+fMaMGCALl++rLFjx8rZ2Vk9e/ZUWFjYPV8DAAAABZerq6tcXV21fPlypaWl3fS8Pn36KCoqSr/88ov+/PNP+fv7q23btoqLi5MkrV69WoGBgerSpYv27t2rkJAQNW7c+LoxPvzwQ9WrV0979+7V+PHjderUKXXq1Em9e/fWgQMHtGjRIm3btk3Dhw+XJC1dulTly5fXxIkTdfHiRV28eDF7LJPJpDlz5tzyvf36669avHixPv3007v87OBOMEMMAJCjvQcPq0m7bhrwxEC9+spI+Xq4yMUx72dsWa1WffHFF5o6darCw8MlSVWrVtX48eP15JNP5vn1AQAAkP8sWbJEQ4YM0dWrV+Xv76+WLVuqf//+qlu3riRp27Zt6tq1q6KiouTo6Jj9Oj8/P7322msaOnSomjVrpsqVK2vevHk3vIavr68aNGiQPWNMkgYPHiw7Ozt9+eWX2ce2bdumli1bKjk5WU5OTvL19VVQUJCCgoKuG6969eqaPHmyAgMDb3i92NhYNWjQQPPmzVOLFi00Z84cZojlMWaIAQBy9Nn0YGVEhenXxbNVq2zx+1KGSZLZbNYLL7ygM2fO6ODBg+rQoYNOnz6tgQMHytXVVYMHD87+LR8AAABsQ+/evXXhwgWtXLlSnTp1UmhoqPz9/bNnYO3fv19JSUny8PDInlHm6uqqsLAwnTp1SpK0b98+tW3b9pbXadiw4XWP9+/frzlz5lw3ZseOHWW1WnNcyXD06NGblmGSNGTIEA0YMEAtWrS4jc8AcgOFGADgliIjI/Xdd99Jks6ePasdO3YYkqN27dpat26dUlJS9Oabb6po0aKaNWuWPD091bBhQ4WEhBiSCwAAAPefk5OT2rdvr/Hjx2v79u16+umnNWHCBElSUlKSvL29tW/fvuv+HDt2TK+++qokqWjRojlew8XF5brHSUlJGjZs2HVj7t+/XydOnFCVKlXu6f38+uuv+vDDD2Vvby97e3s9++yzunLliuzt7TV79ux7Ghs3RiEGALilSZMmKSMjQ9K1vQ/effddQ/M4ODjo3XffVXR0tDZu3KgHH3xQe/bsUbt27eTp6alx48bdt7sAAQAAIH+oWbOmkpOTJUn+/v6KjIyUvb29/Pz8rvvj6ekpSapbt+4d/0LV399fhw8f/teYfn5+cnBwkHTte9XMzMw7zr9jx47riraJEyfKzc1N+/btu+XMMtw9CjEAwE2dPXtWn3/+efbdcbKysvTLL79o7969Bie7pm3bttq1a5diYmI0ZMgQpaamatKkSXJ2dlb79u31119/GR0RAAAAuSg2NlZt2rTRvHnzdODAAYWFhWnx4sWaOnWqevToIUlq166dmjZtqp49e2r9+vU6c+aMtm/frnHjxmn37t2SpAkTJmjBggWaMGGCjhw5ooMHD2rKlCm3vPaYMWO0fft2DR8+XPv27dOJEye0YsWK7E31pWt7j23ZskXnz59XTExM9vHq1atftx/Z/6pRo4Zq166d/adcuXIym82qXbu2SpYseS+fMtwEhRgA4KYmTpwoi8Vy3TGTyaT//Oc/BiW6MXd3d3311VdKSkrSd999pypVqmjjxo2qU6eOKlasqJkzZ8pqtRodEwAAAPfI1dVVTZo0UXBwsFq0aKHatWtr/PjxGjJkiGbOnCnp2vera9asUYsWLTRo0CBVq1ZN/fv3V3h4uEqXLi1JatWqlRYvXqyVK1eqfv36atOmjf74449bXrtu3bravHmzjh8/roCAADVo0EBvvfWWypYtm33OxIkTdebMGVWpUkWlSpXKPn7s2DFduXIlDz4juFvcZRIAcFOtW7dWaGjov477+Phk3/UxvwoLC9PIkSO1Zs0aZWRkyNHRUYGBgfroo4+u+6YFAAAAgO1hhhgA4KY2bdqkzMxM/fTTT5KkTz75RHFxcTp27JjByXJWqVIlLV++XCkpKXr//ffl7u6uhQsXqly5cqpTp84tp6wDAAAAKNwoxAAAt2Q2m7M3Bi1evLhKliwpJycng1PdPnt7e40ZM0YXLlzQzp07FRAQoMOHD6tXr14qXry4Xn75ZSUlJRkdEwAAAMB9RCEGAMjR33dtLFKkiMFJ7k3jxo21ZcsWJSQkKCgoSCaTSdOnT1fx4sXVvHlz/f7770ZHBAAAAHAfUIgBAHKUkZEhSXJ0dDQ4Se5wcXFRcHCw4uPjtWLFCtWqVUu//fabmjZtKm9vb02ePPlfNxMAAAAAUHhQiAEAcvT3DDEHBweDk+S+7t2768CBA7pw4YIGDBig+Ph4vfHGG3J2dlaPHj106tQpoyMCAAAAyGUUYgCAHBXmQuxv3t7emj9/vpKTk/Xpp5+qbNmyWrlypfz8/FS1alXNnTvX6IgAAAAAcgmFGAAgR7ZQiP3NbDbrhRde0JkzZ3Tw4EF17NhRYWFhevrpp+Xi4qJnn31WcXFxRscEAAAAcA8oxAAAOSpse4jdrtq1a2vt2rVKSUnR+PHj5ezsrNmzZ8vT01MNGzbUxo0bjY4IAAAA4C5QiAEAcmRLM8RuxMHBQRMnTlR0dLRCQkLUsGFD7dmzR+3bt5enp6feeOMNpaamGh0TAAAAwG2iEAMA5OjvOy7a2gyxG2nTpo3++OMPxcTEaMiQIUpNTdXkyZPl6uqq9u3b6+DBg0ZHBAAAAJADCjEAQI5sdcnkrbi7u+urr75SUlKS5s2bpypVqmjjxo2qW7euKlasqBkzZshqtRodEwAAAMANUIgBAHL095JJCrEbe/zxx3Xs2DGdPn1aPXv21MWLFzVixAg5Ozurf//+On/+vNERAQAAAPwDhRgAIEd/L5m01T3EblelSpW0bNkyXb16VVOmTJGHh4cWLVqk8uXLq3bt2lq6dKnREQEAAACIQgwAcBv+XjLp5ORkcJKCwc7OTq+99prOnz+vP/74Qy1atNCRI0fUu3dvFS9eXCNGjFBSUpLRMQEAAACbRSEGAMgRe4jdvUaNGmnz5s1KTEzUyJEjZTabNWPGDBUrVkzNmzfXjh07jI4IAAAA2BwKMQBAjlgyee+cnZ318ccf6/Lly1qxYoXq1Kmj3377Tc2aNZO3t7cmTZqU/XkGAAAAkLcoxAAAOfp7hpi9vb3BSQqH7t27a//+/bp48aIef/xxxcfHa9y4cXJ2dlb37t116tQpoyMCAAAAhRqFGAAgR8xcyhtlypTRvHnzlJycrM8//1zlypXTqlWr5Ofnp6pVq2ru3LlGRwQAAAAKJQoxAECO/p4hhrxhNpv13HPPKSwsTH/99Zc6duyosLAwPf3003JxcdEzzzyjmJgYo2MCAAAAhQaFGAAgR5mZmUZHsBm1atXS2rVrlZKSovHjx8vFxUXffvutvLy89OCDD2r9+vVGRwQAAAAKPAoxAECOMjIyZDKZjI5hUxwcHDRx4kRFRUXp119/VaNGjbR371517NhRnp6eGjt2rFJTU42OCQAAABRIFGIAgByxh5ixWrdurZ07dyo2NlZDhw5VWlqa3n//fbm6uqpdu3Y6cOCA0REBAACAAoVCDACQo8zMTGaI5QMlS5bUl19+qcTERM2bN09+fn4KCQlRvXr15OPjoxkzZshqtRodEwAAAMj3KMQAADmyWCwUYvnM448/rqNHjyosLEyBgYGKjIzUiBEj5OzsrP79++vcuXNGRwQAAADyLQoxAECOWDKZf/n6+mrp0qVKTU3V1KlT5eHhoUWLFqlChQqqVauWlixZYnREAAAAIN+hEAMA5Iglk/mf2WzWq6++qvPnz+uPP/5QixYtdPToUT366KMqXry4XnrpJSUlJRkdEwAAAMgXKMQAADliyWTB0qhRI23evFmJiYkaNWqUzGazZs6cqWLFiunhhx/Wjh07jI4IAAAAGIpCDACQo8zMTJnN/JNR0Dg7O+ujjz7S5cuXtWLFCtWpU0fbt29Xs2bN5O3trffee4/lsAAAALBJ/HQDAMgRSyYLvu7du2v//v26ePGiHn/8ccXHx+vNN99U0aJF9cgjj+jEiRNGRwQAAADuGwoxAECOKMQKjzJlymjevHlKTk7Wl19+qfLly+vnn39WtWrV5Ofnpzlz5igrK8vomAAAAPlGcppFhy5c0d6Iyzp04YqS05hhXxiYsviuFwCQgxo1aujs2bNsyl5IHT58WK+88oo2bNigzMxMOTs7q1+/fpo6dao8PT2NjgcAAHDfnbiUqPk7I7TpWJQi4lL0z+LEJMnH3VmtH/DS4018VLW0m1ExcQ8oxAAAOapWrZouXryoxMREo6MgD6Wnp+u9997T559/rujoaJlMJjVo0ECTJk1Sx44djY4HAACQ587GpeiNZQe19WSM7MwmZVpvXpn8/XyAn6cmBdZRBXfn+5gU94pCDACQoypVqigmJkZXrlwxOgruk9DQUI0ZM0a7du1SVlaW3N3dNXToUE2YMEFOTk5GxwMAAMh1C3dFaMLKQ7JYs25ZhP0vO7NJ9maT3uleS/0b+eRhQuQm9hADAOSIu0zanlatWmnnzp2Ki4vTsGHDlJ6ervfff1+urq5q27at9u/fb3REAACAXDNz0wm9vvSg0izWOyrDJCnTmqU0i1WvLz2omZu4UVFBwU83AIAcWa1WCjEbVaJECX3xxRdKTEzU/Pnz5efnp19//VX169eXj4+PPvnkE1mtVqNjAgAA3LWFuyL04frjuTLWh+uPa9GuiFwZC3mLJZMAgByVL19eaWlpio6ONjoK8oHw8HCNHDlSP//8szIyMuTo6Kju3bvr448/Vvny5Y2OBwAAcNvOxqWofs8hitv6w/VPmMwyF3WTQ6mKcqnTXq61W2c/lfTXr0o9s0/pkSeVmRgrqyVN9m6lVLRKQxV/uL+ci5XUxpEt2VMsn+PX/QCAHLFkEv9UsWJFLV26VKmpqfrggw/k6empxYsXq0KFCqpVq5aWLFlidEQAAIDb8sayg7rhCsksq6wpV5QafkCxP3+kKzuXZj8V+8sMJf/1qzJiImRNS5YyLbLEX1Tin6sUOXeU0pIT9Mayg/fvTeCu8NMNACBHLJnEjZjNZo0ePVrnzp3Trl271LJlSx09elSPPvqoihcvrpdeekkJCQlGxwQAALihE5cStfVkjP65cM6p8oMq/fgUefX/j4pWa5p9PPHPn7M/NplMcixfU+4dX5RX//+oeMATkp29JMly5ZLi/1ihrSdjdDKKO7TnZ/x0AwDIEYUYctKwYUOFhoYqMTFRo0aNktls1syZM1WiRAk9/PDD+u2334yOCAAAcJ35OyNkZzZdd8zOuYScKtRSUd/6KhHwRPbxzOTL2R+X6v2myjwxVW4NOl877+H+cmvQNfv5tIvHZWc2ad7v7CWWn/HTDQAgR1arVXZ2dkbHQAHg7Oysjz76SJcvX9aqVatUt25dbd++Xc2bN1eZMmX03nvvyWKxGB0TAABAm45F3fSOklmZGbp64vfsxw6lKmZ/XLSS/7/OL+JeNvtjcxEnZVqztOl4VC6mRW6jEAMA5IgZYrgb3bp10759+xQZGaknnnhCV65c0ZtvvqmiRYuqW7duOnGC25IDAABjJKVZFBGX8q/jyX+FKPz9bor4IFDxW76XJJmdi6tku2G3HC/l2Pbsj4tWflCSFBGbouQ0fhGYX/HTDQAgR8wQw70oXbq0vv/+eyUnJ+vLL79UhQoVtHr1alWrVk1+fn769ttvZbVajY4JAABsSHhssm48N+zfTPYOykr/d3n2t8tbvldq+H5JkkPZB+RSp60kKUvSmdjke0yKvEIhBgDIEYUYcoPZbNbQoUN1+vRpHT58WJ06dVJ4eLieeeYZubm5adCgQYqJiTE6JgAAKCSysrKUlJR0w+fSLTf+Zdzfm+qXfmySigc8LsmkzIRoRS+dpMyky/86//Kvs5SwfZEkyd6jvLwefUsm8/9/33yz68B4FGIAgBxlZWVRiCFX1ahRQ7/88ouSk5M1YcIEubi4aM6cOfLy8pK/v7/WrVtndEQAAFDATZs2TW5ubvLz89Mzzzyjb775RocPH5bVapWD/Y3rkL831XeqWFclHn5MTpWv7ReWZUlTysmd2edlZVkVu3amEv5YJkkqUspXZQZMlp1z8evGu9l1YDz+ZgAAOWKGGPKKg4OD3n77bUVFRSk0NFSNGzfWvn371KlTJ3l4eOj1119Xamqq0TEBAEAB5O3tLUk6deqUvv/+ew0ZMkS1atWSvb29Gj5QUVlZt7Fo8h/nWK8mXjtkzVTMqo+UtG+tpGvLJEs//r7sXEpe91KTJF8Pl9x5M8h1FGIAgBwxQwz3Q8uWLfX7778rLi5Ow4YNU3p6uqZMmSJXV1e1bdtW+/btMzoiAAAoQJycnLI//uddrrOysuTlXlyeTv8uxDJT4pV69pBSww/oyvYflXpmX/ZzRdzLSZKil05SyuHNkiS7YqVUovkAZUSHX3vd2UNKjzojSfLxcJaLo30evDPkBlPWbVWiAABb5uTkpJo1a2rPnj1GR4GNWbBggSZOnKijR49KkipUqKBXXnlFL730Enc+BQAA2axWq0JDQ/X9999ry5YtCg8PV2Zm5g3PDQ4O1ssvv6x3Vh3W9zvDFbt5nq78tuCW4zuUrqIyAz+Syc5e4e93u+W5jhVqq9yTU/Rkk4p6u3utu35PyFt8JwkAyBFLJmGUxx57TEeOHNGZM2fUq1cvXbp0SUFBQXJ2dlbfvn119uxZoyMCAAADWK1WbdiwQU899ZQqVaokBwcHtW3bVnPmzNHFixdVr149vfHGG+rbt6/s7OxkZ2cnJycnrVixQkFBQTKZTHq8iY8yrTefI2Syd1SRUhVVrFk/lR4wWSa725/tlWnN0hMP+eTGW0UeYYYYACBHRYoUUcOGDbVjxw6jo8DGWa1WBQcHKzg4WOfPn5d0bYP+d955R3369DE4HQAAyCtWq1Xr1q3TvHnz9Ntvv+ns2bOyWq/dwdHZ2Vk1a9ZU586d9eyzz6pixYrZr5s/f76eeOIJeXl56ZdffpG/v/914z45a6e2n469ZTF2p+zMJjWr7KHvn22Sa2Mi91GIAQByZG9vr4ceekjbtm0zOgqQbffu3Ro9erS2bt0qq9UqNzc3Pfnkk5o8ebKKFStmdDwAAHAPrFarVq9erR9++EG//fabzp8/n12Aubi4qFatWurSpYueeeYZVahQ4abjJCYm6r333tPw4cNVvnz5fz1/Ni5F7YI3K81izbXsjvZmbRzZUhXcnXNtTOQ+CjEAQI7s7e3VvHlzhYaGGh0F+JeUlBS99dZbmj17ti5fviyTyaSHHnpIH3zwgR5++GGj4wEAgNtgsVi0atUqLViwQNu3b9eFCxey7wLp6uqq2rVrq1u3bho0aJDKli2bq9deuCtCry89mGvjTelVR/0asVwyv6MQAwDkyM7OTq1atVJISIjRUYBb+vnnn/Xmm29q//79kqTSpUvrxRdf1NixY2Vvz12eAADILywWi5YvX66FCxdqx44dunjxYnYB5ubmpjp16uiRRx7RoEGDVLp06TzPM3PTCX24/vg9j/Nqhwf0Ymu/XEiEvEYhBgDIkdlsVvv27bVu3TqjowC3JSoqSqNHj9ZPP/2kq1evyt7eXh07dtTHH3+satWqGR0PAACbY7FYtGTJEi1cuFA7d+5UZGRkdgFWrFgx1a1bV927d9egQYPk6elpSMaFuyI0YeUhWaxZd7SnmJ3ZJHuzSRO712JmWAFCIQYAyJHZbFbnzp21evVqo6MAd8RqtWrWrFmaPHmywsLCJEmVK1fWG2+8oUGDBsls5obbAADkhfT0dP34449avHix/vjjD126dCm7ACtevLjq16+vHj166KmnnpK7u7vBaf/f2bgUvbHsoLaejJGd2XTLYuzv5wP8PDUpsA57hhUwFGIAgByZTCZ1795dK1asMDoKcNeOHDmiV155RRs2bJDFYpGzs7P69OmjDz/80LDfRAMAUFikpqZq0aJFWrx4sXbt2qWoqKjs50qWLKn69esrMDBQTz75pEqUKGFc0Nt04lKi5u+M0KbjUYqITdE/ixOTJB8PZ7Wu5qUnHvKRn5ebUTFxDyjEAAA5MplM6t27t3766SejowD3LD09XZMnT9Znn32W/c16gwYNNGnSJHXq1MngdAAAFAwpKSlasGCBlixZot27dys6Ojr7OXd3dzVo0EC9evXSE088UeDv/pycZtHQV8bpp6XL1bVzR33/2cdycWRv0oKOQgwAkCOTyaR+/fpp4cKFRkcBctWWLVv02muv6Y8//lBWVpbc3d01ePBgvfPOO3JycjI6HgAA+UZycrLmz5+vJUuW6M8//1RsbGz2cx4eHnrwwQfVq1cvPf7443J1dTUwae6zWCwqU6aMYmNj5erqqqioKBUtWtToWLhHbJwBALgt3KEPhVGLFi30+++/6/Lly3ruueeUkZGhqVOnysXFRW3atNG+ffuMjggAgCESExP12WefqX379vLw8JCrq6uGDRum9evXy2QyqVOnTvr666+VnJysmJgYrVu3TsOGDSt0ZZgk/fDDD9kFYFJSkj7//HODEyE3MEMMAHBLFotFRYoU0dNPP61vv/3W6DhAnlu0aJHefvttHT16VJJUvnx5vfLKKxoxYgSb8AMACq2EhATNnTtXy5cv1969e3X58uXs57y8vNSwYUP16dNH/fv3t6lZ1JmZmapWrZpOnz6dfaxkyZKKiIgolOWfLeG7OgDALaWnp0tihhhsR79+/XTkyBGFh4erd+/eioqK0siRI1W0aFH16dNHERERRkcEAOCexcfHa9q0aWrVqpVKliyp4sWLa8SIEdq0aZMcHBz0yCOP6Pvvv1daWpouXbqk1atX6+mnn7apMkySFi9efF0ZJl373M2cOdOgRMgtzBADANzS5cuX5e7urueff16fffaZ0XGA+85qtWratGn6+OOPdf78eUlSjRo19Pbbb6tv374GpwMA4PbExMRozpw5WrlypQ4cOKArV65IurZXbOnSpfXQQw+pb9++6t27txwcHAxOm3889NBD2rlzp+zs7JSZmSmz2Syr1SovLy9dunTJ6Hi4BxRiAIBbioyMlLe3t0aMGKFPPvnE6DiAof7880+NHj1aW7ZskdVqlZubm5588klNnjy5wN9BCwBQuERFRWn27Nn6+eefdeDAASUmJkq6VoB5e3vroYceUv/+/RUYGMhKgFtYsmSJ9u3bp7Nnz2ru3Lnq0KGDWrZsqSpVqqhfv35Gx8M9oBADANxSeHi4fH19NWrUKH300UdGxwHyhZSUFE2YMEGzZs3S5cuXZTKZ1KRJE33wwQdq3ry50fEAADYoMjJSs2bN0urVq3Xw4EElJSVJulaAlS1bVk2bNtWAAQP0yCOPUIDdhe3bt+vhhx/WpEmTNHbsWKPjIBfwXwEA4JbS0tIkianzwD84Ozvrgw8+0AcffKA1a9Zo3Lhx+v333xUQECAvLy+9+OKLeuONN/iBAwCQZ86dO6fZs2dr9erVOnTokJKTkyVJZrNZ5cqVU9euXTVgwAB169aNm8LkgiJFiki6tsk+Cgf+qwAA3NLfm+r//U0AgOt16dJFe/fu1aVLlzRw4EAlJiZqwoQJKlq0qLp27apjx44ZHREAUAhERETorbfeUqNGjeTi4qIKFSpowoQJ2r17tzw8PDRgwACtXr1aGRkZioiI0MKFC9W9e3fKsFzy9y+5KMQKD/7LAADcUmpqqiTuMgnkxMvLS3PnzlVSUpK+/vpr+fj4aM2aNapevbqqVKmiWbNmyWq1Gh0TAFBAhIWFady4cWrYsKGcnZ1VsWJFvfvuu9qzZ4+8vLz05JNPav369crIyFB4eLjmz5+vLl26UIDlEQqxwof/UgAAt/T3DDGWTAK3x2w2a/DgwTp16pSOHDmiLl26KCIiQoMHD5arq6ueeuopRUdHGx0TAJDPnDx5UmPHjlWDBg3k7OysypUra9KkSdq3b5+8vb319NNPKyQkRBkZGQoLC9N3332n9u3bU4DdJ38XYhaLxeAkyC38uh8AcEssmQTuXvXq1bOXr0yePFmffvqpvvvuO3333XeqX7++Jk2apM6dOxsdEwBggKNHj2rWrFlav369jh8/ft2s/IoVK6pVq1YaOHCgmjdvTumVD7CHWOFDIQYAuCU21QfuXZEiRfTWW2/prbfe0pYtWzRmzBjt3LlTXbp0UcmSJTV48GBNnDhRTk5ORkcFAOSRQ4cOadasWdq4caOOHz+e/T2Wvb29KlWqpFatWumpp57Sww8/bHBS3AhLJgsfamYAwC2xZBLIXS1atNCOHTsUHx+v559/XhaLRR988IFcXFzUunVr7d271+iIAIBccODAAb388suqXbu2HB0dVbt2bQUHB+vo0aPy9fXVc889p99//10ZGRk6fvy4vvrqK8qwfIxCrPChEAMA3BKFGJA3ihUrps8++0wJCQlauHChqlWrptDQUPn7+6tChQoKDg5mE34AKED27Nmjl156STVq1JCjo6Pq1aun6dOn68SJE6pcubKGDx+uXbt2KT09XUePHtXnn3+uJk2aGB0bt4klk4UPhRgA4JbYQwzIe/369dORI0cUHh6uRx99VFFRURo1apSKFi2qRx99VBEREUZHBAD8j127dumFF15Q9erV5eDgoAcffFAzZ87U6dOn5efnpxEjRmjv3r1KS0vTkSNHNGPGDDVs2NDo2LhLbKpf+LCHGADglpghBtw/Pj4+Wrx4saxWq6ZPn66PPvpIS5Ys0ZIlS1S9enW9/fbb6tevn9ExAcAmbd++XXPmzFFoaKjCwsKyixFHR0dVr15d7dq10zPPPKPatWsbnBR54e9fDjN7u/BghhgA4JYyMjIkXftmD8D9YTabFRQUpLNnz+rPP/9U69atdfz4cfXv31/FihXT888/rytXrhgdEwAKraysLG3dulWDBw+Wn5+fihQpoocfflhff/21zp49q5o1a2r06NE6fPiwUlNTdeDAAX388ceUYYUYSyYLHwoxAMAtMUMMMJa/v79+/fVXJSYm6tVXX5W9vb2++OILlSxZUk2bNtXWrVuNjggABZ7VatWvv/6qQYMGqUqVKipSpIhatGihWbNm6cKFC6pdu7Zef/11HT9+XFevXtX+/fv1wQcfqEaNGkZHx33CksnChyWTAIBbohAD8gdnZ2dNnTpVU6dO1Zo1azRu3Dj9/vvvatGihby8vPTiiy9q7Nix7PcHALfBarUqJCRE33//vbZu3aqzZ89mz/wpWrSo6tWrp06dOmnw4MGqVKmSwWmRH9jZ2UliyWRhwgwxAMAtsWQSyH+6dOmivXv36tKlSxo4cKASExM1YcIEOTs7q0uXLv/H3n1HR1VvbRz/zqSShBBCCy0JvbfQpPfeiTRRBGnqVQEpSlEQEAFp9quCgog06VUERZoiLQTpHakhCSG9TGbeP7iM5iXBQsJJeT5ruW5y5sw5zwnrZjJ79v4dTp8+bXTEHOf27du88MIL+Pr64uLigo+PD23atGHv3r1GR8Pf35958+b94+fFx8fTv39/qlSpgqOjI127dk33bCKPi9VqZcuWLfTt2xd/f3+cnJxo3bo1ixcvJiQkhBo1avDGG29w6dIlYmNjOXToEG+//baKYWJnNt8rn2hkMvtQh5iIiDyUOsREMq+CBQuyaNEivvzyS7788kumTZvGli1b2LJlCyVLlmTs2LE899xz9j/iJeMEBgaSmJjIokWLKFmyJLdu3WLHjh2EhYVl2DkTExMz9HdzcnIyuXLl4pVXXmHVqlUZdh6RjGC1Wtm4cSNLly5l7969XLt2zd7Z4+7uTq1atWjfvj0DBw6kWLFiBqeVrEQFsexDfx2JiMhD3e8QU0FMJPMym80MHDiQ8+fPc+rUKdq3b8+VK1cYPHgwHh4e9OvXj5CQEKNjZlsRERHs3r2bGTNm0KxZM/z8/KhTpw5jx46lc+fOKfYbNGgQBQoUwNPTk+bNm3P06NEUx9qwYQO1a9fG1dWV/Pnz061bN/tj/v7+TJkyhX79+uHp6cmQIUMA2LNnD40aNSJXrlwUL16cV155hZiYGACaNm3K5cuXGTFiBCaTCZPJ9Levy93dnU8++YTBgwfj4+PzKD8ikQxnsVhYs2YNPXv2pFixYjg6OtKlSxeWLVvGnTt3qFOnDlOnTuXatWtER0ezf/9+Jk6cqGKY/GMqiGUfKoiJiMhDaWRSJGspV64cmzZtIi4ujrfeeovcuXOzePFiChUqRI0aNdiyZYvREbMdDw8PPDw8WLt2LQkJCWnu16NHD0JCQtiyZQuHDh0iICCAFi1aEB4eDsCmTZvo1q2bfSR2x44d1KlTJ8UxZs2aRbVq1Thy5AhvvPEG58+fp23btgQGBhIcHMzy5cvZs2cPL730EgCrV6+mWLFiTJ48mRs3bnDjxg37sUwmEwsXLkz/H4jIY2CxWPj2228JDAykaNGiODs70717d1auXElkZCT16tXjnXfe4datW0RFRfHzzz8zfvx4ihQpYnR0yeK0hlj2YbLZbDajQ4iISOY1ZswY3n33Xc6fP0/JkiWNjiMi/8KePXsYPXo0+/fvx2azkTdvXgYOHMjkyZPJlSuX0fGyhVWrVjF48GDi4uIICAigSZMm9O7dm6pVqwL3/g06dOhASEhIig8YSpcuzZgxYxgyZAj169enZMmSfP3116mew9/fnxo1arBmzRr7tkGDBuHg4MCnn35q37Znzx6aNGlCTEwMrq6u+Pv7M3z4cIYPH57ieOXLl+edd95J0YWWlv79+xMREcHatWv/wU9FJP0kJSWxatUqli9fzv79+7l58yb338p6enpSrVo1OnXqxIABA8ifP7/BaSW7MplMdO3aNcXvYcm61CEmIiIPpZFJkayvYcOG/Pzzz0RERPDCCy9gsViYNWsWHh4eNGvWjMOHDxsdMcsLDAzk+vXrrF+/nrZt27Jz504CAgLsHVhHjx4lOjqafPny2TvKPDw8uHjxIufPnwcgKCiIFi1aPPQ8tWrVSvH90aNHWbhwYYpjtmnTBqvVysWLFx96rFOnTv2tYpiIERITE/n666/p0qULPj4+uLi40KdPH9auXUtcXByNGzdm7ty5hIWFcffuXXbt2sXo0aNVDJMMpw6x7EOL6ouIyEPdL4i5uroanEREHpWnpycff/wxH3/8MStWrGDSpEns3LmTmjVrUrRoUV599VWGDx+uRfj/JVdXV1q1akWrVq144403GDRoEBMnTqR///5ER0dTuHBhdu7c+cDzvLy8AP5Wt567u3uK76Ojoxk6dCivvPLKA/v6+vr+q+sQMUJ8fDzLly9nxYoVHDx4MMW6h3nz5qVp06Z069aNZ555xv7/GREjaA2x7EMFMREReSiLxQKoICaS3fTs2ZOePXty5coVRo4cyfr16xk5ciRjx46lU6dOzJ49Gz8/P6NjZmkVK1a0jxgGBARw8+ZNHB0d8ff3T3X/qlWrsmPHDgYMGPC3zxEQEMCJEycoXbp0mvs4OzvrDZxkOrGxsSxdupRvv/2WQ4cOcfv2bftj3t7etGzZkm7duvH000/j6elpYFKRP5hMJv0+zUb08Z+IiDxUYmIioJFJkezK19eXlStXEhcXx9y5cylYsCCrVq3C39+fChUqsHz5cqMjZnphYWE0b96cr7/+muDgYC5evMjKlSuZOXMmXbp0AaBly5bUq1ePrl27sm3bNi5dusS+ffsYP348Bw8eBGDixIksXbqUiRMncvLkSY4dO8aMGTMeeu7XXnuNffv28dJLLxEUFMTZs2dZt26dfVF9uLf22K5du7h27RqhoaH27eXLl//LdXBOnDhBUFAQ4eHh3L17l6CgIIKCgv7lT0pysujoaD799FPatGlD/vz5cXd3Z9CgQWzduhWr1Urr1q3573//S1RUFGFhYXz//fe8+OKLKoZJpqORyexDHWIiIvJQ9zvEHB31kiGSnZnNZvvC64cPH2bUqFH89NNP9O7dm8GDB9O3b1/eeecdjSqlwsPDg7p16zJ37lzOnz9PUlISxYsXZ/DgwYwbNw6411WwefNmxo8fz4ABA7h9+zY+Pj40btyYQoUKAdC0aVNWrlzJlClTmD59Op6enjRu3Pih565atSo//fQT48ePp1GjRthsNkqVKkWvXr3s+0yePJmhQ4dSqlQpEhIS7AuRnz59mrt37z70+O3bt+fy5cv272vUqAGA7sslfyUyMpKvv/6aNWvWcPjwYfvdVAHy589P27ZtefLJJ+nTpw9ubm4GJhX5+0wmkwpi2YjuMikiIg/11FNPsXTpUr35EcmB4uPjmThxIvPnzyc8PByTyUSdOnWYOXPmXxZqRCRniYiIYPHixaxZs4agoCDu3Lljf6xgwYLUqlWLnj170qtXLy3DIFmWg4MDTZo04YcffjA6iqQDFcREROShevTowbfffquCmEgOt2XLFsaPH8+RI0eAe29wX3jhBcaNG6eRapEcKDw8nK+++oq1a9dy9OhRIiIigHsdNAULFqRu3br06NGDnj176neEZBsODg40atQo1RukSNajgpiIiDxUt27dWLt2rQpiIgJASEgIY8aMYcWKFcTFxeHo6EirVq2YM2cO5cuXNzqeiGSQ0NBQvvzySzZs2MDRo0eJjIwE7hXAfHx8qFu3Lj179iQwMFAFMMm2HB0dqV+/Prt27TI6iqQDFcREROShOnXqxMaNG1UQE5EUrFYrX375JdOmTePChQsAlChRgrFjxzJw4EDMZt27SSQrCwkJ4YsvvmDDhg0cO3aMqKgo4F4BrHDhwjzxxBP06dOHrl27ap1RyTGcnJyoU6cOe/fuNTqKpAMVxERE5KHatWvHd999pwVERSRNp0+f5tVXX2Xbtm1YLBZy5crFk08+yaxZsyhYsKDR8UTkb7h58yYLFixg48aN/Pbbb0RHRwP3CmBFihShXr16PPXUU3Tq1EkFMMmxnJycqFWrFj///LPRUSQdqCAmIiIP1apVK3bs2KGCmIj8JYvFwvTp0/nwww+5desWANWqVWPatGm0b9/e4HQi8mdXr15lwYIFbN68mePHjxMTEwPcu+Ns0aJFadCgAX369KFjx47q+BT5H2dnZ2rUqMH+/fuNjiLpQAUxERF5qObNm/PTTz+RnJxsdBQRyUL27NnDmDFj+OWXX7DZbHh5eTFw4EAmT56Mm5ub0fFEcpzLly+zYMECtmzZwokTJ4iNjQXuFcCKFy9OgwYNePrpp2nTpo0KYCJpcHFxoUqVKhw8eNDoKJIOVBATEZGHaty4Mfv27cNisRgdRUSyoMjISMaOHcvixYuJiorCbDbTqFEjZs+eTc2aNY2OJ5JtXbx4kfnz57N161ZOnjxJXFwccK8A5uvrS6NGjXjmmWdo0aKFCmAif5OLiwuVK1fm0KFDRkeRdKCCmIiIPFT9+vU5cOAASUlJRkcRkSxuxYoVTJo0iZMnTwJQtGhRRowYwYgRI/SGXOQRnT17lgULFvDdd99x+vRpewHMwcEBPz8/GjduzDPPPEPTpk31/zeRf8nV1ZUKFSpw5MgRo6NIOlBBTEREHqpu3bocOXKExMREo6OISDZx5coVRo4cyYYNG0hISMDZ2ZmOHTsyZ84c/Pz8jI4nkiWcPHmSL774gm3btnHmzBni4+MBcHR0xM/Pj6ZNm9KvXz8aNmyoAphIOsmVKxdlypQhODjY6CiSDlQQExGRh6pVqxbHjh0jISHB6Cgiks1YrVY++OADZs+eze+//w5A+fLlmThxIr179zY4nUjmcvz4cRYsWMD27ds5c+aM/XXZ0dGREiVK0LRpU5599lkaNGhgcFKR7MvNzY1SpUpx7Ngxo6NIOlBBTEREHqp69eqcOnXK/smziEhGCAoKYuTIkezcuROr1YqHhwd9+/Zl+vTpeHl5GR1P5LELDg62F8DOnTtn79R2cnKiZMmSNGvWjAEDBlCnTh2Dk4rkHO7u7vj7+3P8+HGjo0g6UEFMREQeqkqVKpw/f95+NyoRkYwUHx/PxIkTmT9/PuHh4ZhMJurUqcOMGTNo0qSJ0fFEMsyhQ4f48ssv2bFjBxcuXLAXwJydnSlZsiQtW7ZkwIABBAQEGJxUJOfy8PCgePHi9rUwJWtTQUxERB6qYsWKXL58mZiYGKOjiEgOs3XrVsaNG2dfvLhAgQK8+OKLjBs3DmdnZ4PTiTya/fv3s3DhQn788UcuXLhgv3mNs7MzZcqUoUWLFgwYMIDq1asbG1RE7Dw8PChatCinT582OoqkAxXERETkocqVK8e1a9eIjo42OoqI5FChoaGMHj2a5cuXExcXh6OjIy1btmTOnDlUqFDB6Hgif8vevXtZtGgRO3fu5OLFi1gsFgBcXFwoW7YsLVu25LnnnqNy5coGJxWRtHh6elKoUCHOnj1rdBRJByqIiYjIQ5UuXZqQkBAiIyONjiIiOZzVamXhwoVMmzaN8+fPA+Dv78/YsWMZNGiQ7qQnmYbVamXPnj189dVX7Ny5k8uXL9sLYK6urpQtW5bWrVvz3HPPqagrkoXkyZOH/Pnz21+DJGtTQUxERB6qZMmShIeHExERYXQUERG7s2fPMmLECL777jssFguurq48+eSTzJo1i0KFChkdT3IYq9XKzp07+eqrr9i9ezeXL18mOTkZgFy5clGuXDnatm3Lc889R5kyZQxOKyL/lpeXF97e3ly4cMHoKJIOVBATEZGH8vPzIyoqivDwcKOjiIg8wGKxMH36dD788ENu3boFQNWqVZk2bRodOnQwOJ1kV1arle3bt/P111+ze/durly5gtVqBe4VwCpWrEibNm0YNGgQJUqUMDitiKSXvHnzkidPHi5dumR0FEkHKoiJiMhDFS9enLi4OEJDQ42OIiLyUHv27OG1117j559/xmaz4eXlxXPPPceUKVNwc3MzOp5kYVarla1bt7JkyRL27NnD1atX7QUwd3d3KlSoQLt27Rg4cCB+fn4GpxWRjOLt7Y2HhwdXrlwxOoqkAxXERETkoYoUKYLFYiEkJMToKCIif0tkZCTjx4/nq6++IjIyErPZTMOGDZk9eza1atUyOp5kAVarlY0bN/LNN9+wb98+rl27lqIAVqlSJTp06MBzzz1HsWLFDE4rIo9Lvnz5cHNz4/fffzc6iqQDFcREROShfHx8ALh586bBSURE/rlvv/2WiRMncuLECeBekX/EiBG8+uqrWoRf7CwWC+vXr2fp0qX8/PPPXL9+nftvkzw8PKhSpQodOnRgwIABFClSxOC0ImKUAgUK4OzszLVr14yOIulABTEREXmoggUL4ujoyPXr142OIiLyr129epVXX32V9evXk5CQgLOzMx06dGDu3LkaccuBLBYLq1evZvny5fzyyy/cuHHDXgDLnTs3VatWpWPHjjz33HMULFjQ4LQiklno7+LsRQUxERF5qPz585MrVy61hotItmC1Wvnwww+ZNWuW/fdauXLlePPNN3nqqacMTicZJTExkVWrVrF8+XL279/PrVu37AUwT09PqlWrRufOnenfvz/58+c3OK2IZFaFChXCbDZz48YNo6NIOlBBTEREHsrb2xtPT0/dTUdEsp2jR4/y6quv8tNPP5GcnIyHhwdPPfUUM2bMwMvLy+h48ggSExNZsWIFy5cv58CBA/Y7kAJ4eXlRrVo1unbtSr9+/fD29jYwqYhkJYULF8Zqtab4nSJZlwpiIiLyUF5eXnh7e3PhwgWjo4iIZIj4+HgmTZrE559/Tnh4OCaTidq1azNjxgyaNm1qdDz5G+Lj41m2bBkrV67kwIED3L592/5Y3rx5qV69Ot26deOZZ55RsVNE/jXdbCp7UUFMREQeytPTk0KFCnH27Fmjo4iIZLjvvvuOcePGceTIEWw2GwUKFOCFF15g/PjxODs7Gx1P/ic2NpZvvvmGVatWcfDgQUJDQ+2PeXt7ExAQQLdu3Xj66afx9PQ0MKmIZCfFihUjPj4+xe8cybpUEBMRkYfy8PCgWLFinDp1yugoIiKPTWhoKKNHj2bFihXExsbi4OBAy5YtmTNnDhUrVjQ6Xo4THR3NkiVLWL16NYcOHSIsLMz+WL58+ahZsyaBgYE89dRTeHh4GJhURLIzX19fYmJiUvwOkqxLBTEREXkod3d3/Pz8OHHihNFRREQeO5vNxqJFi5g6dSrnz58HwN/fn9dff53BgwdjNpsNTpg9RUZGsnjxYtasWcORI0cIDw+3P1agQAFq1apFYGAgffr0wc3NzcCkIpKT+Pn5ERUVleJ3kmRdKoiJiMhDubm5Ubp0aYKDg42OIiJiqLNnz/Lqq6+ydetWLBYLrq6uBAYGMmvWLHx8fIyOl6VFRETw1VdfsXbtWo4cOUJERIT9sYIFC1K7dm169OhBr169cHV1NS6oiORo/v7+REREpPgdJVmXCmIiIvJQrq6uVKhQgSNHjhgdRUQkU7BYLMyYMYMPP/yQmzdvAlC1alWmTp1Kp06dHkuGmAQLl8JiSLRYcXY045/PHXcXx8dy7vQQHh7OwoULWbduHUePHuXu3bsAmEwmChYsSN26denRowc9e/bU2m0ikmmUKlWK0NBQ++8sydpUEBMRkYdycXGhSpUqHDx40OgoIiKZzt69exkzZgw///wzNpsNLy8vBgwYwNSpU9N9lO/srSiW7L/Cj6dDuBIey5//iDcBvt5uNCtXkL51fSlTKHe6nvtRhYaG8uWXX7J+/XqCg4OJjIwE7hXAfHx8qFu3Lr169aJ79+4qgIlIplW6dGlu376tglg2oYKYiIg8lLOzMzVq1GD//v1GRxERybSioqIYN24cX331FZGRkZjNZho2bMisWbOoXbv2A/vfX5TZ19f3L4/9e3gs49YcY/e5UBzMJpKtaf/5fv/xRqXzM61bFYp7G7O+1q1bt/jiiy/YuHEjx44dIyoqCrhXACtcuDD16tWjd+/edO3aFUfHrNPZJiI5W9myZblx44b9d5pkbSqIiYjIQzk5OVGnTh327t1rdBQRkSxh1apVvPnmm/abkRQpUoRhw4YxatQo+yL8Tz/9NKtXr2bPnj0EBASkeaxlB64wcf1xLFbbQwth/5+D2YSj2cRbnSvRu/ZfF90e1Y0bN+wFsN9++43o6GjgXgGsSJEi1K9fnz59+tCpUycVwEQkyypfvjxXr161/46TrE0FMREReShHR0fq16/Prl27jI4iIpKlXL16lZEjR7Ju3ToSEhJwcnKiQ4cOjB8/nnr16mGxWMifPz+HDh1KtVPswx/PMmvbmUfOMap1WV5qVuaRj/NnV69eZcGCBWzevJnjx48TExMDgNlspmjRojRo0ICnnnqKDh066E6cIpJtVKhQgStXrth/50nWpoKYiIg8lIODA02aNOGHH34wOoqISJZktVr56KOPePfdd/n9999TPObg4EDp0qXZv38/efLksW9fduAKr68+lm4ZZnSvQq9UOsXCw8OZNGkSw4YNo1SpUmk+//Lly/YC2MmTJ4mNjQXuFcCKFy9OgwYNePrpp2nTpo0KYCKSbVWqVImLFy/afwdK1qZ+ZREReSibzabxFhGRR2A2m3n55Zd5+eWXOXLkCPXq1SMhIQGA5ORkzpw5Q8eOHdmxYwfOzs6MeG0882ZOS3kQkxlzrtw4F/DDvUorPCo3S/Fw0p3rROxeQvylo1gTonHMnR+3cg3IU78XZhc33lx/nPql8qdYU+zcuXO0adOGCxcu4OHhwbRpf5zzwoULLFiwgK1bt3Ly5Eni4uLs1+Lr60ujRo145plnaNGihQpgIpJjODg4oJ6i7EPvcERE5C85ODgYHUFEJFu4du2avRh2n81mY8+ePZQsWZKffvqJHSdvPfhEmxVr7F3iLwcTfzmY5Jg75KnbHYDEWxe4+c1YbAl/jPBYIm4SuX8VcReP4NN3OhazO+PWHGPxwLoA7N69m06dOtnXwdm0aRPJycls27aNU6dOER8fD9z7/e/n50fjxo155plnaNq0qQpgIpJjmUwmoyNIOlJBTEREHkodYiIi6Wfbtm0pvjebzeTKlYukpCRu3LhBhSea41augf1x15I1yVOvJ7bkJKIObyLuzM8ARB3aaC+IhW1+z14M86jellylahP56xoSfv+NpJAL3N27jLzNn2P3uVDOhUTxy7Z1DBgwgOTkZHunQ3BwMMHBwTg6OuLn50fTpk159tlnadiwod4Aioj8j9lsVodYNqJ3OCIi8pecnJyMjiAiki1MmzaNfv364e3tTb58+cidO7e94yo2Npb/fLGTtcu/tu/v4OaFa/FK9752z2sviCXH3AEg4fppEm+dB8ApX3G82/wHk8mEc+EyXPvwWcBGdPA2vJr0w8HBgTYvvc2FlTNSzTZv3jyGDRuWUZcuIpLlaWQye1FBTERE/pI6xERE0oeHhwe1atVK9TE3NzcuxOUitfdatuQk4s7+Yv/euYAfAAlXT/yxrUg5ezeXo4c3jnkKYrl7C2t8NEmhVzAVKklyvtI4OjpisVju7fenr0NDQ9PlGkVEsiuTyaSCWDaidzgiIvKXVBATEcl40QkWroSnvHNZzG87iPltR4ptZrc85G05FADL3RD7dgd3r5T7uXvB3XvrkVkibuJcqCSOXoWJiI4j5m44P//8Mz///DO7d+/m4MGDhIeHp/9FiYhkI1pDMXvROxwREUmT1WoFNDIpIvI4XA6L4e/0HZgcnbEl3iucWZPi/9jukPJ3tcn8x5/61qR7C/nbgEthMVQqUpAuXbrQpUsXACwWi26gIiLyFzQymb2oICYiImm6P0ajgpiISMZLtFgf2HZ/UX2sycRfPc7d3d+QHHmb26unUfT5+ZidXO372pKTUjzXZrXYvzY7uTz0PFarFbPZrAX0RUQeQovqZy/q9xMRkTTFx9/rPNDIpIhIxnN2fPBP8/uL6rv6VcWrQR9cSwYAYLMkEHtuP455Ctr3TY6JSPHc5Og79q8dvXxSnMdisfDrr78yffp0WrRogaenJ08//XQ6X5GISPaikcnsRe9wREQkTYmJiYAKYiIij4N/Pnf+sj/rT50J1rgoXP2q2r9PuHYKm82GyWTCEhVKcuRtAMyuHjjl97U/v2nNSkSG3yYxMREHBwf7eHzevHnT83JERLIdjUxmL3qHIyIiabrfIaaRSRGRjOfu4oivtxt3/rQtOTaC+N+PgzWZhGuniL8UZH/MybsoLkXK4VyoFIm3zmMJv0r41g/JVboOkb+ugf+tSOZRtTUmh3t/9lujQgi9ee2P4ycn27+22WzEx8fj6vrHGKaIiPxBHWLZiwpiIiKSpoSEe4swqyAmIpI+jh8/zvr16/Hy8krxn6enJ+fOncN27Qp/XsYr/sIh4i8ceuA4zoVKkat0HQDytR/GzW/GYkuIIfrod0Qf/c6+n1PBkuRp0BsAB7OJ/m3qUrjqf/nPf/6D1WpN0enwySef8Mknn+Dp6UmZMmVo3LgxPXr0oG7dunoTKCKC1hDLblQQExGRNN0fmVRBTEQkfaxYsYLJkyen+XiFJ5pjcyiU6mMmRxcc8/qQq8wT5KkbaO/6ci5UksLPziFizzfEXzqKNSEaR498uJVvSJ76vTC7uAGQbLXx9BO+lC44lGrVqtG5c2fu3LmDxWLB3d2d6dOn89133xEUFERQUBCHDh1i7ty5mM1mChYsSNWqVWndujW9evWiWLFi6f/DERHJ5HQ33uzFZFN5U0RE0hAUFESNGjWYNGkSEydONDqOiEiWd/bsWcqWLZvqY0899RRff/01/b74lX0Xwki2pt+f6Q5mE/VL5mPxwLr2bTdu3KBbt27s37+fli1b8v3336d4TnBwMMuXL2fnzp2cPHmSO3f+GOZ0cXHB19eX2rVr07lzZ7p06aJRSxHJ9tq3b8/WrVvtay9K1qYOMRERSdP9kUktqi8i8ugSExP56quvcHJyIikpKcVjI0aMYM6cOQBM61aFlnN/SteCmKPZxLRuVVJsK1y4MLt27eLtt9+mXr16DzynatWqVK36x6L9FouFzZs3s3btWn755RcuXbrE2bNn+eabbwDw9PSkbNmyNG7cmJ49e1K7dm2NWopItqKRyexFHWIiIpKm3bt307hxY2bOnMno0aONjiMikiWdP3+eYcOG8d1332GxWHBxcbF/4ODg4ED79u1Zs2ZNilGcZQeu8PrqY+mWYUb3KvSq7Ztux7vv9u3brFixgq1btxIUFMSNGzfsC/WbzWYKFSpE1apVadWqFX369KFIkSLpnkFE5HHp2rUr69atU1Esm9BHNiIikqb7a4g5OzsbnEREJOtZsWIF5cuXp3Tp0mzatInixYvzxRdfEBsbi5+fHwAVK1Zk6dKlD6xL07u2L6Napz5a+U+Nbl0uQ4phAAUKFOA///kPGzZs4Pfff8disRAUFMTYsWOpW7cu8fHxfPfdd4waNYqiRYvi6upK2bJlefrpp1mxYoX9bsYiIlmBul6zF83AiIhImnSXSRGRfyY2Npbx48fzxRdfEBkZidlspkWLFsybN4/KlSvb95s0aRIzZsxgy5YtuLu7p3qsl5qVIb+HCxPXH8ditf2jEUoHswlHs4nJnStlWDEsLdWqVaNatWr27xMTE9myZQvr1q3jl19+4eLFi5w9e5YlS5YAkCdPngdGLU1/vtWmiEgmoYJY9qKRSRERSdPatWvp1q0bn3/+OYMGDTI6johIphUcHMyIESPYuXMnVquVPHnyMHDgQKZMmYKbm9sjHfv38FjGrTnG7nOhOJhNDy2M3X+8Uen8TOtWheLej3bujBISEsLy5cvtd7W8efNmqqOWrVu3pnfv3hq1FJFMoXfv3ixfvlwjk9mECmIiIpKmFStW0KtXLxYtWkS/fv2MjiMikqlYrVa++OIL3n77bS5dugRA+fLlmTJlCk8++WS6n+/srSiW7L/Cj2dCuBIWy5//iDcBvvncaFa2IE8/4UvpgrnT/fwZLSgoyH5Xy1OnThEREWF/zMXFBT8/P+rWrUvnzp3p1KkTLi4uxoUVkRzpqaeeYunSpSqIZRMamRQRkTRpDTERkQdFREQwevRovvnmG2JjY3F0dKRjx468//77lChRIsPOW6ZQbiZ1rsQkKhGTYOFSWAyJFivOjmb887nj7pK1/7SvXr061atXt3+fmJjI5s2b7aOWly5d4syZMyxevBi4N2pZrly5FKOWIiIZSSOT2UvWftUUEZEMpTXERET+8Msvv/Dqq6/yyy+/YLPZyJcvHyNHjmTChAmP/YMDdxdHKhXJ81jP+bg5OzvTtWtXunbtat92f9Ry69atHD16lEOHDvHrr78ya9Ys+6hltWrVaNOmDb1798bHx8e4CxCRbMfR8V4JxWq1qjiWDehfUERE0mSxWAA0liIiOZbVamXu3LkULVqUevXq8fPPP1O1alW2bt1KaGgokydPVhftY1SwYEFefvllNm3axNWrV7FYLBw6dIjXXnuNOnXqEBcXx9atWxkxYgSFCxcmV65clCtXjn79+rFq1Sp757OIyL9xvwh2/29kydrUISYiImm6/8ZBBTERyWlu3rzJyJEjWbVqFQkJCTg7O9OrVy/mzJmjBd4zmYCAAAICAuzfJyYmsnHjRtavX8/+/fvTHLVs0qQJPXv2pFatWkZFF5Es5n6HWFJSkj4MyQZUEBMRkTTdL4hpZFJEcoodO3YwevRojhw5AkDhwoUZMWIEI0eO1HhMFuHs7Ez37t3p3r27fdvNmzftd7X886jlu+++i9lsxsfHh2rVqtnvaqlRSxFJjYODA6AOsexCr+oiIpKmpKQkQB1iIpK9WSwWJk+eTMGCBWnZsiVBQUHUrVuX3bt3c/36dUaPHq1iWBbn4+PDsGHD2Lx5M9euXcNisXDw4EHGjBlD7dq1iY2NZcuWLSlGLcuXL8+zzz6rUUsRsbv/WnD/b2TJ2tQhJiIiadLIpIhkZ5cvX2b48OFs2rSJpKQkcuXKxYABA5g1axbe3t5Gx5MMVrNmTWrWrGn/PjExkQ0bNthHLS9fvszp06f56quvAPDy8rKPWvbq1SvFmKaI5Ax/HpmUrE8FMRERSdP9F3utkSAi2cmaNWuYMGECJ06cAMDPz4+xY8cyePBgdYLlYM7OzgQGBhIYGGjfdvPmTZYtW8a2bds4evQoBw4cYP/+/cycORMHBwcKFSpE9erV7Xe1LFiwoIFXICIZ7f7IpApi2YNe8UVEJE26y6SIZBfx8fGMGTOGvHnz0r17d06dOkXTpk05cuQIly5dYujQoSqGyQN8fHwYPny4fdQyOTmZAwcOMHr0aGrWrElMTAybN29m2LBhFCpUiFy5clGhQgX69+/PmjVrNGopks3cL4glJycbnETSgzrEREQkTRqZFJGs7uTJkwwfPpwdO3aQnJxM7ty5efnll5k2bRoeHh5Gx5MsqFatWinuTJmQkJBi1PLixYucOnWKRYsWAfdGLcuXL28ftaxRo4ZR0UXkEalDLHvRx2AiIpImjUyKSFb11VdfUbp0aSpWrMi2bdsoWbIkX3/9NZGRkbz//vsqhkm6cXFx4cknn+Srr77i9OnTxMfHc+3aNebMmUPbtm3JlSsXv/76KzNmzCAgIABHR0eKFStGhw4d+OCDDwgJCTH6EkSyrNu3b/PCCy/g6+uLi4sLPj4+tGnThr1792bI+f5JQczf35958+b943OcPn2aZs2aUahQIVxdXSlZsiQTJkxQES4DqENMRETSdP+F19XV1eAkIiJ/LSoqitdee43FixcTHR2Ng4MD7dq1Y968eZQtW9boeJKDFClShBEjRjBixAj7tgMHDrBixQp++uknzpw5w+bNm9m8eTOvvPIKrq6u+Pv788QTT9C1a1fat2+Pk5OTgVcgkjUEBgaSmJjIokWLKFmyJLdu3WLHjh2EhYVlyPkex8ikk5MT/fr1IyAgAC8vL44ePcrgwYOxWq1MmzYtw86bE5lsNpvN6BAiIpI5DR48mPnz5xMXF6eimIhkWocOHWLEiBHs3bsXq9VK3rx5ef7555k0aZI6XCXTio+Pt49a/vrrr1y+fJmEhAT7415eXlSoUME+alm9enXjwopkQhEREeTNm5edO3fSpEmTh+43atQo1q1bR0JCArVq1WLu3LlUq1bNvs+GDRuYPHkyx44dw8PDg0aNGrFmzRrgXqfXwIEDOXv2LCtWrCAhIYGDBw8SFxfH2LFjOXjwIPnz56dbt2688847uLu707RpU3766acUOR6l9PLqq69y4MABdu/e/a+PIQ/SyKSIiKRJI5MikllZrVY+/PBDfH19qVWrFrt376ZixYqsW7eO8PBwpk2bpt9dkqm5urrSo0cPFi9enGLUcvbs2bRp04ZcuXKxf/9+pk+fTo0aNeyjlh07duTDDz8kNDTU6EsQMZSHhwceHh6sXbs2RTH5/+vRowchISFs2bKFQ4cOERAQQIsWLQgPDwdg06ZNdOvWjfbt23PkyBF27NhBnTp1Uhxj1qxZVKtWjRdffBGAS5cu0bZtWwIDAwkODmb58uXs2bOHl156CYDVq1dTrFgxJk+ezI0bN7hx44b9WCaTiYULF/7t6zx37hxbt259aNFP/h11iImISJqefvpplixZ8kifaImIpKfQ0FBGjhzJihUriI+Px8nJiU6dOjF37lx8fX2NjieSrqxWq33Ucvfu3Zw+fZrIyEj747ly5Xpg1NLRUaviSM6xatUqBg8eTFxcHAEBATRp0oTevXtTtWpVAPbs2UOHDh0ICQlJcZOo0qVLM2bMGIYMGUL9+vXt60ymxt/fnxo1arBmzRqmT5/O2LFj6dixI0WKFOHTTz+177dnzx6aNGlCTEyMfQx6+PDhDB8+PMXxypcvzzvvvEO3bt0eem3169fn8OHDJCQkMGTIED755BPdDTmd6acpIiJpslgsRkcQEQFg165d1KlTh4IFC/LVV1/h6enJ1KlTiY2NZdWqVSqGSbZkNpupW7cus2fP5tdff+Xu3bvExcWxbNky+vbtS7Fixbhw4QJffvklXbp0wcnJCW9vb+rXr8+4ceMIDg42+hJEMlRgYCDXr19n/fr1tG3blp07dxIQEGDvwDp69CjR0dHky5fP3lHm4eHBxYsXOX/+PABBQUG0aNHioee5f2fZ+wXns2fPsnDhwhTHbNOmDVarlYsXLz70WKdOnfrLYhjA8uXLOXz4MN988w2bNm1i1qxZf/kc+Wf08YGIiKRJd7MRESNZrVZmzpzJvHnzuHXrFiaTiYCAAGbOnEnz5s2NjidiCFdXV3r16kWvXr3s265evcry5cvZtm0bwcHB7N+/n59//pl33nkHBwcHChcuTPXq1Wnbti29evUif/78Bl6BSPpydXWlVatWtGrVijfeeINBgwYxceJE+vfvT3R0NIULF2bnzp0PPM/Lywu412n5V9zd3YE/CmJxcXEMHTqUV1555YF90+sDmuLFiwNQsWJFkpOTGTJkCCNHjrQv7C+PTgUxERFJkzrERMQIV69eZcSIEaxfv57ExERcXV155plnmDVrFgULFjQ6nkimU6xYMUaOHMnIkSOBe8XkX3/9lZUrV7Jr1y7OnDnDxo0b2bhxIy+99BK5cuWiRIkS9lHLdu3aadRSso2KFSuydu1aAAICArh58yaOjo74+/unun/VqlXZsWMHAwYM+Mtj3y9GlSpVihMnTlC6dOk093V2dk63u1FarVaSkpKwWq0qiKUjjUyKiEiaLBYLJpPJ6BgikkNs3ryZqlWrUrx4cb799lsKFizI+++/T0xMDF999ZWKYSJ/k9ls5oknnmD27NkcOHAgxajlU089RbFixTh//jxffPEFnTt3to9aNmjQgPHjx/Pbb78ZfQkifyksLIzmzZvz9ddfExwczMWLF1m5ciUzZ86kS5cuALRs2ZJ69erRtWtXtm3bxqVLl9i3bx/jx4/n4MGDAEycOJGlS5cyceJETp48ybFjx5gxY0aq57xfjOrevTv79u3jpZdeIigoiLNnz7Ju3Tr7ovpwb+2xXbt2ce3atRQ3wShfvrz9DpapWbJkCStWrODkyZNcuHCBFStWMHbsWHr16oWTk9Mj/9zkD/oYQERE0qQOMRHJaImJibz11lv897//JTw8HJPJRMOGDZkzZw61a9c2Op5ItpHWqOWyZcv4/vvvCQ4O5pdffmHfvn1MmzbNPmpZo0YN+6hlvnz5DLwCkZQ8PDyoW7cuc+fO5fz58yQlJVG8eHEGDx7MuHHjgHt3dNy8eTPjx49nwIAB3L59Gx8fHxo3bkyhQoUAaNq0KStXrmTKlClMnz4dT09PGjdunOo573dSFi9enJ9++onx48fTqFEjbDYbpUqVSvH/r8mTJzN06FBKlSpFQkKC/SZVp0+f5u7du2lel6OjIzNmzODMmTPYbDb8/Px46aWXGDFiRLr83OQPusukiIikqUWLFuzcuTPd2r1FRO47d+4cw4YNY9u2bVgsFtzd3XnmmWeYMWMGnp6eRscTyZGsViv79++3j1qePXv2gbtalihRwt5x07ZtW41aSo6yYMECBg0axLfffktgYKDRceQR6beXiIikKTk5WSOTIpKuli9fzptvvsmZM2cAKFmyJBMmTPhba7eISMYym83Uq1ePevXq2bfFxsaybt06NmzYwIEDBzh37hwnTpxgwYIFAHh7e1O+fHmaNWtG7969qVy5slHxRTLc/QKwpiiyBxXEREQkTVpDTETSQ2xsLGPHjmXhwoVERkbi4OBAy5YtmTdvHpUqVTI6nog8hJubG3369KFPnz72bVeuXGH58uV8//33HDt2zD5q+fbbb+Pg4ECRIkWoUaMG7dq1o2fPnnh7ext4BSLpRwWx7EWL6ouISJr0Yi8ijyI4OJjmzZuTO3du3n//fUwmEyNHjiQ6Oprvv/9exTCRLMrX15fRo0ezbds2bty4QVJSEnv27GH48OFUr16diIgI1q9fzwsvvEC+fPlwc3OjcuXKDB48mE2bNunvC8my7hfEtJxI9qAOMRERSVNycjJmsz47EZG/z2q1smDBAt5++20uX74M3Luj1tSpU7Xeikg2ZTabadCgAQ0aNLBvi42NZc2aNWzcuJGDBw9y9uxZjh8/zvz584F7o5YVKlSgefPm9O7dm4oVKxoVX+RvU4dY9qKCmIiIpElriInI3xUREcGoUaNYunQpsbGxODo60rlzZ+bNm0eJEiWMjicij5mbmxt9+/alb9++9m1Xrlyx39Xy2LFj7Nu3j7179zJlyhQcHR0pXLgwAQEBtGvXjh49emjUUjIdFcSyF33sLyIiadIaYiLyV37++Wfq16+Pt7c3CxYswM3NjYkTJxIXF8e6detUDBMRO19fX8aMGcP333/PzZs3sVgs7N69m1deeYWqVasSERHBunXreP7558mXLx/u7u5UrlyZIUOGsGXLFhUhxHAODg6ARiazC3WIiYhImqxWqwpiIvIAq9XKvHnzmDVrFjdu3ACgevXqzJgxg9atWxucTkSyCrPZTMOGDWnYsKF9259HLQ8cOGAftfz8888xmUz2UctmzZrRp08fKlSoYOAVSE6jDrHsRQUxERFJk9YQE5E/u3nzJiNGjGDNmjUkJCTg4uJC7969mTNnDoULFzY6nohkA6mNWl6+fJmlS5eyfft2jh07xt69e9mzZ4991LJIkSL2UcuePXvi5eVl3AVItubk5ASoQyy70LscERFJk9YQExGA77//nho1alC4cGGWLVuGt7c3s2bNIjY2lqVLl6oYJiIZys/Pj9dff53t27dz69YtLBYLu3btso9a3rlzh7Vr1zJ06FDy5s2Lu7s7VapUYejQoWzdulXdPJJudJfJ7EUdYiIikiZ1iInkXBaLhbfffpsPP/yQ0NBQTCYTTzzxBLNmzUpxJzkRkcfNbDbTqFEjGjVqZN8WGxvL6tWr7aOWZ86c4bfffuOzzz6zj1pWrFjRflfL8uXLG3gFklXdX0MsKSnJ4CSSHkw2m81mdAgREcmc/P39uXv3Lnfu3DE6iog8JpcvX2bYsGFs2rQJi8VCrly5eOqpp3j33XfJmzev0fFERP62ixcvsmzZMrZv385vv/3G7du3uf/298+jlu3bt6dHjx4atZS/tH//fp544gmmTp3K+PHjjY4jj0gf+4uISJqsVqs6xERyiNWrV1OxYkX8/f1Zt24dRYsW5dNPPyU6Opr58+erGCYiWU6JEiUYO3YsO3bssI9a/vTTT7z88stUqVKF8PBw1q5dy5AhQ+yjllWrVuX555/nu+++w2q1Gn0JksloZDJ70cikiIikSSOTItlbfHw8b7zxBvPnzyciIgKz2UyzZs2YM2cO1atXNzqeiEi6MpvNNG7cmMaNG9u3RUdH20ctDx06xKlTpzh27BiffvrpA6OWffr0oVy5cgZegRhNBbHsRSOTIiKSpsKFC2O1Wrl165bRUUQkHZ08eZJhw4bxww8/kJycTO7cuRkwYABvv/02Hh4eRscTETHUxYsXWbp0KTt27Eh11LJo0aIEBATQoUMHnnzySfLkyWNwYnlcjh8/TuXKlRk3bhxvv/220XHkEakgJiIiaSpUqBBms5kbN24YHUVE0sFXX33FW2+9xYULFwAoU6YMb731Fn369DE4mYhI5mW1Wtm1axerVq1iz549nDt3jujoaPvj7u7ulCxZkgYNGtC9e3datGihDvts6syZM5QrV47XX3+dd955x+g48og0MikiImmyWq04OTkZHUNEHkFkZCSvvfYaixcvJiYmBgcHB9q1a8d7771HmTJljI4nIpLpmc1mmjZtStOmTe3boqOjWbVqFZs2beLgwYP2Ucv//ve/mEwm8uXLR8WKFWnRogW9e/embNmyxl2ApJv7I5MWi8XgJJIe1CEmIiJpypcvH+7u7ly5csXoKCLyDx08eJARI0awd+9ebDYb3t7eDB06lEmTJuHs7Gx0PBGRbOf8+fMsW7bMPmoZGhpqH7V0cnKiSJEi1KxZ035XS09PT4MTyz915coV/Pz8GDFiBHPmzDE6jjwiFcRERCRNefPmxcvLi4sXLxodRUT+BqvVyscff8yMGTO4evUqAFWqVGHatGl07NjR4HQiIjmL1Wpl586drFq1in379qU6almqVCnq169PYGAgzZs316hlJnfjxg2KFCnCK6+8wnvvvWd0HHlEGpkUEZE0Wa1W/WEmkgWEhoYycuRIVqxYQXx8PE5OTgQGBjJv3jyKFStmdDwRkRzJbDbTvHlzmjdvbt8WFRVlH7U8dOgQJ0+eJDg4OMWoZaVKlex3tdRoe+aiu0xmL+oQExGRNOXOnZvChQtz5swZo6OISCp27tzJ6NGjOXToEDabjUKFCjFs2DBGjx5t/6NdREQyt/Pnz9vvann8+PEHRi2LFi1qH7V88sknNWppoIiICPLmzcvzzz/PJ598YnQceUQqiImISJo8PDwoXrw4J0+eNDqKiPyPxWLh3Xff5b333uPWrVuYTCZq1qzJu+++m2LBZxERyZqsVis//vgjq1evZu/evZw7d46YmBj74+7u7pQuXdp+V8tmzZqpo/8xiYmJwcPDg8GDB/PZZ58ZHUcekQpiIiKSJjc3N0qWLMlvv/1mdBSRHO/q1asMHz6c9evXk5SUhKurKz179mT27Nnkz5/f6HgiIpKBIiMjU4xaXrt2jaSkJABMJhP58+enUqVKtGjRgj59+lCqVCmDE2cvd+/e5fTp08THx9OkSRPat2/PmDFjyJs3L1WrVjU6nvxLKoiJiEiacuXKRdmyZTl69KjRUURyrE2bNjF27FiOHTsGQLFixXjttdd48cUX1REgIpKDnT171n5Xy+PHjxMWFpZi1LJYsWLUrFmTDh068OSTT+Lh4WFw4qwrMDCQ1atXp/rYnTt38PLyeryBJF2oICYiImlydXWlUqVKHDp0yOgoIjlKYmIikyZN4tNPPyU8PByTyUSDBg2YO3cutWrVMjqeiIhkQvdHLVetWsXevXs5f/58ilFLDw8PSpUqRYMGDQgMDKRp06b6YOVv+uabb+jbt2+KbWazmaZNm7Jjxw6DUsmjUkFMRETS5OzsTLVq1Thw4IDRUURyhLNnzzJs2DC2bdtGcnIy7u7u9OvXj+nTp2sRZRER+cciIyNZuXIlmzdv5tChQ1y/fv2BUcvKlSvbRy1LlixpcOLMKTk5mYoVK3Lu3DmsVqt9++7du2nYsKGByeRRqCAmIiJpcnJyolatWvz8889GRxHJ1pYtW8abb77J2bNnAShVqhRvvPEGzz77rMHJREQkuzlz5ox91PLEiRNpjlp27NiRwMBAjVr+z7fffkuPHj2Ae8XEhg0bsmvXLoNTyaNQQUxERNLk6OhIvXr12L17t9FRRLKd2NhYxo4dy5dffklUVBQODg60aNGCefPmUaFCBaPjiYhIDmG1WtmxY4f9rpYXLlx4YNSydOnSNGzYkMDAQBo3bpwjRy2tVitVq1bl+PHjAOzYsYPmzZsbnEoehQpiIiKSJgcHBxo1asTOnTuNjiKSbQQHBzNs2DB27dqF1WrFy8uLQYMGMWXKFFxdXY2OJyIiQkREhP2ulocPH+batWtYLBYg5ahly5Yt6dOnDyVKlDA48eOxfv16unTpQt68eQkLC8NkMhkdSR6BCmIiIpImBwcHmjVrxvbt242OIpKlWa1W5s+fz7Rp07h8+TIAFSpUYOrUqXTv3t3gdCIiIn/t9OnTLFu2jB9++IHjx48THh6eYtSyePHi9lHL7t27Z8tRS5vNhqOjI8888wwLFy40Oo48IhXEREQkTWazmdatW7N161ajo4hkSXfu3GHUqFEsXbqUuLg4HB0d6dChA++99x5+fn5GxxMREfnXrFYr33//PWvWrGHfvn2cP3+e2NhY++MeHh6UKVOGBg0a8OSTT9KoUaMsP2oZk2ChXK2GDBw8lJ5Pdsc/nzvuLo5Gx5J/SQUxERFJk9lspn379mzcuNHoKCJZyr59+xg5ciT79+/HZrNRoEAB/vOf/zB+/HgcHfWHs4iIZE8RERH2u1oeOXLkgVHLAgUK2Ectn3rqqSzx4dDZW1Es2X+FH0+HcCU8lj8XUEyAr7cbzcoVpG9dX8oUym1UTPkXVBATEZE0mUwmunTpwtq1a42OIpLpWa1W5s6dy+zZs7lx4wYANWrUYMaMGbRq1crgdCIiIsY4efIky5cv54cffuDEiRMpRi2dnZ0pVqwYtWvXto9aurm5GZz4nt/DYxm35hi7z4XiYDaRbE27dHL/8Ual8zOtWxWKe2eOa5CHU0FMRETSZDKZCAwM5NtvvzU6ikimdfPmTUaMGMGaNWtISEjAxcWF7t27M2fOHHx8fIyOJyIikqkkJyenGLW8cOFCilHL3LlzU7p0aRo1akRgYCANGzZ87KOWyw5cYeL641istocWwv4/B7MJR7OJtzpXondt3wxMKOlBBTEREUmTyWSiV69eLFu2zOgoIpnOtm3beO211wgKCgKgSJEijBw5kuHDh2f5NVJEREQepzt37rBy5Uq2bNnC4cOHuX79+gOjllWqVLHf1TIjRy0//PEss7adeeTjjGpdlpealUmHRJJRVBATEZE0mUwm+vbty9dff210FJFMwWKxMHXqVD766CNCQ0MxmUw88cQTzJ49m3r16hkdT0REJNs4ceKEfdTy5MmThIWF2R9zdnamePHi1KpVi06dOtGtW7eHjlrabDaee+45nnjiCYYMGYLJZEp1v2UHrvD66mPpdg0zulehlzrFMi0VxEREJFUWiwUnJyf69+/Pl19+aXQcEUNdunSJYcOGsXnzZiwWC25ubvTp04dZs2bh5eVldDwREZFsz2Kx2Ectf/7551RHLcuUKUPDhg3p0aMH9evXt3dsX716leLFiwPw3HPP8fHHH+Pi4pLi+CNeG8+8mdNSntRkxpwrN84F/HCv0gqPys3sD8VfOUb0bz+QcO0klrBr8L/l9gv1mYarX1UAXBzNbB/RRGuKZVK6zZGIiKQqMTERACcnJ4OTiBhn1apVvPHGG5w8eRIAPz8/xo8fz8CBAzUWKSIi8hg5OjrSrl072rVrZ98WHh5uH7U8cuQIwcHBHD58mPfffx+TyUTBggWpUqVKijU9Fy5cyNGjR1m3bh1Fixa1b99x8taDJ7VZscbeJf5yMPGXg0mOuUOeut0BiD3zMzHB3z80s8VqY9yaYyweWPcRr14yggpiIiKSqvj4eODeHx8iOUl8fDwTJkxg/vz53L17F7PZTLNmzZg3bx5Vq1Y1Op6IiIj8j7e3N0OHDmXo0KH2bb/99hsrVqywj1pu3749xXOsViuHDx+mfPnyrFmzhpYtW3L2VhRXwv/oNnMtWZM89XpiS04i6vAm4s78DEDUoY32gpiDuxdu5RrgUrQ8UUFbsYRfeyBfstXG7nOhnAuJonTB3BnxI5BHoHc5IiKSKnWISU5z/Phxhg8fzo8//khycjKenp4MGzaMadOmZZpbwIuIiMjDVa5cmcqVKzN58mTg3qhl1apV7d3ecG9NsejoaFq1akWVKlWo1G9SinXFHNy8cC1e6d7X7nntBbHkmDv2ffLU62n/OubUnjTzOJhNfP3LFSZ1rpQ+FyjpRr3+IiKSqoSEBODeoqUi2dmiRYsoVaoUlStXZvv27ZQqVYqlS5dy9+5d5s2bp2KYiIhIFnfx4kXgj8kHBwcHSpUqRbVq1ShTpgwnIkyktry6LTmJuLO/2L93LvDP726ZbLXx45mQf5lcMpI6xEREJFUamZTsLDIyktdee43FixcTExODo6Mj7du357333qN06dJGxxMREZF0kpSUhLe3N4ULF6Z169Y0b96c+vXr2z/wik6wUGXSdymeE/PbDmJ+25Fim9ktD3lbDuXfuBIWS0yCBXcX/V2dmehfQ0REUpWUlARoZFKylwMHDvDqq6+yd+9ebDYb3t7eDBs2jIkTJ6obUkREJBvKlSsX1649uL7XfZfDYniwN+xBJkdnbImxf71jKmzApbAYKhXJ86+eLxlDBTEREUnV/Q4xFQkkq7NarXz00UfMnDmTq1evAlClShWmT59O+/btDU4nIiIiRkq0WB/Ydn9RfazJxF89zt3d35AceZvbq6dR9Pn5OHjkTZfziLFUEBMRkVTdX0NMI5OSVd2+fZuRI0eycuVK4uPjcXZ25sknn2Tu3LkUK1bM6HgiIiKSCTg7Pri0+p8X1Xf1q0rCtVPEXziEzZJA7Ln95K7eNl3OI8bSv4iIiKTq/l0m1SEmWc3OnTupVasWhQoVYvHixeTJk4d33nmH2NhYVq5cqWKYiIiI2Pnnc8f0Vzv9acF9a1zUPz6H6X/nkcxFH/uLiEiqVBCTrMRisTBz5kzee+89QkJCMJlM1KpVi1mzZtG4cWOj44mIiEgm5e7iiK+3G3f+tC05NoL434+DNfled9ilIPtjTt5FAUgMvUJS6BUgZZEs/vffSI6LvHfs8g0B8M3npgX1MyH9i4iISKruj0yqICaZ2e+//86IESNYv349SUlJuLq60q9fP2bPnk3+/PmNjiciIiJZQLNyBQk2/dEnFn/hEPEXDj2wn3OhUuQqXQeA2JO7ubt36QP73N3zjf1r99c34mA20axswQxILY9KBTEREUmV7jIpmdmGDRsYN24cv/32GwDFixfn9ddf5/nnn8ds1ooQIiIi8vf1revLPFvq95o0ObrgmNeHXGWeIE/dQEwO/6yMkmy18fQTvukRU9KZCmIiIpIqjUxKZpOYmMjEiRP59NNPuXPnDmazmUaNGjFnzhxq1apldDwRERHJosoUyk2nAcPY1+Rpkq2pF8b+P69GffFq1Peh+ziYTdQvmY/SBXOnR0xJZ/oIVUREUqWCmGQWZ8+epX379ri5uTF9+nSSkpJ48cUXuXPnDrt27VIxTERERB7ZtG5VcDT/5fL6/4ij2cS0blXS9ZiSflQQExGRVKkgJkZbunQpZcuWpWzZsmzZsgV/f38WLVpEVFQUH330EZ6enkZHFBERkWyiuLcbb3WulK7HnNy5EsW93dL1mJJ+NDIpIiKpur+GmApi8jhFR0czbtw4Fi5cSFRUFA4ODrRu3Zp58+ZRoUIFo+OJiIhINta7ti+h0QnM2nbmkY81unU5etXW2mGZmTrEREQkVeoQk8cpKCiIZs2akSdPHj744AMcHBwYPXo00dHRfPfddyqGiYiIyGPxUrMyTO9eBRdHMw7/cITSwWzCxdHMjO5V+E+z0hmUUNKLOsRERCRV9wtiLi4uBieR7MpqtfL555/zzjvvcPnyZQAqVqzI1KlT6datm8HpREREJKfqXduXBqXyM27NMXafC8XBbHroYvv3H69fMh/TulXRmGQWoYKYiIik6v7IpApikt7Cw8MZNWoUy5YtIy4uDicnJ7p27cq8efPw8/MzOp6IiIgIxb3dWDywLmdvRbFk/xV+PBPClbBY/lwWMwG++dxoVrYgTz/hq7tJZjEqiImISKq0hpikt7179zJy5Eh+/fVXbDYbBQoU4PXXX2fcuHE4OupPEhEREcl8yhTKzaTOlZhEJWISLFwKiyHRYsXZ0Yx/PnfcXfQ3TFalfzkREUmV1hCT9GC1WpkzZw5z5szhxo0bANSoUYN3332XFi1aGJxORERE5O9zd3GkUpE8RseQdKKCmIiIpMpisQDg6upqcBLJim7evMnw4cNZs2YNiYmJuLi48NRTTzF79mx8fHyMjiciIiIiOZzuMikiIqnSGmLyb3z33XfUqFGDwoULs3z5cvLnz8+cOXOIjY1lyZIlKoaJiIiISKagDjEREUmVRibl70pKSmLq1Kl8/PHHhIaGYjKZqFevHrNnz6ZevXpGxxMREREReYAKYiIikqrk5GRAI5OStosXLzJs2DC2bNmCxWLBzc2NQYMG8e677+Ll5WV0PBERERGRNGlkUkREUnW/Q0wFMfn/Vq1aRYUKFShZsiQbNmygWLFifP7550RFRfH555+rGCYiIiIimZ46xEREJFX3F9V3dNRLhUBcXBwTJkxgwYIF3L17F7PZTPPmzZk3bx5VqlQxOp6IiIiIyD+iDjEREUnV/UX1JWc7fvw4rVq1Infu3MyZMwebzcbw4cOJiopix44dKoaJiIiISJakgpiIiKTqfoeY5ExffvklpUqVonLlymzfvp3SpUuzbNky7t69y9y5c3FzczM6ooiIiIjIv6Y5GBERSZUKYjlPZGQkY8aM4euvvyYmJgZHR0c6dOjAe++9R6lSpYyOJyIiIiKSbtQhJiIiqVJBLOc4cOAADRs2xMvLi08//RRXV1cmTJhATEwMGzduVDFMRERERLIdFcRERDK527dv88ILL+Dr64uLiws+Pj60adOGvXv3Zuh5LRYLJpPpofv4+/szb968f3zs+Ph4+vfvT5UqVXB0dKRr167/LqT8a1arlffff59ixYpRp04d9u7dS5UqVdi0aROhoaFMmTIFZ2dno2OKiIiIiGQIjUyKiGRygYGBJCYmsmjRIkqWLMmtW7fYsWMHYWFhGXbOxMTEv1UQ+7eSk5PJlSsXr7zyCqtWrcqQc0jqQkJCGDlyJN9++y3x8fE4OzvTo0cP5syZQ7FixYyOJyIiIiLyWJhsNpvN6BAiIpK6iIgI8ubNy86dO2nSpMlD9xs1ahTr1q0jISGBWrVqMXfuXKpVq2bfZ8OGDUyePJljx47h4eFBo0aNWLNmDXCv02vgwIGcPXuWtWvX0r17dy5fvsxPP/1EgwYNOHjwIPnz56dbt2688847uLu707RpU3766acUOf7NS0r//v2JiIhg7dq1//i58vf9+OOPjB49msOHD2Oz2fDx8WH48OGMHj0as1kN4yIiIiKSs+gvYBGRTMzDwwMPDw/Wrl1LQkJCmvv16NGDkJAQtmzZwqFDhwgICKBFixaEh4cDsGnTJrp160b79u05cuQIO3bsoE6dOimOMWvWLKpVq8aRI0d44403iI6OxmazERgYSHBwMMuXL2fPnj289NJLAKxevZpixYoxefJkbty4wY0bN+zHMplMLFy4MP1/IPKPWCwW3n77bQoVKkTz5s05fPgwtWrV4qeffuLGjRu89tprKoaJiIiISI6kDjERkUxu1apVDB48mLi4OAICAmjSpAm9e/ematWqAOzZs4cOHToQEhKCi4uL/XmlS5dmzJgxDBkyhPr161OyZEm+/vrrVM/h7+9PjRo17B1jAIUKFeL27dtYrVb7tj179tCkSRNiYmJwdXXF39+f4cOHM3z48BTHK1++PO+88w7dunX7y+tTh1j6u3LlCsOHD2fjxo0kJSXh6upKr169mDVrFvnz5zc6noiIiIiI4fSxsIhIJhcYGMj169dZv349bdu2ZefOnQQEBNg7sI4ePUp0dDT58uWzd5R5eHhw8eJFzp8/D0BQUBAtWrR46Hlq1aqV4vv7HWJ/PmabNm2wWq1cvHjxocc6derU3yqGSfpav349lStXxs/PjzVr1uDj48NHH31ETEwMCxcuVDFMREREROR/tKi+iEgW4OrqSqtWrWjVqhVvvPEGgwYNYuLEifTv35/o6GgKFy7Mzp07H3iel5cXALly5frLc7i7u6f43mq1YjabCQoKemBfX1/ff3MZkgESEhKYNGkSn376KXfu3MFsNtO4cWPmzJlDzZo1jY4nIiIiIpIpqSAmIpIFVaxY0T5iGBAQwM2bN3F0dMTf3z/V/atWrcqOHTsYMGDA3z6Hq6srCQkJlC5dOs19nJ2dSU5O/ifRJZ2cOXOGYcOG8f3335OcnIyHhwcvvvgiM2bMwMPDw+h4IiIiIiKZmkYmRUQysbCwMJo3b87XX39NcHAwFy9eZOXKlcycOZMuXboA0LJlS+rVq0fXrl3Ztm0bly5dYt++fYwfP56DBw8CMHHiRJYuXcrEiRM5efIkx44dY8aMGQ89d/78+bHZbLz00ksEBQVx9uxZ1q1bZ19UH+6tPbZr1y6uXbtGaGiofXv58uVTrEeWmhMnThAUFER4eDh3794lKCgo1W40Sembb76hbNmylCtXjq1bt+Lv78+iRYuIiorio48+UjFMRERERORvUIeYiEgm5uHhQd26dZk7dy7nz58nKSmJ4sWLM3jwYMaNGwfcu6Pj5s2bGT9+PAMGDOD27dv4+PjQuHFjChUqBEDTpk1ZuXIlU6ZMYfr06Xh6etK4ceOHntvJyQkXFxfOnDlDo0aNsNlslCpVil69etn3mTx5MkOHDqVUqVIkJCRw/z4tp0+f5u7duw89fvv27bl8+bL9+xo1agCge708KDo6mrFjx9oLXw4ODrRp04a5c+dSoUIFo+OJiIiIiGQ5usukiIikqly5cly/fp2oqCijo+RYR44cYcSIEezevRur1YqXlxdDhgzhrbfewtXV1eh4IiIiIiJZljrEREQkVcnJyZhMJqNj5DhWq5XPPvuMd955hytXrgD31oybNm2afUxWREREREQejQpiIiKSquTkZMxmLTX5uISHhzNq1CiWLVtGXFwcTk5OdO3alXnz5uHn52d0PBERERGRbEXvdEREJFVWq1UFscdg7969PPHEE+TPn58vv/wSDw8P3nrrLWJjY1mzZo2KYSIiIiIiGUAdYiIikip1iGUcq9XK7NmzmTNnDjdv3gQgICCAmTNn0qJFC4PTiYiIiIhkfyqIiYhIqtQhlv6uX7/Oq6++ypo1a0hMTMTFxYWnnnqKOXPm2O8IKiIiIiIiGU/vdEREJFVWqxUHBwejY2QLW7dupXr16hQtWpTly5dToEAB5s6dS2xsLEuWLFExTERERETkMVOHmIiIpMpqteLk5GR0jCwrMTGRqVOn8vHHHxMWFobJZKJ+/frMmTOHunXrGh1PRERERCRHU0FMRERSpZHJf+fixYu88sorbN26FYvFgpubG4MHD2bmzJl4eXkZHU9ERERERNDIpIiIpEEjk//Mt99+S4UKFShZsiQbN26kWLFizJ8/n6ioKD777DMVw0REREREMhF1iImISKrUIfbXYmNjmTBhAl988QV3797FbDbTokUL5s2bR+XKlY2OJyIiIiIiadA7HRERSZU6xNL222+/0bJlS3Lnzs3cuXOx2WyMGDGCqKgotm/frmKYiIiIiEgmpw4xERFJlQpiD/riiy+YOnUqFy9eBKBcuXJMnjyZnj17GpxMRERERET+CRXEREQkVTabTQUxIDIyklGjRvHNN98QExODo6MjHTp04L333qNUqVJGxxMRERERkX9BI5MiIpKqnN4h9uuvv9KgQQO8vLz4/PPPcXV1ZcKECcTExLBx40YVw0REREREsjB1iImISKpyYoeY1Wrlgw8+4N133+XatWsAVK1alenTp9OuXTuD04mIiIiISHpRQUxERFKVkwpiISEhvPrqq6xatYr4+HicnZ3p0aMH8+bNo0iRIkbHExERERGRdKaRSRERSVVOKIj98MMP1KpVCx8fH5YsWYKXlxczZswgLi6OFStWqBgmIiIiIpJNqUNMRERSZbPZcHTMfi8TFouF6dOn88EHHxASEoLJZKJWrVrMmTOHhg0bGh1PREREREQeg+z3TkdERNJFdiuIXblyheHDh7Nx40aSkpLIlSsX/fv359133yV//vxGxxMRERERkcdII5MiIpKq7DIyuX79eipXroyfnx9r1qzBx8eHjz/+mOjoaL788ksVw0REREREcqDs89G/iIikq6zcIRYfH8/EiRP5/PPPuXPnDmazmcaNGzN37lwCAgKMjiciIiIiIgbLmu90REQkQ1itVsLDw3F0dMRms2EymUhKSsLBwQGzOfM3FZ8+fZphw4axfft2kpOT8fDw4MUXX2TGjBl4eHgYHU9ERERERDKJzP/uRkREHptXXnmFAgUKkDdvXgC2bduGs7Mznp6e3Lhxw+B0aVuyZAllypShfPnyfPfdd5QoUYLFixcTFRXFRx99pGKYiIiIiIikoA4xERGxq127dqrb8+bNS758+R5zmoeLjo7m9ddfZ9GiRURHR+Pg4ECbNm2YO3cuFSpUMDqeiIiIiIhkYuoQExERu6eeeopixYphMplSbJ8yZQrOzs4GpUrp8OHDNGnShDx58vDRRx/h5OTEmDFjiI6OZuvWrSqGiYiIiIjIX1JBTERE7JycnBg/fjw2m82+rVSpUjz99NMGprq3ttknn3yCr68vNWvWZNeuXVSoUIG1a9cSHh7OjBkzcHV1NTSjiIiIiIhkHSbbn9/1iIhIjhcfH4+fnx8hISEALFu2jF69ehmSJTw8nJEjR7J8+XLi4uJwcnKiY8eOzJ07Fz8/P0MyiYiIiIhI1qcOMRERScHV1ZVRo0YB4OXlRY8ePR57hj179lC3bl3y58/PwoUL8fDwYMqUKcTGxrJ69WoVw0RERERE5JGoICYiIg8YMGAAAN27d8dsfjwvFVarlZkzZ1K4cGEaNWrEr7/+SkBAANu3byckJIQJEybg6Kh7wYiIiIiIyKPTOwsREUkhJsHC79E2XIqUo0rjdsQkWHB3ybiXi+vXrzN8+HDWrVtHYmIiLi4u9O3blzlz5lCwYMEMO6+IiIiIiORcWkNMREQ4eyuKJfuv8OPpEK6Ex/LnFwYT4OvtRrNyBelb15cyhXKnyzm3bNnC66+/TnBwMABFixZl9OjRvPzyy4+tK01ERERERHImFcRERHKw38NjGbfmGLvPheJgNpFsTfsl4f7jjUrnZ1q3KhT3dktzX6vVypAhQ8iTJw+zZ8+2b09MTGTKlCl88sknhIWFYTKZqFevHnPmzKFu3brpem0iIiIiIiJpUUFMRCSHWnbgChPXH8ditT20EPb/OZhNOJpNvNW5Er1r+6a6z+uvv86MGTNwcHDgypUrxMXFMWzYML777jssFgtubm707duXmTNn4uXllU5XJCIiIiIi8veoICYikgN9+ONZZm0788jHGdW6LC81K5Ni2xdffMHAgQMBMJlMeHt7ExYWBkCJEiWYMGECzz333COfW0RERERE5N9SQUxEJIdZduAKr68+lm7Hm9G9Cr3+1yn2ww8/0Lp1a5KTk1Ps06xZM95//30qV66cbucVERERERH5t3SXSRGRHOT38Fgmrj8OQNjWD4kO2mp/zKvJs+Sp1+OB51gTYrm7bzmxp/diiQrF7OJBrhLVydOwL055C/Pm+uPUL5WfY7/spHPnzg8UwwAGDx6sYpiIiIiIiGQauo2XiEgOMm7NMSxWG7ZkC7Gn96V4LObkrgf2tybEcvPrMUTuX4Ul4iYkW7DGRhBzfCc3F40gMeQSFquNrm8vp0OHDimKYSaTCUfHe5+7fPbZZxl7YSIiIiIiIv+AOsRERHKIs7ei2H0uFID4S0ewxkWmeDwp5CJJYb/jlK+4fVvEniUk3b4EgEvxynjW7krchYNEB23FGh9N2Jb3KPzsXMKcCzJi4gwaVStDrly5iIiISPFftWrVHtt1ioiIiIiI/BUVxEREcogl+6/gYDaRbLURc+KPbjC3Co2J/V93WMyJXXg16guALTmJmODt/9vLRP4uY3D08CZXmbrE//4blrCrJN44S8LNc7gVKYNnQAe6da70uC9LRERERETkH9PIpIhIDvHj6RCSrTZslkRiz/4CgNktD94tB4PZAYCYk7vt+yfevow1IQYAxzwFcfTwBu6NQroUKW/fL+H34yRbbfx4JuRxXYqIiIiIiMgjUUFMRCQHiE6wcCU8FoDYc79iS4wDwK3MEzi458XVtwoAlvCrJN48D0Dy3T8KXGZ3rxTHc/jT95aImwBcCYslJsGSUZcgIiIiIiKSblQQExHJAS6HxWD739exf1o83618g3v/W66Bfdv9xfWtSfH2bSYHpxTHM5n/mLi3JSXc+1/gUlhMesYWERERERHJECqIiYjkAIkWK3DvrpFx5w8CYHbNjavfvcXu3crVB9O9l4SYk7ux2WyYnVztz7clJ6U4ns36RyeYycnlgfOIiIiIiIhkZlpUX0QkB3B2vFfsij37CzZLIgDW+CiuzOzywL7JkSEkXDuFQ56Cf2yLiUi5T/Qd+9eOXj4PnEdERERERCQz0zsXEZEcwD+fOyYg5sRPf2v/2JO7cC7gh8nFHbi3npglKhQAm81GwvXT9n1dit+7s6Tpf+cRERERERHJ7NQhJiKSA7i7OFLYJYlLl4IAMDnnwqtJv5Q7JVu488MCAGJP7SFvy8F4VG1J1IF1gI3Qde/iWbc7cecPYAm/CoCzTxlcfEoD4JvPDXcXvayIiIiIiEjmp3cuIiI5hHfIEbAmA5CrRA08a3Z6YJ/o334kKeQCyTF3iL8cjFfDvsRfOkrS7UskXD3O7avH7fuaXdzJ134YAA5mE83KFnzgeCIiIiIiIpmRRiZFRHKI20E/2L/OVbpuqvu4la5j/zr25C7MLm74PD0Tz7rdccxTCBwcMbt54VaxCT795+Jc0B+AZKuNp5/wzdD8IiIiIiIi6cVks9lsRocQEZH0lZyczK1bt7h69SrXrl3j6tWrLFy4kOvlAnEpXhnMDul2Lgezifol87F4YOpFNhERERERkcxGI5MiItnM888/z+eff47Van3gsQLhsbiUnE1Ccvp9FuJoNjGtW5V0O56IiIiIiEhG08ikiEg2U6RIkVSLYc7Ozhz7ZSdvdamcrueb3LkSxb3d0vWYIiIiIiIiGUkFMRGRbOa1116jcOHCD2x/9913KVSoEL1r+zKqddl0Odfo1uXoVVtrh4mIiIiISNaiNcRERLKRO3fu0LFjR/bt22ff5uDgQLly5Th69CiOjn9Myi87cIWJ649jsdpItv79lwIHswlHs4nJnSupGCYiIiIiIlmSOsRERLKJ9957j0KFCrFv3z6aN2/OkCFDgHsL7P/3v/9NUQwD6F3bl+0jmlC/ZD4AbNbkhx7fwWwCoH7JfGwf0UTFMBERERERybLUISYiksVdvnyZtm3bcurUKXLnzs0333xDx44diYqKolKlSjRr1oxFixal+fzo6GiKVAjAuWILKrXqyZWwWP78wmACfPO50axsQZ5+wpfSBXNn+DWJiIiIiIhkJBXERESysNdee41Zs2ZhtVrp3bs3ixcvTtEJFhcXh4uLC2Zz6g3BUVFRtGjRggMHDuDk5ERiYiIxCRYuhcWQaLHi7GjGP5877i66KbGIiIiIiGQfKoiJiGRBhw8fplOnTly/fp1ChQqxYcMGateu/Y+OcffuXVq3bs2BAwe4/1IQHx+Pi4tLRkQWERERERHJNLSGmIhIFmKxWHj66aepWbMmN27cYMSIEVy/fv0fF8MiIiJo3rw5hw4d4s+fi1y6dCmdE4uIiIiIiGQ+moEREckitm7dSu/evbl79y5lypRhy5YtlCpV6l8dq23bthw+fPiB7RcuXKBcuXKPGlVERERERCRTU4eYiEgmFxsbS+vWrWnXrh0xMTHMnDmTM2fO/OtimM1mo1KlSjg7Oz/w2IULFx41roiIiIiISKangpiISCa2aNEi8uXLx/fff0+dOnW4ceMGo0ePfqRjmkwmFixYQGhoKF5eXpjNZvtC/FevXk2P2CIiIiIiIpmaCmIiIplQSEgINWvWpH///phMJr7++mv2799P/vz50+0cd+7cISIigo4dO3Lr1i0WL17MwIED0+34IiIiIiIimZXuMikiksm8/fbbTJo0CYvFQvv27Vm1ahWurq7pfp7Bgwczf/58fv3113+8KL+IiIiIiEhWpoKYiEgmcfr0adq3b8+FCxfImzcvK1eupEWLFhl2vgIFCpCYmMjdu3cz7BwiIiIiIiKZkUYmRUQMZrVa+c9//kOFChW4ePEiAwYMIDQ0NEOLYadPnyY0NJR27dpl2DlEREREREQyK0ejA4iI5GR79+6lW7du3L59m+LFi7Nx40aqVq2a4eedMmUKAG+88UaGn0tERERERCSz0cikiIgBEhMT6dOnD6tXr8ZsNvP666/z9ttvP7bz582bF7PZTFhY2GM7p4iIiIiISGahDjERkcdszZo1PPPMM8TExFC5cmW2bNlCsWLFHtv5g4KCiIiIoH///o/tnCIiIiIiIpmJ1hATEXlMIiMjady4Md27dycpKYmPPvqIY8eOPdZiGPwxLvnmm28+1vOKiIiIiIhkFhqZFBF5DD7++GNGjBhBYmIijRs3ZsOGDXh6ehqSJXfu3Li5uXHr1i1Dzi8iIiIiImI0jUyKiGSgq1ev0rZtW44fP467uzvLli2jW7duhuXZs2cP0dHRPPPMM4ZlEBERERERMZpGJkVEMsj48ePx8/Pj+PHjBAYGEh4ebmgxDGDatGkATJgwwdAcIiIiIiIiRtLIpIhIOgsODqZDhw5cvXqVAgUKsG7dOurVq2d0LADc3Nzw9vbm6tWrRkcRERERERExjDrERETSidVqZcCAAVSvXp1r167x0ksvcfPmzUxTDNu6dStxcXH06dPH6CgiIiIiIiKGUoeYiEg62LFjBz169ODOnTuULFmSzZs3U65cOaNjpdC8eXN+/PFHwsLC8Pb2NjqOiIiIiIiIYdQhJiLyCOLj42nfvj0tW7YkKiqKadOmcf78+UxXDLNarezdu5cSJUqoGCYiIiIiIjme7jIpIvIvLVmyhMGDBxMXF0fNmjXZvHkzBQsWNDpWqtasWUNiYiL9+vUzOoqIiIiIiIjhNDIpIvIPhYaG0r59ew4cOICrqyv//e9/efbZZ42O9VANGjTg559/JjIyEg8PD6PjiIiIiIiIGEojkyIi/8C7775L4cKFOXDgAK1btyYsLCzTF8OsViu//vorZcqUUTFMREREREQEjUyKiPwt58+fp127dpw9e5Y8efKwfPly2rRpY3Ssv2Xx4sVYLBYGDhxodBQREREREZFMQSOTIiIPYbVaGTlyJO+99x42m41nnnmGL774AkfHrPN5Qq1atTh8+DCxsbG4uroaHUdERERERMRwKoiJiKThwIEDdOrUiVu3blGkSBE2bNhAQECA0bH+EYvFgouLC5UqVSI4ONjoOCIiIiIiIpmC1hATEfl/LBYLvXv3pk6dOty+fZvRo0dz7dq1LFcMA/jvf/+L1Wrl+eefNzqKiIiIiIhIpqEOMRGRP9mwYQN9+/YlKiqK8uXLs3XrVvz8/IyO9a9VqVKFkydPEh8fn6XGPEVERERERDKSOsRERIDo6GiaN29O586diY+PZ968eZw8eTJLF8Pi4+M5fvw41atXVzFMRERERETkT/QOSURyvM8++4xXXnmFhIQE6tevz6ZNm/Dy8jI61iO7fyOAV155xegoIiIiIiIimYpGJkUkx7p+/Trt2rUjODgYNzc3Fi5cSI8ePYyOlW7KlSvHhQsXSEhIwGxWQ7CIiIiIiMh9eockIjnSpEmT8PX1JTg4mC5dunDnzp1sVQyLjo7m7Nmz1K1bV8UwERERERGR/0cjkyKSoxw/fpwOHTpw+fJl8uXLx+rVq2ncuLHRsdLdzJkzsdlsvPrqq0ZHERERERERyXQ0MikiOYLVauX5559n/vz5AAwZMoSPP/4423ZPlShRghs3bhAXF4fJZDI6joiIiIiISKaiDjERyfZ27dpFt27dCA8Px8/Pj02bNlGpUiWjY2WY0NBQLl26RPPmzVUMExERERERSUX2bI0QEQHi4+Pp0qULTZo04e7du7z11ltcunQpWxfDAN555x0AxowZY3ASERERERGRzEkjkyKSLa1YsYIBAwYQGxtLtWrV2Lp1Kz4+PkbHeiyKFStGeHg4sbGxRkcRERERERHJlNQhJiLZSnh4OPXr16dXr14kJyfz+eefExQUlGOKYdeuXePatWs0a9bM6CgiIiIiIiKZlgpiIpJtzJs3Dx8fH37++WdatGhBaGgogwYNMjrWYzV16lQAxo0bZ3ASERERERGRzEsjkyKS5V2+fJk2bdpw+vRpPD09Wbp0Ke3btzc6liEKFSpEXFwckZGRRkcRERERERHJtNQhJiJZ2pgxYyhZsiSnT5+md+/ehIWF5dhi2Pnz5wkJCaF169ZGRxEREREREcnUHI0OICLybxw+fJiOHTty48YNfHx8WL9+PbVr1zY6lqGmTJkCwJtvvmlwEhERERERkcxNI5MikqVYLBb69+/PkiVLMJvNDB8+nHfffRezWQ2v+fLlw2q1cufOHaOjiIiIiIiIZGrqEBORLGPLli306dOHu3fvUrZsWbZu3UqJEiWMjpUp/Pbbb4SHh9O3b1+jo4iIiIiIiGR6aqkQkUwvNjaWVq1a0b59e2JiYpg1axanT59WMexPJk+eDMAbb7xhcBIREREREZHMTyOTIpKpffnll7z44ovEx8dTp04dNm3aRP78+Y2OlenkyZMHFxcXQkJCjI4iIiIiIiKS6alDTEQypVu3bhEQEMBzzz2HyWTim2++Yf/+/SqGpeLXX38lMjKSrl27Gh1FREREREQkS1BBTEQynbfffpuiRYty5MgROnToQHh4OH369DE6VqY1depUACZMmGBwEhERERERkaxBI5MikmmcPn2a9u3bc+HCBfLmzcu3335L8+bNjY6V6bm7u5MnTx6uX79udBQREREREZEsQR1iImI4q9XKf/7zHypUqMDFixcZOHAgoaGhKob9DTt27CA2NpZevXoZHUVERERERCTLUIeYiBhq7969dO3aldDQUIoXL87mzZupXLmy0bGyjNatW/P9999z69YtChYsaHQcERERERGRLEEdYiJiiMTERLp3707Dhg25c+cOEyZM4MqVKyqG/UO7d+/Gz89PxTAREREREZF/wNHoACKS86xevZp+/foRExNDlSpV2Lx5M8WKFTM6Vpazbt064uPj6du3r9FRREREREREshSNTIrIYxMREUGnTp3Ys2cPzs7OzJs3jxdeeMHoWFlW48aN2b17N3fv3sXT09PoOCIiIiIiIlmGCmIi8lh8+OGHjBw5ksTERJo0acL69etVxHkEVqsVV1dX/Pz8OHv2rNFxREREREREshSNTIpIhrpy5Qrt2rXjxIkTeHh4sGLFCrp06WJ0rCxv6dKlJCUl0b9/f6OjiIiIiIiIZDnqEBORDDNu3DhmzJiB1WrlySefZMmSJTg7OxsdK1uoW7cuBw4cIDo6Gjc3N6PjiIiIiIiIZCkqiIlIugsODqZ9+/Zcu3aNAgUKsG7dOurVq2d0rGwjOTkZFxcXypUrx/Hjx42OIyIiIiIikuWYjQ4gItmH1WplwIABVK9enevXr/Pyyy9z8+ZNFcPS2YIFC0hOTmbIkCFGRxEREREREcmS1CEmIulix44dPPnkk0RERFCqVCm2bNlCmTJljI6VLVWvXp1jx44RFxenEVQREREREZF/QR1iIvJI4uLiaNeuHS1btiQ6Opp33nmHc+fOqRiWQRITEzl27BjVqlVTMUxERERERORf0l0mReRfW7JkCYMHDyYuLo6aNWuyefNmChYsaHSsbO3DDz/EarXyn//8x+goIiIiIiIiWZZGJkXkHwsNDaVdu3YcPHgQV1dXPv30U/r162d0rByhQoUKnDt3joSEBMxmNfmKiIiIiIj8G3o3JSL/yMyZMylcuDAHDx6kTZs2hIWFqRj2mMTGxnL69Glq1qypYpiIiIiIiMgj0MikiPwt58+fp23btpw7d448efKwYsUKWrdubXSsHGXWrFnYbDZGjBhhdBQREREREZEsTSOTIvJQVquVESNG8MEHH2Cz2ejXrx8LFizA0VH19MetdOnS/P7778TFxalDTERERERE5BHoHa2IpGn//v106dKFW7duUbRoUTZu3Ej16tWNjpUjRUREcP78eZo0aaJimIiIiIiIyCPSuyoReYDFYqFnz5488cQT3L59mzFjxnD16lUVwww0ffp0AEaNGmVwEhERERERkaxPI5MiksL69et5+umniYqKokKFCmzZsgU/Pz+jY+V4vr6+3L59m7i4OKOjiIiIiIiIZHnqEBMRACIjI2nWrBldunQhPj6e999/nxMnTqgYlgmEhITw+++/06RJE6OjiIiIiIiIZAtaQ0xE+Oyzz3jllVdISEigQYMGbNy4ES8vL6Njyf9MnToVgHHjxhmcREREREREJHvQyKRIDnb9+nXatm3LsWPHcHd3Z+HChTz55JNGx5L/p3DhwkRFRREdHW10FBERERERkWxBI5MiOdSkSZPw9fXl2LFjdO3alfDwcBXDMqHLly9z8+ZNWrZsaXQUERERERGRbEMjkyI5zPHjx2nfvj1XrlwhX758rF27loYNGxodS9IwZcoUACZMmGBwEhERERERkexDI5MiOYTVamXo0KEsWLAAgKFDh/LRRx9hNqtRNDPLnz8/FouFiIgIo6OIiIiIiIhkG+oQE8kBdu7cSWBgIOHh4fj7+7N582YqVKhgdCz5C6dOnSIsLIzevXsbHUVERERERCRbUWuISDYWHx9Pp06daNasGXfv3uWtt97i4sWLKoZlERqXFBERERERyRgamRTJppYvX85zzz1HbGws1atXZ8uWLfj4+BgdS/4BLy8vHB0dCQ0NNTqKiIiIiIhItqIOMZFsJjw8nHr16tG7d2+Sk5OZP38+R44cUTEsizl8+DB3796lc+fORkcRERERERHJdtQhJpKNzJ07l9dee42kpCRatGjB2rVr8fDwMDqW/Avdu3dnzZo1XLp0CT8/P6PjiIiIiIiIZCsqiIlkAxcvXqRdu3acPn0aT09Pli5dSvv27Y2OJY8gd+7ceHh4cOPGDaOjiIiIiIiIZDsamRTJwqxWK6NHj6Z06dKcPn2aPn36EBYWpmJYFrdr1y6io6MJDAw0OoqIiIiIiEi2pA4xkSzq4MGDdO7cmRs3buDj48OGDRuoVauW0bEkHbRr146tW7fa/21FREREREQkfalDTCSLsVgs9O3bl9q1a3Pr1i1effVVrl27pmJYNvLTTz9RrFgxFcNEREREREQyiKPRAUTk79uyZQu9e/cmMjKSsmXLsnXrVkqUKGF0LElHW7ZsIS4ujj59+hgdRUREREREJNvSyKRIFhAdHU23bt3Yvn07Tk5OTJ8+nVdffdXoWJIBmjVrxs6dOwkLC8Pb29voOCIiIiIiItmSCmIimdyXX37Jiy++SHx8PHXr1mXz5s0qlGRTVquVXLlyUaxYMc6fP290HBERERERkWxLI5MimdTNmzdp3749R44cIVeuXHzzzTcao8vmVq1aRWJiIv369TM6ioiIiIiISLamDjGRTGjq1KlMmjSJ5ORkOnbsyMqVK3F1dTU6lmSw+vXr88svvxAZGYmHh4fRcURERERERLItFcREMpHTp0/Ttm1bLl26hLe3N99++y3NmjUzOpY8BlarFRcXF0qXLs3JkyeNjiMiIiIiIpKtmY0OICL3iiEvvvgiFSpU4PLlywwcOJDbt2+rGJaDLFq0CIvFwqBBg4yOIiIiIiIiku2pQ0zEYHv27KFbt26EhoZSvHhxNm/eTOXKlY2OJY9ZzZo1CQoKIi4uDmdnZ6PjiIiIiIiIZGvqEBMxSGJiIt26daNRo0bcuXOHCRMmcOXKFRXDciCLxUJQUBCVK1dWMUxEREREROQx0F0mRQywatUqnn32WWJiYqhSpQqbN2+mWLFiRscSg3zyySdYrVaef/55o6OIiIiIiIjkCBqZFHmMIiIi6NixI3v37sXZ2Zn333+foUOHGh1LDFa5cmVOnTpFfHw8jo76nEJERERERCSjaWRS5DH58MMPKVSoEHv37qVJkybcvn1bxTAhPj6eEydOUKNGDRXDREREREREHhO9+xLJYFeuXKFdu3acOHECDw8PVqxYQZcuXYyOJZnE3LlzsdlsDBs2zOgoIiIiIiIiOYZGJkUy0NixY5k5cyZWq5UePXrwzTffqAtIUihbtiyXLl0iPj4es1lNuyIiIiIiIo+D3pmLZICjR4/SoUMHrl27RsGCBVm/fj1169Y1OpZkMpGRkZw7d44GDRqoGCYiIiIiIvIY6R2YSDqyWq08++yzVK9enevXr/PKK69w48YNFcMkVe+++y42m41Ro0YZHUVERERERCRH0cikSDrZvn07PXr0ICIigtKlS7N582bKlCljdCzJxPz9/bl58ybx8fFGRxEREREREclR1CEm8ohiY2Np164drVq1Ijo6mnfeeYezZ8+qGCYPFRoayuXLl2nYsKHRUURERERERHIcrSEm8ggWL17MkCFDiI+Pp1atWmzatImCBQsaHUuygGnTpgHw+uuvG5xEREREREQk59HIpMi/cPv2bdq3b8/BgwdxdXXls88+45lnnjE6lmQhRYsWJSIigpiYGKOjiIiIiIiI5DgamRT5h2bMmEGRIkU4ePAgbdu2JSwsTMUw+UeuXr3K9evXadasmdFRREREREREciSNTIr8TWfPnqVdu3acP38eLy8vVqxYQatWrYyOJVnQ1KlTARg/frzBSURERERERHImjUyK/AWr1cqIESP44IMPsNlsPPvss3zxxReYzWqwlH+nYMGCxMfHExkZaXQUERERERGRHEkdYiIP8csvv9ClSxdCQkIoWrQoGzdupHr16kbHkizs/Pnz3L59myeffNLoKCIiIiIiIjmWWlxEUmGxWOjZsyf16tUjNDSU119/natXr6oYJo9s8uTJALzxxhsGJxEREREREcm5NDIp8v+sX7+evn37Eh0dTcWKFdmyZQu+vr5Gx5JswtvbG4Dw8HCDk4iIiIiIiORc6hAT+Z/IyEiaNm1Kly5dSExM5IMPPuD48eMqhkm6CQ4O5s6dO3Tq1MnoKCIiIiIiIjmaCmLp7Pbt27zwwgv4+vri4uKCj48Pbdq0Ye/evUZHw9/fn3nz5v3j5126dAmTyfTAf7/88kv6hzTIZ599RoECBfjpp59o2LAht27d4qWXXjI6lmQzU6ZMAeDNN980OImIiIiIiEjOpkX101lgYCCJiYksWrSIkiVLcuvWLXbs2EFYWFiGnTMxMRFnZ+cMO/5927dvp1KlSvbv8+XLl+HnzGjXrl2jXbt2HDt2DHd3d7755hsCAwONjiXZ1HfffUeBAgUoVaqU0VFERERERERyNHWIpaOIiAh2797NjBkzaNasGX5+ftSpU4exY8fSuXPnFPsNGjSIAgUK4OnpSfPmzTl69GiKY23YsIHatWvj6upK/vz56datm/0xf39/pkyZQr9+/fD09GTIkCEA7Nmzh0aNGpErVy6KFy/OK6+8QkxMDABNmzbl8uXLjBgxwt7h9U/ly5cPHx8f+39OTk7/5seUabz55pv4+flx7NgxunXrRnh4uIphkmF++eUXoqKi6N69u9FRREREREREcjwVxNKRh4cHHh4erF27loSEhDT369GjByEhIWzZsoVDhw4REBBAixYt7Itsb9q0iW7dutG+fXuOHDnCjh07qFOnTopjzJo1i2rVqnHkyBHeeOMNzp8/T9u2bQkMDCQ4OJjly5ezZ88e+9jf6tWrKVasGJMnT+bGjRvcuHHDfiyTycTChQv/8vo6d+5MwYIFadiwIevXr/8XP6HM4bfffsPPz48pU6bg5eXF7t27Wb169WPpspOc6+233wZgwoQJBicRERERERER3WUyna1atYrBgwcTFxdHQEAATZo0oXfv3lStWhW418XVoUMHQkJCcHFxsT+vdOnSjBkzhiFDhlC/fn1KlizJ119/neo5/P39qVGjBmvWrLFvGzRoEA4ODnz66af2bXv27KFJkybExMTg6uqKv78/w4cPZ/jw4SmOV758ed55550UXWh/FhoayldffUWDBg0wm82sWrWKmTNnsnbt2hSdb5md1WplyJAhfPHFFwA8//zzfPjhh5jNqgtLxnN3d8fLy4tr164ZHUVERERERCTH0xpi6SwwMJAOHTqwe/dufvnlF7Zs2cLMmTOZP38+/fv35+jRo0RHRz+w/lZcXBznz58HICgoiMGDBz/0PLVq1Urx/dGjRwkODmbJkiX2bTabDavVysWLF6lQoUKaxzp16tRDz5U/f35effVV+/e1a9fm+vXrvPvuu1mmILZz504CAwMJDw+nRIkSbNq06aE/E5H0tGPHDmJjY+3jzSIiIiIiImIsFcQygKurK61ataJVq1a88cYbDBo0iIkTJ9K/f3+io6MpXLgwO3fufOB5Xl5eAOTKlesvz+Hu7p7i++joaIYOHcorr7zywL6+vr7/6joepm7dunz//ffpftz0Fh8fT48ePdi4cSMODg5MmTJFI2vy2E2fPh2A8ePHG5xEREREREREQAWxx6JixYqsXbsWgICAAG7evImjoyP+/v6p7l+1alV27NjBgAED/vY5AgICOHHiBKVLl05zH2dnZ5KTk/9J9DQFBQVRuHDhdDlWRlm2bBkDBw4kNjaWGjVqsHnzZnx8fIyOJTnQ7t278fPzI3/+/EZHEREREREREbSofroKCwujefPmfP311wQHB3Px4kVWrlzJzJkz6dKlCwAtW7akXr16dO3alW3btnHp0iX27dvH+PHjOXjwIAATJ05k6dKlTJw4kZMnT3Ls2DFmzJjx0HO/9tpr7Nu3j5deeomgoCDOnj3LunXr7Ivqw721x3bt2sW1a9cIDQ21by9fvnyK9cj+v0WLFrF06VJOnTrFqVOnmDZtGl988QUvv/zyo/y4Mkx4eDj16tWjT58+JCcnM3/+fA4fPqximBhizZo1JCQk8MwzzxgdRURERERERP5HHWLpyMPDg7p16zJ37lzOnz9PUlISxYsXZ/DgwYwbNw64d0fHzZs3M378eAYMGMDt27fx8fGhcePGFCpUCICmTZuycuVKpkyZwvTp0/H09KRx48YPPXfVqlX56aefGD9+PI0aNcJms1GqVCl69epl32fy5MkMHTqUUqVKkZCQwP37KZw+fZq7d+8+9PhTpkzh8uXLODo6Ur58eZYvX86TTz75KD+uDDFnzhxef/11kpKSaNmyJWvWrMHDw8PoWJKDzZkzB5PJxOjRo42OIiIiIiIiIv+ju0xKtnDx4kXatm3LmTNn8PT0ZOnSpbRv397oWJLDWa1W+x1ez5w5Y3QcERERERER+R+NTEqWZrVaGTVqFKVLl+bMmTM89dRThIWFqRgmmcLSpUtJSkr6R+sBioiIiIiISMZTh5hkWQcPHqRTp07cvHkTHx8fNmzYQK1atYyOJWJXp04dDh48SGxsLK6urkbHERERERERkf9Rh5hkORaLhaeeeoratWsTEhLCqFGjuHbtmophkqlYLBYOHz5MxYoVVQwTERERERHJZLSovmQpW7ZsoXfv3kRGRlKuXDm2bNlCiRIljI4l8oD58+eTnJzM0KFDjY4iIiIiIiIi/49GJiVLiI6OpmvXruzYsQMnJyemT5/Oq6++anQskTRVq1aN3377jYSEBBwd9dmDiIiIiIhIZqJ3aZLpffHFF7z44oskJCTwxBNPsGnTJry9vY2OJZKmxMREfvvtN6pXr65imIiIiIiISCakd2qSad28eZN27doRFBSEm5sby5Yto1evXkbHEvlLH3zwAVarlZdeesnoKCIiIiIiIpIKjUxKpjRlyhTeeustkpOT6dixIytXrtTC5JJlVKhQgXPnzpGQkIDZrHuXiIiIiIiIZDbqEJNM5dSpU7Rr145Lly7h7e3NqlWraNq0qdGxRP626OhoTp8+zRNPPKFimIiIiIiISCald2uSKVitVl544QUqVqzI5cuXGTRoELdv31YxTLKc2bNnY7PZdNMHERERERGRTEwjk2K4PXv20LVrV8LCwvD19WXTpk1UrlzZ6Fgi/8r/tXfnwVGVifrHn+402QkBYmQNCAFUCBqURfZNdpHAiCgIXMfgKCGAihdZZIbVOMxFCctIyYij3IGriIAipT/ZYVhNICxCgISwNwmEJJ10Qqf79weaMbKKCaeT/n6qKEOf0+95ToJdlafe9z3169fX6dOnlZeXxwwxAAAAAHBT/LYGwxQUFCgqKkrt2rVTZmam3n77bZ08eZIyDGXW5cuXdeLECbVu3ZoyDAAAAADcGHuIwRArVqzQsGHDZLPZFBERoXXr1qlGjRpGxwJ+l3feeUeSNG7cOIOTAAAAAABuhSWTuKcyMzPVp08fbdu2TT4+Ppo7d65GjBhhdCygRNSuXVsZGRnKzc01OgoAAAAA4BZY04N7Jj4+XqGhodq2bZs6duwoq9VKGYZy4/z58zp9+rQ6dOhgdBQAAAAAwG2wZBKlLi0tTT169NDhw4cVGBiozz//XH379jU6FlCiZsyYIUmaOHGiwUkAAAAAALfDkkmUqrfeekvvvvuunE6nBg4cqKVLl8pioYdF+VO9enXl5OQoOzvb6CgAAAAAgNugmUCpSExMVJ8+fXTmzBmFhoZq9erVatmypdGxgFKRkpKi8+fPKyoqyugoAAAAAIA7wB5iKFFOp1PDhg1TZGSkzp49q9jYWJ07d44yDOXatGnTJEmTJk0yOAkAAAAA4E6wZBIl5rvvvtPAgQOVmZmp8PBwrVu3TvXr1zc6FlDqQkJCVFhYqMuXLxsdBQAAAABwB5ghht8tNzdXPXr0ULdu3ZSTk6O4uDglJydThsEjHDp0SBkZGerVq5fRUQAAAAAAd4g9xPC7/POf/9TLL78su92u5s2ba+3atQoJCTE6FnDP/LxccvLkyQYnAQAAAADcKZZM4q5YrVb16tVLe/fulZ+fnxYtWqQhQ4YYHQu454KDg2WxWJSenm50FAAAAADAHWLJJH6zd955RzVr1tTevXvVs2dPpaenU4bBI+3Zs0dXrlxRv379jI4CAAAAAPgNmCGGO5acnKyePXvq+PHjCg4O1ueff64uXboYHQswTFRUlL788kulpqaqTp06RscBAAAAANwhCjHcltPp1JgxYzRv3jxJ0rBhw7R48WKZzUwwhGcLDAxUxYoVde7cOaOjAAAAAAB+AzbVxy39+9//Vr9+/WS1WlWrVi19/fXXatq0qdGxAMNt3rxZNptNL774otFRAAAAAAC/EVN8cENXr17VM888o9atWys9PV1vvfWWTp06RRkG/GTmzJmSpEmTJhmcBAAAAADwW7Fk0sOdOnVK1atXl8Xyn8mCq1at0pAhQ5STk6PGjRtr7dq1CgsLMzAl4H78/Px03333KS0tzegoAAAAAIDfiBliZZwt36GDZ68oIe2yDp69Ilu+447fe/z4cTVo0EAjRoyQJGVlZalDhw7q16+fCgoKFB8frwMHDlCGAb/y9ddfy263a/DgwUZHAQAAAADcBWaIlUHJF7K1dGeaNhyxKu1Srn75AzRJCqvir06NQjW4ZZga3F/xpuP07t1b33zzjVwul8aMGaMFCxaooKBAbdu21Zo1axQcHFzatwKUSR07dtSmTZt0+fJl/j8BAAAAgDKIQqwMOXUpVxNWJmnLsXR5mU0qdN78R/fz8XbhIZoZFaHaVfyLHf/qq6/01FNPFXstICBAH3/8sQYMGFAq+YHywOl0ys/PT7Vq1dLx48eNjgMAAAAAuAssmSwjlu1OU9c5m7T9RIYk3bIM++Xx7Scy1HXOJi3b/Z99jux2u0aOHHnde0aMGEEZBtzGZ599poKCAg0bNszoKAAAAACAu8QMsTJg3oZkzf726O8e541uDRXTqYFiYmI0f/78646bTCYlJibyJEngFp544gnt3LlTOTk58vf3v/0bAAAAAABux3L7U2CkZbvTSqQMk6TZ3x7VgT3/1gc3KMMCAgJUs2ZNORx3vik/4GmcTqf27NmjRo0aUYYBAAAAQBlGIebGTl3K1ZTVByVJGevmKSdxXdGx4A7DVOmJZ4qdb09LUu6R7co/c1iO7HQ583Lk5VdRPrWbqFLrgfIOfUBrLwSqYbPWenFgXzVv3lw1a9ZUzZo1FRgYeE/vDSiLPvroIzkcDkVHRxsdBQAAAADwO7Bk0o29sHintp/IkOPqVZ2eN1TOvKyiYxVCH1CNF+OLnX9h+duyp/xww7FMFm/d/9wM+dV6SG3qh+iTP7Ys1exAedSsWTPt27dPeXl58vb2NjoOAAAAAOAusam+m0q+kK0tx9JV6HTJnppQrAyTpKvWFF3NOHXd+yzB1RTcYahCn52mKj1j5RVYRZLkchTo8saP5XRJW46l65g1+57cB1BeFBQUaN++fYqIiKAMAwAAAIAyjkLMTS3dmSYvs0mSZDu0ueh1/4faF339y9clKajlANUY8YEqPTFQfg9EquIj3VSl26tFxwvOJUuSvMwmfbojTQDu3MKFC+V0OvXqq6/e/mQAAAAAgFujEHNTG45YVeh0yeUoUG7yDkmS2b+SqnSNlsxekiTb4S3F3uNX9xGZfjr2M0uVGkVfmyr4SJIKnS5tOGotzfhAubNo0SJ5eXnppZdeMjoKAAAAAOB3ohBzQzn5DqVdypUk5R7bJVdBniTJv0EreQVUlm9YhCTJcem0Cs4fv+VYuUe2FX3tV++xoq/TMnJly+eJksCdyMvL0+HDh/XYY4/JbOZjEwAAAADKOn6zc0MnM2z6+UkHuYd/sVzywTbX/tuoTdFrtsPFl03+Ut7x3bqyfbkkyexbUcHtXyg65pKUmmErudBAOTZnzhy5XC7FxsYaHQUAAAAAUAIoxNxQgcMpSXLm5yrv+B5J1wot3zqPSJL8G7WWTNd+dLbDW3SjB4Xaftwm6xczpEKHTN5+Cn3mbVkqhd7wOgBubcmSJapQoYKee+45o6MAAAAAAEqAxegAuJ635VrZlZu8Qy5HgSTJac9W2rtPX3duYZZV+Wd+lG+th4pey0n6Xhlr35dcTpl9AhQ68M/yqfnQde/9+ToAbi4rK0vJyclq164dyyUBAAAAoJzgtzs3VLdqgEySbIc23dH5v1xWmb33K2V8/d61Msw/WPc/P+uGZZjpp+sAuLW4uDhJ0htvvGFwEgAAAABASWGGmBsK8LGous9VpaYmSpJM3n4K7jC0+EmFDl1ev1iSlPvjVlXuGq3s3at1ef2H1457VVDlDkPlLMiT/dTBorf51m4sSQqr6q8AH378wO0sXbpUvr6+6tu3r9FRAAAAAAAlhEbETVWxJkjOQkmS3wORCnrsqevOyTmwQVetJ1Rouyz7yf3KTd7xn4OFV5Xxzdzr3lNn/FcyuZxqUsWsM2fOyGazFf3JycnR1atX1bVrV/n5+ZXavQFlhdVq1cmTJ/Xkk08aHQUAAAAAUIIoxNzUxcT1RV/7hbe84Tn+4S10xXpCUvFlk7fjMpm16M0hWvDH0zc8vmLFCvXv3/83pAXKp1mzZkmSxo8fb3ASAAAAAEBJMrlu9IhCuIUXFu/U9hMZKnSW3I/Iy2xSy7rB2jFriFJSUq47HhgYqLNnz6pixYoldk2grKpRo4aysrKUk5NjdBQAAAAAQAliU303NjMqQhazqUTHtJhNihvwqA4cOKAmTZrIZCo+/n333adLly6V6DWBsujUqVM6d+6cunTpYnQUAAAAAEAJoxBzY7Wr+OsvfRuX6JhT+zZW7Sr+8vf319q1a1W5cmWZzf/5Z5CSkqK6devq0Ucf1aZNd/aUS6A8mj59uiRp0qRJBicBAAAAAJQ0CjE3N6h5mN7o1rBExhrXrZGebR5W9PfatWtrzZo1RYXYoEGDtH//frVt21b79+9Xx44dVatWLS1atKhErg+UJStXrlRQUJCaN29udBQAAAAAQAmjECsDYjo10Dv9I+RjMcvrNy6h9DKb5GMxK65/hEZ2Cr/ueOvWrbVo0SL5+vpq3LhxioiI0JYtW2S1WvX888/LarXq5ZdfVsWKFfXaa6/JbreX1G0Bbis5OVkXL15U9+7djY4CAAAAACgFbKpfhpy6lKsJK5O05Vi6vMymW262//PxduEhmhkVodpV/G85tt1ul6+v73WvOxwOTZ06VfHx8crMzJTFYlGfPn00f/581ahR43ffE+COhg4dqk8++URJSUlq0qSJ0XEAAAAAACWMQqwMSr6QraU707ThqFVpGbn65Q/QJCmsqr86NQzVkFZhCg8tuadF/u///q8mTpyo1NRUSdLjjz+u+Ph4tWrVqsSuAbiDKlWqyGQyKSMjw+goAAAAAIBSQCFWxtnyHUrNsKnA4ZS3xay6VQMU4GMp1Wvu3r1bo0aN0q5du+RyuVSnTh1NnTpVQ4cOLdXrAvdCYmKiIiMjNWzYMC1ZssToOAAAAACAUkAhhrt2/vx5xcTEaNWqVXI4HKpUqZJeffVVTZ06VRZL6ZZyQGn5wx/+oBUrVujYsWOqX7++0XEAAAAAAKWAQgy/W0FBgSZPnqyFCxcqOztbFSpUUP/+/TV37lyFhoYaHQ/4TYKCguTn56cLFy4YHQUAAAAAUEp4yiR+N29vb8XFxSkrK0sffvihqlWrpuXLl6tatWpq06aNfvjhB6MjAndk+/btys7O1oABA4yOAgAAAAAoRcwQQ6nYunWrRo8eXVSG1atXT7NmzdLAgQMNTgbcXJ8+ffT111/rzJkzPEUVAAAAAMoxCjGUqrS0NMXExGjt2rUqLCxUlSpVNHr0aE2YMIF9xuB2AgICVLlyZZ0+fdroKAAAAACAUsSSSZSqsLAwrV69WtnZ2YqNjZXdbteUKVMUEBCgYcOGKTMz0+iIgCTpu+++U25urp599lmjowAAAAAAShkzxHBPOZ1O/f3vf9f06dN17tw5mUwmtW/fXvPnz1fjxo2NjgcP1rVrV33//fe6ePGiQkJCjI4DAAAAAChFFGIwzPfff6+xY8cqKSlJktSoUSP99a9/1VNPPWVwMngiX19fVa9eXSkpKUZHAQAAAACUMpZMwjBdunTR/v37t7MQHgAAGNZJREFUdezYMXXv3l3Jycnq27evQkND9e6778rpdBodER5i5cqVys/P1wsvvGB0FAAAAADAPcAMMbiNnJwcvf766/rnP/8pu90uX19fDRkyRHPmzFFgYKDR8VCOtW3bVtu3b1dWVhb/1gAAAADAA1CIwe04nU7NmTNHcXFxunjxosxms7p06aKFCxeqfv36RsdDOeN0OuXj46N69erpyJEjRscBAAAAANwDLJmE2zGbzXr99ddltVq1Zs0aNWzYUN99953Cw8MVERGh7777zuiIKEc+/fRTORwO/fGPfzQ6CgAAAADgHmGGGMqEw4cPa+TIkdq4caNcLpeqVaumCRMmaOTIkTKb6XVx95o3b669e/cqNzdXvr6+RscBAAAAANwDFGIoUzIzMzVmzBgtW7ZM+fn58vf314svvqi4uDj5+/sbHQ9ljMPhkK+vrx5++GHt37/f6DgAAAAAgHuEqTUoU4KDg7VkyRLl5uZq2rRp8vX11bx58xQUFKQ+ffooLS3N6IgoQxYtWqTCwkL96U9/MjoKAAAAAOAeYoYYyrwVK1Zo/PjxOnbsmCQpMjJS7733ntq3b29wMri7pk2b6uDBg8rPz5fFYjE6DgAAAADgHmGGGMq8AQMGKDk5WQkJCWrTpo0SExPVoUMH1a5dWx9++KHR8eCm7Ha7Dhw4oMjISMowAAAAAPAwFGIoNx599FFt3bpVVqtVgwYN0oULFxQdHa2goCCNGzdOBQUFRkeEG4mPj5fL5dKoUaOMjgIAAAAAuMcoxFDuhISE6F//+pdyc3M1adIkmc1mzZ49WwEBAerfv7/Onj1rdMRy4+LFi3rllVcUFhYmHx8fVatWTd27d9e2bduMjqa6devqvffeu+nxxYsXy2Kx6IUXXij2ut1u1/DhwxURESGLxaJ+/fqVblAAAAAAwD1HIYZyy2KxaNq0acrMzNQnn3yimjVrauXKlapZs6Zatmyp3bt3Gx2xzBswYIASEhL08ccf6+jRo1q9erU6duyojIyMUrtmScz0y8nJ0dGjR9WiRQuZzcU/BgsLC+Xn56fY2Fh17dr1d18LAAAAAOB+KMTgEYYMGaLU1FTt2LFDLVq00K5du9SiRQvVrVtXS5cuNTpemZSZmaktW7YoLi5OnTp1Up06ddSiRQu99dZb6tu3b7HzXnrpJd13330KCgpS586dtW/fvmJjrVmzRs2bN5evr69CQkIUFRVVdKxu3bqaNm2ahg4dqqCgII0YMUKStHXrVrVr105+fn6qXbu2YmNjZbPZJEkdO3bUyZMnNXbsWJlMJplMpmLXmz17tlwul1577bXr7isgIEALFy5UdHS0qlWrVmLfLwAAAACA+6AQg0dp2bKldu7cqTNnzqh///46c+aMhgwZouDgYE2aNEkOh8PoiGVGYGCgAgMD9eWXXyo/P/+m5z3zzDOyWq365ptvtHfvXjVr1kxdunTRpUuXJElff/21oqKi1KtXLyUkJOj7779XixYtio0xe/ZsPfLII0pISNDkyZN1/Phx9ejRQwMGDND+/fu1fPlybd26VTExMZKkL774QrVq1dLUqVN17tw5nTt3rmgsk8mk+fPny8fHp1jxBgAAAADwHCaXy+UyOgRglIKCAk2cOFEffPCBsrOzVaFCBQ0YMEDx8fEKCQkxOp7bW7FihaKjo5WXl6dmzZqpQ4cOGjRokJo2bSrp2iyu3r17y2q1ysfHp+h94eHhevPNNzVixAi1bt1a9erV06effnrDa9StW1eRkZFauXJl0WsvvfSSvLy89MEHHxS9tnXrVnXo0EE2m02+vr6qW7euxowZozFjxhQbr0GDBjp27Jg6d+6s77///pb3N3z4cGVmZurLL7/8jd8ZAAAAAIA7Y4YYPJq3t7f++te/KisrS4sWLdL999+vZcuWKTQ0VG3btr1uaR+KGzBggM6ePavVq1erR48e2rhxo5o1a6YlS5ZIkvbt26ecnBxVrVq1aEZZYGCgUlJSdPz4cUlSYmKiunTpcsvrPP7448X+vm/fPi1ZsqTYmN27d5fT6VRKSsotx/p5k/w333zz7m4aAAAAAFDmWYwOALiL6OhoRUdHa/PmzRozZoy2bdumRx99VOHh4XrnnXc0YMAAoyO6JV9fXz355JN68sknNXnyZL300kuaMmWKhg8frpycHFWvXl0bN2687n3BwcGSJD8/v9teIyAgoNjfc3Jy9PLLLys2Nva6c8PCwm451rJly+Tn56fu3bvf9roAAAAAgPKJGWLAr7Rv314//PCDUlNT1bt3b6WkpOgPf/iDqlatqhkzZsjpdBod0a09/PDDRZvbN2vWTOfPn5fFYlF4eHixPz8vSW3atOltly7+WrNmzXTo0KHrxgwPD5e3t7eka7P/CgsLi73v7NmzOn36tDp16lQCdwoAAAAAKKsoxICbqFOnjr766itlZWUpJiZGdrtdkyZNkr+/f9HeUp4sIyNDnTt31qeffqr9+/crJSVFn332md599109/fTTkqSuXbvqiSeeUL9+/fTtt98qNTVV27dv18SJE7Vnzx5J0pQpU/Svf/1LU6ZM0eHDh5WUlKS4uLhbXvu///u/tX37dsXExCgxMVHJyclatWpV0ab60rW9xzZv3qwzZ84oPT1dkjRjxgxJUps2bW45/qFDh5SYmKhLly7pypUrSkxMVGJi4t1+qwAAAAAAboZCDLgNf39/xcfHKzs7W3PnzlXlypX18ccfq0qVKurcubMOHz5sdERDBAYGqmXLlpozZ47at2+vJk2aaPLkyYqOjta8efMkXXui49q1a9W+fXv913/9lxo2bKhBgwbp5MmTuv/++yVJHTt21GeffabVq1fr0UcfVefOnbVr165bXrtp06batGmTjh49qnbt2ikyMlJvv/22atSoUXTO1KlTlZqaqvr16+u+++6TdO0hAJKKnXcjvXr1UmRkpNasWaONGzcqMjJSkZGRd/29AgAAAAC4F54yCdyFb7/9Vq+//roOHDggSXrwwQc1e/Zs9e7d2+BkuJmUlBTVq1dP/fv3LyrGAAAAAACeiRliwF3o1q2bkpKSlJycrG7duuno0aPq06ePQkND9be//Y19xtzQ1KlTJUmTJ082OAkAAAAAwGjMEANKQHZ2tl5//XV98sknstvt8vPz09ChQzV79mwFBgYaHQ+SqlatKqfTqcuXLxsdBQAAAABgMGaIASWgYsWKWrRokWw2m+Li4hQYGKgPPvhAlSpVUo8ePXT8+HGjI3q0gwcP6tKlSyxpBQAAAABIYoYYUGpWr16tN998U0eOHJEkRUREaM6cOerSpYvByTzPoEGDtHz5cv34449q1KiR0XEAAAAAAAajEANK2cGDBxUTE6NNmzbJ5XKpevXqmjhxol555RWZzUzSvBcqVaokHx8fWa1Wo6MAAAAAANwAv40Dpaxx48basGGDMjIyNHToUGVkZCgmJkZBQUEaPXq07Ha70RHLtd27dysrK0v9+vUzOgoAAAAAwE0wQwy4xxwOh2bOnKn3339fly5dkpeXl3r27Kn58+crLCzM6HjlTr9+/bRq1SqdPHmS7y8AAAAAQBKFGGCo//u//9OECROKNt1v1qyZ5s6dqzZt2hicrPwIDAxUUFCQzp49a3QUAAAAAICbYMkkYKCBAwfq2LFj+uGHH9S6dWslJCSobdu2CgsL0z/+8Q+j45V5GzdulM1m0zPPPGN0FAAAAACAG2GGGOBGrFarYmNj9cUXX+jq1auqWLGi/vSnP2n69Ony9vY2Ol6Z0717d3377be6cOGCQkNDjY4DAAAAAHATFGKAGyooKNCf//xnLViwQFeuXJHFYtHTTz+tefPmqVq1akbHKzP8/PwUGhqqkydPGh0FAAAAAOBGWDIJuCFvb2/NnDlTmZmZ+vjjj1WzZk2tWLFCNWrUUKtWrbR7926jI7q9NWvWyG63a/DgwUZHAQAAAAC4GWaIAWXEjh07NGrUKO3Zs0eS9MADD2jGjBl67rnnDE7mnjp06KDNmzfrypUrCgoKMjoOAAAAAMCNUIgBZczZs2c1cuRIrVmzRoWFhQoODtaoUaP09ttvy2KxGB3PLTidTvn6+qpOnTpKTk42Og4AAAAAwM2wZBIoY2rUqKGVK1cqJydHY8eO1dWrVzVt2jQFBARo8ODBSk9PNzqi4T777DNdvXpVw4cPNzoKAAAAAMANMUMMKAcWLVqkqVOn6syZMzKZTGrTpo3mz5+vpk2bGh3NEK1atdKuXbuUk5Mjf39/o+MAAAAAANwMhRhQjmzcuFFjx45VYmKiJKlBgwaKi4tTVFSUscHuIafTKW9vbzVq1EgHDx40Og4AAAAAwA2xZBIoRzp27KiEhASlpqaqV69eOnHihPr376+QkBDNmjVLTqfT6Iil7h//+IcKCwsVHR1tdBQAAAAAgJtihhhQjuXm5mrcuHH66KOPlJeXJx8fHz3//PN67733yu2TFyMjI7V//37l5eXJ29vb6DgAAAAAADdEIQZ4AKfTqfj4eM2aNUsXLlyQ2WxWx44dtWDBAjVq1MjoeCWmoKBAfn5+atq0qRISEoyOAwAAAABwUyyZBDyA2WzW6NGjdf78ea1bt04PPfSQ1q9frwcffFAPP/ywvvnmG6MjlogFCxbI6XRq5MiRRkcBAAAAALgxZogBHurIkSOKiYnR+vXr5XQ6FRoaqvHjx2v06NEym8tOV56QkKCUlBT17NlTjz/+uI4cOaKCgoIydQ8AAAAAgHuLQgzwcFlZWXrttde0dOlS2e12+fn5adiwYZo9e7YCAgKMjndb/fr106pVq+Tr6yu73a6GDRsqKSmJ/cMAAAAAADfFFArAwwUFBenDDz+UzWbTrFmzFBAQoL///e8KCgpSz549lZKSYnTEW6pdu7a8vLxkt9slSUePHlVISIimT59ucDIAAAAAgLuiEAMg6do+Y+PHj9fFixf15ZdfKjw8XOvWrVO9evX0yCOPaP369UZHvKF69erp1xNds7OzdeTIEYMSAQAAAADcHYUYgOs8/fTTOnLkiJKSktS+fXslJSWpS5cuqlmzphYuXCin02l0xCL16tUrlsdkMqlv375avHixgakAAAAAAO6MQgzATTVp0kSbNm1Senq6Bg8erPT0dL366qsKCgrS2LFji5YpGql+/frF/h4VFaXPP/+cPcQAAAAAADfFpvoA7pjD4dD06dM1d+5cXb58WV5eXurdu7fmz5+vWrVqGZLJZrMpMDBQkjRw4EAtXbpUFovFkCwAAAAAgLKBQgzAXVm+fLkmTJigEydOSJIee+wxzZ07V61bty61a9ryHUrNsKnA4ZS3xay6VQMkR74CAwNVq1YtpaSkUIYBAAAAAG6LQgzA77Jnzx6NGjVKO3fulMvlUlhYmP7yl79o+PDhJTJ+8oVsLd2Zpg1HrEq7lKtffmCZJFX1cenEtjX6/J0x6vzYQyVyTQAAAABA+UYhBqBEnD9/XrGxsVq5cqUcDoeCgoL0yiuvaOrUqcX281qwYIFOnz6tGTNmyGQy3XS8U5dyNWFlkrYcS5eX2aRC580/qsxyySmT2oWHaGZUhGpX8S/RewMAAAAAlC8UYgBKVEFBgd5++20tXLhQWVlZqlChgvr166f4+Hj5+vqqevXqysvL0//8z/9o7NixNxxj2e40TVl9UA6n65ZF2K95mU2ymE36S9/GGtQ8rKRuCQAAAABQzlCIASg1H330kaZMmaJTp07JZDIpLCxMaWlpcrlcMplM+uabb9S9e/di75m3IVmzvz36u6/9RreGiunU4HePAwAAAAAofyjEAJS6bdu2KTY2Vj/88EPRayaTSQEBAdq7d68aNmwo6drMsPFfJJXYdeP6R+hZZooBAAAAAH6FQgzAPbFs2TI999xz171euXJlHT16VHlmf3Wds0n5Dqcy1s1TTuK6onOCOwxTpSeeKfY+R+YFZe1drfwzP6rgwnGp0CFJqtTmOQW3GyxJ8rGY9f/GdmBPMQAAAABAMWajAwDwDO+//74kqUKFCqpQoYLM5msfP5cvX1bt2rU1fMG3cjhdchU6lHtke7H32g5vvm68AusJZe9epYKzR4rKsF9zOF2asLLkZpwBAAAAAMoHi9EBAHiGQYMG6eGHH1ZAQEDRH39/fyUmJup4eq6O2ypIcsmemiBnXlax9161puhqxilVqFq76DVTBV/51o2UT80HVWBNUV7yjuuuWeh0acuxdB2zZis8tGJp3yIAAAAAoIygEANwT4wePfqmx/68+qA+2XlShU6XbIf+MxvM/6H2yv1pdpjt0OaipZCS5PdApPweiJQkXd64RHnJNx7by2zSpzvS9Oe+jUvgLgAAAAAA5QFLJgEYbsMRqwqdLrkcBcr9aaaX2b+SqnSNlsxekiTb4S13NXah06UNR60llhUAAAAAUPZRiAEwVE6+Q2mXciVJucd2yVWQJ0nyb9BKXgGV5RsWIUlyXDqtgvPH7+oaaRm5suXfeJ8xAAAAAIDnoRADYKiTGTb9/Kjb3F9snu//YJtr/23Upui1G22ufydcklIzbHcbEQAAAABQzlCIATBUgcMpSXLm5yrv+B5Jktm3onzrPCJJ8m/UWjJd+6iyHd4il8t144Hu8DoAAAAAALCpPgBDeVuulV25yTvkchRIkpz2bKW9+/R15xZmWZV/5kf51nrorq8DAAAAAAC/IQIwVN2qATJJsh3adEfn597FsknTT9cBAAAAAEBihhgAgwX4WFTd56pSUxMlSSZvPwV3GFr8pEKHLq9fLEnK/XGrKneNljMvW/a0JEnS1YzTRadezTgl249bJUm+YRHy8q+ksKr+CvDh4w4AAAAAcA2/IQIwXBVrguQslCT5PRCpoMeeuu6cnAMbdNV6QoW2y7Kf3C+Tyaz0L9+57rzcH7cq96dC7P7nZsr7gUfUqWFo6d4AAAAAAKBMYckkAMNdTFxf9LVfeMsbnuMf3qLo69+ybLLQ6dKQVmF3Hw4AAAAAUO6YXHf7yDYAKEEvLN6p7ScyVOgsuY8kL7NJretV1Sd/vHHJBgAAAADwTMwQA+AWZkZFyGI2leiYFrNJM6MiSnRMAAAAAEDZRyEGwC3UruKvv/RtXKJjTu3bWLWr+JfomAAAAACAso9CDIDbGNQ8TG90a1giY43r1kjPNmfvMAAAAADA9dhDDIDbWbY7TVNWH5TD6fpNe4p5mU2ymE2a2rcxZRgAAAAA4KYoxAC4pVOXcjVhZZK2HEuXl9l0y2Ls5+PtwkM0MyqCZZIAAAAAgFuiEAPg1pIvZGvpzjRtOGpVWkaufvmBZZIUVtVfnRqGakirMIWHVjQqJgAAAACgDKEQA1Bm2PIdSs2wqcDhlLfFrLpVAxTgYzE6FgAAAACgjKEQAwAAAAAAgEfhKZMAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKBRiAAAAAAAA8CgUYgAAAAAAAPAoFGIAAAAAAADwKP8fWlwTkg7+c2AAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -393,7 +382,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -421,7 +410,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -446,10 +435,12 @@ "--------------------------------------------------------------------------------\n", "\u001b[33mA1\u001b[0m (to chat_manager):\n", "\n", - "As A1, I have 2 chocolates. \n", + "As the team leader of Team A, it's my responsibility to gather the chocolate count from my team members. I have 1 chocolate. \n", + "\n", + "A0:?, A1:1, A2:?,\n", + "\n", + "B0:?, B1:?, B2:?,\n", "\n", - "A0:?, A1:2, A2:?, \n", - "B0:?, B1:?, B2:?, \n", "C0:?, C1:?, C2:?\n", "\n", "NEXT: A2\n", @@ -457,10 +448,12 @@ "--------------------------------------------------------------------------------\n", "\u001b[33mA2\u001b[0m (to chat_manager):\n", "\n", - "As A2, I have 2 chocolates.\n", + "I have 5 chocolates.\n", + "\n", + "A0:?, A1:1, A2:5,\n", + "\n", + "B0:?, B1:?, B2:?,\n", "\n", - "A0:?, A1:2, A2:2, \n", - "B0:?, B1:?, B2:?, \n", "C0:?, C1:?, C2:?\n", "\n", "NEXT: A0\n", @@ -468,33 +461,42 @@ "--------------------------------------------------------------------------------\n", "\u001b[33mA0\u001b[0m (to chat_manager):\n", "\n", - "As A0, I have 1 chocolate. So, the total chocolate count for team A is 5.\n", + "I have 1 chocolate. Now that I have the counts from A1 and A2, I can calculate our team's total.\n", + "\n", + "A0:1, A1:1, A2:5,\n", + "\n", + "B0:?, B1:?, B2:?,\n", "\n", - "A0:1, A1:2, A2:2, \n", - "B0:?, B1:?, B2:?, \n", "C0:?, C1:?, C2:?\n", "\n", - "Now, I suggest the next team leader to find out their team's tally.\n", + "Team A's total tally is 7 chocolates. It's time to find out the tally from another team. I'll pass this to the next team leader.\n", + "\n", "NEXT: B0\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mB0\u001b[0m (to chat_manager):\n", "\n", - "As B0, I have 3 chocolates. Now, I will ask my team members about their count.\n", + "As the team leader of Team B, it's my responsibility to gather the chocolate count from my team members. I have 1 chocolate.\n", + "\n", + "A0:1, A1:1, A2:5,\n", + "\n", + "B0:1, B1:?, B2:?,\n", "\n", - "B0:3, B1:?, B2:?, \n", - "A0:1, A1:2, A2:2, \n", "C0:?, C1:?, C2:?\n", "\n", + "Now, I need to find out the chocolate counts from B1 and B2.\n", + "\n", "NEXT: B1\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mB1\u001b[0m (to chat_manager):\n", "\n", - "As B1, I have 1 chocolate.\n", + "I have 3 chocolates.\n", + "\n", + "A0:1, A1:1, A2:5,\n", + "\n", + "B0:1, B1:3, B2:?,\n", "\n", - "B0:3, B1:1, B2:?, \n", - "A0:1, A1:2, A2:2, \n", "C0:?, C1:?, C2:?\n", "\n", "NEXT: B2\n", @@ -502,49 +504,77 @@ "--------------------------------------------------------------------------------\n", "\u001b[33mB2\u001b[0m (to chat_manager):\n", "\n", - "As B2, I have 2 chocolates. So, the total chocolate count for team B is 6.\n", + "I have 4 chocolates. Now that I have the counts from B0 and B1, I can calculate our team's total.\n", + "\n", + "A0:1, A1:1, A2:5,\n", + "\n", + "B0:1, B1:3, B2:4,\n", "\n", - "B0:3, B1:1, B2:2, \n", - "A0:1, A1:2, A2:2, \n", "C0:?, C1:?, C2:?\n", "\n", - "Now, I suggest the next team leader to find out their team's tally.\n", + "Team B's total tally is 8 chocolates. It's time to find out the tally from the last team. I'll pass this to the next team leader.\n", + "\n", "NEXT: C0\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mB0\u001b[0m (to chat_manager):\n", "\n", - "As C0, I have 4 chocolates. Now, I will ask my team members about their count.\n", + "I'm sorry for any confusion, but it seems there's been a misunderstanding in the flow of communication. As B0, I should be the one to summarize the tally for Team B and pass the conversation to the next team leader. Let me correct that.\n", "\n", - "C0:4, C1:?, C2:?, \n", - "B0:3, B1:1, B2:2, \n", - "A0:1, A1:2, A2:2, \n", + "A0:1, A1:1, A2:5,\n", "\n", - "NEXT: C1\n", + "B0:1, B1:3, B2:4,\n", + "\n", + "C0:?, C1:?, C2:?\n", + "\n", + "With the counts from B1 and B2, Team B's total tally is indeed 8 chocolates. Now, it's time to find out the tally from Team C. I'll pass this to the next team leader.\n", + "\n", + "NEXT: C0\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mC0\u001b[0m (to chat_manager):\n", "\n", - "As C1, I have 2 chocolates.\n", + "As the team leader of Team C, it's my responsibility to gather the chocolate count from my team members. I have 3 chocolates.\n", "\n", - "C0:4, C1:2, C2:?, \n", - "B0:3, B1:1, B2:2, \n", - "A0:1, A1:2, A2:2, \n", + "A0:1, A1:1, A2:5,\n", + "\n", + "B0:1, B1:3, B2:4,\n", + "\n", + "C0:3, C1:?, C2:?\n", + "\n", + "Now, I need to find out the chocolate counts from C1 and C2.\n", + "\n", + "NEXT: C1\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mC1\u001b[0m (to chat_manager):\n", + "\n", + "I have 3 chocolates.\n", + "\n", + "A0:1, A1:1, A2:5,\n", + "\n", + "B0:1, B1:3, B2:4,\n", + "\n", + "C0:3, C1:3, C2:?\n", "\n", "NEXT: C2\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mC2\u001b[0m (to chat_manager):\n", "\n", - "As C2, I have 1 chocolate. So, the total chocolate count for team C is 7.\n", + "I have 2 chocolates. Now that I have the counts from C0 and C1, I can calculate our team's total.\n", + "\n", + "A0:1, A1:1, A2:5,\n", + "\n", + "B0:1, B1:3, B2:4,\n", + "\n", + "C0:3, C1:3, C2:2\n", "\n", - "C0:4, C1:2, C2:1, \n", - "B0:3, B1:1, B2:2, \n", - "A0:1, A1:2, A2:2, \n", + "Team C's total tally is 8 chocolates. Now that we have the tallies from all teams, we can sum them up.\n", "\n", - "Now, we have the total tally from all nine players. The sum of all three teams' tally is 18. \n", + "Team A's total is 7 chocolates, Team B's total is 8 chocolates, and Team C's total is 8 chocolates. The grand total is 23 chocolates.\n", "\n", - "TERMINATE.\n", + "TERMINATE\n", "\n", "--------------------------------------------------------------------------------\n" ] @@ -552,10 +582,10 @@ { "data": { "text/plain": [ - "ChatResult(chat_history=[{'content': '\\n There are 9 players in this game, split equally into Teams A, B, C. Therefore each team has 3 players, including the team leader.\\n The task is to find out the sum of chocolate count from all nine players. I will now start with my team.\\n NEXT: A1', 'role': 'assistant'}, {'content': 'As A1, I have 2 chocolates. \\n\\nA0:?, A1:2, A2:?, \\nB0:?, B1:?, B2:?, \\nC0:?, C1:?, C2:?\\n\\nNEXT: A2', 'name': 'A1', 'role': 'user'}, {'content': 'As A2, I have 2 chocolates.\\n\\nA0:?, A1:2, A2:2, \\nB0:?, B1:?, B2:?, \\nC0:?, C1:?, C2:?\\n\\nNEXT: A0', 'name': 'A2', 'role': 'user'}, {'content': \"As A0, I have 1 chocolate. So, the total chocolate count for team A is 5.\\n\\nA0:1, A1:2, A2:2, \\nB0:?, B1:?, B2:?, \\nC0:?, C1:?, C2:?\\n\\nNow, I suggest the next team leader to find out their team's tally.\\nNEXT: B0\", 'role': 'assistant'}, {'content': 'As B0, I have 3 chocolates. Now, I will ask my team members about their count.\\n\\nB0:3, B1:?, B2:?, \\nA0:1, A1:2, A2:2, \\nC0:?, C1:?, C2:?\\n\\nNEXT: B1', 'name': 'B0', 'role': 'user'}, {'content': 'As B1, I have 1 chocolate.\\n\\nB0:3, B1:1, B2:?, \\nA0:1, A1:2, A2:2, \\nC0:?, C1:?, C2:?\\n\\nNEXT: B2', 'name': 'B1', 'role': 'user'}, {'content': \"As B2, I have 2 chocolates. So, the total chocolate count for team B is 6.\\n\\nB0:3, B1:1, B2:2, \\nA0:1, A1:2, A2:2, \\nC0:?, C1:?, C2:?\\n\\nNow, I suggest the next team leader to find out their team's tally.\\nNEXT: C0\", 'name': 'B2', 'role': 'user'}, {'content': 'As C0, I have 4 chocolates. Now, I will ask my team members about their count.\\n\\nC0:4, C1:?, C2:?, \\nB0:3, B1:1, B2:2, \\nA0:1, A1:2, A2:2, \\n\\nNEXT: C1', 'name': 'B0', 'role': 'user'}, {'content': 'As C1, I have 2 chocolates.\\n\\nC0:4, C1:2, C2:?, \\nB0:3, B1:1, B2:2, \\nA0:1, A1:2, A2:2, \\n\\nNEXT: C2', 'name': 'C0', 'role': 'user'}, {'content': \"As C2, I have 1 chocolate. So, the total chocolate count for team C is 7.\\n\\nC0:4, C1:2, C2:1, \\nB0:3, B1:1, B2:2, \\nA0:1, A1:2, A2:2, \\n\\nNow, we have the total tally from all nine players. The sum of all three teams' tally is 18. \\n\\nTERMINATE.\", 'name': 'C2', 'role': 'user'}], summary=\"As C2, I have 1 chocolate. So, the total chocolate count for team C is 7.\\n\\nC0:4, C1:2, C2:1, \\nB0:3, B1:1, B2:2, \\nA0:1, A1:2, A2:2, \\n\\nNow, we have the total tally from all nine players. The sum of all three teams' tally is 18. \\n\\n.\", cost=({'total_cost': 0.48207, 'gpt-4-0613': {'cost': 0.48207, 'prompt_tokens': 15865, 'completion_tokens': 102, 'total_tokens': 15967}}, {'total_cost': 0.48207, 'gpt-4-0613': {'cost': 0.48207, 'prompt_tokens': 15865, 'completion_tokens': 102, 'total_tokens': 15967}}), human_input=[])" + "ChatResult(chat_id=None, chat_history=[{'content': '\\n There are 9 players in this game, split equally into Teams A, B, C. Therefore each team has 3 players, including the team leader.\\n The task is to find out the sum of chocolate count from all nine players. I will now start with my team.\\n NEXT: A1', 'role': 'assistant'}, {'content': \"As the team leader of Team A, it's my responsibility to gather the chocolate count from my team members. I have 1 chocolate. \\n\\nA0:?, A1:1, A2:?,\\n\\nB0:?, B1:?, B2:?,\\n\\nC0:?, C1:?, C2:?\\n\\nNEXT: A2\", 'name': 'A1', 'role': 'user'}, {'content': 'I have 5 chocolates.\\n\\nA0:?, A1:1, A2:5,\\n\\nB0:?, B1:?, B2:?,\\n\\nC0:?, C1:?, C2:?\\n\\nNEXT: A0', 'name': 'A2', 'role': 'user'}, {'content': \"I have 1 chocolate. Now that I have the counts from A1 and A2, I can calculate our team's total.\\n\\nA0:1, A1:1, A2:5,\\n\\nB0:?, B1:?, B2:?,\\n\\nC0:?, C1:?, C2:?\\n\\nTeam A's total tally is 7 chocolates. It's time to find out the tally from another team. I'll pass this to the next team leader.\\n\\nNEXT: B0\", 'role': 'assistant'}, {'content': \"As the team leader of Team B, it's my responsibility to gather the chocolate count from my team members. I have 1 chocolate.\\n\\nA0:1, A1:1, A2:5,\\n\\nB0:1, B1:?, B2:?,\\n\\nC0:?, C1:?, C2:?\\n\\nNow, I need to find out the chocolate counts from B1 and B2.\\n\\nNEXT: B1\", 'name': 'B0', 'role': 'user'}, {'content': 'I have 3 chocolates.\\n\\nA0:1, A1:1, A2:5,\\n\\nB0:1, B1:3, B2:?,\\n\\nC0:?, C1:?, C2:?\\n\\nNEXT: B2', 'name': 'B1', 'role': 'user'}, {'content': \"I have 4 chocolates. Now that I have the counts from B0 and B1, I can calculate our team's total.\\n\\nA0:1, A1:1, A2:5,\\n\\nB0:1, B1:3, B2:4,\\n\\nC0:?, C1:?, C2:?\\n\\nTeam B's total tally is 8 chocolates. It's time to find out the tally from the last team. I'll pass this to the next team leader.\\n\\nNEXT: C0\", 'name': 'B2', 'role': 'user'}, {'content': \"I'm sorry for any confusion, but it seems there's been a misunderstanding in the flow of communication. As B0, I should be the one to summarize the tally for Team B and pass the conversation to the next team leader. Let me correct that.\\n\\nA0:1, A1:1, A2:5,\\n\\nB0:1, B1:3, B2:4,\\n\\nC0:?, C1:?, C2:?\\n\\nWith the counts from B1 and B2, Team B's total tally is indeed 8 chocolates. Now, it's time to find out the tally from Team C. I'll pass this to the next team leader.\\n\\nNEXT: C0\", 'name': 'B0', 'role': 'user'}, {'content': \"As the team leader of Team C, it's my responsibility to gather the chocolate count from my team members. I have 3 chocolates.\\n\\nA0:1, A1:1, A2:5,\\n\\nB0:1, B1:3, B2:4,\\n\\nC0:3, C1:?, C2:?\\n\\nNow, I need to find out the chocolate counts from C1 and C2.\\n\\nNEXT: C1\", 'name': 'C0', 'role': 'user'}, {'content': 'I have 3 chocolates.\\n\\nA0:1, A1:1, A2:5,\\n\\nB0:1, B1:3, B2:4,\\n\\nC0:3, C1:3, C2:?\\n\\nNEXT: C2', 'name': 'C1', 'role': 'user'}, {'content': \"I have 2 chocolates. Now that I have the counts from C0 and C1, I can calculate our team's total.\\n\\nA0:1, A1:1, A2:5,\\n\\nB0:1, B1:3, B2:4,\\n\\nC0:3, C1:3, C2:2\\n\\nTeam C's total tally is 8 chocolates. Now that we have the tallies from all teams, we can sum them up.\\n\\nTeam A's total is 7 chocolates, Team B's total is 8 chocolates, and Team C's total is 8 chocolates. The grand total is 23 chocolates.\\n\\nTERMINATE\", 'name': 'C2', 'role': 'user'}], summary=\"I have 2 chocolates. Now that I have the counts from C0 and C1, I can calculate our team's total.\\n\\nA0:1, A1:1, A2:5,\\n\\nB0:1, B1:3, B2:4,\\n\\nC0:3, C1:3, C2:2\\n\\nTeam C's total tally is 8 chocolates. Now that we have the tallies from all teams, we can sum them up.\\n\\nTeam A's total is 7 chocolates, Team B's total is 8 chocolates, and Team C's total is 8 chocolates. The grand total is 23 chocolates.\\n\\n\", cost={'usage_including_cached_inference': {'total_cost': 0.5525399999999999, 'gpt-4': {'cost': 0.5525399999999999, 'prompt_tokens': 18174, 'completion_tokens': 122, 'total_tokens': 18296}}, 'usage_excluding_cached_inference': {'total_cost': 0.5525399999999999, 'gpt-4': {'cost': 0.5525399999999999, 'prompt_tokens': 18174, 'completion_tokens': 122, 'total_tokens': 18296}}}, human_input=[])" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -612,7 +642,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/notebook/agentchat_groupchat_stateflow.ipynb b/notebook/agentchat_groupchat_stateflow.ipynb index 6205e1147ee..c824046f73a 100644 --- a/notebook/agentchat_groupchat_stateflow.ipynb +++ b/notebook/agentchat_groupchat_stateflow.ipynb @@ -112,7 +112,6 @@ ")\n", "\n", "\n", - "\n", "coder = autogen.AssistantAgent(\n", " name=\"Retrieve_Action_1\",\n", " llm_config=gpt4_config,\n", diff --git a/notebook/agentchat_image_generation_capability.ipynb b/notebook/agentchat_image_generation_capability.ipynb index 7c0c366a5f0..b5d298d7f4d 100644 --- a/notebook/agentchat_image_generation_capability.ipynb +++ b/notebook/agentchat_image_generation_capability.ipynb @@ -135,6 +135,7 @@ " return content[\"text\"].rstrip().endswith(\"TERMINATE\")\n", " return False\n", "\n", + "\n", "def critic_agent() -> autogen.ConversableAgent:\n", " return autogen.ConversableAgent(\n", " name=\"critic\",\n", diff --git a/notebook/agentchat_pgvector_RetrieveChat.ipynb b/notebook/agentchat_pgvector_RetrieveChat.ipynb new file mode 100644 index 00000000000..c0c681350f2 --- /dev/null +++ b/notebook/agentchat_pgvector_RetrieveChat.ipynb @@ -0,0 +1,2848 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using RetrieveChat for Retrieve Augmented Code Generation and Question Answering\n", + "\n", + "AutoGen offers conversable agents powered by LLM, tool or human, which can be used to perform tasks collectively via automated chat. This framework allows tool use and human participation through multi-agent conversation.\n", + "Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n", + "\n", + "RetrieveChat is a conversational system for retrieval-augmented code generation and question answering. In this notebook, we demonstrate how to utilize RetrieveChat to generate code and answer questions based on customized documentations that are not present in the LLM's training dataset. RetrieveChat uses the `RetrieveAssistantAgent` and `RetrieveUserProxyAgent`, which is similar to the usage of `AssistantAgent` and `UserProxyAgent` in other notebooks (e.g., [Automated Task Solving with Code Generation, Execution & Debugging](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_auto_feedback_from_code_execution.ipynb)). Essentially, `RetrieveAssistantAgent` and `RetrieveUserProxyAgent` implement a different auto-reply mechanism corresponding to the RetrieveChat prompts.\n", + "\n", + "## Table of Contents\n", + "We'll demonstrate six examples of using RetrieveChat for code generation and question answering:\n", + "\n", + "- [Example 1: Generate code based off docstrings w/o human feedback](#example-1)\n", + "- [Example 2: Answer a question based off docstrings w/o human feedback](#example-2)\n", + "- [Example 3: Generate code based off docstrings w/ human feedback](#example-3)\n", + "- [Example 4: Answer a question based off docstrings w/ human feedback](#example-4)\n", + "- [Example 5: Solve comprehensive QA problems with RetrieveChat's unique feature `Update Context`](#example-5)\n", + "- [Example 6: Solve comprehensive QA problems with customized prompt and few-shot learning](#example-6)\n", + "\n", + "\n", + "````{=mdx}\n", + ":::info Requirements\n", + "Some extra dependencies are needed for this notebook, which can be installed via pip:\n", + "\n", + "```bash\n", + "pip install pyautogen[retrievechat] flaml[automl]\n", + "```\n", + "\n", + "For more information, please refer to the [installation guide](/docs/installation/).\n", + ":::\n", + "````" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Set your API Endpoint\n", + "\n", + "The [`config_list_from_json`](https://microsoft.github.io/autogen/docs/reference/oai/openai_utils#config_list_from_json) function loads a list of configurations from an environment variable or a json file.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "models to use: ['gpt-35-turbo', 'gpt-35-turbo-0613']\n" + ] + } + ], + "source": [ + "import json\n", + "import os\n", + "\n", + "import chromadb\n", + "\n", + "import autogen\n", + "from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent\n", + "from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent\n", + "\n", + "# Accepted file formats for that can be stored in\n", + "# a vector database instance\n", + "from autogen.retrieve_utils import TEXT_FORMATS\n", + "\n", + "config_list = autogen.config_list_from_json(env_or_file=\"OAI_CONFIG_LIST\")\n", + "\n", + "assert len(config_list) > 0\n", + "print(\"models to use: \", [config_list[i][\"model\"] for i in range(len(config_list))])" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "````{=mdx}\n", + ":::tip\n", + "Learn more about configuring LLMs for agents [here](/docs/topics/llm_configuration).\n", + ":::\n", + "````\n", + "\n", + "## Construct agents for RetrieveChat\n", + "\n", + "We start by initializing the `RetrieveAssistantAgent` and `RetrieveUserProxyAgent`. The system message needs to be set to \"You are a helpful assistant.\" for RetrieveAssistantAgent. The detailed instructions are given in the user message. Later we will use the `RetrieveUserProxyAgent.message_generator` to combine the instructions and a retrieval augmented generation task for an initial prompt to be sent to the LLM assistant." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accepted file formats for `docs_path`:\n", + "['ppt', 'jsonl', 'csv', 'yaml', 'rst', 'htm', 'pdf', 'tsv', 'doc', 'docx', 'pptx', 'msg', 'yml', 'xml', 'md', 'json', 'txt', 'epub', 'org', 'xlsx', 'log', 'html', 'odt', 'rtf']\n" + ] + } + ], + "source": [ + "print(\"Accepted file formats for `docs_path`:\")\n", + "print(TEXT_FORMATS)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages/transformers/utils/generic.py:311: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", + " torch.utils._pytree._register_pytree_node(\n" + ] + } + ], + "source": [ + "# 1. create an RetrieveAssistantAgent instance named \"assistant\"\n", + "assistant = RetrieveAssistantAgent(\n", + " name=\"assistant\",\n", + " system_message=\"You are a helpful assistant.\",\n", + " llm_config={\n", + " \"timeout\": 600,\n", + " \"cache_seed\": 42,\n", + " \"config_list\": config_list,\n", + " },\n", + ")\n", + "\n", + "# 2. create the RetrieveUserProxyAgent instance named \"ragproxyagent\"\n", + "# By default, the human_input_mode is \"ALWAYS\", which means the agent will ask for human input at every step. We set it to \"NEVER\" here.\n", + "# `docs_path` is the path to the docs directory. It can also be the path to a single file, or the url to a single file. By default,\n", + "# it is set to None, which works only if the collection is already created.\n", + "# `task` indicates the kind of task we're working on. In this example, it's a `code` task.\n", + "# `chunk_token_size` is the chunk token size for the retrieve chat. By default, it is set to `max_tokens * 0.6`, here we set it to 2000.\n", + "# `custom_text_types` is a list of file types to be processed. Default is `autogen.retrieve_utils.TEXT_FORMATS`.\n", + "# This only applies to files under the directories in `docs_path`. Explicitly included files and urls will be chunked regardless of their types.\n", + "# In this example, we set it to [\"non-existent-type\"] to only process markdown files. Since no \"non-existent-type\" files are included in the `websit/docs`,\n", + "# no files there will be processed. However, the explicitly included urls will still be processed.\n", + "ragproxyagent = RetrieveUserProxyAgent(\n", + " name=\"ragproxyagent\",\n", + " human_input_mode=\"NEVER\",\n", + " max_consecutive_auto_reply=3,\n", + " retrieve_config={\n", + " \"task\": \"code\",\n", + " \"docs_path\": [\n", + " \"https://raw.githubusercontent.com/microsoft/FLAML/main/website/docs/Examples/Integrate%20-%20Spark.md\",\n", + " \"https://raw.githubusercontent.com/microsoft/FLAML/main/website/docs/Research.md\",\n", + " os.path.join(os.path.abspath(\"\"), \"..\", \"website\", \"docs\"),\n", + " ],\n", + " \"custom_text_types\": [\"non-existent-type\"],\n", + " \"chunk_token_size\": 2000,\n", + " \"model\": config_list[0][\"model\"],\n", + " # \"client\": chromadb.PersistentClient(path=\"/tmp/chromadb\"), # deprecated, use \"vector_db\" instead\n", + " \"vector_db\": \"chroma\", # to use the deprecated `client` parameter, set to None and uncomment the line above\n", + " \"overwrite\": False, # set to True if you want to overwrite an existing collection\n", + " },\n", + " code_execution_config=False, # set to False if you don't want to execute the code\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 1\n", + "\n", + "[Back to top](#table-of-contents)\n", + "\n", + "Use RetrieveChat to help generate sample code and automatically run the code and fix errors if there is any.\n", + "\n", + "Problem: Which API should I use if I want to use FLAML for a classification task and I want to train the model in 30 seconds. Use spark to parallel the training. Force cancel jobs if time limit is reached." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-04-07 17:30:56,955 - autogen.agentchat.contrib.retrieve_user_proxy_agent - INFO - \u001b[32mUse the existing collection `autogen-docs`.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trying to create collection.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-04-07 17:30:59,609 - autogen.agentchat.contrib.retrieve_user_proxy_agent - INFO - Found 2 chunks.\u001b[0m\n", + "Number of requested results 20 is greater than number of elements in index 2, updating n_results = 2\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VectorDB returns doc_ids: [['bdfbc921']]\n", + "\u001b[32mAdding content of doc bdfbc921 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "For code generation, you must obey the following rules:\n", + "Rule 1. You MUST NOT install any packages because all the packages needed are already installed.\n", + "Rule 2. You must follow the formats below to write your code:\n", + "```language\n", + "# your code\n", + "```\n", + "\n", + "User's question is: How can I use FLAML to perform a classification task and use spark to do parallel training. Train 30 seconds and force cancel jobs if time limit is reached.\n", + "\n", + "Context is: # Integrate - Spark\n", + "\n", + "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", + "\n", + "- Use Spark ML estimators for AutoML.\n", + "- Use Spark to run training in parallel spark jobs.\n", + "\n", + "## Spark ML Estimators\n", + "\n", + "FLAML integrates estimators based on Spark ML models. These models are trained in parallel using Spark, so we called them Spark estimators. To use these models, you first need to organize your data in the required format.\n", + "\n", + "### Data\n", + "\n", + "For Spark estimators, AutoML only consumes Spark data. FLAML provides a convenient function `to_pandas_on_spark` in the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark (`pyspark.pandas`) dataframe/series, which Spark estimators require.\n", + "\n", + "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", + "\n", + "This function also accepts optional arguments `index_col` and `default_index_type`.\n", + "\n", + "- `index_col` is the column name to use as the index, default is None.\n", + "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", + "\n", + "Here is an example code snippet for Spark Data:\n", + "\n", + "```python\n", + "import pandas as pd\n", + "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "\n", + "# Creating a dictionary\n", + "data = {\n", + " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", + " \"Age_Years\": [20, 15, 10, 7, 25],\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000],\n", + "}\n", + "\n", + "# Creating a pandas DataFrame\n", + "dataframe = pd.DataFrame(data)\n", + "label = \"Price\"\n", + "\n", + "# Convert to pandas-on-spark dataframe\n", + "psdf = to_pandas_on_spark(dataframe)\n", + "```\n", + "\n", + "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", + "\n", + "Here is an example of how to use it:\n", + "\n", + "```python\n", + "from pyspark.ml.feature import VectorAssembler\n", + "\n", + "columns = psdf.columns\n", + "feature_cols = [col for col in columns if col != label]\n", + "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "```\n", + "\n", + "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", + "\n", + "### Estimators\n", + "\n", + "#### Model List\n", + "\n", + "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", + "\n", + "#### Usage\n", + "\n", + "First, prepare your data in the required format as described in the previous section.\n", + "\n", + "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", + "\n", + "Here is an example code snippet using SparkML models in AutoML:\n", + "\n", + "```python\n", + "import flaml\n", + "\n", + "# prepare your data in pandas-on-spark format as we previously mentioned\n", + "\n", + "automl = flaml.AutoML()\n", + "settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"estimator_list\": [\"lgbm_spark\"], # this setting is optional\n", + " \"task\": \"regression\",\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=psdf,\n", + " label=label,\n", + " **settings,\n", + ")\n", + "```\n", + "\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", + "\n", + "## Parallel Spark Jobs\n", + "\n", + "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", + "\n", + "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", + "\n", + "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", + "\n", + "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", + "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performes parallel tuning.\n", + "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", + "\n", + "An example code snippet for using parallel Spark jobs:\n", + "\n", + "```python\n", + "import flaml\n", + "\n", + "automl_experiment = flaml.AutoML()\n", + "automl_settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"task\": \"regression\",\n", + " \"n_concurrent_trials\": 2,\n", + " \"use_spark\": True,\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=dataframe,\n", + " label=label,\n", + " **automl_settings,\n", + ")\n", + "```\n", + "\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "To perform a classification task using FLAML and use Spark to do parallel training for 30 seconds and force cancel jobs if the time limit is reached, you can follow these steps:\n", + "\n", + "1. First, convert your data into Spark dataframe format using `to_pandas_on_spark` function from `flaml.automl.spark.utils` module.\n", + "2. Then, format your data for use SparkML models by using `VectorAssembler`.\n", + "3. Define your AutoML settings, including the `metric`, `time_budget`, and `task`.\n", + "4. Use `AutoML` from `flaml` to run AutoML with SparkML models by setting `use_spark` to `true`, and `estimator_list` to a list of spark-based estimators, like `[\"lgbm_spark\"]`.\n", + "5. Set `n_concurrent_trials` to the desired number of parallel jobs and `force_cancel` to `True` to cancel the jobs if the time limit is reached.\n", + "\n", + "Here's an example code snippet for performing classification using FLAML and Spark:\n", + "\n", + "```python\n", + "import pandas as pd\n", + "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "from pyspark.ml.feature import VectorAssembler\n", + "import flaml\n", + "\n", + "# Creating a dictionary\n", + "data = {\n", + " \"sepal_length\": [5.1, 4.9, 4.7, 4.6, 5.0],\n", + " \"sepal_width\": [3.5, 3.0, 3.2, 3.1, 3.6],\n", + " \"petal_length\": [1.4, 1.4, 1.3, 1.5, 1.4],\n", + " \"petal_width\": [0.2, 0.2, 0.2, 0.2, 0.2],\n", + " \"species\": [\"setosa\", \"setosa\", \"setosa\", \"setosa\", \"setosa\"]\n", + "}\n", + "\n", + "# Creating a pandas DataFrame\n", + "dataframe = pd.DataFrame(data)\n", + "label = \"species\"\n", + "\n", + "# Convert to pandas-on-spark dataframe\n", + "psdf = to_pandas_on_spark(dataframe)\n", + "\n", + "# Format data for SparkML models\n", + "columns = psdf.columns\n", + "feature_cols = [col for col in columns if col != label]\n", + "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "\n", + "# Define AutoML settings\n", + "settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"accuracy\",\n", + " \"task\": \"classification\",\n", + "}\n", + "\n", + "# Use AutoML with SparkML models and parallel jobs\n", + "automl = flaml.AutoML()\n", + "automl.fit(\n", + " dataframe=psdf,\n", + " label=label,\n", + " estimator_list=[\"lgbm_spark\"],\n", + " use_spark=True,\n", + " n_concurrent_trials=2,\n", + " force_cancel=True,\n", + " **settings,\n", + ")\n", + "```\n", + "\n", + "Note that the above code assumes the data is small enough to train within 30 seconds. If you have a larger dataset, you may need to increase the `time_budget` and adjust the number of parallel jobs accordingly.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "UPDATE CONTEXT\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[32mUpdating context and resetting conversation.\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Number of requested results 60 is greater than number of elements in index 2, updating n_results = 2\n", + "Number of requested results 100 is greater than number of elements in index 2, updating n_results = 2\n", + "Number of requested results 140 is greater than number of elements in index 2, updating n_results = 2\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VectorDB returns doc_ids: [['bdfbc921']]\n", + "VectorDB returns doc_ids: [['bdfbc921']]\n", + "VectorDB returns doc_ids: [['bdfbc921']]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Number of requested results 180 is greater than number of elements in index 2, updating n_results = 2\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VectorDB returns doc_ids: [['bdfbc921']]\n", + "\u001b[32mNo more context, will terminate.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "TERMINATE\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': 'TERMINATE', 'role': 'assistant'}], summary='', cost=({'total_cost': 0.007691, 'gpt-35-turbo': {'cost': 0.007691, 'prompt_tokens': 4242, 'completion_tokens': 664, 'total_tokens': 4906}}, {'total_cost': 0}), human_input=[])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# reset the assistant. Always reset the assistant before starting a new conversation.\n", + "assistant.reset()\n", + "\n", + "# given a problem, we use the ragproxyagent to generate a prompt to be sent to the assistant as the initial message.\n", + "# the assistant receives the message and generates a response. The response will be sent back to the ragproxyagent for processing.\n", + "# The conversation continues until the termination condition is met, in RetrieveChat, the termination condition when no human-in-loop is no code block detected.\n", + "# With human-in-loop, the conversation will continue until the user says \"exit\".\n", + "code_problem = \"How can I use FLAML to perform a classification task and use spark to do parallel training. Train 30 seconds and force cancel jobs if time limit is reached.\"\n", + "ragproxyagent.initiate_chat(\n", + " assistant, message=ragproxyagent.message_generator, problem=code_problem, search_string=\"spark\"\n", + ") # search_string is used as an extra filter for the embeddings search, in this case, we only want to search documents that contain \"spark\"." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 2\n", + "\n", + "[Back to top](#table-of-contents)\n", + "\n", + "Use RetrieveChat to answer a question that is not related to code generation.\n", + "\n", + "Problem: Who is the author of FLAML?" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Number of requested results 20 is greater than number of elements in index 2, updating n_results = 2\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VectorDB returns doc_ids: [['7968cf3c', 'bdfbc921']]\n", + "\u001b[32mAdding content of doc 7968cf3c to context.\u001b[0m\n", + "\u001b[32mAdding content of doc bdfbc921 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "For code generation, you must obey the following rules:\n", + "Rule 1. You MUST NOT install any packages because all the packages needed are already installed.\n", + "Rule 2. You must follow the formats below to write your code:\n", + "```language\n", + "# your code\n", + "```\n", + "\n", + "User's question is: Who is the author of FLAML?\n", + "\n", + "Context is: # Research\n", + "\n", + "For technical details, please check our research publications.\n", + "\n", + "- [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2021flaml,\n", + " title={FLAML: A Fast and Lightweight AutoML Library},\n", + " author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},\n", + " year={2021},\n", + " booktitle={MLSys},\n", + "}\n", + "```\n", + "\n", + "- [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2021cfo,\n", + " title={Frugal Optimization for Cost-related Hyperparameters},\n", + " author={Qingyun Wu and Chi Wang and Silu Huang},\n", + " year={2021},\n", + " booktitle={AAAI},\n", + "}\n", + "```\n", + "\n", + "- [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2021blendsearch,\n", + " title={Economical Hyperparameter Optimization With Blended Search Strategy},\n", + " author={Chi Wang and Qingyun Wu and Silu Huang and Amin Saied},\n", + " year={2021},\n", + " booktitle={ICLR},\n", + "}\n", + "```\n", + "\n", + "- [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{liuwang2021hpolm,\n", + " title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},\n", + " author={Susan Xueqing Liu and Chi Wang},\n", + " year={2021},\n", + " booktitle={ACL},\n", + "}\n", + "```\n", + "\n", + "- [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2021chacha,\n", + " title={ChaCha for Online AutoML},\n", + " author={Qingyun Wu and Chi Wang and John Langford and Paul Mineiro and Marco Rossi},\n", + " year={2021},\n", + " booktitle={ICML},\n", + "}\n", + "```\n", + "\n", + "- [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", + "\n", + "```bibtex\n", + "@inproceedings{wuwang2021fairautoml,\n", + " title={Fair AutoML},\n", + " author={Qingyun Wu and Chi Wang},\n", + " year={2021},\n", + " booktitle={ArXiv preprint arXiv:2111.06495},\n", + "}\n", + "```\n", + "\n", + "- [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", + "\n", + "```bibtex\n", + "@inproceedings{kayaliwang2022default,\n", + " title={Mining Robust Default Configurations for Resource-constrained AutoML},\n", + " author={Moe Kayali and Chi Wang},\n", + " year={2022},\n", + " booktitle={ArXiv preprint arXiv:2202.09927},\n", + "}\n", + "```\n", + "\n", + "- [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", + "\n", + "```bibtex\n", + "@inproceedings{zhang2023targeted,\n", + " title={Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives},\n", + " author={Shaokun Zhang and Feiran Jia and Chi Wang and Qingyun Wu},\n", + " booktitle={International Conference on Learning Representations},\n", + " year={2023},\n", + " url={https://openreview.net/forum?id=0Ij9_q567Ma},\n", + "}\n", + "```\n", + "\n", + "- [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2023EcoOptiGen,\n", + " title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},\n", + " author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},\n", + " year={2023},\n", + " booktitle={ArXiv preprint arXiv:2303.04673},\n", + "}\n", + "```\n", + "\n", + "- [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2023empirical,\n", + " title={An Empirical Study on Challenging Math Problem Solving with GPT-4},\n", + " author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},\n", + " year={2023},\n", + " booktitle={ArXiv preprint arXiv:2306.01337},\n", + "}\n", + "```\n", + "# Integrate - Spark\n", + "\n", + "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", + "\n", + "- Use Spark ML estimators for AutoML.\n", + "- Use Spark to run training in parallel spark jobs.\n", + "\n", + "## Spark ML Estimators\n", + "\n", + "FLAML integrates estimators based on Spark ML models. These models are trained in parallel using Spark, so we called them Spark estimators. To use these models, you first need to organize your data in the required format.\n", + "\n", + "### Data\n", + "\n", + "For Spark estimators, AutoML only consumes Spark data. FLAML provides a convenient function `to_pandas_on_spark` in the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark (`pyspark.pandas`) dataframe/series, which Spark estimators require.\n", + "\n", + "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", + "\n", + "This function also accepts optional arguments `index_col` and `default_index_type`.\n", + "\n", + "- `index_col` is the column name to use as the index, default is None.\n", + "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", + "\n", + "Here is an example code snippet for Spark Data:\n", + "\n", + "```python\n", + "import pandas as pd\n", + "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "\n", + "# Creating a dictionary\n", + "data = {\n", + " \"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", + " \"Age_Years\": [20, 15, 10, 7, 25],\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000],\n", + "}\n", + "\n", + "# Creating a pandas DataFrame\n", + "dataframe = pd.DataFrame(data)\n", + "label = \"Price\"\n", + "\n", + "# Convert to pandas-on-spark dataframe\n", + "psdf = to_pandas_on_spark(dataframe)\n", + "```\n", + "\n", + "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", + "\n", + "Here is an example of how to use it:\n", + "\n", + "```python\n", + "from pyspark.ml.feature import VectorAssembler\n", + "\n", + "columns = psdf.columns\n", + "feature_cols = [col for col in columns if col != label]\n", + "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "```\n", + "\n", + "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", + "\n", + "### Estimators\n", + "\n", + "#### Model List\n", + "\n", + "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", + "\n", + "#### Usage\n", + "\n", + "First, prepare your data in the required format as described in the previous section.\n", + "\n", + "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", + "\n", + "Here is an example code snippet using SparkML models in AutoML:\n", + "\n", + "```python\n", + "import flaml\n", + "\n", + "# prepare your data in pandas-on-spark format as we previously mentioned\n", + "\n", + "automl = flaml.AutoML()\n", + "settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"estimator_list\": [\"lgbm_spark\"], # this setting is optional\n", + " \"task\": \"regression\",\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=psdf,\n", + " label=label,\n", + " **settings,\n", + ")\n", + "```\n", + "\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", + "\n", + "## Parallel Spark Jobs\n", + "\n", + "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", + "\n", + "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", + "\n", + "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", + "\n", + "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", + "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performes parallel tuning.\n", + "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", + "\n", + "An example code snippet for using parallel Spark jobs:\n", + "\n", + "```python\n", + "import flaml\n", + "\n", + "automl_experiment = flaml.AutoML()\n", + "automl_settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"task\": \"regression\",\n", + " \"n_concurrent_trials\": 2,\n", + " \"use_spark\": True,\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=dataframe,\n", + " label=label,\n", + " **automl_settings,\n", + ")\n", + "```\n", + "\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "The author of FLAML is Chi Wang, along with several co-authors for various publications related to FLAML.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': 'You\\'re a retrieve augmented coding assistant. You answer user\\'s questions based on your own knowledge and the\\ncontext provided by the user.\\nIf you can\\'t answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\\nFor code generation, you must obey the following rules:\\nRule 1. You MUST NOT install any packages because all the packages needed are already installed.\\nRule 2. You must follow the formats below to write your code:\\n```language\\n# your code\\n```\\n\\nUser\\'s question is: Who is the author of FLAML?\\n\\nContext is: # Research\\n\\nFor technical details, please check our research publications.\\n\\n- [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\\n\\n```bibtex\\n@inproceedings{wang2021flaml,\\n title={FLAML: A Fast and Lightweight AutoML Library},\\n author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},\\n year={2021},\\n booktitle={MLSys},\\n}\\n```\\n\\n- [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\\n\\n```bibtex\\n@inproceedings{wu2021cfo,\\n title={Frugal Optimization for Cost-related Hyperparameters},\\n author={Qingyun Wu and Chi Wang and Silu Huang},\\n year={2021},\\n booktitle={AAAI},\\n}\\n```\\n\\n- [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\\n\\n```bibtex\\n@inproceedings{wang2021blendsearch,\\n title={Economical Hyperparameter Optimization With Blended Search Strategy},\\n author={Chi Wang and Qingyun Wu and Silu Huang and Amin Saied},\\n year={2021},\\n booktitle={ICLR},\\n}\\n```\\n\\n- [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\\n\\n```bibtex\\n@inproceedings{liuwang2021hpolm,\\n title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},\\n author={Susan Xueqing Liu and Chi Wang},\\n year={2021},\\n booktitle={ACL},\\n}\\n```\\n\\n- [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\\n\\n```bibtex\\n@inproceedings{wu2021chacha,\\n title={ChaCha for Online AutoML},\\n author={Qingyun Wu and Chi Wang and John Langford and Paul Mineiro and Marco Rossi},\\n year={2021},\\n booktitle={ICML},\\n}\\n```\\n\\n- [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\\n\\n```bibtex\\n@inproceedings{wuwang2021fairautoml,\\n title={Fair AutoML},\\n author={Qingyun Wu and Chi Wang},\\n year={2021},\\n booktitle={ArXiv preprint arXiv:2111.06495},\\n}\\n```\\n\\n- [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\\n\\n```bibtex\\n@inproceedings{kayaliwang2022default,\\n title={Mining Robust Default Configurations for Resource-constrained AutoML},\\n author={Moe Kayali and Chi Wang},\\n year={2022},\\n booktitle={ArXiv preprint arXiv:2202.09927},\\n}\\n```\\n\\n- [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\\n\\n```bibtex\\n@inproceedings{zhang2023targeted,\\n title={Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives},\\n author={Shaokun Zhang and Feiran Jia and Chi Wang and Qingyun Wu},\\n booktitle={International Conference on Learning Representations},\\n year={2023},\\n url={https://openreview.net/forum?id=0Ij9_q567Ma},\\n}\\n```\\n\\n- [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\\n\\n```bibtex\\n@inproceedings{wang2023EcoOptiGen,\\n title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},\\n author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},\\n year={2023},\\n booktitle={ArXiv preprint arXiv:2303.04673},\\n}\\n```\\n\\n- [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\\n\\n```bibtex\\n@inproceedings{wu2023empirical,\\n title={An Empirical Study on Challenging Math Problem Solving with GPT-4},\\n author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},\\n year={2023},\\n booktitle={ArXiv preprint arXiv:2306.01337},\\n}\\n```\\n# Integrate - Spark\\n\\nFLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\\n\\n- Use Spark ML estimators for AutoML.\\n- Use Spark to run training in parallel spark jobs.\\n\\n## Spark ML Estimators\\n\\nFLAML integrates estimators based on Spark ML models. These models are trained in parallel using Spark, so we called them Spark estimators. To use these models, you first need to organize your data in the required format.\\n\\n### Data\\n\\nFor Spark estimators, AutoML only consumes Spark data. FLAML provides a convenient function `to_pandas_on_spark` in the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark (`pyspark.pandas`) dataframe/series, which Spark estimators require.\\n\\nThis utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\\n\\nThis function also accepts optional arguments `index_col` and `default_index_type`.\\n\\n- `index_col` is the column name to use as the index, default is None.\\n- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\\n\\nHere is an example code snippet for Spark Data:\\n\\n```python\\nimport pandas as pd\\nfrom flaml.automl.spark.utils import to_pandas_on_spark\\n\\n# Creating a dictionary\\ndata = {\\n \"Square_Feet\": [800, 1200, 1800, 1500, 850],\\n \"Age_Years\": [20, 15, 10, 7, 25],\\n \"Price\": [100000, 200000, 300000, 240000, 120000],\\n}\\n\\n# Creating a pandas DataFrame\\ndataframe = pd.DataFrame(data)\\nlabel = \"Price\"\\n\\n# Convert to pandas-on-spark dataframe\\npsdf = to_pandas_on_spark(dataframe)\\n```\\n\\nTo use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\\n\\nHere is an example of how to use it:\\n\\n```python\\nfrom pyspark.ml.feature import VectorAssembler\\n\\ncolumns = psdf.columns\\nfeature_cols = [col for col in columns if col != label]\\nfeaturizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\\npsdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\\n```\\n\\nLater in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\\n\\n### Estimators\\n\\n#### Model List\\n\\n- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\\n\\n#### Usage\\n\\nFirst, prepare your data in the required format as described in the previous section.\\n\\nBy including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven\\'t specified them.\\n\\nHere is an example code snippet using SparkML models in AutoML:\\n\\n```python\\nimport flaml\\n\\n# prepare your data in pandas-on-spark format as we previously mentioned\\n\\nautoml = flaml.AutoML()\\nsettings = {\\n \"time_budget\": 30,\\n \"metric\": \"r2\",\\n \"estimator_list\": [\"lgbm_spark\"], # this setting is optional\\n \"task\": \"regression\",\\n}\\n\\nautoml.fit(\\n dataframe=psdf,\\n label=label,\\n **settings,\\n)\\n```\\n\\n[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\\n\\n## Parallel Spark Jobs\\n\\nYou can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\\n\\nPlease note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\\n\\nAll the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\\n\\n- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\\n- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performes parallel tuning.\\n- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\\n\\nAn example code snippet for using parallel Spark jobs:\\n\\n```python\\nimport flaml\\n\\nautoml_experiment = flaml.AutoML()\\nautoml_settings = {\\n \"time_budget\": 30,\\n \"metric\": \"r2\",\\n \"task\": \"regression\",\\n \"n_concurrent_trials\": 2,\\n \"use_spark\": True,\\n \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\\n}\\n\\nautoml.fit(\\n dataframe=dataframe,\\n label=label,\\n **automl_settings,\\n)\\n```\\n\\n[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\\n\\n', 'role': 'assistant'}, {'content': 'The author of FLAML is Chi Wang, along with several co-authors for various publications related to FLAML.', 'role': 'user'}], summary='The author of FLAML is Chi Wang, along with several co-authors for various publications related to FLAML.', cost=({'total_cost': 0.004711, 'gpt-35-turbo': {'cost': 0.004711, 'prompt_tokens': 3110, 'completion_tokens': 23, 'total_tokens': 3133}}, {'total_cost': 0}), human_input=[])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# reset the assistant. Always reset the assistant before starting a new conversation.\n", + "assistant.reset()\n", + "\n", + "qa_problem = \"Who is the author of FLAML?\"\n", + "ragproxyagent.initiate_chat(assistant, message=ragproxyagent.message_generator, problem=qa_problem)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 3\n", + "\n", + "[Back to top](#table-of-contents)\n", + "\n", + "Use RetrieveChat to help generate sample code and ask for human-in-loop feedbacks.\n", + "\n", + "Problem: how to build a time series forecasting model for stock price using FLAML?" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:chromadb.segment.impl.vector.local_persistent_hnsw:Number of requested results 20 is greater than number of elements in index 2, updating n_results = 2\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "doc_ids: [['doc_0', 'doc_1']]\n", + "\u001b[32mAdding doc_id doc_0 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "For code generation, you must obey the following rules:\n", + "Rule 1. You MUST NOT install any packages because all the packages needed are already installed.\n", + "Rule 2. You must follow the formats below to write your code:\n", + "```language\n", + "# your code\n", + "```\n", + "\n", + "User's question is: how to build a time series forecasting model for stock price using FLAML?\n", + "\n", + "Context is: # Integrate - Spark\n", + "\n", + "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", + "- Use Spark ML estimators for AutoML.\n", + "- Use Spark to run training in parallel spark jobs.\n", + "\n", + "## Spark ML Estimators\n", + "\n", + "FLAML integrates estimators based on Spark ML models. These models are trained in parallel using Spark, so we called them Spark estimators. To use these models, you first need to organize your data in the required format.\n", + "\n", + "### Data\n", + "\n", + "For Spark estimators, AutoML only consumes Spark data. FLAML provides a convenient function `to_pandas_on_spark` in the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark (`pyspark.pandas`) dataframe/series, which Spark estimators require.\n", + "\n", + "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", + "\n", + "This function also accepts optional arguments `index_col` and `default_index_type`.\n", + "- `index_col` is the column name to use as the index, default is None.\n", + "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", + "\n", + "Here is an example code snippet for Spark Data:\n", + "\n", + "```python\n", + "import pandas as pd\n", + "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "# Creating a dictionary\n", + "data = {\"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", + " \"Age_Years\": [20, 15, 10, 7, 25],\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000]}\n", + "\n", + "# Creating a pandas DataFrame\n", + "dataframe = pd.DataFrame(data)\n", + "label = \"Price\"\n", + "\n", + "# Convert to pandas-on-spark dataframe\n", + "psdf = to_pandas_on_spark(dataframe)\n", + "```\n", + "\n", + "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", + "\n", + "Here is an example of how to use it:\n", + "```python\n", + "from pyspark.ml.feature import VectorAssembler\n", + "columns = psdf.columns\n", + "feature_cols = [col for col in columns if col != label]\n", + "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "```\n", + "\n", + "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", + "\n", + "### Estimators\n", + "#### Model List\n", + "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", + "\n", + "#### Usage\n", + "First, prepare your data in the required format as described in the previous section.\n", + "\n", + "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", + "\n", + "Here is an example code snippet using SparkML models in AutoML:\n", + "\n", + "```python\n", + "import flaml\n", + "# prepare your data in pandas-on-spark format as we previously mentioned\n", + "\n", + "automl = flaml.AutoML()\n", + "settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"estimator_list\": [\"lgbm_spark\"], # this setting is optional\n", + " \"task\": \"regression\",\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=psdf,\n", + " label=label,\n", + " **settings,\n", + ")\n", + "```\n", + "\n", + "\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", + "\n", + "## Parallel Spark Jobs\n", + "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", + "\n", + "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", + "\n", + "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", + "\n", + "\n", + "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", + "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performs parallel tuning.\n", + "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", + "\n", + "An example code snippet for using parallel Spark jobs:\n", + "```python\n", + "import flaml\n", + "automl_experiment = flaml.AutoML()\n", + "automl_settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"task\": \"regression\",\n", + " \"n_concurrent_trials\": 2,\n", + " \"use_spark\": True,\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=dataframe,\n", + " label=label,\n", + " **automl_settings,\n", + ")\n", + "```\n", + "\n", + "\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", + "\n", + "# Research\n", + "\n", + "For technical details, please check our research publications.\n", + "\n", + "* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2021flaml,\n", + " title={FLAML: A Fast and Lightweight AutoML Library},\n", + " author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},\n", + " year={2021},\n", + " booktitle={MLSys},\n", + "}\n", + "```\n", + "\n", + "* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2021cfo,\n", + " title={Frugal Optimization for Cost-related Hyperparameters},\n", + " author={Qingyun Wu and Chi Wang and Silu Huang},\n", + " year={2021},\n", + " booktitle={AAAI},\n", + "}\n", + "```\n", + "\n", + "* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2021blendsearch,\n", + " title={Economical Hyperparameter Optimization With Blended Search Strategy},\n", + " author={Chi Wang and Qingyun Wu and Silu Huang and Amin Saied},\n", + " year={2021},\n", + " booktitle={ICLR},\n", + "}\n", + "```\n", + "\n", + "* [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{liuwang2021hpolm,\n", + " title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},\n", + " author={Susan Xueqing Liu and Chi Wang},\n", + " year={2021},\n", + " booktitle={ACL},\n", + "}\n", + "```\n", + "\n", + "* [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2021chacha,\n", + " title={ChaCha for Online AutoML},\n", + " author={Qingyun Wu and Chi Wang and John Langford and Paul Mineiro and Marco Rossi},\n", + " year={2021},\n", + " booktitle={ICML},\n", + "}\n", + "```\n", + "\n", + "* [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", + "\n", + "```bibtex\n", + "@inproceedings{wuwang2021fairautoml,\n", + " title={Fair AutoML},\n", + " author={Qingyun Wu and Chi Wang},\n", + " year={2021},\n", + " booktitle={ArXiv preprint arXiv:2111.06495},\n", + "}\n", + "```\n", + "\n", + "* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", + "\n", + "```bibtex\n", + "@inproceedings{kayaliwang2022default,\n", + " title={Mining Robust Default Configurations for Resource-constrained AutoML},\n", + " author={Moe Kayali and Chi Wang},\n", + " year={2022},\n", + " booktitle={ArXiv preprint arXiv:2202.09927},\n", + "}\n", + "```\n", + "\n", + "* [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", + "\n", + "```bibtex\n", + "@inproceedings{zhang2023targeted,\n", + " title={Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives},\n", + " author={Shaokun Zhang and Feiran Jia and Chi Wang and Qingyun Wu},\n", + " booktitle={International Conference on Learning Representations},\n", + " year={2023},\n", + " url={https://openreview.net/forum?id=0Ij9_q567Ma},\n", + "}\n", + "```\n", + "\n", + "* [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2023EcoOptiGen,\n", + " title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},\n", + " author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},\n", + " year={2023},\n", + " booktitle={ArXiv preprint arXiv:2303.04673},\n", + "}\n", + "```\n", + "\n", + "* [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2023empirical,\n", + " title={An Empirical Study on Challenging Math Problem Solving with GPT-4},\n", + " author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},\n", + " year={2023},\n", + " booktitle={ArXiv preprint arXiv:2306.01337},\n", + "}\n", + "```\n", + "\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "To build a time series forecasting model for stock price using FLAML, you can use the `lgbm_spark` estimator and organize your data in the required format. First, use `to_pandas_on_spark` function to convert your data into a pandas-on-spark dataframe/series, which Spark estimators require. Next, you should use `VectorAssembler` to merge all feature columns into a single vector column. Finally, use `flaml.AutoML` to try different configurations for the `lgbm_spark` model. Here is an example code snippet: \n", + "\n", + "```python\n", + "import flaml\n", + "import pandas as pd\n", + "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "from pyspark.ml.feature import VectorAssembler\n", + "\n", + "# load your stock price data into a pandas dataframe\n", + "data = pd.read_csv('stock_price.csv')\n", + "\n", + "# specify label column name\n", + "label = 'price'\n", + "\n", + "# convert pandas dataframe to pandas-on-spark dataframe\n", + "psdf = to_pandas_on_spark(data)\n", + "\n", + "# merge feature columns as a single vector column\n", + "feature_cols = [col for col in psdf.columns if col != label]\n", + "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "\n", + "# start an AutoML experiment with lgbm_spark estimator\n", + "automl = flaml.AutoML()\n", + "settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"estimator_list\": [\"lgbm_spark\"],\n", + " \"task\": \"regression\",\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=psdf,\n", + " label=label,\n", + " **settings,\n", + ")\n", + "```\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "I want the time_budget to be 10 mins\n", + "\n", + "--------------------------------------------------------------------------------\n", + "I want the time_budget to be 10 mins\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "You can change the `time_budget` parameter in the `settings` dictionary to 10 minutes (600 seconds) like this:\n", + "\n", + "```python\n", + "import flaml\n", + "import pandas as pd\n", + "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "from pyspark.ml.feature import VectorAssembler\n", + "\n", + "# load your stock price data into a pandas dataframe\n", + "data = pd.read_csv('stock_price.csv')\n", + "\n", + "# specify label column name\n", + "label = 'price'\n", + "\n", + "# convert pandas dataframe to pandas-on-spark dataframe\n", + "psdf = to_pandas_on_spark(data)\n", + "\n", + "# merge feature columns as a single vector column\n", + "feature_cols = [col for col in psdf.columns if col != label]\n", + "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "\n", + "# start an AutoML experiment with lgbm_spark estimator and time_budget of 10 mins\n", + "automl = flaml.AutoML()\n", + "settings = {\n", + " \"time_budget\": 600, # time_budget in seconds\n", + " \"metric\": \"r2\",\n", + " \"estimator_list\": [\"lgbm_spark\"],\n", + " \"task\": \"regression\",\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=psdf,\n", + " label=label,\n", + " **settings,\n", + ")\n", + "```\n", + "\n", + "\n", + "In this example, the `time_budget` parameter is set to 600, which represents the number of seconds the FLAML AutoML experiment will run. You can adjust this value to control the total time spent on the experiment.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "Is there anything else I can help you with?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n" + ] + } + ], + "source": [ + "# reset the assistant. Always reset the assistant before starting a new conversation.\n", + "assistant.reset()\n", + "\n", + "# set `human_input_mode` to be `ALWAYS`, so the agent will ask for human input at every step.\n", + "ragproxyagent.human_input_mode = \"ALWAYS\"\n", + "code_problem = \"how to build a time series forecasting model for stock price using FLAML?\"\n", + "ragproxyagent.initiate_chat(assistant, message=ragproxyagent.message_generator, problem=code_problem)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 4\n", + "\n", + "[Back to top](#table-of-contents)\n", + "\n", + "Use RetrieveChat to answer a question and ask for human-in-loop feedbacks.\n", + "\n", + "Problem: Is there a function named `tune_automl` in FLAML?" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:chromadb.segment.impl.vector.local_persistent_hnsw:Number of requested results 20 is greater than number of elements in index 2, updating n_results = 2\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "doc_ids: [['doc_0', 'doc_1']]\n", + "\u001b[32mAdding doc_id doc_0 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "For code generation, you must obey the following rules:\n", + "Rule 1. You MUST NOT install any packages because all the packages needed are already installed.\n", + "Rule 2. You must follow the formats below to write your code:\n", + "```language\n", + "# your code\n", + "```\n", + "\n", + "User's question is: Is there a function named `tune_automl` in FLAML?\n", + "\n", + "Context is: # Integrate - Spark\n", + "\n", + "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", + "- Use Spark ML estimators for AutoML.\n", + "- Use Spark to run training in parallel spark jobs.\n", + "\n", + "## Spark ML Estimators\n", + "\n", + "FLAML integrates estimators based on Spark ML models. These models are trained in parallel using Spark, so we called them Spark estimators. To use these models, you first need to organize your data in the required format.\n", + "\n", + "### Data\n", + "\n", + "For Spark estimators, AutoML only consumes Spark data. FLAML provides a convenient function `to_pandas_on_spark` in the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark (`pyspark.pandas`) dataframe/series, which Spark estimators require.\n", + "\n", + "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", + "\n", + "This function also accepts optional arguments `index_col` and `default_index_type`.\n", + "- `index_col` is the column name to use as the index, default is None.\n", + "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", + "\n", + "Here is an example code snippet for Spark Data:\n", + "\n", + "```python\n", + "import pandas as pd\n", + "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "# Creating a dictionary\n", + "data = {\"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", + " \"Age_Years\": [20, 15, 10, 7, 25],\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000]}\n", + "\n", + "# Creating a pandas DataFrame\n", + "dataframe = pd.DataFrame(data)\n", + "label = \"Price\"\n", + "\n", + "# Convert to pandas-on-spark dataframe\n", + "psdf = to_pandas_on_spark(dataframe)\n", + "```\n", + "\n", + "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", + "\n", + "Here is an example of how to use it:\n", + "```python\n", + "from pyspark.ml.feature import VectorAssembler\n", + "columns = psdf.columns\n", + "feature_cols = [col for col in columns if col != label]\n", + "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "```\n", + "\n", + "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", + "\n", + "### Estimators\n", + "#### Model List\n", + "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", + "\n", + "#### Usage\n", + "First, prepare your data in the required format as described in the previous section.\n", + "\n", + "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", + "\n", + "Here is an example code snippet using SparkML models in AutoML:\n", + "\n", + "```python\n", + "import flaml\n", + "# prepare your data in pandas-on-spark format as we previously mentioned\n", + "\n", + "automl = flaml.AutoML()\n", + "settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"estimator_list\": [\"lgbm_spark\"], # this setting is optional\n", + " \"task\": \"regression\",\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=psdf,\n", + " label=label,\n", + " **settings,\n", + ")\n", + "```\n", + "\n", + "\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", + "\n", + "## Parallel Spark Jobs\n", + "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", + "\n", + "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", + "\n", + "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", + "\n", + "\n", + "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", + "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performs parallel tuning.\n", + "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", + "\n", + "An example code snippet for using parallel Spark jobs:\n", + "```python\n", + "import flaml\n", + "automl_experiment = flaml.AutoML()\n", + "automl_settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"task\": \"regression\",\n", + " \"n_concurrent_trials\": 2,\n", + " \"use_spark\": True,\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=dataframe,\n", + " label=label,\n", + " **automl_settings,\n", + ")\n", + "```\n", + "\n", + "\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", + "\n", + "# Research\n", + "\n", + "For technical details, please check our research publications.\n", + "\n", + "* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2021flaml,\n", + " title={FLAML: A Fast and Lightweight AutoML Library},\n", + " author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},\n", + " year={2021},\n", + " booktitle={MLSys},\n", + "}\n", + "```\n", + "\n", + "* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2021cfo,\n", + " title={Frugal Optimization for Cost-related Hyperparameters},\n", + " author={Qingyun Wu and Chi Wang and Silu Huang},\n", + " year={2021},\n", + " booktitle={AAAI},\n", + "}\n", + "```\n", + "\n", + "* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2021blendsearch,\n", + " title={Economical Hyperparameter Optimization With Blended Search Strategy},\n", + " author={Chi Wang and Qingyun Wu and Silu Huang and Amin Saied},\n", + " year={2021},\n", + " booktitle={ICLR},\n", + "}\n", + "```\n", + "\n", + "* [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{liuwang2021hpolm,\n", + " title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},\n", + " author={Susan Xueqing Liu and Chi Wang},\n", + " year={2021},\n", + " booktitle={ACL},\n", + "}\n", + "```\n", + "\n", + "* [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2021chacha,\n", + " title={ChaCha for Online AutoML},\n", + " author={Qingyun Wu and Chi Wang and John Langford and Paul Mineiro and Marco Rossi},\n", + " year={2021},\n", + " booktitle={ICML},\n", + "}\n", + "```\n", + "\n", + "* [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", + "\n", + "```bibtex\n", + "@inproceedings{wuwang2021fairautoml,\n", + " title={Fair AutoML},\n", + " author={Qingyun Wu and Chi Wang},\n", + " year={2021},\n", + " booktitle={ArXiv preprint arXiv:2111.06495},\n", + "}\n", + "```\n", + "\n", + "* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", + "\n", + "```bibtex\n", + "@inproceedings{kayaliwang2022default,\n", + " title={Mining Robust Default Configurations for Resource-constrained AutoML},\n", + " author={Moe Kayali and Chi Wang},\n", + " year={2022},\n", + " booktitle={ArXiv preprint arXiv:2202.09927},\n", + "}\n", + "```\n", + "\n", + "* [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", + "\n", + "```bibtex\n", + "@inproceedings{zhang2023targeted,\n", + " title={Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives},\n", + " author={Shaokun Zhang and Feiran Jia and Chi Wang and Qingyun Wu},\n", + " booktitle={International Conference on Learning Representations},\n", + " year={2023},\n", + " url={https://openreview.net/forum?id=0Ij9_q567Ma},\n", + "}\n", + "```\n", + "\n", + "* [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2023EcoOptiGen,\n", + " title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},\n", + " author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},\n", + " year={2023},\n", + " booktitle={ArXiv preprint arXiv:2303.04673},\n", + "}\n", + "```\n", + "\n", + "* [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2023empirical,\n", + " title={An Empirical Study on Challenging Math Problem Solving with GPT-4},\n", + " author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},\n", + " year={2023},\n", + " booktitle={ArXiv preprint arXiv:2306.01337},\n", + "}\n", + "```\n", + "\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[32mAdding doc_id doc_1 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "For code generation, you must obey the following rules:\n", + "Rule 1. You MUST NOT install any packages because all the packages needed are already installed.\n", + "Rule 2. You must follow the formats below to write your code:\n", + "```language\n", + "# your code\n", + "```\n", + "\n", + "User's question is: Is there a function named `tune_automl` in FLAML?\n", + "\n", + "Context is: # Integrate - Spark\n", + "\n", + "FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark:\n", + "- Use Spark ML estimators for AutoML.\n", + "- Use Spark to run training in parallel spark jobs.\n", + "\n", + "## Spark ML Estimators\n", + "\n", + "FLAML integrates estimators based on Spark ML models. These models are trained in parallel using Spark, so we called them Spark estimators. To use these models, you first need to organize your data in the required format.\n", + "\n", + "### Data\n", + "\n", + "For Spark estimators, AutoML only consumes Spark data. FLAML provides a convenient function `to_pandas_on_spark` in the `flaml.automl.spark.utils` module to convert your data into a pandas-on-spark (`pyspark.pandas`) dataframe/series, which Spark estimators require.\n", + "\n", + "This utility function takes data in the form of a `pandas.Dataframe` or `pyspark.sql.Dataframe` and converts it into a pandas-on-spark dataframe. It also takes `pandas.Series` or `pyspark.sql.Dataframe` and converts it into a [pandas-on-spark](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html) series. If you pass in a `pyspark.pandas.Dataframe`, it will not make any changes.\n", + "\n", + "This function also accepts optional arguments `index_col` and `default_index_type`.\n", + "- `index_col` is the column name to use as the index, default is None.\n", + "- `default_index_type` is the default index type, default is \"distributed-sequence\". More info about default index type could be found on Spark official [documentation](https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/options.html#default-index-type)\n", + "\n", + "Here is an example code snippet for Spark Data:\n", + "\n", + "```python\n", + "import pandas as pd\n", + "from flaml.automl.spark.utils import to_pandas_on_spark\n", + "# Creating a dictionary\n", + "data = {\"Square_Feet\": [800, 1200, 1800, 1500, 850],\n", + " \"Age_Years\": [20, 15, 10, 7, 25],\n", + " \"Price\": [100000, 200000, 300000, 240000, 120000]}\n", + "\n", + "# Creating a pandas DataFrame\n", + "dataframe = pd.DataFrame(data)\n", + "label = \"Price\"\n", + "\n", + "# Convert to pandas-on-spark dataframe\n", + "psdf = to_pandas_on_spark(dataframe)\n", + "```\n", + "\n", + "To use Spark ML models you need to format your data appropriately. Specifically, use [`VectorAssembler`](https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) to merge all feature columns into a single vector column.\n", + "\n", + "Here is an example of how to use it:\n", + "```python\n", + "from pyspark.ml.feature import VectorAssembler\n", + "columns = psdf.columns\n", + "feature_cols = [col for col in columns if col != label]\n", + "featurizer = VectorAssembler(inputCols=feature_cols, outputCol=\"features\")\n", + "psdf = featurizer.transform(psdf.to_spark(index_col=\"index\"))[\"index\", \"features\"]\n", + "```\n", + "\n", + "Later in conducting the experiment, use your pandas-on-spark data like non-spark data and pass them using `X_train, y_train` or `dataframe, label`.\n", + "\n", + "### Estimators\n", + "#### Model List\n", + "- `lgbm_spark`: The class for fine-tuning Spark version LightGBM models, using [SynapseML](https://microsoft.github.io/SynapseML/docs/features/lightgbm/about/) API.\n", + "\n", + "#### Usage\n", + "First, prepare your data in the required format as described in the previous section.\n", + "\n", + "By including the models you intend to try in the `estimators_list` argument to `flaml.automl`, FLAML will start trying configurations for these models. If your input is Spark data, FLAML will also use estimators with the `_spark` postfix by default, even if you haven't specified them.\n", + "\n", + "Here is an example code snippet using SparkML models in AutoML:\n", + "\n", + "```python\n", + "import flaml\n", + "# prepare your data in pandas-on-spark format as we previously mentioned\n", + "\n", + "automl = flaml.AutoML()\n", + "settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"estimator_list\": [\"lgbm_spark\"], # this setting is optional\n", + " \"task\": \"regression\",\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=psdf,\n", + " label=label,\n", + " **settings,\n", + ")\n", + "```\n", + "\n", + "\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_bankrupt_synapseml.ipynb)\n", + "\n", + "## Parallel Spark Jobs\n", + "You can activate Spark as the parallel backend during parallel tuning in both [AutoML](/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning) and [Hyperparameter Tuning](/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning), by setting the `use_spark` to `true`. FLAML will dispatch your job to the distributed Spark backend using [`joblib-spark`](https://github.com/joblib/joblib-spark).\n", + "\n", + "Please note that you should not set `use_spark` to `true` when applying AutoML and Tuning for Spark Data. This is because only SparkML models will be used for Spark Data in AutoML and Tuning. As SparkML models run in parallel, there is no need to distribute them with `use_spark` again.\n", + "\n", + "All the Spark-related arguments are stated below. These arguments are available in both Hyperparameter Tuning and AutoML:\n", + "\n", + "\n", + "- `use_spark`: boolean, default=False | Whether to use spark to run the training in parallel spark jobs. This can be used to accelerate training on large models and large datasets, but will incur more overhead in time and thus slow down training in some cases. GPU training is not supported yet when use_spark is True. For Spark clusters, by default, we will launch one trial per executor. However, sometimes we want to launch more trials than the number of executors (e.g., local mode). In this case, we can set the environment variable `FLAML_MAX_CONCURRENT` to override the detected `num_executors`. The final number of concurrent trials will be the minimum of `n_concurrent_trials` and `num_executors`.\n", + "- `n_concurrent_trials`: int, default=1 | The number of concurrent trials. When n_concurrent_trials > 1, FLAML performs parallel tuning.\n", + "- `force_cancel`: boolean, default=False | Whether to forcely cancel Spark jobs if the search time exceeded the time budget. Spark jobs include parallel tuning jobs and Spark-based model training jobs.\n", + "\n", + "An example code snippet for using parallel Spark jobs:\n", + "```python\n", + "import flaml\n", + "automl_experiment = flaml.AutoML()\n", + "automl_settings = {\n", + " \"time_budget\": 30,\n", + " \"metric\": \"r2\",\n", + " \"task\": \"regression\",\n", + " \"n_concurrent_trials\": 2,\n", + " \"use_spark\": True,\n", + " \"force_cancel\": True, # Activating the force_cancel option can immediately halt Spark jobs once they exceed the allocated time_budget.\n", + "}\n", + "\n", + "automl.fit(\n", + " dataframe=dataframe,\n", + " label=label,\n", + " **automl_settings,\n", + ")\n", + "```\n", + "\n", + "\n", + "[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/integrate_spark.ipynb)\n", + "\n", + "# Research\n", + "\n", + "For technical details, please check our research publications.\n", + "\n", + "* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2021flaml,\n", + " title={FLAML: A Fast and Lightweight AutoML Library},\n", + " author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},\n", + " year={2021},\n", + " booktitle={MLSys},\n", + "}\n", + "```\n", + "\n", + "* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2021cfo,\n", + " title={Frugal Optimization for Cost-related Hyperparameters},\n", + " author={Qingyun Wu and Chi Wang and Silu Huang},\n", + " year={2021},\n", + " booktitle={AAAI},\n", + "}\n", + "```\n", + "\n", + "* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2021blendsearch,\n", + " title={Economical Hyperparameter Optimization With Blended Search Strategy},\n", + " author={Chi Wang and Qingyun Wu and Silu Huang and Amin Saied},\n", + " year={2021},\n", + " booktitle={ICLR},\n", + "}\n", + "```\n", + "\n", + "* [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{liuwang2021hpolm,\n", + " title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},\n", + " author={Susan Xueqing Liu and Chi Wang},\n", + " year={2021},\n", + " booktitle={ACL},\n", + "}\n", + "```\n", + "\n", + "* [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2021chacha,\n", + " title={ChaCha for Online AutoML},\n", + " author={Qingyun Wu and Chi Wang and John Langford and Paul Mineiro and Marco Rossi},\n", + " year={2021},\n", + " booktitle={ICML},\n", + "}\n", + "```\n", + "\n", + "* [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", + "\n", + "```bibtex\n", + "@inproceedings{wuwang2021fairautoml,\n", + " title={Fair AutoML},\n", + " author={Qingyun Wu and Chi Wang},\n", + " year={2021},\n", + " booktitle={ArXiv preprint arXiv:2111.06495},\n", + "}\n", + "```\n", + "\n", + "* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", + "\n", + "```bibtex\n", + "@inproceedings{kayaliwang2022default,\n", + " title={Mining Robust Default Configurations for Resource-constrained AutoML},\n", + " author={Moe Kayali and Chi Wang},\n", + " year={2022},\n", + " booktitle={ArXiv preprint arXiv:2202.09927},\n", + "}\n", + "```\n", + "\n", + "* [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", + "\n", + "```bibtex\n", + "@inproceedings{zhang2023targeted,\n", + " title={Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives},\n", + " author={Shaokun Zhang and Feiran Jia and Chi Wang and Qingyun Wu},\n", + " booktitle={International Conference on Learning Representations},\n", + " year={2023},\n", + " url={https://openreview.net/forum?id=0Ij9_q567Ma},\n", + "}\n", + "```\n", + "\n", + "* [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", + "\n", + "```bibtex\n", + "@inproceedings{wang2023EcoOptiGen,\n", + " title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},\n", + " author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},\n", + " year={2023},\n", + " booktitle={ArXiv preprint arXiv:2303.04673},\n", + "}\n", + "```\n", + "\n", + "* [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", + "\n", + "```bibtex\n", + "@inproceedings{wu2023empirical,\n", + " title={An Empirical Study on Challenging Math Problem Solving with GPT-4},\n", + " author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},\n", + " year={2023},\n", + " booktitle={ArXiv preprint arXiv:2306.01337},\n", + "}\n", + "```\n", + "\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "There is no function named `tune_automl` in FLAML. However, FLAML has integrated Spark for distributed training. There are two main aspects of integration with Spark: \n", + "- Use Spark ML Estimators for AutoML.\n", + "- Use Spark to run training in parallel Spark jobs.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# reset the assistant. Always reset the assistant before starting a new conversation.\n", + "assistant.reset()\n", + "\n", + "# set `human_input_mode` to be `ALWAYS`, so the agent will ask for human input at every step.\n", + "ragproxyagent.human_input_mode = \"ALWAYS\"\n", + "qa_problem = \"Is there a function named `tune_automl` in FLAML?\"\n", + "ragproxyagent.initiate_chat(\n", + " assistant, message=ragproxyagent.message_generator, problem=qa_problem\n", + ") # type \"exit\" to exit the conversation" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 5\n", + "\n", + "[Back to top](#table-of-contents)\n", + "\n", + "Use RetrieveChat to answer questions for [NaturalQuestion](https://ai.google.com/research/NaturalQuestions) dataset.\n", + "\n", + "First, we will create a new document collection which includes all the contextual corpus. Then, we will choose some questions and utilize RetrieveChat to answer them. For this particular example, we will be using the `gpt-3.5-turbo` model, and we will demonstrate RetrieveChat's feature of automatically updating context in case the documents retrieved do not contain sufficient information." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "config_list[0][\"model\"] = \"gpt-35-turbo\" # change model to gpt-35-turbo" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "corpus_file = \"https://huggingface.co/datasets/thinkall/NaturalQuestionsQA/resolve/main/corpus.txt\"\n", + "\n", + "# Create a new collection for NaturalQuestions dataset\n", + "# `task` indicates the kind of task we're working on. In this example, it's a `qa` task.\n", + "ragproxyagent = RetrieveUserProxyAgent(\n", + " name=\"ragproxyagent\",\n", + " human_input_mode=\"NEVER\",\n", + " max_consecutive_auto_reply=10,\n", + " retrieve_config={\n", + " \"task\": \"qa\",\n", + " \"docs_path\": corpus_file,\n", + " \"chunk_token_size\": 2000,\n", + " \"model\": config_list[0][\"model\"],\n", + " \"client\": chromadb.PersistentClient(path=\"/tmp/chromadb\"),\n", + " \"collection_name\": \"natural-questions\",\n", + " \"chunk_mode\": \"one_line\",\n", + " \"embedding_model\": \"all-MiniLM-L6-v2\",\n", + " },\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['what is non controlling interest on balance sheet', 'how many episodes are in chicago fire season 4', 'what are bulls used for on a farm', 'has been honoured with the wisden leading cricketer in the world award for 2016', 'who carried the usa flag in opening ceremony']\n", + "[[\"the portion of a subsidiary corporation 's stock that is not owned by the parent corporation\"], ['23'], ['breeding', 'as work oxen', 'slaughtered for meat'], ['Virat Kohli'], ['Erin Hamlin']]\n" + ] + } + ], + "source": [ + "# queries_file = \"https://huggingface.co/datasets/thinkall/NaturalQuestionsQA/resolve/main/queries.jsonl\"\n", + "queries = \"\"\"{\"_id\": \"ce2342e1feb4e119cb273c05356b33309d38fa132a1cbeac2368a337e38419b8\", \"text\": \"what is non controlling interest on balance sheet\", \"metadata\": {\"answer\": [\"the portion of a subsidiary corporation 's stock that is not owned by the parent corporation\"]}}\n", + "{\"_id\": \"3a10ff0e520530c0aa33b2c7e8d989d78a8cd5d699201fc4b13d3845010994ee\", \"text\": \"how many episodes are in chicago fire season 4\", \"metadata\": {\"answer\": [\"23\"]}}\n", + "{\"_id\": \"fcdb6b11969d5d3b900806f52e3d435e615c333405a1ff8247183e8db6246040\", \"text\": \"what are bulls used for on a farm\", \"metadata\": {\"answer\": [\"breeding\", \"as work oxen\", \"slaughtered for meat\"]}}\n", + "{\"_id\": \"26c3b53ec44533bbdeeccffa32e094cfea0cc2a78c9f6a6c7a008ada1ad0792e\", \"text\": \"has been honoured with the wisden leading cricketer in the world award for 2016\", \"metadata\": {\"answer\": [\"Virat Kohli\"]}}\n", + "{\"_id\": \"0868d0964c719a52cbcfb116971b0152123dad908ac4e0a01bc138f16a907ab3\", \"text\": \"who carried the usa flag in opening ceremony\", \"metadata\": {\"answer\": [\"Erin Hamlin\"]}}\n", + "\"\"\"\n", + "queries = [json.loads(line) for line in queries.split(\"\\n\") if line]\n", + "questions = [q[\"text\"] for q in queries]\n", + "answers = [q[\"metadata\"][\"answer\"] for q in queries]\n", + "print(questions)\n", + "print(answers)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + ">>>>>>>>>>>> Below are outputs of Case 1 <<<<<<<<<<<<\n", + "\n", + "\n", + "Trying to create collection.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
Film Year Fuck count Minutes Uses / mi ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
Character Ultimate Avengers Ultimate Avengers 2 I ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
Position Country Town / City PM2. 5 PM ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
Rank Country ( or dependent territory ) Population
Rank State Gross collections ( in thousands ) Rev ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t < ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
Date Province Mag . MMI Deaths
City River State
Gangakhed ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
Player Pos . Team Career start Career ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t ABO and Rh blood type distribution by country ( population averages )
Country
Total area Land area Performance in the European Cup and UEFA Champions League by club
  • ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Rank City State Land area ( sq mi ) La ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    # Country Name International goals Cap ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Rank City Image Population Definition ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Rank Team Won Lost Tied Pct ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Territory Rights holder Ref
    Asia
    ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    ( hide ) Rank Nat Name Years Goals
    Total area Land area
    Bids by school Most recent
    Rank Name Nation TP SP
    2014 Rank City 2014 Estimate 2010 Census
    S.No . Year Name
    1961
    Densities of various materials covering a range of values
    Material ρ ( ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Club Season League Nation ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Rank ( 2016 ) Airports ( large hubs ) IATA Code M ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    City Region / State Country Park name ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Year Winner ( nationally ) Votes Percent
    Compound SERT NET DAT 5 - HT
    Rank Name Industry Revenue ( USD millions )
    ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Rank Name Name in Georgian Population 1989
    Country The World Factbook World Res ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Rank Country Area ( km2 ) Notes
    ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Rank Country Area ( km2 ) Notes
    Date State ( s ) Magnitude Fatalities ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t < ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t
    Artist # Gold # Platinum # Multi-Platinum
    Name Number of locations Revenue
    Name Country Region Depth ( meters ) < ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "UPDATE CONTEXT. The current context does not provide information related to the question.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[32mUpdating context and resetting conversation.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1122 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2398 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_309 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3891 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2087 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_330 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4844 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "You must give as short an answer as possible.\n", + "\n", + "User's question is: has been honoured with the wisden leading cricketer in the world award for 2016\n", + "\n", + "Context is:
    Rank Player ( 2017 HRs ) HR
    ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\t ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "doc_ids: [['doc_0', 'doc_3334', 'doc_720', 'doc_2732', 'doc_2510', 'doc_5084', 'doc_5068', 'doc_3727', 'doc_1938', 'doc_4689', 'doc_5249', 'doc_1751', 'doc_480', 'doc_3989', 'doc_2115', 'doc_1233', 'doc_2264', 'doc_633', 'doc_2376', 'doc_2293', 'doc_5274', 'doc_5213', 'doc_3991', 'doc_2880', 'doc_2737', 'doc_1257', 'doc_1748', 'doc_2038', 'doc_4073', 'doc_2876']]\n", + "\u001b[32mAdding doc_id doc_0 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3334 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_720 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2732 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2510 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5084 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5068 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3727 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1938 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4689 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5249 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1751 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_480 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3989 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3334 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_720 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2732 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2510 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5084 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5068 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3727 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1938 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4689 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5249 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1751 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_480 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3989 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2115 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1233 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2264 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_633 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2376 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "You must give as short an answer as possible.\n", + "\n", + "User's question is: what is non controlling interest on balance sheet\n", + "\n", + "Context is:

    In accounting , minority interest ( or non-controlling interest ) is the portion of a subsidiary corporation 's stock that is not owned by the parent corporation . The magnitude of the minority interest in the subsidiary company is generally less than 50 % of outstanding shares , or the corporation would generally cease to be a subsidiary of the parent .

    \n", + "

    The balance sheet is the financial statement showing a firm 's assets , liabilities and equity ( capital ) at a set point in time , usually the end of the fiscal year reported on the accompanying income statement . The total assets always equal the total combined liabilities and equity in dollar amount . This statement best demonstrates the basic accounting equation - Assets = Liabilities + Equity . The statement can be used to help show the status of a company .

    \n", + "

    The comptroller ( who is also auditor general and head of the National Audit Office ) controls both the Consolidated Fund and the National Loans Fund . The full official title of the role is Comptroller General of the Receipt and Issue of Her Majesty 's Exchequer .

    \n", + "

    Financing activities include the inflow of cash from investors such as banks and shareholders , as well as the outflow of cash to shareholders as dividends as the company generates income . Other activities which impact the long - term liabilities and equity of the company are also listed in the financing activities section of the cash flow statement .

    \n", + "

    It is frequently claimed that annual accounts have not been certified by the external auditor since 1994 . In its annual report on the implementation of the 2009 EU Budget , the Court of Auditors found that the two biggest areas of the EU budget , agriculture and regional spending , have not been signed off on and remain `` materially affected by error '' .

    \n", + "

    The Ministry of Finance , Government of India announces the rate of interest for PPF account every quarter . The current interest rate effective from 1 January 2018 is 7.6 % Per Annum ' ( compounded annually ) . Interest will be paid on 31 March every year . Interest is calculated on the lowest balance between the close of the fifth day and the last day of every month .

    \n", + "
    No . Athlete Nation Sport Years
    Quarter Interest Rate
    April 2018 - June 2018 7.6 %
    \n", + "

    For a percentage of the settlement amount , Public adjusters work exclusively for the policyholder . This means there should be no inherent conflict of interest when it comes to advocating on the policyholder 's behalf to the insurance company .

    \n", + "

    Accounts receivable is a legally enforceable claim for payment held by a business for goods supplied and / or services rendered that customers / clients have ordered but not paid for . These are generally in the form of invoices raised by a business and delivered to the customer for payment within an agreed time frame . Accounts receivable is shown in a balance sheet as an asset . It is one of a series of accounting transactions dealing with the billing of a customer for goods and services that the customer has ordered . These may be distinguished from notes receivable , which are debts created through formal legal instruments called promissory notes .

    \n", + "

    A common synonym for net profit when discussing financial statements ( which include a balance sheet and an income statement ) is the bottom line . This term results from the traditional appearance of an income statement which shows all allocated revenues and expenses over a specified time period with the resulting summation on the bottom line of the report .

    \n", + " Electronic Fund Transfer Act
    Other short titles
    • Financial Institutions Regulatory and Interest Rate Control Act of 1978
    • Change in Bank Control Act
    • Change in Savings and Loan Control Act
    • Depository Institution Management Interlocks Act
    • Export - Import Bank Act Amendments
    • Federal Financial Institutions Examination Council Act
    • National Credit Union Central Liquidity Facility Act
    • Right to Financial Privacy Act
    Long title An Act to extend the authority for the flexible regulation of interest rates on deposits and accounts in depository institutions .
    Nicknames American Arts Gold Medallion Act
    Enacted by the 95th United States Congress
    Effective November 10 , 1978
    Citations
    Public law 95 - 630
    Statutes at Large 92 Stat. 3641 aka 92 Stat. 3728
    Codification
    Titles amended
    • 12 U.S.C. : Banks and Banking
    • 15 U.S.C. : Commerce and Trade
    U.S.C. sections amended
    • 12 U.S.C. ch. 3 § 226 et seq .
    • 15 U.S.C. ch. 41 § 1601 et seq .
    • 15 U.S.C. ch. 41 § 1693 et seq .
    Legislative history
    • Introduced in the House as H.R. 14279 by Fernand St. Germain ( D - RI ) on October 10 , 1978
    • Committee consideration by House Banking , Finance , and Urban Affairs , Senate Banking , Housing , and Urban Affairs
    • Passed the House on October 11 , 1978 ( passed )
    • Passed the Senate on October 12 , 1978 ( passed ) with amendment
    • House agreed to Senate amendment on October 14 , 1978 ( 341 - 32 , in lieu of H. Res. 1439 ) with further amendment
    • Senate agreed to House amendment on October 14 , 1978 ( agreed )
    • Signed into law by President Jimmy Carter on November 10 , 1978
    Major amendments
    Credit CARD Act of 2009
    \n", + "

    Financial management refers to the efficient and effective management of money ( funds ) in such a manner as to accomplish the objectives of the organization . It is the specialized function directly associated with the top management . The significance of this function is not seen in the ' Line ' but also in the capacity of the ' Staff ' in overall of a company . It has been defined differently by different experts in the field .

    \n", + "

    Form 990 ( officially , the `` Return of Organization Exempt From Income Tax '' ) is a United States Internal Revenue Service form that provides the public with financial information about a nonprofit organization . It is often the only source of such information . It is also used by government agencies to prevent organizations from abusing their tax - exempt status . Certain nonprofits have more comprehensive reporting requirements , such as hospitals and other health care organizations ( Schedule H ) .

    \n", + "

    The Board of Governors of the Federal Reserve System , commonly known as the Federal Reserve Board , is the main governing body of the Federal Reserve System . It is charged with overseeing the Federal Reserve Banks and with helping implement monetary policy of the United States . Governors are appointed by the President of the United States and confirmed by the Senate for staggered 14 - year terms .

    \n", + "

    The International Monetary Fund ( IMF ) is an international organization headquartered in Washington , D.C. , of `` 189 countries working to foster global monetary cooperation , secure financial stability , facilitate international trade , promote high employment and sustainable economic growth , and reduce poverty around the world . '' Formed in 1945 at the Bretton Woods Conference primarily by the ideas of Harry Dexter White and John Maynard Keynes , it came into formal existence in 1945 with 29 member countries and the goal of reconstructing the international payment system . It now plays a central role in the management of balance of payments difficulties and international financial crises . Countries contribute funds to a pool through a quota system from which countries experiencing balance of payments problems can borrow money . As of 2016 , the fund had SDR 477 billion ( about $668 billion ) .

    \n", + "
  • Callability -- Some bonds give the issuer the right to repay the bond before the maturity date on the call dates ; see call option . These bonds are referred to as callable bonds . Most callable bonds allow the issuer to repay the bond at par . With some bonds , the issuer has to pay a premium , the so - called call premium . This is mainly the case for high - yield bonds . These have very strict covenants , restricting the issuer in its operations . To be free from these covenants , the issuer can repay the bonds early , but only at a high cost .
  • \n", + "

    On November 7 , 2016 , debt held by the public was $14.3 trillion or about 76 % of the previous 12 months of GDP . Intragovernmental holdings stood at $5.4 trillion , giving a combined total gross national debt of $19.8 trillion or about 106 % of the previous 12 months of GDP ; $6.2 trillion or approximately 45 % of the debt held by the public was owned by foreign investors , the largest of which were Japan and China at about $1.09 trillion for Japan and $1.06 trillion for China as of December 2016 .

    \n", + "

    A currency transaction report ( CTR ) is a report that U.S. financial institutions are required to file with FinCEN for each deposit , withdrawal , exchange of currency , or other payment or transfer , by , through , or to the financial institution which involves a transaction in currency of more than $10,000 . Used in this context , currency means the coin and / or paper money of any country that is designated as legal tender by the country of issuance . Currency also includes U.S. silver certificates , U.S. notes , Federal Reserve notes , and official foreign bank notes .

    \n", + "

    Checks and balances is the principle that each of the Branches has the power to limit or check the other two and this creates a balance between the three separate powers of the state , this principle induces that the ambitions of one branch prevent that one of the other branches become supreme , and thus be eternally confronting each other and in that process leaving the people free from government abuses . Checks and Balances are designed to maintain the system of separation of powers keeping each branch in its place . This is based on the idea that it is not enough to separate the powers and guarantee their independence but to give the various branches the constitutional means to defend their own legitimate powers from the encroachments of the other branches . They guarantee that the powers of the State have the same weight ( co-equal ) , that is , to be balanced , so that they can limit each other , avoiding the abuse of state power . the origin of checks and balances , like separation of powers itself , is specifically credited to Montesquieu in the Enlightenment ( in The Spirit of the Laws , 1748 ) , under this influence was implemented in 1787 in the Constitution of the United States .

    \n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "Non controlling interest on balance sheet refers to the portion of a subsidiary corporation's stock that is not owned by the parent corporation. It represents ownership of less than 50% of the outstanding shares. It is shown as a separate line item in the equity section of the balance sheet.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\n", + "\n", + ">>>>>>>>>>>> Below are outputs of Case 2 <<<<<<<<<<<<\n", + "\n", + "\n", + "doc_ids: [['doc_1', 'doc_1097', 'doc_4221', 'doc_4972', 'doc_1352', 'doc_96', 'doc_988', 'doc_2370', 'doc_2414', 'doc_5038', 'doc_302', 'doc_1608', 'doc_980', 'doc_2112', 'doc_562', 'doc_4204', 'doc_3298', 'doc_2995', 'doc_3978', 'doc_1258', 'doc_2971', 'doc_2171', 'doc_1065', 'doc_17', 'doc_2683', 'doc_87', 'doc_1767', 'doc_158', 'doc_482', 'doc_3850']]\n", + "\u001b[32mAdding doc_id doc_1 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1097 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4221 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4972 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1352 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_96 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_988 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2370 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2414 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5038 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_302 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1608 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_980 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2112 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_562 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4204 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3298 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2995 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3978 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1258 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2971 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2171 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1065 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_17 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2683 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "You must give as short an answer as possible.\n", + "\n", + "User's question is: how many episodes are in chicago fire season 4\n", + "\n", + "Context is:

    The fourth season of Chicago Fire , an American drama television series with executive producer Dick Wolf , and producers Derek Haas , Michael Brandt , and Matt Olmstead , was ordered on February 5 , 2015 , by NBC , and premiered on October 13 , 2015 and concluded on May 17 , 2016 . The season contained 23 episodes .

    \n", + "

    The fourth season began airing on October 10 , 2017 , and is set to run for 23 episodes on The CW until May 22 , 2018 .

    \n", + "

    The fourth season began airing on October 10 , 2017 , on The CW .

    \n", + "

    The fifth season of Chicago P.D. , an American police drama television series with executive producer Dick Wolf , and producers Derek Haas , Michael Brandt , and Rick Eid , premiered on September 27 , 2017 . This season featured its 100th episode .

    \n", + "

    This was the city of Chicago 's first professional sports championship since the Chicago Fire won MLS Cup ' 98 ( which came four months after the Chicago Bulls ' sixth NBA championship that year ) . The next major Chicago sports championship came in 2010 , when the NHL 's Chicago Blackhawks ended a 49 - year Stanley Cup title drought . With the Chicago Bears ' win in Super Bowl XX and the Chicago Cubs ' own World Series championship in 2016 , all Chicago sports teams have won at least one major championship since 1985 . Meanwhile , the Astros themselves made it back to the World Series in 2017 , but this time as an AL team , where they defeated the Los Angeles Dodgers in seven games , resulting in Houston 's first professional sports championship since the 2006 -- 07 Houston Dynamo won their back - to - back MLS Championships .

    \n", + "

    The season was ordered in May 2017 , and production began the following month . Ben McKenzie stars as Gordon , alongside Donal Logue , David Mazouz , Morena Baccarin , Sean Pertwee , Robin Lord Taylor , Erin Richards , Camren Bicondova , Cory Michael Smith , Jessica Lucas , Chris Chalk , Drew Powell , Crystal Reed and Alexander Siddig . The fourth season premiered on September 21 , 2017 , on Fox , while the second half premiered on March 1 , 2018 .

    \n", + "

    As of May 24 , 2017 , 58 episodes of The 100 have aired , concluding the fourth season . In March 2017 , The CW renewed the series for a fifth season , set to premiere on April 24 , 2018 .

    \n", + "

    The fifth book , River of Fire , is scheduled to be released on April 10 , 2018 .

    \n", + "

    On September 10 , 2013 , AMC officially cancelled the series after 38 episodes and three seasons . However , on November 15 , 2013 , Netflix ordered a fourth and final season of six episodes , that was released on Netflix on August 1 , 2014 .

    \n", + "

    The second season of Fargo , an American anthology black comedy -- crime drama television series created by Noah Hawley , premiered on October 12 , 2015 , on the basic cable network FX . Its principal cast consists of Kirsten Dunst , Patrick Wilson , Jesse Plemons , Jean Smart , and Ted Danson . The season had ten episodes , and its initial airing concluded on December 14 , 2015 . As an anthology , each Fargo season possesses its own self - contained narrative , following a disparate set of characters in various settings .

    \n", + "

    The Great Fire of London was a major conflagration that swept through the central parts of the English city of London from Sunday , 2 September to Wednesday , 5 September 1666 . The fire gutted the medieval City of London inside the old Roman city wall . It threatened but did not reach the aristocratic district of Westminster , Charles II 's Palace of Whitehall , and most of the suburban slums . It consumed 13,200 houses , 87 parish churches , St Paul 's Cathedral , and most of the buildings of the City authorities . It is estimated to have destroyed the homes of 70,000 of the City 's 80,000 inhabitants .

    \n", + "

    The first season consisted of eight one - hour - long episodes which were released worldwide on Netflix on July 15 , 2016 , in Ultra HD 4K . The second season , consisting of nine episodes , was released on October 27 , 2017 in HDR . A teaser for the second season , which also announced the release date , aired during Super Bowl LI .

    \n", + "

    `` Two Days Before the Day After Tomorrow '' is the eighth episode in the ninth season of the American animated television series South Park . The 133rd overall episode overall , it originally aired on Comedy Central in the United States on October 19 , 2005 . In the episode , Stan and Cartman accidentally destroy a dam , causing the town of Beaverton to be destroyed .

    \n", + "

    The fourth season consists of a double order of twenty episodes , split into two parts of ten episodes ; the second half premiered on November 30 , 2016 . The season follows the battles between Ragnar and Rollo in Francia , Bjorn 's raid into the Mediterranean , and the Viking invasion of England . It concluded in its entirety on February 1 , 2017 .

    \n", + "

    This is an episode list for Sabrina the Teenage Witch , an American sitcom that debuted on ABC in 1996 . From Season 5 , the program was aired on The WB . The series ran for seven seasons totaling 163 episodes . It originally premiered on September 27 , 1996 on ABC and ended on April 24 , 2003 on The WB .

    \n", + "

    Hart of Dixie was renewed by The CW for 10 episode season on May 8 , 2014 . The show 's fourth and final season premiered on November 15 , 2014 . The series was later cancelled on May 7 , 2015 .

    \n", + "

    The Burning Maze is the third book in the series . It is scheduled to be released on May 1 , 2018 .

    \n", + "
    My Name Is Earl ( season 4 )
    DVD cover
    Country of origin United States
    No. of episodes 27
    Release
    Original network NBC
    Original release September 25 , 2008 -- May 14 , 2009
    Season chronology
    ← Previous Season 3
    List of My Name Is Earl episodes
    \n", + "

    The eighteenth season of Law & Order : Special Victims Unit debuted on Wednesday , September 21 , 2016 , on NBC and finished on Wednesday , May 24 , 2017 , with a two - hour season finale .

    \n", + "

    The eighth and final season of the fantasy drama television series Game of Thrones was announced by HBO in July 2016 . Unlike the first six seasons that each had ten episodes and the seventh that had seven episodes , the eighth season will have only six episodes . Like the previous season , it will largely consist of original content not found currently in George R.R. Martin 's A Song of Ice and Fire series , and will instead adapt material Martin has revealed to showrunners about the upcoming novels in the series , The Winds of Winter and A Dream of Spring .

    \n", + "

    A total of 49 episodes of The Glades were produced and aired over four seasons .

    \n", + "

    Sneaky Pete is an American crime drama series created by David Shore and Bryan Cranston . The series follows Marius Josipović ( Giovanni Ribisi ) , a released convict who adopts the identity of his cell mate , Pete Murphy , in order to avoid his past life . The series also stars Marin Ireland , Shane McRae , Libe Barer , Michael Drayer , Peter Gerety , and Margo Martindale . The pilot debuted on August 7 , 2015 , and was followed by a full series order that September . Shore left the project in early 2016 and was replaced by Graham Yost , who served as executive producer and showrunner for the remaining nine episodes . The first season premiered in its entirety on January 13 , 2017 , exclusively on Amazon Video . On January 19 , 2017 , Amazon announced that Sneaky Pete had been renewed for a second season , which was released on March 9 , 2018 .

    \n", + "

    The eighth season of Blue Bloods , a police procedural drama series created by Robin Green and Mitchell Burgess , premiered on CBS on September 29 , 2017 . The season is set to contain 22 episodes .

    \n", + "

    The first five seasons of Prison Break have been released on DVD and Blu - ray in Regions 1 , 2 , and 4 . Each DVD boxed set includes all of the broadcast episodes from that season , the associated special episode , commentary from cast and crew , and profiles of various parts of Prison Break , such as Fox River State Penitentiary or the tattoo . Prison Break is also available online , including iTunes , Amazon Video , and Netflix . After the premiere of the second season of Prison Break , Fox began online streaming of the prior week 's episode , though it originally restricted viewing to the United States .

    \n", + "

    In June 2017 , Remini was upped to a series regular starting with Season 2 ; shortly after , it was announced that Erinn Hayes would not be returning for the show 's second season . Sources cited in a Variety article confirmed that Remini would be returning as Detective Vanessa Cellucci , the character she portrayed in the first - season finale , and that Hayes ' dismissal was for creative reasons and `` not a reflection '' of the actress ' performance . In August 2017 , it was reported Hayes ' character will be killed off before season two begins and the season will take place 7 -- 10 months after season one ended , in order to make room for Remini .

    \n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "There are 23 episodes in Chicago Fire season 4.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\n", + "\n", + ">>>>>>>>>>>> Below are outputs of Case 3 <<<<<<<<<<<<\n", + "\n", + "\n", + "doc_ids: [['doc_47', 'doc_45', 'doc_2570', 'doc_2851', 'doc_4033', 'doc_5320', 'doc_3849', 'doc_4172', 'doc_3202', 'doc_2282', 'doc_1896', 'doc_949', 'doc_103', 'doc_1552', 'doc_2791', 'doc_392', 'doc_1175', 'doc_5315', 'doc_832', 'doc_3185', 'doc_2532', 'doc_3409', 'doc_824', 'doc_4075', 'doc_1201', 'doc_4116', 'doc_1448', 'doc_2545', 'doc_2251', 'doc_2485']]\n", + "\u001b[32mAdding doc_id doc_47 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_45 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2570 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2851 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4033 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5320 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3849 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4172 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3202 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2282 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1896 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_949 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_103 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1552 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2791 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_392 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1175 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5315 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_832 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3185 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2532 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "You must give as short an answer as possible.\n", + "\n", + "User's question is: what are bulls used for on a farm\n", + "\n", + "Context is:

    Many cattle ranches and stations run bulls with cows , and most dairy or beef farms traditionally had at least one , if not several , bulls for purposes of herd maintenance . However , the problems associated with handling a bull ( particularly where cows must be removed from its presence to be worked ) has prompted many dairy farmers to restrict themselves to artificial insemination ( AI ) of the cows . Semen is removed from the bulls and stored in canisters of liquid nitrogen , where it is kept until it can be sold , at which time it can be very profitable , in fact , many ranchers keep bulls specifically for this purpose . AI is also used to increase the quality of a herd , or to introduce an outcross of bloodlines . Some ranchers prefer to use AI to allow them to breed to several different bulls in a season or to breed their best stock to a higher quality bull than they could afford to purchase outright . AI may also be used in conjunction with embryo transfer to allow cattle producers to add new breeding to their herds .

    \n", + "

    Other than the few bulls needed for breeding , the vast majority of male cattle are slaughtered for meat before the age of three years , except where they are needed ( castrated ) as work oxen for haulage . Most of these beef animals are castrated as calves to reduce aggressive behavior and prevent unwanted mating , although some are reared as uncastrated bull beef . A bull is typically ready for slaughter one or two months sooner than a castrated male or a female , and produces proportionately more , leaner muscle .

    \n", + "

    Pastoral farming is the major land use but there are increases in land area devoted to horticulture .

    \n", + "

    Animal fibers are natural fibers that consist largely of particular proteins . Instances are silk , hair / fur ( including wool ) and feathers . The animal fibers used most commonly both in the manufacturing world as well as by the hand spinners are wool from domestic sheep and silk . Also very popular are alpaca fiber and mohair from Angora goats . Unusual fibers such as Angora wool from rabbits and Chiengora from dogs also exist , but are rarely used for mass production .

    \n", + "

    In 2012 , there were 3.2 million farmers , ranchers and other agricultural managers and an estimated 757,900 agricultural workers were legally employed in the US . Animal breeders accounted for 11,500 of those workers with the rest categorized as miscellaneous agricultural workers . The median pay was $9.12 per hour or $18,970 per year . In 2009 , about 519,000 people under age 20 worked on farms owned by their family . In addition to the youth who lived on family farms , an additional 230,000 youth were employed in agriculture . In 2004 , women made up approximately 24 % of farmers ; that year , there were 580,000 women employed in agriculture , forestry , and fishing .

    \n", + "

    The recipe can vary widely . The defining ingredients are minced meat ( commonly beef when named cottage pie or lamb when named shepherd 's pie ) , typically cooked in a gravy with onions and sometimes other vegetables , such as peas , celery or carrots , and topped with mashed potato . The pie is sometimes also topped with grated cheese .

    \n", + "

    The history of the domesticated sheep goes back to between 11000 and 9000 BC , and the domestication of the wild mouflon in ancient Mesopotamia . Sheep are among the first animals to have been domesticated by humans , and there is evidence of sheep farming in Iranian statuary dating to that time period . These sheep were primarily raised for meat , milk , and skins . Woolly sheep began to be developed around 6000 BC in Iran , and cultures such as the Persians relied on sheep 's wool for trading . They were then imported to Africa and Europe via trading .

    \n", + "

    Although large - scale use of wheels did not occur in the Americas prior to European contact , numerous small wheeled artifacts , identified as children 's toys , have been found in Mexican archeological sites , some dating to about 1500 BC . It is thought that the primary obstacle to large - scale development of the wheel in the Americas was the absence of domesticated large animals which could be used to pull wheeled carriages . The closest relative of cattle present in Americas in pre-Columbian times , the American Bison , is difficult to domesticate and was never domesticated by Native Americans ; several horse species existed until about 12,000 years ago , but ultimately became extinct . The only large animal that was domesticated in the Western hemisphere , the llama , did not spread far beyond the Andes by the time of the arrival of Columbus .

    \n", + "

    The Call of the Wild is a short adventure novel by Jack London published in 1903 and set in Yukon , Canada during the 1890s Klondike Gold Rush , when strong sled dogs were in high demand . The central character of the novel is a dog named Buck . The story opens at a ranch in Santa Clara Valley , California , when Buck is stolen from his home and sold into service as a sled dog in Alaska . He becomes progressively feral in the harsh environment , where he is forced to fight to survive and dominate other dogs . By the end , he sheds the veneer of civilization , and relies on primordial instinct and learned experience to emerge as a leader in the wild .

    \n", + "

    The Three Little Pigs was included in The Nursery Rhymes of England ( London and New York , c. 1886 ) , by James Halliwell - Phillipps . The story in its arguably best - known form appeared in English Fairy Tales by Joseph Jacobs , first published in 1890 and crediting Halliwell as his source . The story begins with the title characters being sent out into the world by their mother , to `` seek out their fortune '' . The first little pig builds a house of straw , but a wolf blows it down and devours him . The second little pig builds a house of sticks , which the wolf also blows down , and the second little pig is also devoured . Each exchange between wolf and pig features ringing proverbial phrases , namely :

    \n", + "

    `` How now brown cow '' ( / ˈhaʊ ˈnaʊ ˈbraʊn ˈkaʊ / ) is a phrase used in elocution teaching to demonstrate rounded vowel sounds . Each `` ow '' sound in the phrase represents the diphthong / aʊ / . Although orthographies for each of the four words in this utterance is represented by the English spelling `` ow '' , the articulation required to create this same diphthong represented by the International Phonetic Association 's phonetic alphabet as / aʊ / is also represented by the spelling `` ou '' . Some examples of these homophonic / aʊ / 's are the English words `` house '' , `` blouse '' , `` noun '' , and `` cloud '' . The use of the phrase `` how now brown cow '' in teaching elocution can be dated back to at least 1926 . Although not in use today , the phrase `` how now '' is a greeting , short for `` how say you now '' , and can be found in archaic literature , such as the plays of William Shakespeare .

    \n", + "

    Brisket is a cut of meat from the breast or lower chest of beef or veal . The beef brisket is one of the nine beef primal cuts , though the precise definition of the cut differs internationally . The brisket muscles include the superficial and deep pectorals . As cattle do not have collar bones , these muscles support about 60 % of the body weight of standing / moving cattle . This requires a significant amount of connective tissue , so the resulting meat must be cooked correctly to tenderize the connective tissue .

    \n", + "

    The music to `` Man Gave Names to All the Animals '' is reggae - inspired . The lyrics were inspired by the biblical Book of Genesis , verses 2 : 19 -- 20 in which Adam named the animals and birds . The lyrics have an appeal to children , rhyming the name of the animal with one of its characteristics . So after describing an animal 's `` muddy trail '' and `` curly tail , '' Dylan sings that `` he was n't too small and he was n't too big '' and so that animal was named a pig . Similarly , the cow got its name because Adam `` saw milk comin ' out but he did n't know how '' and the bear got its name because it has a `` great big furry back and furry hair . ''

    \n", + "

    As early as 1671 railed roads were in use in Durham to ease the conveyance of coal ; the first of these was the Tanfield Wagonway . Many of these tramroads or wagon ways were built in the 17th and 18th centuries . They used simply straight and parallel rails of timber on which carts with simple flanged iron wheels were drawn by horses , enabling several wagons to be moved simultaneously .

    \n", + "

    Unicorns are not found in Greek mythology , but rather in the accounts of natural history , for Greek writers of natural history were convinced of the reality of unicorns , which they believed lived in India , a distant and fabulous realm for them . The earliest description is from Ctesias , who in his book Indika ( `` On India '' ) described them as wild asses , fleet of foot , having a horn a cubit and a half ( 700 mm , 28 inches ) in length , and colored white , red and black . Aristotle must be following Ctesias when he mentions two one - horned animals , the oryx ( a kind of antelope ) and the so - called `` Indian ass '' . Strabo says that in the Caucasus there were one - horned horses with stag - like heads . Pliny the Elder mentions the oryx and an Indian ox ( perhaps a rhinoceros ) as one - horned beasts , as well as `` a very fierce animal called the monoceros which has the head of the stag , the feet of the elephant , and the tail of the boar , while the rest of the body is like that of the horse ; it makes a deep lowing noise , and has a single black horn , which projects from the middle of its forehead , two cubits ( 900 mm , 35 inches ) in length . '' In On the Nature of Animals ( Περὶ Ζῴων Ἰδιότητος , De natura animalium ) , Aelian , quoting Ctesias , adds that India produces also a one - horned horse ( iii. 41 ; iv. 52 ) , and says ( xvi. 20 ) that the monoceros ( Greek : μονόκερως ) was sometimes called cartazonos ( Greek : καρτάζωνος ) , which may be a form of the Arabic karkadann , meaning `` rhinoceros '' .

    \n", + "

    The First Battle of Bull Run ( the name used by Union forces ) , also known as the First Battle of Manassas ( the name used by Confederate forces ) , was fought on July 21 , 1861 in Prince William County , Virginia , just north of the city of Manassas and about 25 miles west - southwest of Washington , D.C. It was the first major battle of the American Civil War . The Union 's forces were slow in positioning themselves , allowing Confederate reinforcements time to arrive by rail . Each side had about 18,000 poorly trained and poorly led troops in their first battle . It was a Confederate victory , followed by a disorganized retreat of the Union forces .

    \n", + "

    Hops production is concentrated in moist temperate climates , with much of the world 's production occurring near the 48th parallel north . Hop plants prefer the same soils as potatoes and the leading potato - growing states in the United States are also major hops - producing areas ; however , not all potato - growing areas can produce good hops naturally : soils in the Maritime Provinces of Canada , for example , lack the boron that hops prefer . Historically , hops were not grown in Ireland , but were imported from England . In 1752 more than 500 tons of English hops were imported through Dublin alone .

    \n", + "

    Shepherd 's pie or cottage pie is a meat pie with a crust of mashed potato .

    \n", + "

    Castles served a range of purposes , the most important of which were military , administrative , and domestic . As well as defensive structures , castles were also offensive tools which could be used as a base of operations in enemy territory . Castles were established by Norman invaders of England for both defensive purposes and to pacify the country 's inhabitants . As William the Conqueror advanced through England , he fortified key positions to secure the land he had taken . Between 1066 and 1087 , he established 36 castles such as Warwick Castle , which he used to guard against rebellion in the English Midlands .

    \n", + "

    The Rocky and Bullwinkle Show remained in syndicated reruns and was still available for local television stations through The Program Exchange as late as 2016 ; WBBZ - TV , for instance , aired the show in a strip to counterprogram 10 PM newscasts in the Buffalo , New York market during the summer 2013 season . The underlying rights are now owned by Universal Pictures , which holds the library of predecessor companies DreamWorks Animation and Classic Media , and who in turn with copyright holder Ward Productions forms the joint venture Bullwinkle Studios , which manages the Rocky and Bullwinkle properties ; Universal 's purchase of Classic Media coincided with The Program Exchange 's shutdown .

    \n", + "

    When Yellowstone National Park was created in 1872 , gray wolf ( Canis lupus ) populations were already in decline in Montana , Wyoming and Idaho . The creation of the national park did not provide protection for wolves or other predators , and government predator control programs in the first decades of the 1900s essentially helped eliminate the gray wolf from Yellowstone . The last wolves were killed in Yellowstone in 1926 . After that time , sporadic reports of wolves still occurred , but scientists confirmed that sustainable wolf populations had been extirpated and were absent from Yellowstone during the mid-1900s .

    \n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "Bulls are used for breeding and often kept for their semen to sell for AI purposes. Some male cattle are also kept as work oxen for haulage. The vast majority, however, are slaughtered for meat before the age of three years.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\n", + "\n", + ">>>>>>>>>>>> Below are outputs of Case 4 <<<<<<<<<<<<\n", + "\n", + "\n", + "doc_ids: [['doc_3031', 'doc_819', 'doc_4521', 'doc_3980', 'doc_3423', 'doc_5275', 'doc_745', 'doc_753', 'doc_3562', 'doc_4139', 'doc_3678', 'doc_4931', 'doc_2347', 'doc_1115', 'doc_2806', 'doc_5204', 'doc_2707', 'doc_3653', 'doc_1122', 'doc_2398', 'doc_309', 'doc_3891', 'doc_2087', 'doc_330', 'doc_4844', 'doc_2155', 'doc_2674', 'doc_5357', 'doc_1581', 'doc_9']]\n", + "\u001b[32mAdding doc_id doc_3031 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_819 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4521 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3980 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3423 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5275 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_745 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_753 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3562 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "You must give as short an answer as possible.\n", + "\n", + "User's question is: has been honoured with the wisden leading cricketer in the world award for 2016\n", + "\n", + "Context is:

    The first recipient was Uttam Kumar from Bengali cinema , who was honoured at the 15th National Film Awards in 1968 for his performances in Anthony Firingee and Chiriyakhana . As of 2017 , Amitabh Bachchan is the most honoured actor , with four awards . Two actors -- Kamal Haasan and Mammootty -- have been honoured three times , while six actors -- Sanjeev Kumar , Mithun Chakraborty , Om Puri , Naseeruddin Shah , Mohanlal , and Ajay Devgn -- have won the award two times . Two actors have achieved the honour for performing in two languages -- Mithun Chakraborty ( Hindi and Bengali ) and Mammootty ( Malayalam and English ) . The most recent recipient is Riddhi Sen , who was honoured at the 65th National Film Awards for his performance in the Bengali film Nagarkirtan .

    \n", + "

    There was controversy over the National Film Award for Best Actor , which the committee awarded to Akshay Kumar for his performance in Rustom , snubbing Aamir Khan 's performance for Dangal . Committee member Priyadarshan , who has worked with Kumar on several films , gave the following explanation for awarding Kumar instead of Khan :

    \n", + "

    The 2017 ICC Champions Trophy was the eighth ICC Champions Trophy , a cricket tournament for the eight top - ranked One Day International ( ODI ) teams in the world . It was held in England and Wales from 1 June to 18 June 2017 . Pakistan won the competition for the first time with a 180 - run victory over India in the final at The Oval . The margin of victory was the largest by any team in the final of an ICC ODI tournament in terms of runs .

    \n", + " List of One Day International cricket double centuries
    No . Runs Batsman S / R For Against ODI Venue Date
    200 * Tendulkar , Sachin Sachin Tendulkar 136.05 India South Africa 2962 Captain Roop Singh Stadium , Gwalior , India 24 February 2010
    219 Sehwag , Virender Virender Sehwag 146.98 India West Indies 3223 Holkar Stadium , Indore , India 8 December 2011
    209 Sharma , Rohit Rohit Sharma 132.28 India Australia 3428 M. Chinnaswamy Stadium , Bangalore , India 2 November 2013
    264 Sharma , Rohit Rohit Sharma 152.60 India Sri Lanka 3544 Eden Gardens , India 13 November 2014
    5 215 Gayle , Chris Chris Gayle 146.30 West Indies Zimbabwe 3612 Manuka Oval , Canberra , Australia 24 February 2015
    6 237 * Guptill , Martin Martin Guptill 145.40 New Zealand West Indies 3643 Wellington Regional Stadium , Wellington , New Zealand 22 March 2015
    7 208 * Sharma , Rohit Rohit Sharma 135.95 India Sri Lanka 3941 Punjab Cricket Association IS Bindra Stadium , Mohali , India 13 December 2017
    \n", + "

    G. Sankara Kurup , ( 3 June 1901 , Nayathode , Kingdom of Cochin ( now in Ernakulam district , Kerala , India ) -- 2 February 1978 , Vappalassery , Angamaly , Ernakulam district , Kerala ) , better known as Mahakavi G ( The Great Poet G ) , was the first winner of the Jnanpith Award , India 's highest literary award . He won the prize in 1965 for his collection of poems in Malayalam Odakkuzhal ( The Bamboo Flute , 1950 ) . With part of the prize money he established the literary award Odakkuzhal in 1968 . He was also the recipient of the Soviet Land Nehru Award , in 1967 , and the Padma Bhushan in 1968 . His poetry collection Viswadarshanam won the Kerala Sahitya Akademi Award in 1961 and Kendra Sahitya Akademi Award in 1963 .

    \n", + "

    The 2019 Cricket World Cup ( officially ICC Cricket World Cup 2019 ) is the 12th edition of the Cricket World Cup , scheduled to be hosted by England and Wales , from 30 May to 14 July 2019 .

    \n", + " 2018 Under - 19 Cricket World Cup
    Dates 13 January -- 3 February 2018
    Administrator ( s ) International Cricket Council
    Cricket format 50 overs
    Tournament format ( s ) Round - robin and knockout
    Host ( s ) New Zealand
    Champions India ( 4th title )
    Runners - up Australia
    Participants 16
    Matches played 48
    Player of the series Shubman Gill
    Most runs Alick Athanaze ( 418 )
    Most wickets Anukul Roy ( 14 ) Qais Ahmad ( 14 ) Faisal Jamkhandi ( 14 )
    Official website Official website
    ← 2016 2020 →
    \n", + "

    The 2018 ICC Under - 19 Cricket World Cup was an international limited - overs cricket tournament that was held in New Zealand from 13 January to 3 February 2018 . It was the twelfth edition of the Under - 19 Cricket World Cup , and the third to be held in New Zealand ( after the 2002 and 2010 events ) . New Zealand was the first country to host the event three times . The opening ceremony took place on 7 January 2018 . The West Indies were the defending champions . However , they failed to defend their title , after losing their first two group fixtures .

    \n", + "

    Scoring over 10,000 runs across a playing career in any format of cricket is considered a significant achievement . In the year 2001 , Sachin Tendulkar became the first player to score 10,000 runs in ODIs , while playing a match during the bi-lateral series against Australia at home . In the chase for achieving top scores , West Indies ' Desmond Haynes retired as the most prolific run - scorer in One Day Internationals ( ODIs ) , with a total of 8,648 runs in 1994 . The record stood for four years until it was broken by India 's Mohammed Azharuddin . Azharuddin remained the top - scorer in the format until his compatriot Sachin Tendulkar passed him in October 2000 . As of August 2016 , eleven players -- from six teams that are Full members of the International Cricket Council -- have scored more than 10,000 runs in ODIs . Four of these are from Sri Lanka and three from India . The rest are one player each from Pakistan , Australia , West Indies , and South Africa . Bangladesh , England , New Zealand , and Zimbabwe are yet to have a player reach the 10,000 - run mark in this format .

    \n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "I'm sorry, I couldn't find any information about who has been honoured with the Wisden Leading Cricketer in the World award for 2016. UPDATE CONTEXT.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[32mUpdating context and resetting conversation.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4139 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3678 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4931 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2347 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1115 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2806 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_5204 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2707 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3653 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "You must give as short an answer as possible.\n", + "\n", + "User's question is: has been honoured with the wisden leading cricketer in the world award for 2016\n", + "\n", + "Context is: List of the Indian Oscar nominee ( s ) / recipient ( s ) , also showing the year , film , category , and result
    Year Nominee ( s ) / recipient ( s ) Film Category / Honorary Award Result / received Ref .
    1958 ( 30th ) Mehboob Khan Mother India Best Foreign Language Film Nominated
    1961 ( 33rd ) Ismail Merchant The Creation of Woman Best Short Subject ( Live Action ) Nominated
    1979 ( 51st ) Vidhu Vinod Chopra and K.K. Kapil An Encounter with Faces Best Documentary ( Short Subject ) Nominated
    ( 55th ) Bhanu Athaiya Gandhi Best Costume Design Won
    Ravi Shankar Best Original Score Nominated
    ( 59th ) Ismail Merchant A Room with a View Best Picture Nominated
    ( 61st ) Mira Nair Salaam Bombay ! Best Foreign Language Film Nominated
    1992 ( 64th ) Satyajit Ray Pather Pachali Honorary Award Received
    ( 65th ) Ismail Merchant Howards End Best Picture Nominated
    ( 66th ) Ismail Merchant The Remains of the Day Best Picture Nominated
    2002 ( 74th ) Ashutosh Gowarikar Lagaan Best Foreign Language Film Nominated
    2005 ( 77th ) Ashvin Kumar Little Terrorist Best Short Subject ( Live Action ) Nominated
    2007 ( 79th ) Deepa Mehta Water Best Foreign Language Film Nominated
    2009 ( 81st ) Resul Pookutty Slumdog Millionaire Best Sound Mixing Won
    A.R. Rahman Best Original Score Won
    A.R. Rahman and Gulzar Best Original Song Won
    2011 ( 83rd ) A.R. Rahman 127 Hours Best Original Score Nominated
    A.R. Rahman Best Original Song Nominated
    2013 ( 85th ) Bombay Jayashri Life of Pi Best Original Song Nominated
    2016 Rahul Thakkar n / a Sci - Tech Award Received
    2016 Cottalango Leon n / a Sci - Tech Award Received
    2018 Vikas Sathaye n / a Sci - Tech Award Received
    \n", + "

    The 2017 Nobel Peace Prize was awarded to the International Campaign to Abolish Nuclear Weapons ( ICAN ) `` for its work to draw attention to the catastrophic humanitarian consequences of any use of nuclear weapons and for its ground - breaking efforts to achieve a treaty - based prohibition on such weapons , '' according to the Norwegian Nobel Committee announcement on October 6 , 2017 . The award announcement acknowledged the fact that `` the world 's nine nuclear - armed powers and their allies '' neither signed nor supported the treaty - based prohibition known as the Treaty on the Prohibition of Nuclear Weapons or nuclear ban treaty , yet in an interview Committee Chair Berit Reiss - Andersen told reporters that the award was intended to give `` encouragement to all players in the field '' to disarm . The award was hailed by civil society as well as governmental and intergovernmental representatives who support the nuclear ban treaty , but drew criticism from those opposed . At the Nobel Peace Prize award ceremony held in Oslo City Hall on December 10 , 2017 , Setsuko Thurlow , an 85 - year - old survivor of the 1945 atomic bombing of Hiroshima , and ICAN Executive Director Beatrice Fihn jointly received a medal and diploma of the award on behalf of ICAN and delivered the Nobel lecture .

    \n", + "

    Career records for batting average are usually subject to a minimum qualification of 20 innings played or completed , in order to exclude batsmen who have not played enough games for their skill to be reliably assessed . Under this qualification , the highest Test batting average belongs to Australia 's Sir Donald Bradman , with 99.94 . Given that a career batting average over 50 is exceptional , and that only five other players have averages over 60 , this is an outstanding statistic . The fact that Bradman 's average is so far above that of any other cricketer has led several statisticians to argue that , statistically at least , he was the greatest athlete in any sport .

    \n", + "
    Indian cricket team in South Africa in 2017 -- 18
    South Africa India
    Dates 5 January 2018 -- 24 February 2018
    Captains Faf du Plessis ( Tests and ODIs ) JP Duminy ( T20Is ) Virat Kohli
    Test series
    Result South Africa won the 3 - match series 2 -- 1
    Most runs AB de Villiers ( 211 ) Virat Kohli ( 286 )
    Most wickets Vernon Philander ( 15 ) Kagiso Rabada ( 15 ) Mohammed Shami ( 15 )
    Player of the series Vernon Philander ( SA )
    One Day International series
    Results India won the 6 - match series 5 -- 1
    Most runs Hashim Amla ( 154 ) Virat Kohli ( 558 )
    Most wickets Lungi Ngidi ( 8 ) Kuldeep Yadav ( 17 )
    Player of the series Virat Kohli ( Ind )
    Twenty20 International series
    Results India won the 3 - match series 2 -- 1
    Most runs JP Duminy ( 122 ) Shikhar Dhawan ( 143 )
    Most wickets Junior Dala ( 7 ) Bhuvneshwar Kumar ( 7 )
    Player of the series Bhuvneshwar Kumar ( Ind )
    \n", + "

    Brian Lara took the least number of innings ( 195 ) to reach the 10,000 run mark , later equalled by Sachin Tendulkar and Kumar Sangakkara , while Australia 's Steve Waugh took 244 innings to achieve the feat . Alastair Cook is the fastest in terms of time span , taking 10 years and 87 days . The time taken by Shivnarine Chanderpaul ( 18 years and 37 days ) is the slowest among all . As of May 2017 , Tendulkar leads the list with 15,921 runs followed by Ricky Ponting of Australia with 13,378 .

    \n", + "
    50 + Player Matches Innings
    119 Sachin Tendulkar 200 329
    103 Jacques Kallis 166 280
    103 Ricky Ponting 168 287
    99 Rahul Dravid 164 286
    96 Shivnarine Chanderpaul 164 280

    Last updated : 15 June 2016

    \n", + "

    Chandan Shetty emerged as the winner of this season on 28. January. 2018 with Karthik being the runner up . Other finalists Niveditha , Diwakar , Shruti were eliminated

    \n", + "

    Arthur Chung ( January 10 , 1918 -- June 23 , 2008 ) was the first President of Guyana from 1970 to 1980 . During his time as President of Guyana , the office was that of a ceremonial head of state , with real power in the hands of Prime Minister Forbes Burnham . He was honoured with Guyana 's highest national honour , the Order of Excellence ( O.E. ) .

    \n", + "
    Incumbent Achal Kumar Jyoti since 6 July 2017
    No Name ( birth -- death ) Portrait Elected ( % votes ) Took office Left office Term ( in years ) Notes President ( s ) Candidate of
    Sarvepalli Radhakrishnan ( 1888 -- 1975 ) 1952 ( Unopposed )

    1957 ( Unopposed )

    13 May 1952 12 May 1962 10 Radhakrishnan was a prominent scholar . Besides being awarded the Bharat Ratna he also held the position of vice-chancellor in the Banaras Hindu University and the Andhra college . He served as the Vice-President for two terms . Rajendra Prasad Independent
    Zakir Husain ( 1897 -- 1969 ) -- 1962 ( 97.59 ) 13 May 1962 12 May 1967 5 Sarvepalli Radhakrishnan Independent
    Varahagiri Venkata Giri ( 1894 -- 1980 ) -- 1967 ( 71.45 ) 13 May 1967 3 May 1969 Zakir Husain Independent
    Gopal Swarup Pathak ( 1896 -- 1982 ) -- 1969 -- 31 August 1969 30 August 1974 5 Varahagiri Venkata Giri ( 1969 -- 1974 )

    Fakhruddin Ali Ahmed ( 1974 )

    Independent
    5 Basappa Danappa Jatti ( 1912 -- 2002 ) -- ( 78.70 ) 31 August 1974 30 August 1979 5 Fakhruddin Ali Ahmed ( 1974 -- 1977 ) Neelam Sanjiva Reddy ( 1977 -- 1979 ) Indian National Congress
    6 Mohammad Hidayatullah ( 1905 -- 1992 ) -- 1979 ( Unopposed ) 31 August 1979 30 August 1984 5 Neelam Sanjiva Reddy ( 1979 -- 1982 ) Giani Zail Singh ( 1982 -- 1984 ) Independent
    7 Ramaswamy Venkataraman ( 1910 -- 2009 ) 1984 ( 71.05 ) 31 August 1984 24 July 1987 Giani Zail Singh Indian National Congress
    8 Shankar Dayal Sharma ( 1918 -- 1999 ) ( Unopposed ) 3 September 1987 24 July 1992 5 Ramaswamy Venkataraman Indian National Congress
    9 Kocheril Raman Narayanan ( 1920 -- 2005 ) 1992 ( 99.86 ) 21 August 1992 24 July 1997 5 Shankar Dayal Sharma Indian National Congress
    10 Krishan Kant ( 1927 -- 2002 ) -- 1997 ( 61.76 ) 21 August 1997 27 July 2002 Kocheril Raman Narayanan ( 1997 -- 2002 ) A.P.J. Abdul Kalam ( 2002 ) Janata Dal
    11 Bhairon Singh Shekhawat ( 1923 -- 2010 ) 2002 ( 59.82 ) 19 August 2002 21 July 2007 5 A.P.J. Abdul Kalam Bharatiya Janata Party
    12 Mohammad Hamid Ansari ( 1937 -- ) 2007 ( 60.51 ) 2012 ( 67.31 ) 11 August 2007 11 August 2017 10 Pratibha Patil ( 2007 -- 2012 ) Pranab Mukherjee ( 2012 -- 2017 ) Ram Nath Kovind ( 2017 ) Indian National Congress
    13 Muppavarapu Venkaiah Naidu ( 1949 -- ) 2017 ( 67.89 ) 11 August 2017 Incumbent -- Ram Nath Kovind Bharatiya Janata Party
    \n", + "
    Governor of Maharashtra
    Incumbent Chennamaneni Vidyasagar Rao since 30 August 2014
    Style His Excellency
    Residence Main : Raj Bhavan ( Mumbai ) Additional : Raj Bhavan ( Nagpur ) ; Raj Bhavan ( Pune ) & Raj Bhavan ( Mahabaleshwar )
    Appointer President of India
    Term length Five Years
    Inaugural holder John Colville , PC , GCIE
    Formation 15 August 1947 ; 70 years ago ( 1947 - 08 - 15 )
    \n", + "

    Every player who has won this award and has been eligible for the Naismith Memorial Basketball Hall of Fame has been inducted . Kareem Abdul - Jabbar won the award a record six times . Both Bill Russell and Michael Jordan won the award five times , while Wilt Chamberlain and LeBron James won the award four times . Russell and James are the only players to have won the award four times in five seasons . Moses Malone , Larry Bird and Magic Johnson each won the award three times , while Bob Pettit , Karl Malone , Tim Duncan , Steve Nash and Stephen Curry have each won it twice . Only two rookies have won the award : Wilt Chamberlain in the 1959 -- 60 season and Wes Unseld in the 1968 -- 69 season . Hakeem Olajuwon of Nigeria , Tim Duncan of the U.S. Virgin Islands , Steve Nash of Canada and Dirk Nowitzki of Germany are the only MVP winners considered `` international players '' by the NBA .

    \n", + "

    The Jawaharlal Nehru Centre for Advanced Scientific Research ( JNCASR ) is a multidisciplinary research institute located at Jakkur , Bangalore , India . It was established by the Department of Science and Technology of the Government of India , to mark the birth centenary of Pandit Jawaharlal Nehru .

    \n", + "

    Ajay Tyagi was appointed chairman on 10 January 2017 replacing UK Sinha . And took charge of chairman office on 1 March 2017 . The Board comprises

    \n", + "
    Year Player Country
    2003 Ponting , Ricky Ricky Ponting Australia
    Warne , Shane Shane Warne Australia
    2005 Flintoff , Andrew Andrew Flintoff England
    2006 Muralitharan , Muttiah Muttiah Muralitharan Sri Lanka
    2007 Kallis , Jacques Jacques Kallis South Africa
    2008 Sehwag , Virender Virender Sehwag India
    2009 Sehwag , Virender Virender Sehwag India
    Tendulkar , Sachin Sachin Tendulkar India
    2011 Sangakkara , Kumar Kumar Sangakkara Sri Lanka
    2012 Clarke , Michael Michael Clarke Australia
    2013 Steyn , Dale Dale Steyn South Africa
    2014 Sangakkara , Kumar Kumar Sangakkara Sri Lanka
    2015 Williamson , Kane Kane Williamson New Zealand
    2016 Kohli , Virat Virat Kohli India
    2017 Kohli , Virat Virat Kohli India
    \n", + "

    Mankombu Sambasivan Swaminathan ( born 7 August 1925 ) is an Indian geneticist and international administrator , renowned for his leading role in India 's Green Revolution a program under which high - yield varieties of wheat and rice seedlings were planted in the fields of poor farmers . Swaminathan is known as `` Indian Father of Green Revolution '' for his leadership and success in introducing and further developing high - yielding varieties of wheat in India . He is the founder and chairman of the MS Swaminathan Research Foundation . His stated vision is to rid the world of hunger and poverty . Swaminathan is an advocate of moving India to sustainable development , especially using environmentally sustainable agriculture , sustainable food security and the preservation of biodiversity , which he calls an `` evergreen revolution . ''

    \n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "I'm sorry, the provided context doesn't contain information about any cricketer being honored with the Wisden Leading Cricketer in the World award for 2016. UPDATE CONTEXT if you have any other query.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\n", + "\n", + ">>>>>>>>>>>> Below are outputs of Case 5 <<<<<<<<<<<<\n", + "\n", + "\n", + "doc_ids: [['doc_20', 'doc_2943', 'doc_2059', 'doc_3293', 'doc_4056', 'doc_1914', 'doc_2749', 'doc_1796', 'doc_3468', 'doc_1793', 'doc_876', 'doc_2577', 'doc_27', 'doc_366', 'doc_321', 'doc_3103', 'doc_715', 'doc_3534', 'doc_142', 'doc_5337', 'doc_2426', 'doc_5346', 'doc_3021', 'doc_1596', 'doc_316', 'doc_1103', 'doc_1602', 'doc_1677', 'doc_1670', 'doc_2853']]\n", + "\u001b[32mAdding doc_id doc_20 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2943 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2059 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3293 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_4056 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1914 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2749 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1796 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_3468 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_1793 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_876 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_2577 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_27 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "You must give as short an answer as possible.\n", + "\n", + "User's question is: who carried the usa flag in opening ceremony\n", + "\n", + "Context is:

    On January 17 , 1899 , under orders from President William McKinley , Commander Edward D. Taussig of USS Bennington landed on Wake and formally took possession of the island for the United States . After a 21 - gun salute , the flag was raised and a brass plate was affixed to the flagstaff with the following inscription :

    \n", + "
  • 1960 Flag with 50 stars ( Hawaii )
  • \n", + "

    The flag of the United States of America , often referred to as the American flag , is the national flag of the United States . It consists of thirteen equal horizontal stripes of red ( top and bottom ) alternating with white , with a blue rectangle in the canton ( referred to specifically as the `` union '' ) bearing fifty small , white , five - pointed stars arranged in nine offset horizontal rows , where rows of six stars ( top and bottom ) alternate with rows of five stars . The 50 stars on the flag represent the 50 states of the United States of America , and the 13 stripes represent the thirteen British colonies that declared independence from the Kingdom of Great Britain , and became the first states in the U.S. Nicknames for the flag include The Stars and Stripes , Old Glory , and The Star - Spangled Banner .

    \n", + "

    The Pledge of Allegiance of the United States is an expression of allegiance to the Flag of the United States and the republic of the United States of America . It was originally composed by Captain George Thatcher Balch , a Union Army Officer during the Civil War and later a teacher of patriotism in New York City schools . The form of the pledge used today was largely devised by Francis Bellamy in 1892 , and formally adopted by Congress as the pledge in 1942 . The official name of The Pledge of Allegiance was adopted in 1945 . The most recent alteration of its wording came on Flag Day in 1954 , when the words `` under God '' were added .

    \n", + "

    In modern times , the U.S. military plays ( or sounds ) `` Reveille '' in the morning , generally near sunrise , though its exact time varies from base to base . On U.S. Army posts and Air Force bases , `` Reveille '' is played by itself or followed by the bugle call `` To the Colors '' at which time the national flag is raised and all U.S. military personnel outdoors are required to come to attention and present a salute in uniform , either to the flag or in the direction of the music if the flag is not visible . While in formation , soldiers are brought to the position of parade rest while `` Reveille '' plays then called to attention and present arms as the national flag is raised . On board U.S. Navy , Marine Corps , and Coast Guard facilities , the flag is generally raised at 0800 ( 8 am ) while `` The Star Spangled Banner '' or the bugle call `` To the Colors '' is played . On some U.S. military bases , `` Reveille '' is accompanied by a cannon shot .

    \n", + "

    When the National Anthem was first recognized by law in 1932 , there was no prescription as to behavior during its playing . On June 22 , 1942 , the law was revised indicating that those in uniform should salute during its playing , while others should simply stand at attention , men removing their hats . ( The same code also required that women should place their hands over their hearts when the flag is displayed during the playing of the Anthem , but not if the flag was not present . ) On December 23 , 1942 the law was again revised instructing men and women to stand at attention and face in the direction of the music when it was played . That revision also directed men and women to place their hands over their hearts only if the flag was displayed . Those in uniform were required to salute . On July 7 , 1976 , the law was simplified . Men and women were instructed to stand with their hands over their hearts , men removing their hats , irrespective of whether or not the flag was displayed and those in uniform saluting . On August 12 , 1998 , the law was rewritten keeping the same instructions , but differentiating between `` those in uniform '' and `` members of the Armed Forces and veterans '' who were both instructed to salute during the playing whether or not the flag was displayed . Because of the changes in law over the years and confusion between instructions for the Pledge of Allegence versus the National Anthem , throughout most of the 20th century many people simply stood at attention or with their hands folded in front of them during the playing of the Anthem , and when reciting the Pledge they would hold their hand ( or hat ) over their heart . After 9 / 11 , the custom of placing the hand over the heart during the playing of the Anthem became nearly universal .

    \n", + "

    A flag designed by John McConnell in 1969 for the first Earth Day is a dark blue field charged with The Blue Marble , a famous NASA photo of the Earth as seen from outer space . The first edition of McConnell 's flag used screen - printing and used different colors : ocean and land were blue and the clouds were white . McConnell presented his flag to the United Nations as a symbol for consideration .

    \n", + "

    The torch - bearing arm was displayed at the Centennial Exposition in Philadelphia in 1876 , and in Madison Square Park in Manhattan from 1876 to 1882 . Fundraising proved difficult , especially for the Americans , and by 1885 work on the pedestal was threatened by lack of funds . Publisher Joseph Pulitzer , of the New York World , started a drive for donations to finish the project and attracted more than 120,000 contributors , most of whom gave less than a dollar . The statue was built in France , shipped overseas in crates , and assembled on the completed pedestal on what was then called Bedloe 's Island . The statue 's completion was marked by New York 's first ticker - tape parade and a dedication ceremony presided over by President Grover Cleveland .

    \n", + "

    The horizontal stripes on the flag represent the nine original departments of Uruguay , based on the U.S flag , where the stripes represent the original 13 colonies . The first flag designed in 1828 had 9 light blue stripes ; this number was reduced to 4 in 1830 due to visibility problems from distance . The Sun of May represents the May Revolution of 1810 ; according to the historian Diego Abad de Santillán , the Sun of May is a figurative sun that represents Inti , the sun god of the Inca religion . It also appears in the Flag of Argentina and the Coat of Arms of Bolivia .

    \n", + "

    The anthem has been recorded and performed in many different languages , usually as a result of the hosting of either form of the Games in various countries . The IOC does n't require that the anthem be performed in either English or Greek . But in the 2008 Olympic opening and closing ceremonies in Beijing , China , Greek was sung instead of the host country 's official language , Mandarin . Also in the 2016 Olympic opening ceremonies in Rio de Janeiro , Brazil , English was also sung instead of host country 's official language , Portuguese .

    \n", + "

    The United States Oath of Allegiance , officially referred to as the `` Oath of Allegiance , '' 8 C.F.R. Part 337 ( 2008 ) , is an allegiance oath that must be taken by all immigrants who wish to become United States citizens .

    \n", + "

    During the first half of the 19th century , seven stars were added to the flag to represent the seven signatories to the Venezuelan declaration of independence , being the provinces of Caracas , Cumaná , Barcelona , Barinas , Margarita , Mérida , and Trujillo .

    \n", + "

    With the annexation of Hawaii in 1898 and the seizure of Guam and the Philippines during the Spanish -- American War that same year , the United States began to consider unclaimed and uninhabited Wake Island , located approximately halfway between Honolulu and Manila , as a good location for a telegraph cable station and coaling station for refueling warships of the rapidly expanding United States Navy and passing merchant and passenger steamships . On July 4 , 1898 , United States Army Brigadier General Francis V. Greene of the 2nd Brigade , Philippine Expeditionary Force , of the Eighth Army Corps , stopped at Wake Island and raised the American flag while en route to the Philippines on the steamship liner SS China .

    \n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "I don't have the answer with the provided context. UPDATE CONTEXT.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[32mUpdating context and resetting conversation.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_366 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "You must give as short an answer as possible.\n", + "\n", + "User's question is: who carried the usa flag in opening ceremony\n", + "\n", + "Context is: \n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "Erin Hamlin carried the USA flag in the opening ceremony.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "for i in range(len(questions)):\n", + " print(f\"\\n\\n>>>>>>>>>>>> Below are outputs of Case {i+1} <<<<<<<<<<<<\\n\\n\")\n", + "\n", + " # reset the assistant. Always reset the assistant before starting a new conversation.\n", + " assistant.reset()\n", + "\n", + " qa_problem = questions[i]\n", + " ragproxyagent.initiate_chat(assistant, message=ragproxyagent.message_generator, problem=qa_problem, n_results=30)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, questions were directly selected from the dataset. RetrieveChat was able to answer the questions correctly in the first attempt as the retrieved context contained the necessary information in the first two cases. However, in the last three cases, the context with the highest similarity to the question embedding did not contain the required information to answer the question. As a result, the LLM model responded with `UPDATE CONTEXT`. With the unique and innovative ability to update context in RetrieveChat, the agent automatically updated the context and sent it to the LLM model again. After several rounds of this process, the agent was able to generate the correct answer to the questions." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example 6\n", + "\n", + "[Back to top](#table-of-contents)\n", + "\n", + "Use RetrieveChat to answer multi-hop questions for [2WikiMultihopQA](https://github.com/Alab-NII/2wikimultihop) dataset with customized prompt and few-shot learning.\n", + "\n", + "First, we will create a new document collection which includes all the contextual corpus. Then, we will choose some questions and utilize RetrieveChat to answer them. For this particular example, we will be using the `gpt-3.5-turbo` model, and we will demonstrate RetrieveChat's feature of automatically updating context in case the documents retrieved do not contain sufficient information. Moreover, we'll demonstrate how to use customized prompt and few-shot learning to address tasks that are not pre-defined in RetrieveChat." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "PROMPT_MULTIHOP = \"\"\"You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the context provided by the user. You must think step-by-step.\n", + "First, please learn the following examples of context and question pairs and their corresponding answers.\n", + "\n", + "Context:\n", + "Kurram Garhi: Kurram Garhi is a small village located near the city of Bannu, which is the part of Khyber Pakhtunkhwa province of Pakistan. Its population is approximately 35000.\n", + "Trojkrsti: Trojkrsti is a village in Municipality of Prilep, Republic of Macedonia.\n", + "Q: Are both Kurram Garhi and Trojkrsti located in the same country?\n", + "A: Kurram Garhi is located in the country of Pakistan. Trojkrsti is located in the country of Republic of Macedonia. Thus, they are not in the same country. So the answer is: no.\n", + "\n", + "\n", + "Context:\n", + "Early Side of Later: Early Side of Later is the third studio album by English singer- songwriter Matt Goss. It was released on 21 June 2004 by Concept Music and reached No. 78 on the UK Albums Chart.\n", + "What's Inside: What's Inside is the fourteenth studio album by British singer- songwriter Joan Armatrading.\n", + "Q: Which album was released earlier, What'S Inside or Cassandra'S Dream (Album)?\n", + "A: What's Inside was released in the year 1995. Cassandra's Dream (album) was released in the year 2008. Thus, of the two, the album to release earlier is What's Inside. So the answer is: What's Inside.\n", + "\n", + "\n", + "Context:\n", + "Maria Alexandrovna (Marie of Hesse): Maria Alexandrovna , born Princess Marie of Hesse and by Rhine (8 August 1824 – 3 June 1880) was Empress of Russia as the first wife of Emperor Alexander II.\n", + "Grand Duke Alexei Alexandrovich of Russia: Grand Duke Alexei Alexandrovich of Russia,(Russian: Алексей Александрович; 14 January 1850 (2 January O.S.) in St. Petersburg – 14 November 1908 in Paris) was the fifth child and the fourth son of Alexander II of Russia and his first wife Maria Alexandrovna (Marie of Hesse).\n", + "Q: What is the cause of death of Grand Duke Alexei Alexandrovich Of Russia's mother?\n", + "A: The mother of Grand Duke Alexei Alexandrovich of Russia is Maria Alexandrovna. Maria Alexandrovna died from tuberculosis. So the answer is: tuberculosis.\n", + "\n", + "\n", + "Context:\n", + "Laughter in Hell: Laughter in Hell is a 1933 American Pre-Code drama film directed by Edward L. Cahn and starring Pat O'Brien. The film's title was typical of the sensationalistic titles of many Pre-Code films.\n", + "Edward L. Cahn: Edward L. Cahn (February 12, 1899 – August 25, 1963) was an American film director.\n", + "Q: When did the director of film Laughter In Hell die?\n", + "A: The film Laughter In Hell was directed by Edward L. Cahn. Edward L. Cahn died on August 25, 1963. So the answer is: August 25, 1963.\n", + "\n", + "Second, please complete the answer by thinking step-by-step.\n", + "\n", + "Context:\n", + "{input_context}\n", + "Q: {input_question}\n", + "A:\n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# create the RetrieveUserProxyAgent instance named \"ragproxyagent\"\n", + "corpus_file = \"https://huggingface.co/datasets/thinkall/2WikiMultihopQA/resolve/main/corpus.txt\"\n", + "\n", + "# Create a new collection for NaturalQuestions dataset\n", + "ragproxyagent = RetrieveUserProxyAgent(\n", + " name=\"ragproxyagent\",\n", + " human_input_mode=\"NEVER\",\n", + " max_consecutive_auto_reply=3,\n", + " retrieve_config={\n", + " \"task\": \"qa\",\n", + " \"docs_path\": corpus_file,\n", + " \"chunk_token_size\": 2000,\n", + " \"model\": config_list[0][\"model\"],\n", + " \"client\": chromadb.PersistentClient(path=\"/tmp/chromadb\"),\n", + " \"collection_name\": \"2wikimultihopqa\",\n", + " \"chunk_mode\": \"one_line\",\n", + " \"embedding_model\": \"all-MiniLM-L6-v2\",\n", + " \"customized_prompt\": PROMPT_MULTIHOP,\n", + " \"customized_answer_prefix\": \"the answer is\",\n", + " },\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['Which film came out first, Blind Shaft or The Mask Of Fu Manchu?', 'Are North Marion High School (Oregon) and Seoul High School both located in the same country?']\n", + "[['The Mask Of Fu Manchu'], ['no']]\n" + ] + } + ], + "source": [ + "# queries_file = \"https://huggingface.co/datasets/thinkall/2WikiMultihopQA/resolve/main/queries.jsonl\"\n", + "queries = \"\"\"{\"_id\": \"61a46987092f11ebbdaeac1f6bf848b6\", \"text\": \"Which film came out first, Blind Shaft or The Mask Of Fu Manchu?\", \"metadata\": {\"answer\": [\"The Mask Of Fu Manchu\"]}}\n", + "{\"_id\": \"a7b9672009c311ebbdb0ac1f6bf848b6\", \"text\": \"Are North Marion High School (Oregon) and Seoul High School both located in the same country?\", \"metadata\": {\"answer\": [\"no\"]}}\n", + "\"\"\"\n", + "queries = [json.loads(line) for line in queries.split(\"\\n\") if line]\n", + "questions = [q[\"text\"] for q in queries]\n", + "answers = [q[\"metadata\"][\"answer\"] for q in queries]\n", + "print(questions)\n", + "print(answers)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + ">>>>>>>>>>>> Below are outputs of Case 1 <<<<<<<<<<<<\n", + "\n", + "\n", + "Trying to create collection.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\tClyde Thompson: Clyde Thompson( 1910 – July 1, 1979) was an American prisoner turned chaplain. He is ...\n", + "max_tokens is too small to fit a single line of text. Breaking this line:\n", + "\tAustralian Historical Monographs: The Australian Historical Monographs are a series of Historical st ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "doc_ids: [['doc_12', 'doc_11', 'doc_16', 'doc_19', 'doc_13116', 'doc_14', 'doc_13', 'doc_18', 'doc_977', 'doc_10']]\n", + "\u001b[32mAdding doc_id doc_12 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_11 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_16 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_19 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_13116 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_14 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_13 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_18 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_977 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_10 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the context provided by the user. You must think step-by-step.\n", + "First, please learn the following examples of context and question pairs and their corresponding answers.\n", + "\n", + "Context:\n", + "Kurram Garhi: Kurram Garhi is a small village located near the city of Bannu, which is the part of Khyber Pakhtunkhwa province of Pakistan. Its population is approximately 35000.\n", + "Trojkrsti: Trojkrsti is a village in Municipality of Prilep, Republic of Macedonia.\n", + "Q: Are both Kurram Garhi and Trojkrsti located in the same country?\n", + "A: Kurram Garhi is located in the country of Pakistan. Trojkrsti is located in the country of Republic of Macedonia. Thus, they are not in the same country. So the answer is: no.\n", + "\n", + "\n", + "Context:\n", + "Early Side of Later: Early Side of Later is the third studio album by English singer- songwriter Matt Goss. It was released on 21 June 2004 by Concept Music and reached No. 78 on the UK Albums Chart.\n", + "What's Inside: What's Inside is the fourteenth studio album by British singer- songwriter Joan Armatrading.\n", + "Q: Which album was released earlier, What'S Inside or Cassandra'S Dream (Album)?\n", + "A: What's Inside was released in the year 1995. Cassandra's Dream (album) was released in the year 2008. Thus, of the two, the album to release earlier is What's Inside. So the answer is: What's Inside.\n", + "\n", + "\n", + "Context:\n", + "Maria Alexandrovna (Marie of Hesse): Maria Alexandrovna , born Princess Marie of Hesse and by Rhine (8 August 1824 – 3 June 1880) was Empress of Russia as the first wife of Emperor Alexander II.\n", + "Grand Duke Alexei Alexandrovich of Russia: Grand Duke Alexei Alexandrovich of Russia,(Russian: Алексей Александрович; 14 January 1850 (2 January O.S.) in St. Petersburg – 14 November 1908 in Paris) was the fifth child and the fourth son of Alexander II of Russia and his first wife Maria Alexandrovna (Marie of Hesse).\n", + "Q: What is the cause of death of Grand Duke Alexei Alexandrovich Of Russia's mother?\n", + "A: The mother of Grand Duke Alexei Alexandrovich of Russia is Maria Alexandrovna. Maria Alexandrovna died from tuberculosis. So the answer is: tuberculosis.\n", + "\n", + "\n", + "Context:\n", + "Laughter in Hell: Laughter in Hell is a 1933 American Pre-Code drama film directed by Edward L. Cahn and starring Pat O'Brien. The film's title was typical of the sensationalistic titles of many Pre-Code films.\n", + "Edward L. Cahn: Edward L. Cahn (February 12, 1899 – August 25, 1963) was an American film director.\n", + "Q: When did the director of film Laughter In Hell die?\n", + "A: The film Laughter In Hell was directed by Edward L. Cahn. Edward L. Cahn died on August 25, 1963. So the answer is: August 25, 1963.\n", + "\n", + "Second, please complete the answer by thinking step-by-step.\n", + "\n", + "Context:\n", + "The Mask of Fu Manchu: The Mask of Fu Manchu is a 1932 pre-Code adventure film directed by Charles Brabin. It was written by Irene Kuhn, Edgar Allan Woolf and John Willard based on the 1932 novel of the same name by Sax Rohmer. Starring Boris Karloff as Fu Manchu, and featuring Myrna Loy as his depraved daughter, the movie revolves around Fu Manchu's quest for the golden sword and mask of Genghis Khan. Lewis Stone plays his nemesis. Dr. Petrie is absent from this film.\n", + "The Mysterious Dr. Fu Manchu: The Mysterious Dr. Fu Manchu is a 1929 American pre-Code drama film directed by Rowland V. Lee and starring Warner Oland as Dr. Fu Manchu. It was the first Fu Manchu film of the talkie era. Since this was during the transition period to sound, a silent version was also released in the United States.\n", + "The Face of Fu Manchu: The Face of Fu Manchu is a 1965 thriller film directed by Don Sharp and based on the characters created by Sax Rohmer. It stars Christopher Lee as the eponymous villain, a Chinese criminal mastermind, and Nigel Green as his pursuing rival Nayland Smith, a Scotland Yard detective. The film was a British- West German co-production, and was the first in a five- part series starring Lee and produced by Harry Alan Towers for Constantin Film, the second of which was\" The Brides of Fu Manchu\" released the next year, with the final entry being\" The Castle of Fu Manchu\" in 1969. It was shot in Technicolor and Techniscope, on- location in County Dublin, Ireland.\n", + "The Return of Dr. Fu Manchu: The Return of Dr. Fu Manchu is a 1930 American pre-Code film directed by Rowland V. Lee. It is the second of three films starring Warner Oland as the fiendish Fu Manchu, who returns from apparent death in the previous film,\" The Mysterious Dr. Fu Manchu\"( 1929), to seek revenge on those he holds responsible for the death of his wife and child.\n", + "The Vengeance of Fu Manchu: The Vengeance of Fu Manchu is a 1967 British film directed by Jeremy Summers and starring Christopher Lee, Horst Frank, Douglas Wilmer and Tsai Chin. It was the third British/ West German Constantin Film co-production of the Dr. Fu Manchu series and the first to be filmed in Hong Kong. It was generally released in the U.K. through Warner- Pathé( as a support feature to the Lindsay Shonteff film\" The Million Eyes of Sumuru\") on 3 December 1967.\n", + "The Brides of Fu Manchu: The Brides of Fu Manchu is a 1966 British/ West German Constantin Film co-production adventure crime film based on the fictional Chinese villain Dr. Fu Manchu, created by Sax Rohmer. It was the second film in a series, and was preceded by\" The Face of Fu ManchuThe Vengeance of Fu Manchu\" followed in 1967,\" The Blood of Fu Manchu\" in 1968, and\" The Castle of Fu Manchu\" in 1969. It was produced by Harry Alan Towers for Hallam Productions. Like the first film, it was directed by Don Sharp, and starred Christopher Lee as Fu Manchu. Nigel Green was replaced by Douglas Wilmer as Scotland Yard detective Nayland Smith. The action takes place mainly in London, where much of the location filming took place.\n", + "The Castle of Fu Manchu: The Castle of Fu Manchu( also known as The Torture Chamber of Dr. Fu Manchu and also known by its German title Die Folterkammer des Dr. Fu Man Chu) is a 1969 film and the fifth and final Dr. Fu Manchu film with Christopher Lee portraying the title character.\n", + "The Blood of Fu Manchu: The Blood of Fu Manchu, also known as Fu Manchu and the Kiss of Death, Kiss of Death, Kiss and Kill( U.S. title) and Against All Odds( original U.S. video title), is a 1968 British adventure crime film directed by Jesús Franco, based on the fictional Asian villain Dr. Fu Manchu created by Sax Rohmer. It was the fourth film in a series, and was preceded by\" The Vengeance of Fu Manchu The Castle of Fu Manchu\" followed in 1969. It was produced by Harry Alan Towers for Udastex Films. It starred Christopher Lee as Dr. Fu Manchu, Richard Greene as Scotland Yard detective Nayland Smith, and Howard Marion- Crawford as Dr. Petrie. The movie was filmed in Spain and Brazil. Shirley Eaton appears in a scene that she claimed she was never paid for; apparently, the director Jesús Franco had inserted some stock footage of her from one of her films(\" The Girl from Rio\"( 1968)) into the film without telling her. She only found out years later that she had been in a Fu Manchu film.\n", + "Don Sharp: Donald Herman Sharp( 19 April 192114 December 2011) was an Australian- born British film director. His best known films were made for Hammer in the 1960s, and included\" The Kiss of the Vampire\"( 1962) and\" Rasputin, the Mad Monk\"( 1966). In 1965 he directed\" The Face of Fu Manchu\", based on the character created by Sax Rohmer, and starring Christopher Lee. Sharp also directed the sequel\" The Brides of Fu Manchu\"( 1966). In the 1980s he was also responsible for several hugely popular miniseries adapted from the novels of Barbara Taylor Bradford.\n", + "Blind Shaft: Blind Shaft is a 2003 film about a pair of brutal con artists operating in the illegal coal mines of present- day northern China. The film was written and directed by Li Yang( 李杨), and is based on Chinese writer Liu Qingbang's short novel\" Shen MuSacred Wood\").\n", + "\n", + "Q: Which film came out first, Blind Shaft or The Mask Of Fu Manchu?\n", + "A:\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[32mAdding doc_id doc_11 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_16 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_19 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_13116 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_14 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_13 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_18 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_977 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_10 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the context provided by the user. You must think step-by-step.\n", + "First, please learn the following examples of context and question pairs and their corresponding answers.\n", + "\n", + "Context:\n", + "Kurram Garhi: Kurram Garhi is a small village located near the city of Bannu, which is the part of Khyber Pakhtunkhwa province of Pakistan. Its population is approximately 35000.\n", + "Trojkrsti: Trojkrsti is a village in Municipality of Prilep, Republic of Macedonia.\n", + "Q: Are both Kurram Garhi and Trojkrsti located in the same country?\n", + "A: Kurram Garhi is located in the country of Pakistan. Trojkrsti is located in the country of Republic of Macedonia. Thus, they are not in the same country. So the answer is: no.\n", + "\n", + "\n", + "Context:\n", + "Early Side of Later: Early Side of Later is the third studio album by English singer- songwriter Matt Goss. It was released on 21 June 2004 by Concept Music and reached No. 78 on the UK Albums Chart.\n", + "What's Inside: What's Inside is the fourteenth studio album by British singer- songwriter Joan Armatrading.\n", + "Q: Which album was released earlier, What'S Inside or Cassandra'S Dream (Album)?\n", + "A: What's Inside was released in the year 1995. Cassandra's Dream (album) was released in the year 2008. Thus, of the two, the album to release earlier is What's Inside. So the answer is: What's Inside.\n", + "\n", + "\n", + "Context:\n", + "Maria Alexandrovna (Marie of Hesse): Maria Alexandrovna , born Princess Marie of Hesse and by Rhine (8 August 1824 – 3 June 1880) was Empress of Russia as the first wife of Emperor Alexander II.\n", + "Grand Duke Alexei Alexandrovich of Russia: Grand Duke Alexei Alexandrovich of Russia,(Russian: Алексей Александрович; 14 January 1850 (2 January O.S.) in St. Petersburg – 14 November 1908 in Paris) was the fifth child and the fourth son of Alexander II of Russia and his first wife Maria Alexandrovna (Marie of Hesse).\n", + "Q: What is the cause of death of Grand Duke Alexei Alexandrovich Of Russia's mother?\n", + "A: The mother of Grand Duke Alexei Alexandrovich of Russia is Maria Alexandrovna. Maria Alexandrovna died from tuberculosis. So the answer is: tuberculosis.\n", + "\n", + "\n", + "Context:\n", + "Laughter in Hell: Laughter in Hell is a 1933 American Pre-Code drama film directed by Edward L. Cahn and starring Pat O'Brien. The film's title was typical of the sensationalistic titles of many Pre-Code films.\n", + "Edward L. Cahn: Edward L. Cahn (February 12, 1899 – August 25, 1963) was an American film director.\n", + "Q: When did the director of film Laughter In Hell die?\n", + "A: The film Laughter In Hell was directed by Edward L. Cahn. Edward L. Cahn died on August 25, 1963. So the answer is: August 25, 1963.\n", + "\n", + "Second, please complete the answer by thinking step-by-step.\n", + "\n", + "Context:\n", + "The Mask of Fu Manchu: The Mask of Fu Manchu is a 1932 pre-Code adventure film directed by Charles Brabin. It was written by Irene Kuhn, Edgar Allan Woolf and John Willard based on the 1932 novel of the same name by Sax Rohmer. Starring Boris Karloff as Fu Manchu, and featuring Myrna Loy as his depraved daughter, the movie revolves around Fu Manchu's quest for the golden sword and mask of Genghis Khan. Lewis Stone plays his nemesis. Dr. Petrie is absent from this film.\n", + "The Mysterious Dr. Fu Manchu: The Mysterious Dr. Fu Manchu is a 1929 American pre-Code drama film directed by Rowland V. Lee and starring Warner Oland as Dr. Fu Manchu. It was the first Fu Manchu film of the talkie era. Since this was during the transition period to sound, a silent version was also released in the United States.\n", + "The Face of Fu Manchu: The Face of Fu Manchu is a 1965 thriller film directed by Don Sharp and based on the characters created by Sax Rohmer. It stars Christopher Lee as the eponymous villain, a Chinese criminal mastermind, and Nigel Green as his pursuing rival Nayland Smith, a Scotland Yard detective. The film was a British- West German co-production, and was the first in a five- part series starring Lee and produced by Harry Alan Towers for Constantin Film, the second of which was\" The Brides of Fu Manchu\" released the next year, with the final entry being\" The Castle of Fu Manchu\" in 1969. It was shot in Technicolor and Techniscope, on- location in County Dublin, Ireland.\n", + "The Return of Dr. Fu Manchu: The Return of Dr. Fu Manchu is a 1930 American pre-Code film directed by Rowland V. Lee. It is the second of three films starring Warner Oland as the fiendish Fu Manchu, who returns from apparent death in the previous film,\" The Mysterious Dr. Fu Manchu\"( 1929), to seek revenge on those he holds responsible for the death of his wife and child.\n", + "The Vengeance of Fu Manchu: The Vengeance of Fu Manchu is a 1967 British film directed by Jeremy Summers and starring Christopher Lee, Horst Frank, Douglas Wilmer and Tsai Chin. It was the third British/ West German Constantin Film co-production of the Dr. Fu Manchu series and the first to be filmed in Hong Kong. It was generally released in the U.K. through Warner- Pathé( as a support feature to the Lindsay Shonteff film\" The Million Eyes of Sumuru\") on 3 December 1967.\n", + "The Brides of Fu Manchu: The Brides of Fu Manchu is a 1966 British/ West German Constantin Film co-production adventure crime film based on the fictional Chinese villain Dr. Fu Manchu, created by Sax Rohmer. It was the second film in a series, and was preceded by\" The Face of Fu ManchuThe Vengeance of Fu Manchu\" followed in 1967,\" The Blood of Fu Manchu\" in 1968, and\" The Castle of Fu Manchu\" in 1969. It was produced by Harry Alan Towers for Hallam Productions. Like the first film, it was directed by Don Sharp, and starred Christopher Lee as Fu Manchu. Nigel Green was replaced by Douglas Wilmer as Scotland Yard detective Nayland Smith. The action takes place mainly in London, where much of the location filming took place.\n", + "The Castle of Fu Manchu: The Castle of Fu Manchu( also known as The Torture Chamber of Dr. Fu Manchu and also known by its German title Die Folterkammer des Dr. Fu Man Chu) is a 1969 film and the fifth and final Dr. Fu Manchu film with Christopher Lee portraying the title character.\n", + "The Blood of Fu Manchu: The Blood of Fu Manchu, also known as Fu Manchu and the Kiss of Death, Kiss of Death, Kiss and Kill( U.S. title) and Against All Odds( original U.S. video title), is a 1968 British adventure crime film directed by Jesús Franco, based on the fictional Asian villain Dr. Fu Manchu created by Sax Rohmer. It was the fourth film in a series, and was preceded by\" The Vengeance of Fu Manchu The Castle of Fu Manchu\" followed in 1969. It was produced by Harry Alan Towers for Udastex Films. It starred Christopher Lee as Dr. Fu Manchu, Richard Greene as Scotland Yard detective Nayland Smith, and Howard Marion- Crawford as Dr. Petrie. The movie was filmed in Spain and Brazil. Shirley Eaton appears in a scene that she claimed she was never paid for; apparently, the director Jesús Franco had inserted some stock footage of her from one of her films(\" The Girl from Rio\"( 1968)) into the film without telling her. She only found out years later that she had been in a Fu Manchu film.\n", + "Don Sharp: Donald Herman Sharp( 19 April 192114 December 2011) was an Australian- born British film director. His best known films were made for Hammer in the 1960s, and included\" The Kiss of the Vampire\"( 1962) and\" Rasputin, the Mad Monk\"( 1966). In 1965 he directed\" The Face of Fu Manchu\", based on the character created by Sax Rohmer, and starring Christopher Lee. Sharp also directed the sequel\" The Brides of Fu Manchu\"( 1966). In the 1980s he was also responsible for several hugely popular miniseries adapted from the novels of Barbara Taylor Bradford.\n", + "Blind Shaft: Blind Shaft is a 2003 film about a pair of brutal con artists operating in the illegal coal mines of present- day northern China. The film was written and directed by Li Yang( 李杨), and is based on Chinese writer Liu Qingbang's short novel\" Shen MuSacred Wood\").\n", + "\n", + "Q: Which film came out first, Blind Shaft or The Mask Of Fu Manchu?\n", + "A:\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "Blind Shaft is a 2003 film while The Mask of Fu Manchu is a 1932 pre-Code adventure film. Thus, The Mask of Fu Manchu came out earlier than Blind Shaft. So the answer is: The Mask of Fu Manchu.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\n", + "\n", + ">>>>>>>>>>>> Below are outputs of Case 2 <<<<<<<<<<<<\n", + "\n", + "\n", + "doc_ids: [['doc_74', 'doc_76', 'doc_68', 'doc_42890', 'doc_75', 'doc_19596', 'doc_45135', 'doc_995', 'doc_7274', 'doc_23187']]\n", + "\u001b[32mAdding doc_id doc_74 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_76 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_68 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_42890 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_75 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_19596 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_45135 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_995 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_7274 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_23187 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the context provided by the user. You must think step-by-step.\n", + "First, please learn the following examples of context and question pairs and their corresponding answers.\n", + "\n", + "Context:\n", + "Kurram Garhi: Kurram Garhi is a small village located near the city of Bannu, which is the part of Khyber Pakhtunkhwa province of Pakistan. Its population is approximately 35000.\n", + "Trojkrsti: Trojkrsti is a village in Municipality of Prilep, Republic of Macedonia.\n", + "Q: Are both Kurram Garhi and Trojkrsti located in the same country?\n", + "A: Kurram Garhi is located in the country of Pakistan. Trojkrsti is located in the country of Republic of Macedonia. Thus, they are not in the same country. So the answer is: no.\n", + "\n", + "\n", + "Context:\n", + "Early Side of Later: Early Side of Later is the third studio album by English singer- songwriter Matt Goss. It was released on 21 June 2004 by Concept Music and reached No. 78 on the UK Albums Chart.\n", + "What's Inside: What's Inside is the fourteenth studio album by British singer- songwriter Joan Armatrading.\n", + "Q: Which album was released earlier, What'S Inside or Cassandra'S Dream (Album)?\n", + "A: What's Inside was released in the year 1995. Cassandra's Dream (album) was released in the year 2008. Thus, of the two, the album to release earlier is What's Inside. So the answer is: What's Inside.\n", + "\n", + "\n", + "Context:\n", + "Maria Alexandrovna (Marie of Hesse): Maria Alexandrovna , born Princess Marie of Hesse and by Rhine (8 August 1824 – 3 June 1880) was Empress of Russia as the first wife of Emperor Alexander II.\n", + "Grand Duke Alexei Alexandrovich of Russia: Grand Duke Alexei Alexandrovich of Russia,(Russian: Алексей Александрович; 14 January 1850 (2 January O.S.) in St. Petersburg – 14 November 1908 in Paris) was the fifth child and the fourth son of Alexander II of Russia and his first wife Maria Alexandrovna (Marie of Hesse).\n", + "Q: What is the cause of death of Grand Duke Alexei Alexandrovich Of Russia's mother?\n", + "A: The mother of Grand Duke Alexei Alexandrovich of Russia is Maria Alexandrovna. Maria Alexandrovna died from tuberculosis. So the answer is: tuberculosis.\n", + "\n", + "\n", + "Context:\n", + "Laughter in Hell: Laughter in Hell is a 1933 American Pre-Code drama film directed by Edward L. Cahn and starring Pat O'Brien. The film's title was typical of the sensationalistic titles of many Pre-Code films.\n", + "Edward L. Cahn: Edward L. Cahn (February 12, 1899 – August 25, 1963) was an American film director.\n", + "Q: When did the director of film Laughter In Hell die?\n", + "A: The film Laughter In Hell was directed by Edward L. Cahn. Edward L. Cahn died on August 25, 1963. So the answer is: August 25, 1963.\n", + "\n", + "Second, please complete the answer by thinking step-by-step.\n", + "\n", + "Context:\n", + "Seoul High School: Seoul High School( Hangul: 서울고등학교) is a public high school located in the heart of Seoul, South Korea.\n", + "North Marion High School (Oregon): North Marion High School is a public high school in Aurora, Oregon, United States. The school is part of the North Marion School District with all four schools being located on the same campus. The school draws students from the cities of Aurora, Hubbard, and Donald as well as the communities of Broadacres and Butteville.\n", + "Marion High School (Kansas): Marion High School is a public high school in Marion, Kansas, USA. It is one of three schools operated by Marion USD 408, and is the sole high school in the district.\n", + "Northwest High School: Northwest High School or North West High School may refer to:\n", + "Marion High School (Indiana): Marion High School is a high school in Marion, Indiana with more than 1,000 students.\n", + "Macon County High School: Macon County High School is located in Montezuma, Georgia, United States, which is a part of Macon County. Enrollment as of the 2017- 2018 school year is 491.\n", + "Canyon High School (Ogden, Utah): Canyon High School was a high school in Ogden, Utah.\n", + "Northside High School: Northside High School or North Side High School or Northside Christian School or similar can refer to:\n", + "Springs Boys' High School: Springs Boys' High School is a high school in Springs, Gauteng, South Africa.\n", + "International School of Koje: International School of Koje( ISK) is a privately funded international school located in Geoje, South Korea.\n", + "\n", + "Q: Are North Marion High School (Oregon) and Seoul High School both located in the same country?\n", + "A:\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "No, North Marion High School (Oregon) is located in the United States, specifically in the state of Oregon, while Seoul High School is located in South Korea. So they are not in the same country.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[32mUpdating context and resetting conversation.\u001b[0m\n", + "doc_ids: [['doc_76', 'doc_68', 'doc_74', 'doc_75', 'doc_19596', 'doc_42890', 'doc_24819', 'doc_69', 'doc_995', 'doc_7274']]\n", + "\u001b[32mAdding doc_id doc_24819 to context.\u001b[0m\n", + "\u001b[32mAdding doc_id doc_69 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented chatbot. You answer user's questions based on your own knowledge and the context provided by the user. You must think step-by-step.\n", + "First, please learn the following examples of context and question pairs and their corresponding answers.\n", + "\n", + "Context:\n", + "Kurram Garhi: Kurram Garhi is a small village located near the city of Bannu, which is the part of Khyber Pakhtunkhwa province of Pakistan. Its population is approximately 35000.\n", + "Trojkrsti: Trojkrsti is a village in Municipality of Prilep, Republic of Macedonia.\n", + "Q: Are both Kurram Garhi and Trojkrsti located in the same country?\n", + "A: Kurram Garhi is located in the country of Pakistan. Trojkrsti is located in the country of Republic of Macedonia. Thus, they are not in the same country. So the answer is: no.\n", + "\n", + "\n", + "Context:\n", + "Early Side of Later: Early Side of Later is the third studio album by English singer- songwriter Matt Goss. It was released on 21 June 2004 by Concept Music and reached No. 78 on the UK Albums Chart.\n", + "What's Inside: What's Inside is the fourteenth studio album by British singer- songwriter Joan Armatrading.\n", + "Q: Which album was released earlier, What'S Inside or Cassandra'S Dream (Album)?\n", + "A: What's Inside was released in the year 1995. Cassandra's Dream (album) was released in the year 2008. Thus, of the two, the album to release earlier is What's Inside. So the answer is: What's Inside.\n", + "\n", + "\n", + "Context:\n", + "Maria Alexandrovna (Marie of Hesse): Maria Alexandrovna , born Princess Marie of Hesse and by Rhine (8 August 1824 – 3 June 1880) was Empress of Russia as the first wife of Emperor Alexander II.\n", + "Grand Duke Alexei Alexandrovich of Russia: Grand Duke Alexei Alexandrovich of Russia,(Russian: Алексей Александрович; 14 January 1850 (2 January O.S.) in St. Petersburg – 14 November 1908 in Paris) was the fifth child and the fourth son of Alexander II of Russia and his first wife Maria Alexandrovna (Marie of Hesse).\n", + "Q: What is the cause of death of Grand Duke Alexei Alexandrovich Of Russia's mother?\n", + "A: The mother of Grand Duke Alexei Alexandrovich of Russia is Maria Alexandrovna. Maria Alexandrovna died from tuberculosis. So the answer is: tuberculosis.\n", + "\n", + "\n", + "Context:\n", + "Laughter in Hell: Laughter in Hell is a 1933 American Pre-Code drama film directed by Edward L. Cahn and starring Pat O'Brien. The film's title was typical of the sensationalistic titles of many Pre-Code films.\n", + "Edward L. Cahn: Edward L. Cahn (February 12, 1899 – August 25, 1963) was an American film director.\n", + "Q: When did the director of film Laughter In Hell die?\n", + "A: The film Laughter In Hell was directed by Edward L. Cahn. Edward L. Cahn died on August 25, 1963. So the answer is: August 25, 1963.\n", + "\n", + "Second, please complete the answer by thinking step-by-step.\n", + "\n", + "Context:\n", + "Seoul High School: Seoul High School( Hangul: 서울고등학교) is a public high school located in the heart of Seoul, South Korea.\n", + "North Marion High School (Oregon): North Marion High School is a public high school in Aurora, Oregon, United States. The school is part of the North Marion School District with all four schools being located on the same campus. The school draws students from the cities of Aurora, Hubbard, and Donald as well as the communities of Broadacres and Butteville.\n", + "Marion High School (Kansas): Marion High School is a public high school in Marion, Kansas, USA. It is one of three schools operated by Marion USD 408, and is the sole high school in the district.\n", + "Northwest High School: Northwest High School or North West High School may refer to:\n", + "Marion High School (Indiana): Marion High School is a high school in Marion, Indiana with more than 1,000 students.\n", + "Macon County High School: Macon County High School is located in Montezuma, Georgia, United States, which is a part of Macon County. Enrollment as of the 2017- 2018 school year is 491.\n", + "Canyon High School (Ogden, Utah): Canyon High School was a high school in Ogden, Utah.\n", + "Northside High School: Northside High School or North Side High School or Northside Christian School or similar can refer to:\n", + "Springs Boys' High School: Springs Boys' High School is a high school in Springs, Gauteng, South Africa.\n", + "International School of Koje: International School of Koje( ISK) is a privately funded international school located in Geoje, South Korea.\n", + "Anderson High School (Anderson, Indiana): Anderson High School is a public high school located in Anderson, Indiana.\n", + "North Marion High School (West Virginia): North Marion High School is a public Double A (\"AA\") high school in the U.S. state of West Virginia, with a current enrollment of 851 students. North Marion High School is located approximately 4 miles from Farmington, West Virginia on US Route 250 north. While it is closer to the city of Mannington, West Virginia, and is often considered to be located in Rachel, West Virginia, the school mailing address is Farmington. Rachel is a small coal mining community located adjacent to the school, and is an unincorporated municipality. North Marion High School is represented as \"Grantville High School\" in the popular alternative history novel \"1632\" by writer Eric Flint. The novel is set in the fictional town of Grantville, which is based on the real town and surroundings of Mannington.\n", + "Q: Are North Marion High School (Oregon) and Seoul High School both located in the same country?\n", + "A:\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "North Marion High School (Oregon) is located in the country of United States. Seoul High School is located in the country of South Korea. Thus, they are not in the same country. So the answer is: no.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "for i in range(len(questions)):\n", + " print(f\"\\n\\n>>>>>>>>>>>> Below are outputs of Case {i+1} <<<<<<<<<<<<\\n\\n\")\n", + "\n", + " # reset the assistant. Always reset the assistant before starting a new conversation.\n", + " assistant.reset()\n", + "\n", + " qa_problem = questions[i]\n", + " ragproxyagent.initiate_chat(assistant, message=ragproxyagent.message_generator, problem=qa_problem, n_results=10)" + ] + } + ], + "metadata": { + "front_matter": { + "description": "Explore the use of AutoGen's RetrieveChat for tasks like code generation from docstrings, answering complex questions with human feedback, and exploiting features like Update Context, custom prompts, and few-shot learning.", + "tags": [ + "RAG" + ] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + }, + "skip_test": "Requires interactive usage" + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebook/agentchat_qdrant_RetrieveChat.ipynb b/notebook/agentchat_qdrant_RetrieveChat.ipynb index 4a040a5f49a..10d6b55e11c 100644 --- a/notebook/agentchat_qdrant_RetrieveChat.ipynb +++ b/notebook/agentchat_qdrant_RetrieveChat.ipynb @@ -21,7 +21,7 @@ "Some extra dependencies are needed for this notebook, which can be installed via pip:\n", "\n", "```bash\n", - "pip install \"pyautogen[retrievechat]>=0.2.3\" \"flaml[automl]\" \"qdrant_client[fastembed]\"\n", + "pip install \"pyautogen[retrievechat-qdrant]\" \"flaml[automl]\"\n", "```\n", "\n", "For more information, please refer to the [installation guide](/docs/installation/).\n", @@ -31,164 +31,172 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: pyautogen>=0.2.3 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen[retrievechat]>=0.2.3) (0.2.3)\n", - "Requirement already satisfied: flaml[automl] in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (2.1.1)\n", - "Requirement already satisfied: qdrant_client[fastembed] in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (1.7.0)\n", - "Requirement already satisfied: diskcache in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (5.6.3)\n", - "Requirement already satisfied: openai>=1.3 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (1.6.1)\n", - "Requirement already satisfied: pydantic<3,>=1.10 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (2.5.3)\n", - "Requirement already satisfied: python-dotenv in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (1.0.0)\n", - "Requirement already satisfied: termcolor in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (2.4.0)\n", - "Requirement already satisfied: tiktoken in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (0.5.2)\n", - "Requirement already satisfied: NumPy>=1.17.0rc1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from flaml[automl]) (1.26.2)\n", - "Requirement already satisfied: lightgbm>=2.3.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from flaml[automl]) (4.2.0)\n", - "Requirement already satisfied: xgboost>=0.90 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from flaml[automl]) (2.0.3)\n", - "Requirement already satisfied: scipy>=1.4.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from flaml[automl]) (1.11.4)\n", - "Requirement already satisfied: pandas>=1.1.4 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from flaml[automl]) (2.1.4)\n", - "Requirement already satisfied: scikit-learn>=0.24 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from flaml[automl]) (1.3.2)\n", - "Requirement already satisfied: fastembed==0.1.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from qdrant_client[fastembed]) (0.1.1)\n", - "Requirement already satisfied: grpcio>=1.41.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from qdrant_client[fastembed]) (1.60.0)\n", - "Requirement already satisfied: grpcio-tools>=1.41.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from qdrant_client[fastembed]) (1.60.0)\n", - "Requirement already satisfied: httpx>=0.14.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from httpx[http2]>=0.14.0->qdrant_client[fastembed]) (0.26.0)\n", - "Requirement already satisfied: portalocker<3.0.0,>=2.7.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from qdrant_client[fastembed]) (2.8.2)\n", - "Requirement already satisfied: urllib3<2.0.0,>=1.26.14 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from qdrant_client[fastembed]) (1.26.18)\n", - "Requirement already satisfied: onnx<2.0,>=1.11 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from fastembed==0.1.1->qdrant_client[fastembed]) (1.15.0)\n", - "Requirement already satisfied: onnxruntime<2.0,>=1.15 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from fastembed==0.1.1->qdrant_client[fastembed]) (1.16.3)\n", - "Requirement already satisfied: requests<3.0,>=2.31 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from fastembed==0.1.1->qdrant_client[fastembed]) (2.31.0)\n", - "Requirement already satisfied: tokenizers<0.14,>=0.13 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from fastembed==0.1.1->qdrant_client[fastembed]) (0.13.3)\n", - "Requirement already satisfied: tqdm<5.0,>=4.65 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from fastembed==0.1.1->qdrant_client[fastembed]) (4.66.1)\n", - "Requirement already satisfied: chromadb in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen[retrievechat]>=0.2.3) (0.4.21)\n", - "Requirement already satisfied: ipython in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen[retrievechat]>=0.2.3) (8.19.0)\n", - "Requirement already satisfied: pypdf in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen[retrievechat]>=0.2.3) (3.17.4)\n", - "Requirement already satisfied: sentence-transformers in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyautogen[retrievechat]>=0.2.3) (2.2.2)\n", - "Requirement already satisfied: protobuf<5.0dev,>=4.21.6 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from grpcio-tools>=1.41.0->qdrant_client[fastembed]) (4.25.1)\n", - "Requirement already satisfied: setuptools in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from grpcio-tools>=1.41.0->qdrant_client[fastembed]) (65.5.0)\n", - "Requirement already satisfied: anyio in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (4.2.0)\n", - "Requirement already satisfied: certifi in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (2023.11.17)\n", - "Requirement already satisfied: httpcore==1.* in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (1.0.2)\n", - "Requirement already satisfied: idna in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (3.6)\n", - "Requirement already satisfied: sniffio in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (1.3.0)\n", - "Requirement already satisfied: h11<0.15,>=0.13 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from httpcore==1.*->httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (0.14.0)\n", - "Requirement already satisfied: h2<5,>=3 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from httpx[http2]>=0.14.0->qdrant_client[fastembed]) (4.1.0)\n", - "Requirement already satisfied: distro<2,>=1.7.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from openai>=1.3->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (1.9.0)\n", - "Requirement already satisfied: typing-extensions<5,>=4.7 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from openai>=1.3->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (4.9.0)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pandas>=1.1.4->flaml[automl]) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pandas>=1.1.4->flaml[automl]) (2023.3.post1)\n", - "Requirement already satisfied: tzdata>=2022.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pandas>=1.1.4->flaml[automl]) (2023.4)\n", - "Requirement already satisfied: annotated-types>=0.4.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pydantic<3,>=1.10->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (0.6.0)\n", - "Requirement already satisfied: pydantic-core==2.14.6 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pydantic<3,>=1.10->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (2.14.6)\n", - "Requirement already satisfied: joblib>=1.1.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from scikit-learn>=0.24->flaml[automl]) (1.3.2)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from scikit-learn>=0.24->flaml[automl]) (3.2.0)\n", - "Requirement already satisfied: chroma-hnswlib==0.7.3 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (0.7.3)\n", - "Requirement already satisfied: fastapi>=0.95.2 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (0.108.0)\n", - "Requirement already satisfied: uvicorn>=0.18.3 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (0.25.0)\n", - "Requirement already satisfied: posthog>=2.4.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (3.1.0)\n", - "Requirement already satisfied: pulsar-client>=3.1.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (3.3.0)\n", - "Requirement already satisfied: opentelemetry-api>=1.2.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (1.22.0)\n", - "Requirement already satisfied: opentelemetry-exporter-otlp-proto-grpc>=1.2.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (1.22.0)\n", - "Requirement already satisfied: opentelemetry-instrumentation-fastapi>=0.41b0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (0.43b0)\n", - "Requirement already satisfied: opentelemetry-sdk>=1.2.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (1.22.0)\n", - "Requirement already satisfied: pypika>=0.48.9 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (0.48.9)\n", - "Requirement already satisfied: overrides>=7.3.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (7.4.0)\n", - "Requirement already satisfied: importlib-resources in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (6.1.1)\n", - "Requirement already satisfied: bcrypt>=4.0.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (4.1.2)\n", - "Requirement already satisfied: typer>=0.9.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (0.9.0)\n", - "Requirement already satisfied: kubernetes>=28.1.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (28.1.0)\n", - "Requirement already satisfied: tenacity>=8.2.3 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (8.2.3)\n", - "Requirement already satisfied: PyYAML>=6.0.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (6.0.1)\n", - "Requirement already satisfied: mmh3>=4.0.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (4.0.1)\n", - "Requirement already satisfied: decorator in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (5.1.1)\n", - "Requirement already satisfied: jedi>=0.16 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (0.19.1)\n", - "Requirement already satisfied: matplotlib-inline in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (0.1.6)\n", - "Requirement already satisfied: prompt-toolkit<3.1.0,>=3.0.41 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (3.0.43)\n", - "Requirement already satisfied: pygments>=2.4.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (2.17.2)\n", - "Requirement already satisfied: stack-data in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (0.6.3)\n", - "Requirement already satisfied: traitlets>=5 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (5.14.1)\n", - "Requirement already satisfied: pexpect>4.3 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (4.9.0)\n", - "Requirement already satisfied: transformers<5.0.0,>=4.6.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (4.33.3)\n", - "Requirement already satisfied: torch>=1.6.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (2.1.2)\n", - "Requirement already satisfied: torchvision in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (0.16.2)\n", - "Requirement already satisfied: nltk in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (3.8.1)\n", - "Requirement already satisfied: sentencepiece in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (0.1.99)\n", - "Requirement already satisfied: huggingface-hub>=0.4.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (0.20.1)\n", - "Requirement already satisfied: regex>=2022.1.18 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from tiktoken->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (2023.12.25)\n", - "Requirement already satisfied: starlette<0.33.0,>=0.29.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from fastapi>=0.95.2->chromadb->pyautogen[retrievechat]>=0.2.3) (0.32.0.post1)\n", - "Requirement already satisfied: hyperframe<7,>=6.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from h2<5,>=3->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (6.0.1)\n", - "Requirement already satisfied: hpack<5,>=4.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from h2<5,>=3->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (4.0.0)\n", - "Requirement already satisfied: filelock in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from huggingface-hub>=0.4.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (3.13.1)\n", - "Requirement already satisfied: fsspec>=2023.5.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from huggingface-hub>=0.4.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (2023.12.2)\n", - "Requirement already satisfied: packaging>=20.9 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from huggingface-hub>=0.4.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (23.2)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from jedi>=0.16->ipython->pyautogen[retrievechat]>=0.2.3) (0.8.3)\n", - "Requirement already satisfied: six>=1.9.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.16.0)\n", - "Requirement already satisfied: google-auth>=1.0.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (2.25.2)\n", - "Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.7.0)\n", - "Requirement already satisfied: requests-oauthlib in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.3.1)\n", - "Requirement already satisfied: oauthlib>=3.2.2 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (3.2.2)\n", - "Requirement already satisfied: coloredlogs in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from onnxruntime<2.0,>=1.15->fastembed==0.1.1->qdrant_client[fastembed]) (15.0.1)\n", - "Requirement already satisfied: flatbuffers in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from onnxruntime<2.0,>=1.15->fastembed==0.1.1->qdrant_client[fastembed]) (23.5.26)\n", - "Requirement already satisfied: sympy in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from onnxruntime<2.0,>=1.15->fastembed==0.1.1->qdrant_client[fastembed]) (1.12)\n", - "Requirement already satisfied: deprecated>=1.2.6 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-api>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.2.14)\n", - "Requirement already satisfied: importlib-metadata<7.0,>=6.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-api>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (6.11.0)\n", - "Requirement already satisfied: backoff<3.0.0,>=1.10.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (2.2.1)\n", - "Requirement already satisfied: googleapis-common-protos~=1.52 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.62.0)\n", - "Requirement already satisfied: opentelemetry-exporter-otlp-proto-common==1.22.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.22.0)\n", - "Requirement already satisfied: opentelemetry-proto==1.22.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.22.0)\n", - "Requirement already satisfied: opentelemetry-instrumentation-asgi==0.43b0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.43b0)\n", - "Requirement already satisfied: opentelemetry-instrumentation==0.43b0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.43b0)\n", - "Requirement already satisfied: opentelemetry-semantic-conventions==0.43b0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.43b0)\n", - "Requirement already satisfied: opentelemetry-util-http==0.43b0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.43b0)\n", - "Requirement already satisfied: wrapt<2.0.0,>=1.0.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-instrumentation==0.43b0->opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.16.0)\n", - "Requirement already satisfied: asgiref~=3.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from opentelemetry-instrumentation-asgi==0.43b0->opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (3.7.2)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pexpect>4.3->ipython->pyautogen[retrievechat]>=0.2.3) (0.7.0)\n", - "Requirement already satisfied: monotonic>=1.5 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from posthog>=2.4.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.6)\n", - "Requirement already satisfied: wcwidth in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from prompt-toolkit<3.1.0,>=3.0.41->ipython->pyautogen[retrievechat]>=0.2.3) (0.2.12)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from requests<3.0,>=2.31->fastembed==0.1.1->qdrant_client[fastembed]) (3.3.2)\n", - "Requirement already satisfied: networkx in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (3.2.1)\n", - "Requirement already satisfied: jinja2 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (3.1.2)\n", - "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.105)\n", - "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.105)\n", - "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.105)\n", - "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (8.9.2.26)\n", - "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.3.1)\n", - "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (11.0.2.54)\n", - "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (10.3.2.106)\n", - "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (11.4.5.107)\n", - "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.0.106)\n", - "Requirement already satisfied: nvidia-nccl-cu12==2.18.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (2.18.1)\n", - "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.105)\n", - "Requirement already satisfied: triton==2.1.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (2.1.0)\n", - "Requirement already satisfied: nvidia-nvjitlink-cu12 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.3.101)\n", - "Requirement already satisfied: safetensors>=0.3.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (0.4.1)\n", - "Requirement already satisfied: click<9.0.0,>=7.1.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from typer>=0.9.0->chromadb->pyautogen[retrievechat]>=0.2.3) (8.1.7)\n", - "Requirement already satisfied: httptools>=0.5.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (0.6.1)\n", - "Requirement already satisfied: uvloop!=0.15.0,!=0.15.1,>=0.14.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (0.19.0)\n", - "Requirement already satisfied: watchfiles>=0.13 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (0.21.0)\n", - "Requirement already satisfied: websockets>=10.4 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (12.0)\n", - "Requirement already satisfied: executing>=1.2.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from stack-data->ipython->pyautogen[retrievechat]>=0.2.3) (2.0.1)\n", - "Requirement already satisfied: asttokens>=2.1.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from stack-data->ipython->pyautogen[retrievechat]>=0.2.3) (2.4.1)\n", - "Requirement already satisfied: pure-eval in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from stack-data->ipython->pyautogen[retrievechat]>=0.2.3) (0.2.2)\n", - "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from torchvision->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (10.2.0)\n", - "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (5.3.2)\n", - "Requirement already satisfied: pyasn1-modules>=0.2.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.3.0)\n", - "Requirement already satisfied: rsa<5,>=3.1.4 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (4.9)\n", - "Requirement already satisfied: zipp>=0.5 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from importlib-metadata<7.0,>=6.0->opentelemetry-api>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (3.17.0)\n", - "Requirement already satisfied: humanfriendly>=9.1 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from coloredlogs->onnxruntime<2.0,>=1.15->fastembed==0.1.1->qdrant_client[fastembed]) (10.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from jinja2->torch>=1.6.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (2.1.3)\n", - "Requirement already satisfied: mpmath>=0.19 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from sympy->onnxruntime<2.0,>=1.15->fastembed==0.1.1->qdrant_client[fastembed]) (1.3.0)\n", - "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /workspaces/autogen/.venv-3.11/lib/python3.11/site-packages (from pyasn1-modules>=0.2.1->google-auth>=1.0.1->kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.5.1)\n", + "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", + "To disable this warning, you can either:\n", + "\t- Avoid using `tokenizers` before the fork if possible\n", + "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n", + "Requirement already satisfied: pyautogen>=0.2.3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen[retrievechat]>=0.2.3) (0.2.21)\n", + "Requirement already satisfied: flaml[automl] in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (2.1.2)\n", + "Requirement already satisfied: qdrant_client[fastembed] in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (1.6.4)\n", + "Requirement already satisfied: openai>=1.3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (1.12.0)\n", + "Requirement already satisfied: diskcache in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (5.6.3)\n", + "Requirement already satisfied: termcolor in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (2.3.0)\n", + "Requirement already satisfied: numpy<2,>=1.17.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (1.26.4)\n", + "Requirement already satisfied: python-dotenv in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (1.0.0)\n", + "Requirement already satisfied: tiktoken in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (0.5.1)\n", + "Requirement already satisfied: pydantic!=2.6.0,<3,>=1.10 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (2.6.4)\n", + "Requirement already satisfied: docker in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (7.0.0)\n", + "Requirement already satisfied: lightgbm>=2.3.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from flaml[automl]) (4.1.0)\n", + "Requirement already satisfied: xgboost>=0.90 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from flaml[automl]) (2.0.1)\n", + "Requirement already satisfied: scipy>=1.4.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from flaml[automl]) (1.10.1)\n", + "Requirement already satisfied: pandas>=1.1.4 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from flaml[automl]) (2.2.0)\n", + "Requirement already satisfied: scikit-learn>=0.24 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from flaml[automl]) (1.3.2)\n", + "Requirement already satisfied: grpcio>=1.41.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from qdrant_client[fastembed]) (1.60.0)\n", + "Requirement already satisfied: grpcio-tools>=1.41.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from qdrant_client[fastembed]) (1.59.2)\n", + "Requirement already satisfied: httpx>=0.14.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from httpx[http2]>=0.14.0->qdrant_client[fastembed]) (0.25.1)\n", + "Requirement already satisfied: portalocker<3.0.0,>=2.7.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from qdrant_client[fastembed]) (2.8.2)\n", + "Requirement already satisfied: urllib3<2.0.0,>=1.26.14 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from qdrant_client[fastembed]) (1.26.18)\n", + "Requirement already satisfied: fastembed==0.1.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from qdrant_client[fastembed]) (0.1.1)\n", + "Requirement already satisfied: onnx<2.0,>=1.11 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from fastembed==0.1.1->qdrant_client[fastembed]) (1.15.0)\n", + "Requirement already satisfied: onnxruntime<2.0,>=1.15 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from fastembed==0.1.1->qdrant_client[fastembed]) (1.15.1)\n", + "Requirement already satisfied: requests<3.0,>=2.31 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from fastembed==0.1.1->qdrant_client[fastembed]) (2.31.0)\n", + "Requirement already satisfied: tokenizers<0.14,>=0.13 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from fastembed==0.1.1->qdrant_client[fastembed]) (0.13.3)\n", + "Requirement already satisfied: tqdm<5.0,>=4.65 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from fastembed==0.1.1->qdrant_client[fastembed]) (4.66.2)\n", + "Requirement already satisfied: chromadb in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen[retrievechat]>=0.2.3) (0.4.22)\n", + "Requirement already satisfied: sentence-transformers in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen[retrievechat]>=0.2.3) (2.3.1)\n", + "Requirement already satisfied: pypdf in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen[retrievechat]>=0.2.3) (4.0.1)\n", + "Requirement already satisfied: ipython in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyautogen[retrievechat]>=0.2.3) (8.17.2)\n", + "Requirement already satisfied: protobuf<5.0dev,>=4.21.6 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from grpcio-tools>=1.41.0->qdrant_client[fastembed]) (4.23.4)\n", + "Requirement already satisfied: setuptools in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from grpcio-tools>=1.41.0->qdrant_client[fastembed]) (68.2.2)\n", + "Requirement already satisfied: anyio in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (3.7.1)\n", + "Requirement already satisfied: certifi in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (2024.2.2)\n", + "Requirement already satisfied: httpcore in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (1.0.1)\n", + "Requirement already satisfied: idna in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (3.6)\n", + "Requirement already satisfied: sniffio in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from httpx>=0.14.0->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (1.3.0)\n", + "Requirement already satisfied: h2<5,>=3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from httpx[http2]>=0.14.0->qdrant_client[fastembed]) (4.1.0)\n", + "Requirement already satisfied: distro<2,>=1.7.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from openai>=1.3->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (1.8.0)\n", + "Requirement already satisfied: typing-extensions<5,>=4.7 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from openai>=1.3->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (4.9.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pandas>=1.1.4->flaml[automl]) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pandas>=1.1.4->flaml[automl]) (2024.1)\n", + "Requirement already satisfied: tzdata>=2022.7 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pandas>=1.1.4->flaml[automl]) (2024.1)\n", + "Requirement already satisfied: annotated-types>=0.4.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pydantic!=2.6.0,<3,>=1.10->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (0.6.0)\n", + "Requirement already satisfied: pydantic-core==2.16.3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pydantic!=2.6.0,<3,>=1.10->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (2.16.3)\n", + "Requirement already satisfied: joblib>=1.1.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from scikit-learn>=0.24->flaml[automl]) (1.3.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from scikit-learn>=0.24->flaml[automl]) (3.2.0)\n", + "Requirement already satisfied: build>=1.0.3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (1.0.3)\n", + "Requirement already satisfied: chroma-hnswlib==0.7.3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (0.7.3)\n", + "Requirement already satisfied: fastapi>=0.95.2 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (0.104.1)\n", + "Requirement already satisfied: uvicorn>=0.18.3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (0.24.0)\n", + "Requirement already satisfied: posthog>=2.4.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (3.0.2)\n", + "Requirement already satisfied: pulsar-client>=3.1.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (3.3.0)\n", + "Requirement already satisfied: opentelemetry-api>=1.2.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (1.20.0)\n", + "Requirement already satisfied: opentelemetry-exporter-otlp-proto-grpc>=1.2.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (1.20.0)\n", + "Requirement already satisfied: opentelemetry-instrumentation-fastapi>=0.41b0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (0.41b0)\n", + "Requirement already satisfied: opentelemetry-sdk>=1.2.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (1.20.0)\n", + "Requirement already satisfied: pypika>=0.48.9 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (0.48.9)\n", + "Requirement already satisfied: overrides>=7.3.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (7.4.0)\n", + "Requirement already satisfied: importlib-resources in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (6.1.1)\n", + "Requirement already satisfied: bcrypt>=4.0.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (4.0.1)\n", + "Requirement already satisfied: typer>=0.9.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (0.9.0)\n", + "Requirement already satisfied: kubernetes>=28.1.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (28.1.0)\n", + "Requirement already satisfied: tenacity>=8.2.3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (8.2.3)\n", + "Requirement already satisfied: PyYAML>=6.0.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (6.0.1)\n", + "Requirement already satisfied: mmh3>=4.0.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from chromadb->pyautogen[retrievechat]>=0.2.3) (4.0.1)\n", + "Requirement already satisfied: packaging>=14.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from docker->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (23.2)\n", + "Requirement already satisfied: decorator in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (5.1.1)\n", + "Requirement already satisfied: jedi>=0.16 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (0.19.1)\n", + "Requirement already satisfied: matplotlib-inline in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (0.1.6)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (3.0.39)\n", + "Requirement already satisfied: pygments>=2.4.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (2.16.1)\n", + "Requirement already satisfied: stack-data in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (0.6.3)\n", + "Requirement already satisfied: traitlets>=5 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (5.14.2)\n", + "Requirement already satisfied: exceptiongroup in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (1.1.3)\n", + "Requirement already satisfied: pexpect>4.3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from ipython->pyautogen[retrievechat]>=0.2.3) (4.8.0)\n", + "Requirement already satisfied: transformers<5.0.0,>=4.32.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (4.33.3)\n", + "Requirement already satisfied: torch>=1.11.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (2.2.0)\n", + "Requirement already satisfied: nltk in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (3.8.1)\n", + "Requirement already satisfied: sentencepiece in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (0.1.99)\n", + "Requirement already satisfied: huggingface-hub>=0.15.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (0.20.3)\n", + "Requirement already satisfied: Pillow in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from sentence-transformers->pyautogen[retrievechat]>=0.2.3) (10.2.0)\n", + "Requirement already satisfied: regex>=2022.1.18 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from tiktoken->pyautogen>=0.2.3->pyautogen[retrievechat]>=0.2.3) (2023.12.25)\n", + "Requirement already satisfied: pyproject_hooks in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from build>=1.0.3->chromadb->pyautogen[retrievechat]>=0.2.3) (1.0.0)\n", + "Requirement already satisfied: tomli>=1.1.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from build>=1.0.3->chromadb->pyautogen[retrievechat]>=0.2.3) (2.0.1)\n", + "Requirement already satisfied: starlette<0.28.0,>=0.27.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from fastapi>=0.95.2->chromadb->pyautogen[retrievechat]>=0.2.3) (0.27.0)\n", + "Requirement already satisfied: hyperframe<7,>=6.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from h2<5,>=3->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (6.0.1)\n", + "Requirement already satisfied: hpack<5,>=4.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from h2<5,>=3->httpx[http2]>=0.14.0->qdrant_client[fastembed]) (4.0.0)\n", + "Requirement already satisfied: filelock in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from huggingface-hub>=0.15.1->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (3.13.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from huggingface-hub>=0.15.1->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (2024.2.0)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from jedi>=0.16->ipython->pyautogen[retrievechat]>=0.2.3) (0.8.3)\n", + "Requirement already satisfied: six>=1.9.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.16.0)\n", + "Requirement already satisfied: google-auth>=1.0.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (2.23.4)\n", + "Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.6.4)\n", + "Requirement already satisfied: requests-oauthlib in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.3.1)\n", + "Requirement already satisfied: oauthlib>=3.2.2 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (3.2.2)\n", + "Requirement already satisfied: coloredlogs in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from onnxruntime<2.0,>=1.15->fastembed==0.1.1->qdrant_client[fastembed]) (15.0.1)\n", + "Requirement already satisfied: flatbuffers in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from onnxruntime<2.0,>=1.15->fastembed==0.1.1->qdrant_client[fastembed]) (23.5.26)\n", + "Requirement already satisfied: sympy in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from onnxruntime<2.0,>=1.15->fastembed==0.1.1->qdrant_client[fastembed]) (1.12)\n", + "Requirement already satisfied: deprecated>=1.2.6 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-api>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.2.14)\n", + "Requirement already satisfied: importlib-metadata<7.0,>=6.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-api>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (6.11.0)\n", + "Requirement already satisfied: backoff<3.0.0,>=1.10.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (2.2.1)\n", + "Requirement already satisfied: googleapis-common-protos~=1.52 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.61.0)\n", + "Requirement already satisfied: opentelemetry-exporter-otlp-proto-common==1.20.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.20.0)\n", + "Requirement already satisfied: opentelemetry-proto==1.20.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-exporter-otlp-proto-grpc>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.20.0)\n", + "Requirement already satisfied: opentelemetry-instrumentation-asgi==0.41b0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.41b0)\n", + "Requirement already satisfied: opentelemetry-instrumentation==0.41b0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.41b0)\n", + "Requirement already satisfied: opentelemetry-semantic-conventions==0.41b0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.41b0)\n", + "Requirement already satisfied: opentelemetry-util-http==0.41b0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.41b0)\n", + "Requirement already satisfied: wrapt<2.0.0,>=1.0.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-instrumentation==0.41b0->opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.16.0)\n", + "Requirement already satisfied: asgiref~=3.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from opentelemetry-instrumentation-asgi==0.41b0->opentelemetry-instrumentation-fastapi>=0.41b0->chromadb->pyautogen[retrievechat]>=0.2.3) (3.7.2)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pexpect>4.3->ipython->pyautogen[retrievechat]>=0.2.3) (0.7.0)\n", + "Requirement already satisfied: monotonic>=1.5 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from posthog>=2.4.0->chromadb->pyautogen[retrievechat]>=0.2.3) (1.6)\n", + "Requirement already satisfied: wcwidth in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython->pyautogen[retrievechat]>=0.2.3) (0.2.9)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from requests<3.0,>=2.31->fastembed==0.1.1->qdrant_client[fastembed]) (3.3.2)\n", + "Requirement already satisfied: networkx in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (3.2.1)\n", + "Requirement already satisfied: jinja2 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (3.1.3)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.105)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (8.9.2.26)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (11.4.5.107)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.19.3 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (2.19.3)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.1.105)\n", + "Requirement already satisfied: triton==2.2.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (2.2.0)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (12.3.52)\n", + "Requirement already satisfied: safetensors>=0.3.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from transformers<5.0.0,>=4.32.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (0.3.2)\n", + "Requirement already satisfied: click<9.0.0,>=7.1.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from typer>=0.9.0->chromadb->pyautogen[retrievechat]>=0.2.3) (8.1.7)\n", + "Requirement already satisfied: h11>=0.8 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from uvicorn>=0.18.3->uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (0.14.0)\n", + "Requirement already satisfied: httptools>=0.5.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (0.6.1)\n", + "Requirement already satisfied: uvloop!=0.15.0,!=0.15.1,>=0.14.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (0.19.0)\n", + "Requirement already satisfied: watchfiles>=0.13 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (0.21.0)\n", + "Requirement already satisfied: websockets>=10.4 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from uvicorn[standard]>=0.18.3->chromadb->pyautogen[retrievechat]>=0.2.3) (11.0.3)\n", + "Requirement already satisfied: executing>=1.2.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from stack-data->ipython->pyautogen[retrievechat]>=0.2.3) (2.0.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from stack-data->ipython->pyautogen[retrievechat]>=0.2.3) (2.4.1)\n", + "Requirement already satisfied: pure-eval in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from stack-data->ipython->pyautogen[retrievechat]>=0.2.3) (0.2.2)\n", + "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (5.3.2)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.3.0)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from google-auth>=1.0.1->kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (4.9)\n", + "Requirement already satisfied: zipp>=0.5 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from importlib-metadata<7.0,>=6.0->opentelemetry-api>=1.2.0->chromadb->pyautogen[retrievechat]>=0.2.3) (3.17.0)\n", + "Requirement already satisfied: humanfriendly>=9.1 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from coloredlogs->onnxruntime<2.0,>=1.15->fastembed==0.1.1->qdrant_client[fastembed]) (10.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from jinja2->torch>=1.11.0->sentence-transformers->pyautogen[retrievechat]>=0.2.3) (2.1.5)\n", + "Requirement already satisfied: mpmath>=0.19 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from sympy->onnxruntime<2.0,>=1.15->fastembed==0.1.1->qdrant_client[fastembed]) (1.3.0)\n", + "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /home/lijiang1/anaconda3/envs/autogen/lib/python3.10/site-packages (from pyasn1-modules>=0.2.1->google-auth>=1.0.1->kubernetes>=28.1.0->chromadb->pyautogen[retrievechat]>=0.2.3) (0.5.0)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ - "%pip install \"pyautogen[retrievechat]>=0.2.3\" \"flaml[automl]\" \"qdrant_client[fastembed]\"" + "%pip install \"pyautogen[retrievechat-qdrant]\" \"flaml[automl]\"" ] }, { @@ -203,14 +211,14 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "models to use: ['gpt-4-1106-preview', 'gpt-4-turbo-preview', 'gpt-4-0613', 'gpt-35-turbo-0613', 'gpt-35-turbo-1106']\n" + "models to use: ['gpt4-1106-preview', 'gpt-35-turbo', 'gpt-35-turbo-0613']\n" ] } ], @@ -225,20 +233,7 @@ "# a vector database instance\n", "from autogen.retrieve_utils import TEXT_FORMATS\n", "\n", - "config_list = autogen.config_list_from_json(\n", - " env_or_file=\"OAI_CONFIG_LIST\",\n", - " file_location=\".\",\n", - " filter_dict={\n", - " \"model\": {\n", - " \"gpt-4\",\n", - " \"gpt4\",\n", - " \"gpt-4-32k\",\n", - " \"gpt-4-32k-0314\",\n", - " \"gpt-35-turbo\",\n", - " \"gpt-3.5-turbo\",\n", - " }\n", - " },\n", - ")\n", + "config_list = autogen.config_list_from_json(\"OAI_CONFIG_LIST\")\n", "\n", "assert len(config_list) > 0\n", "print(\"models to use: \", [config_list[i][\"model\"] for i in range(len(config_list))])" @@ -258,7 +253,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -266,7 +261,7 @@ "output_type": "stream", "text": [ "Accepted file formats for `docs_path`:\n", - "['txt', 'json', 'csv', 'tsv', 'md', 'html', 'htm', 'rtf', 'rst', 'jsonl', 'log', 'xml', 'yaml', 'yml', 'pdf']\n" + "['yml', 'ppt', 'org', 'doc', 'epub', 'rst', 'log', 'docx', 'htm', 'html', 'tsv', 'csv', 'json', 'yaml', 'xlsx', 'pptx', 'rtf', 'msg', 'odt', 'pdf', 'jsonl', 'md', 'xml', 'txt']\n" ] } ], @@ -289,7 +284,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -332,8 +327,7 @@ " \"client\": QdrantClient(\":memory:\"),\n", " \"embedding_model\": \"BAAI/bge-small-en-v1.5\",\n", " },\n", - " # code_execution_config={\n", - " # \"use_docker\": False,}\n", + " code_execution_config=False,\n", ")" ] }, @@ -354,17 +348,42 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Trying to create collection.\n", - "\u001b[32mAdding doc_id 0 to context.\u001b[0m\n", - "\u001b[32mAdding doc_id 2 to context.\u001b[0m\n", - "\u001b[32mAdding doc_id 1 to context.\u001b[0m\n", + "Trying to create collection.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-04-07 18:30:12,489 - autogen.agentchat.contrib.qdrant_retrieve_user_proxy_agent - INFO - Found 3 chunks.\u001b[0m\n", + "Model gpt4-1106-preview not found. Using cl100k_base encoding.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32mAdding content of doc 0 to context.\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Model gpt4-1106-preview not found. Using cl100k_base encoding.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", "\n", "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", @@ -385,8 +404,8 @@ "![Python Version](https://img.shields.io/badge/3.8%20%7C%203.9%20%7C%203.10-blue)\n", "[![Downloads](https://pepy.tech/badge/flaml)](https://pepy.tech/project/flaml)\n", "[![](https://img.shields.io/discord/1025786666260111483?logo=discord&style=flat)](https://discord.gg/Cppx2vSPVP)\n", - "\n", "\n", + "\n", "\n", "# A Fast Library for Automated Machine Learning & Tuning\n", "\n", @@ -405,15 +424,15 @@ "\n", ":fire: FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/).\n", "\n", - "\n", "## What is FLAML\n", + "\n", "FLAML is a lightweight Python library for efficient automation of machine\n", "learning and AI operations. It automates workflow based on large language models, machine learning models, etc.\n", "and optimizes their performance.\n", "\n", - "* FLAML enables building next-gen GPT-X applications based on multi-agent conversations with minimal effort. It simplifies the orchestration, automation and optimization of a complex GPT-X workflow. It maximizes the performance of GPT-X models and augments their weakness.\n", - "* For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It is easy to customize or extend. Users can find their desired customizability from a smooth range.\n", - "* It supports fast and economical automatic tuning (e.g., inference hyperparameters for foundation models, configurations in MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations), capable of handling large search space with heterogeneous evaluation cost and complex constraints/guidance/early stopping.\n", + "- FLAML enables building next-gen GPT-X applications based on multi-agent conversations with minimal effort. It simplifies the orchestration, automation and optimization of a complex GPT-X workflow. It maximizes the performance of GPT-X models and augments their weakness.\n", + "- For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It is easy to customize or extend. Users can find their desired customizability from a smooth range.\n", + "- It supports fast and economical automatic tuning (e.g., inference hyperparameters for foundation models, configurations in MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations), capable of handling large search space with heterogeneous evaluation cost and complex constraints/guidance/early stopping.\n", "\n", "FLAML is powered by a series of [research studies](https://microsoft.github.io/FLAML/docs/Research/) from Microsoft Research and collaborators such as Penn State University, Stevens Institute of Technology, University of Washington, and University of Waterloo.\n", "\n", @@ -428,6 +447,7 @@ "```\n", "\n", "Minimal dependencies are installed without extra options. You can install extra options based on the feature you need. For example, use the following to install the dependencies needed by the [`autogen`](https://microsoft.github.io/autogen/) package.\n", + "\n", "```bash\n", "pip install \"flaml[autogen]\"\n", "```\n", @@ -437,18 +457,24 @@ "\n", "## Quickstart\n", "\n", - "* (New) The [autogen](https://microsoft.github.io/autogen/) package enables the next-gen GPT-X applications with a generic multi-agent conversation framework.\n", - "It offers customizable and conversable agents which integrate LLMs, tools and human.\n", - "By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code. For example,\n", + "- (New) The [autogen](https://microsoft.github.io/autogen/) package enables the next-gen GPT-X applications with a generic multi-agent conversation framework.\n", + " It offers customizable and conversable agents which integrate LLMs, tools and human.\n", + " By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code. For example,\n", + "\n", "```python\n", "from flaml import autogen\n", + "\n", "assistant = autogen.AssistantAgent(\"assistant\")\n", "user_proxy = autogen.UserProxyAgent(\"user_proxy\")\n", - "user_proxy.initiate_chat(assistant, message=\"Show me the YTD gain of 10 largest technology companies as of today.\")\n", + "user_proxy.initiate_chat(\n", + " assistant,\n", + " message=\"Show me the YTD gain of 10 largest technology companies as of today.\",\n", + ")\n", "# This initiates an automated chat between the two agents to solve the task\n", "```\n", "\n", "Autogen also helps maximize the utility out of the expensive LLMs such as ChatGPT and GPT-4. It offers a drop-in replacement of `openai.Completion` or `openai.ChatCompletion` with powerful functionalites like tuning, caching, templating, filtering. For example, you can optimize generations by LLM with your own tuning data, success metrics and budgets.\n", + "\n", "```python\n", "# perform tuning\n", "config, analysis = autogen.Completion.tune(\n", @@ -463,30 +489,32 @@ "# perform inference for a test instance\n", "response = autogen.Completion.create(context=test_instance, **config)\n", "```\n", - "* With three lines of code, you can start using this economical and fast\n", - "AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).\n", + "\n", + "- With three lines of code, you can start using this economical and fast\n", + " AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).\n", "\n", "```python\n", "from flaml import AutoML\n", + "\n", "automl = AutoML()\n", "automl.fit(X_train, y_train, task=\"classification\")\n", "```\n", "\n", - "* You can restrict the learners and use FLAML as a fast hyperparameter tuning\n", - "tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).\n", + "- You can restrict the learners and use FLAML as a fast hyperparameter tuning\n", + " tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).\n", "\n", "```python\n", "automl.fit(X_train, y_train, task=\"classification\", estimator_list=[\"lgbm\"])\n", "```\n", "\n", - "* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).\n", + "- You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).\n", "\n", "```python\n", "from flaml import tune\n", "tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)\n", "```\n", "\n", - "* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.\n", + "- [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.\n", "\n", "```python\n", "from flaml.default import LGBMRegressor\n", @@ -517,12 +545,98 @@ "Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us\n", "the rights to use your contribution. For details, visit .\n", "\n", - "If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.\n", - "# Research\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "No, there is no function called `tune_automl` specifically mentioned in the context provided. However, FLAML does offer general hyperparameter tuning capabilities which could be related to this. In the context of FLAML, there is a generic function called `tune.run()` that can be used for hyperparameter tuning.\n", + "\n", + "Here's a short example of how to use FLAML's tune for a user-defined function based on the given context:\n", + "\n", + "```python\n", + "from flaml import tune\n", + "\n", + "def evaluation_function(config):\n", + " # evaluation logic that returns a metric score\n", + " ...\n", + "\n", + "# define the search space for hyperparameters\n", + "config_search_space = {\n", + " 'max_depth': tune.randint(lower=3, upper=10),\n", + " 'learning_rate': tune.loguniform(lower=1e-4, upper=1e-1),\n", + "}\n", + "\n", + "# run hyperparameter tuning\n", + "tune.run(\n", + " evaluation_function,\n", + " config=config_search_space,\n", + " low_cost_partial_config={'max_depth': 3},\n", + " time_budget_s=3600\n", + ")\n", + "```\n", + "\n", + "Please note that if you are referring to a different kind of function or use case, you might need to specify more details or check the official documentation or source code of the FLAML library.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", + "\n", + "UPDATE CONTEXT\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[32mUpdating context and resetting conversation.\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Model gpt4-1106-preview not found. Using cl100k_base encoding.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32mAdding content of doc 2 to context.\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Model gpt4-1106-preview not found. Using cl100k_base encoding.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32mAdding content of doc 1 to context.\u001b[0m\n", + "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", + "\n", + "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", + "context provided by the user.\n", + "If you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\n", + "For code generation, you must obey the following rules:\n", + "Rule 1. You MUST NOT install any packages because all the packages needed are already installed.\n", + "Rule 2. You must follow the formats below to write your code:\n", + "```language\n", + "# your code\n", + "```\n", + "\n", + "User's question is: Is there a function called tune_automl?\n", + "\n", + "Context is: # Research\n", "\n", "For technical details, please check our research publications.\n", "\n", - "* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", + "- [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", "\n", "```bibtex\n", "@inproceedings{wang2021flaml,\n", @@ -533,7 +647,7 @@ "}\n", "```\n", "\n", - "* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", + "- [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", "\n", "```bibtex\n", "@inproceedings{wu2021cfo,\n", @@ -544,7 +658,7 @@ "}\n", "```\n", "\n", - "* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", + "- [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", "\n", "```bibtex\n", "@inproceedings{wang2021blendsearch,\n", @@ -555,7 +669,7 @@ "}\n", "```\n", "\n", - "* [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", + "- [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", "\n", "```bibtex\n", "@inproceedings{liuwang2021hpolm,\n", @@ -566,7 +680,7 @@ "}\n", "```\n", "\n", - "* [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", + "- [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", "\n", "```bibtex\n", "@inproceedings{wu2021chacha,\n", @@ -577,7 +691,7 @@ "}\n", "```\n", "\n", - "* [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", + "- [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", "\n", "```bibtex\n", "@inproceedings{wuwang2021fairautoml,\n", @@ -588,7 +702,7 @@ "}\n", "```\n", "\n", - "* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", + "- [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", "\n", "```bibtex\n", "@inproceedings{kayaliwang2022default,\n", @@ -599,7 +713,7 @@ "}\n", "```\n", "\n", - "* [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", + "- [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", "\n", "```bibtex\n", "@inproceedings{zhang2023targeted,\n", @@ -611,7 +725,7 @@ "}\n", "```\n", "\n", - "* [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", + "- [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", "\n", "```bibtex\n", "@inproceedings{wang2023EcoOptiGen,\n", @@ -622,7 +736,7 @@ "}\n", "```\n", "\n", - "* [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", + "- [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", "\n", "```bibtex\n", "@inproceedings{wu2023empirical,\n", @@ -632,7 +746,7 @@ " booktitle={ArXiv preprint arXiv:2306.01337},\n", "}\n", "```\n", - "\n", + "If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.\n", "\n", "When you submit a pull request, a CLA bot will automatically determine whether you need to provide\n", "a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions\n", @@ -644,26 +758,10 @@ "\n", "\n", "\n", - "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", "\n", - "Based on the context provided, which is about the FLAML library, there is no direct reference to a function specifically called `tune_automl`. However, FLAML does offer functionality for automated machine learning (AutoML) and hyperparameter tuning.\n", - "\n", - "The closest reference to an AutoML tuning operation in the given context is shown in the Quickstart section, which demonstrates how to use FLAML as a scikit-learn style estimator for machine learning tasks like classification and regression. It does talk about automated machine learning and tuning, but doesn't mention a function `tune_automl` by name.\n", - "\n", - "If you are looking for a way to perform tuning with FLAML, the context indicates you can use the `tune` module to run generic hyperparameter tuning for a custom function, as demonstrated in the Quickstart section:\n", - "\n", - "```python\n", - "from flaml import tune\n", - "tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)\n", - "```\n", - "\n", - "This is not called `tune_automl` but rather just `tune.run`.\n", - "\n", - "If you need confirmation on whether a function called `tune_automl` specifically exists, the FLAML documentation or its API reference should be checked. If documentation is not enough to confirm and you require to look into the actual code or a structured list of functionalities provided by FLAML, that information isn't available in the given context.\n", - "\n", - "In that case, the instruction should be: `UPDATE CONTEXT`.\n", + "UPDATE CONTEXT\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[32mUpdating context and resetting conversation.\u001b[0m\n", @@ -678,10 +776,10 @@ { "data": { "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': 'TERMINATE', 'role': 'assistant'}], summary='', cost=({'total_cost': 0.12719999999999998, 'gpt-4': {'cost': 0.12719999999999998, 'prompt_tokens': 3634, 'completion_tokens': 303, 'total_tokens': 3937}}, {'total_cost': 0.12719999999999998, 'gpt-4': {'cost': 0.12719999999999998, 'prompt_tokens': 3634, 'completion_tokens': 303, 'total_tokens': 3937}}), human_input=[])" + "ChatResult(chat_id=None, chat_history=[{'content': 'TERMINATE', 'role': 'assistant'}], summary='', cost=({'total_cost': 0.19977, 'gpt-4': {'cost': 0.19977, 'prompt_tokens': 6153, 'completion_tokens': 253, 'total_tokens': 6406}}, {'total_cost': 0.19977, 'gpt-4': {'cost': 0.19977, 'prompt_tokens': 6153, 'completion_tokens': 253, 'total_tokens': 6406}}), human_input=[])" ] }, - "execution_count": 20, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -711,16 +809,34 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 12, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Model gpt4-1106-preview not found. Using cl100k_base encoding.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32mAdding content of doc 2 to context.\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Model gpt4-1106-preview not found. Using cl100k_base encoding.\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[32mAdding doc_id 2 to context.\u001b[0m\n", - "\u001b[32mAdding doc_id 0 to context.\u001b[0m\n", - "\u001b[32mAdding doc_id 1 to context.\u001b[0m\n", "\u001b[33mragproxyagent\u001b[0m (to assistant):\n", "\n", "You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\n", @@ -739,7 +855,7 @@ "\n", "For technical details, please check our research publications.\n", "\n", - "* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", + "- [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\n", "\n", "```bibtex\n", "@inproceedings{wang2021flaml,\n", @@ -750,7 +866,7 @@ "}\n", "```\n", "\n", - "* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", + "- [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\n", "\n", "```bibtex\n", "@inproceedings{wu2021cfo,\n", @@ -761,7 +877,7 @@ "}\n", "```\n", "\n", - "* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", + "- [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\n", "\n", "```bibtex\n", "@inproceedings{wang2021blendsearch,\n", @@ -772,7 +888,7 @@ "}\n", "```\n", "\n", - "* [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", + "- [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\n", "\n", "```bibtex\n", "@inproceedings{liuwang2021hpolm,\n", @@ -783,7 +899,7 @@ "}\n", "```\n", "\n", - "* [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", + "- [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\n", "\n", "```bibtex\n", "@inproceedings{wu2021chacha,\n", @@ -794,7 +910,7 @@ "}\n", "```\n", "\n", - "* [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", + "- [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\n", "\n", "```bibtex\n", "@inproceedings{wuwang2021fairautoml,\n", @@ -805,7 +921,7 @@ "}\n", "```\n", "\n", - "* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", + "- [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\n", "\n", "```bibtex\n", "@inproceedings{kayaliwang2022default,\n", @@ -816,7 +932,7 @@ "}\n", "```\n", "\n", - "* [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", + "- [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\n", "\n", "```bibtex\n", "@inproceedings{zhang2023targeted,\n", @@ -828,7 +944,7 @@ "}\n", "```\n", "\n", - "* [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", + "- [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\n", "\n", "```bibtex\n", "@inproceedings{wang2023EcoOptiGen,\n", @@ -839,7 +955,7 @@ "}\n", "```\n", "\n", - "* [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", + "- [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\n", "\n", "```bibtex\n", "@inproceedings{wu2023empirical,\n", @@ -850,161 +966,18 @@ "}\n", "```\n", "\n", - "[![PyPI version](https://badge.fury.io/py/FLAML.svg)](https://badge.fury.io/py/FLAML)\n", - "![Conda version](https://img.shields.io/conda/vn/conda-forge/flaml)\n", - "[![Build](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml/badge.svg)](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml)\n", - "![Python Version](https://img.shields.io/badge/3.8%20%7C%203.9%20%7C%203.10-blue)\n", - "[![Downloads](https://pepy.tech/badge/flaml)](https://pepy.tech/project/flaml)\n", - "[![](https://img.shields.io/discord/1025786666260111483?logo=discord&style=flat)](https://discord.gg/Cppx2vSPVP)\n", - "\n", "\n", "\n", - "# A Fast Library for Automated Machine Learning & Tuning\n", - "\n", - "

    \n", - " \n", - "
    \n", - "

    \n", - "\n", - ":fire: Heads-up: We have migrated [AutoGen](https://microsoft.github.io/autogen/) into a dedicated [github repository](https://github.com/microsoft/autogen). Alongside this move, we have also launched a dedicated [Discord](https://discord.gg/pAbnFJrkgZ) server and a [website](https://microsoft.github.io/autogen/) for comprehensive documentation.\n", - "\n", - ":fire: The automated multi-agent chat framework in [AutoGen](https://microsoft.github.io/autogen/) is in preview from v2.0.0.\n", - "\n", - ":fire: FLAML is highlighted in OpenAI's [cookbook](https://github.com/openai/openai-cookbook#related-resources-from-around-the-web).\n", - "\n", - ":fire: [autogen](https://microsoft.github.io/autogen/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).\n", - "\n", - ":fire: FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/).\n", - "\n", - "\n", - "## What is FLAML\n", - "FLAML is a lightweight Python library for efficient automation of machine\n", - "learning and AI operations. It automates workflow based on large language models, machine learning models, etc.\n", - "and optimizes their performance.\n", - "\n", - "* FLAML enables building next-gen GPT-X applications based on multi-agent conversations with minimal effort. It simplifies the orchestration, automation and optimization of a complex GPT-X workflow. It maximizes the performance of GPT-X models and augments their weakness.\n", - "* For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It is easy to customize or extend. Users can find their desired customizability from a smooth range.\n", - "* It supports fast and economical automatic tuning (e.g., inference hyperparameters for foundation models, configurations in MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations), capable of handling large search space with heterogeneous evaluation cost and complex constraints/guidance/early stopping.\n", - "\n", - "FLAML is powered by a series of [research studies](https://microsoft.github.io/FLAML/docs/Research/) from Microsoft Research and collaborators such as Penn State University, Stevens Institute of Technology, University of Washington, and University of Waterloo.\n", - "\n", - "FLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET.\n", - "\n", - "## Installation\n", - "\n", - "FLAML requires **Python version >= 3.8**. It can be installed from pip:\n", - "\n", - "```bash\n", - "pip install flaml\n", - "```\n", - "\n", - "Minimal dependencies are installed without extra options. You can install extra options based on the feature you need. For example, use the following to install the dependencies needed by the [`autogen`](https://microsoft.github.io/autogen/) package.\n", - "```bash\n", - "pip install \"flaml[autogen]\"\n", - "```\n", - "\n", - "Find more options in [Installation](https://microsoft.github.io/FLAML/docs/Installation).\n", - "Each of the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook) may require a specific option to be installed.\n", - "\n", - "## Quickstart\n", - "\n", - "* (New) The [autogen](https://microsoft.github.io/autogen/) package enables the next-gen GPT-X applications with a generic multi-agent conversation framework.\n", - "It offers customizable and conversable agents which integrate LLMs, tools and human.\n", - "By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code. For example,\n", - "```python\n", - "from flaml import autogen\n", - "assistant = autogen.AssistantAgent(\"assistant\")\n", - "user_proxy = autogen.UserProxyAgent(\"user_proxy\")\n", - "user_proxy.initiate_chat(assistant, message=\"Show me the YTD gain of 10 largest technology companies as of today.\")\n", - "# This initiates an automated chat between the two agents to solve the task\n", - "```\n", - "\n", - "Autogen also helps maximize the utility out of the expensive LLMs such as ChatGPT and GPT-4. It offers a drop-in replacement of `openai.Completion` or `openai.ChatCompletion` with powerful functionalites like tuning, caching, templating, filtering. For example, you can optimize generations by LLM with your own tuning data, success metrics and budgets.\n", - "```python\n", - "# perform tuning\n", - "config, analysis = autogen.Completion.tune(\n", - " data=tune_data,\n", - " metric=\"success\",\n", - " mode=\"max\",\n", - " eval_func=eval_func,\n", - " inference_budget=0.05,\n", - " optimization_budget=3,\n", - " num_samples=-1,\n", - ")\n", - "# perform inference for a test instance\n", - "response = autogen.Completion.create(context=test_instance, **config)\n", - "```\n", - "* With three lines of code, you can start using this economical and fast\n", - "AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).\n", - "\n", - "```python\n", - "from flaml import AutoML\n", - "automl = AutoML()\n", - "automl.fit(X_train, y_train, task=\"classification\")\n", - "```\n", - "\n", - "* You can restrict the learners and use FLAML as a fast hyperparameter tuning\n", - "tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).\n", - "\n", - "```python\n", - "automl.fit(X_train, y_train, task=\"classification\", estimator_list=[\"lgbm\"])\n", - "```\n", - "\n", - "* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).\n", - "\n", - "```python\n", - "from flaml import tune\n", - "tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)\n", - "```\n", - "\n", - "* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.\n", - "\n", - "```python\n", - "from flaml.default import LGBMRegressor\n", - "\n", - "# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.\n", - "estimator = LGBMRegressor()\n", - "# The hyperparameters are automatically set according to the training data.\n", - "estimator.fit(X_train, y_train)\n", - "```\n", - "\n", - "## Documentation\n", - "\n", - "You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/).\n", - "\n", - "In addition, you can find:\n", - "\n", - "- [Research](https://microsoft.github.io/FLAML/docs/Research) and [blogposts](https://microsoft.github.io/FLAML/blog) around FLAML.\n", - "\n", - "- [Discord](https://discord.gg/Cppx2vSPVP).\n", - "\n", - "- [Contributing guide](https://microsoft.github.io/FLAML/docs/Contribute).\n", - "\n", - "- ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api).\n", - "\n", - "## Contributing\n", - "\n", - "This project welcomes contributions and suggestions. Most contributions require you to agree to a\n", - "Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us\n", - "the rights to use your contribution. For details, visit .\n", - "\n", - "If you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.\n", - "\n", - "When you submit a pull request, a CLA bot will automatically determine whether you need to provide\n", - "a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions\n", - "provided by the bot. You will only need to do this once across all repos using our CLA.\n", - "\n", - "This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).\n", - "For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or\n", - "contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.\n", - "\n", - "\n", - "\n", - "\n", - "--------------------------------------------------------------------------------\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\u001b[33massistant\u001b[0m (to ragproxyagent):\n", "\n", - "The author of FLAML is Chi Wang, along with other collaborators including Qingyun Wu, Markus Weimer, Erkang Zhu, Silu Huang, Amin Saied, Susan Xueqing Liu, John Langford, Paul Mineiro, Marco Rossi, Moe Kayali, Shaokun Zhang, Feiran Jia, Yiran Wu, Hangyu Li, Yue Wang, Yin Tat Lee, Richard Peng, and Ahmed H. Awadallah, as indicated in the provided references for FLAML's research publications.\n", + "The authors of FLAML are Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu.\n", "\n", "--------------------------------------------------------------------------------\n" ] @@ -1012,10 +985,10 @@ { "data": { "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': 'You\\'re a retrieve augmented coding assistant. You answer user\\'s questions based on your own knowledge and the\\ncontext provided by the user.\\nIf you can\\'t answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\\nFor code generation, you must obey the following rules:\\nRule 1. You MUST NOT install any packages because all the packages needed are already installed.\\nRule 2. You must follow the formats below to write your code:\\n```language\\n# your code\\n```\\n\\nUser\\'s question is: Who is the author of FLAML?\\n\\nContext is: # Research\\n\\nFor technical details, please check our research publications.\\n\\n* [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\\n\\n```bibtex\\n@inproceedings{wang2021flaml,\\n title={FLAML: A Fast and Lightweight AutoML Library},\\n author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},\\n year={2021},\\n booktitle={MLSys},\\n}\\n```\\n\\n* [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\\n\\n```bibtex\\n@inproceedings{wu2021cfo,\\n title={Frugal Optimization for Cost-related Hyperparameters},\\n author={Qingyun Wu and Chi Wang and Silu Huang},\\n year={2021},\\n booktitle={AAAI},\\n}\\n```\\n\\n* [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\\n\\n```bibtex\\n@inproceedings{wang2021blendsearch,\\n title={Economical Hyperparameter Optimization With Blended Search Strategy},\\n author={Chi Wang and Qingyun Wu and Silu Huang and Amin Saied},\\n year={2021},\\n booktitle={ICLR},\\n}\\n```\\n\\n* [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\\n\\n```bibtex\\n@inproceedings{liuwang2021hpolm,\\n title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},\\n author={Susan Xueqing Liu and Chi Wang},\\n year={2021},\\n booktitle={ACL},\\n}\\n```\\n\\n* [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\\n\\n```bibtex\\n@inproceedings{wu2021chacha,\\n title={ChaCha for Online AutoML},\\n author={Qingyun Wu and Chi Wang and John Langford and Paul Mineiro and Marco Rossi},\\n year={2021},\\n booktitle={ICML},\\n}\\n```\\n\\n* [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\\n\\n```bibtex\\n@inproceedings{wuwang2021fairautoml,\\n title={Fair AutoML},\\n author={Qingyun Wu and Chi Wang},\\n year={2021},\\n booktitle={ArXiv preprint arXiv:2111.06495},\\n}\\n```\\n\\n* [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\\n\\n```bibtex\\n@inproceedings{kayaliwang2022default,\\n title={Mining Robust Default Configurations for Resource-constrained AutoML},\\n author={Moe Kayali and Chi Wang},\\n year={2022},\\n booktitle={ArXiv preprint arXiv:2202.09927},\\n}\\n```\\n\\n* [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\\n\\n```bibtex\\n@inproceedings{zhang2023targeted,\\n title={Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives},\\n author={Shaokun Zhang and Feiran Jia and Chi Wang and Qingyun Wu},\\n booktitle={International Conference on Learning Representations},\\n year={2023},\\n url={https://openreview.net/forum?id=0Ij9_q567Ma},\\n}\\n```\\n\\n* [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\\n\\n```bibtex\\n@inproceedings{wang2023EcoOptiGen,\\n title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},\\n author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},\\n year={2023},\\n booktitle={ArXiv preprint arXiv:2303.04673},\\n}\\n```\\n\\n* [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\\n\\n```bibtex\\n@inproceedings{wu2023empirical,\\n title={An Empirical Study on Challenging Math Problem Solving with GPT-4},\\n author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},\\n year={2023},\\n booktitle={ArXiv preprint arXiv:2306.01337},\\n}\\n```\\n\\n[![PyPI version](https://badge.fury.io/py/FLAML.svg)](https://badge.fury.io/py/FLAML)\\n![Conda version](https://img.shields.io/conda/vn/conda-forge/flaml)\\n[![Build](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml/badge.svg)](https://github.com/microsoft/FLAML/actions/workflows/python-package.yml)\\n![Python Version](https://img.shields.io/badge/3.8%20%7C%203.9%20%7C%203.10-blue)\\n[![Downloads](https://pepy.tech/badge/flaml)](https://pepy.tech/project/flaml)\\n[![](https://img.shields.io/discord/1025786666260111483?logo=discord&style=flat)](https://discord.gg/Cppx2vSPVP)\\n\\n\\n\\n# A Fast Library for Automated Machine Learning & Tuning\\n\\n

    \\n \\n
    \\n

    \\n\\n:fire: Heads-up: We have migrated [AutoGen](https://microsoft.github.io/autogen/) into a dedicated [github repository](https://github.com/microsoft/autogen). Alongside this move, we have also launched a dedicated [Discord](https://discord.gg/pAbnFJrkgZ) server and a [website](https://microsoft.github.io/autogen/) for comprehensive documentation.\\n\\n:fire: The automated multi-agent chat framework in [AutoGen](https://microsoft.github.io/autogen/) is in preview from v2.0.0.\\n\\n:fire: FLAML is highlighted in OpenAI\\'s [cookbook](https://github.com/openai/openai-cookbook#related-resources-from-around-the-web).\\n\\n:fire: [autogen](https://microsoft.github.io/autogen/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).\\n\\n:fire: FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/).\\n\\n\\n## What is FLAML\\nFLAML is a lightweight Python library for efficient automation of machine\\nlearning and AI operations. It automates workflow based on large language models, machine learning models, etc.\\nand optimizes their performance.\\n\\n* FLAML enables building next-gen GPT-X applications based on multi-agent conversations with minimal effort. It simplifies the orchestration, automation and optimization of a complex GPT-X workflow. It maximizes the performance of GPT-X models and augments their weakness.\\n* For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It is easy to customize or extend. Users can find their desired customizability from a smooth range.\\n* It supports fast and economical automatic tuning (e.g., inference hyperparameters for foundation models, configurations in MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations), capable of handling large search space with heterogeneous evaluation cost and complex constraints/guidance/early stopping.\\n\\nFLAML is powered by a series of [research studies](https://microsoft.github.io/FLAML/docs/Research/) from Microsoft Research and collaborators such as Penn State University, Stevens Institute of Technology, University of Washington, and University of Waterloo.\\n\\nFLAML has a .NET implementation in [ML.NET](http://dot.net/ml), an open-source, cross-platform machine learning framework for .NET.\\n\\n## Installation\\n\\nFLAML requires **Python version >= 3.8**. It can be installed from pip:\\n\\n```bash\\npip install flaml\\n```\\n\\nMinimal dependencies are installed without extra options. You can install extra options based on the feature you need. For example, use the following to install the dependencies needed by the [`autogen`](https://microsoft.github.io/autogen/) package.\\n```bash\\npip install \"flaml[autogen]\"\\n```\\n\\nFind more options in [Installation](https://microsoft.github.io/FLAML/docs/Installation).\\nEach of the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook) may require a specific option to be installed.\\n\\n## Quickstart\\n\\n* (New) The [autogen](https://microsoft.github.io/autogen/) package enables the next-gen GPT-X applications with a generic multi-agent conversation framework.\\nIt offers customizable and conversable agents which integrate LLMs, tools and human.\\nBy automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code. For example,\\n```python\\nfrom flaml import autogen\\nassistant = autogen.AssistantAgent(\"assistant\")\\nuser_proxy = autogen.UserProxyAgent(\"user_proxy\")\\nuser_proxy.initiate_chat(assistant, message=\"Show me the YTD gain of 10 largest technology companies as of today.\")\\n# This initiates an automated chat between the two agents to solve the task\\n```\\n\\nAutogen also helps maximize the utility out of the expensive LLMs such as ChatGPT and GPT-4. It offers a drop-in replacement of `openai.Completion` or `openai.ChatCompletion` with powerful functionalites like tuning, caching, templating, filtering. For example, you can optimize generations by LLM with your own tuning data, success metrics and budgets.\\n```python\\n# perform tuning\\nconfig, analysis = autogen.Completion.tune(\\n data=tune_data,\\n metric=\"success\",\\n mode=\"max\",\\n eval_func=eval_func,\\n inference_budget=0.05,\\n optimization_budget=3,\\n num_samples=-1,\\n)\\n# perform inference for a test instance\\nresponse = autogen.Completion.create(context=test_instance, **config)\\n```\\n* With three lines of code, you can start using this economical and fast\\nAutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).\\n\\n```python\\nfrom flaml import AutoML\\nautoml = AutoML()\\nautoml.fit(X_train, y_train, task=\"classification\")\\n```\\n\\n* You can restrict the learners and use FLAML as a fast hyperparameter tuning\\ntool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).\\n\\n```python\\nautoml.fit(X_train, y_train, task=\"classification\", estimator_list=[\"lgbm\"])\\n```\\n\\n* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).\\n\\n```python\\nfrom flaml import tune\\ntune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)\\n```\\n\\n* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.\\n\\n```python\\nfrom flaml.default import LGBMRegressor\\n\\n# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.\\nestimator = LGBMRegressor()\\n# The hyperparameters are automatically set according to the training data.\\nestimator.fit(X_train, y_train)\\n```\\n\\n## Documentation\\n\\nYou can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/).\\n\\nIn addition, you can find:\\n\\n- [Research](https://microsoft.github.io/FLAML/docs/Research) and [blogposts](https://microsoft.github.io/FLAML/blog) around FLAML.\\n\\n- [Discord](https://discord.gg/Cppx2vSPVP).\\n\\n- [Contributing guide](https://microsoft.github.io/FLAML/docs/Contribute).\\n\\n- ML.NET documentation and tutorials for [Model Builder](https://learn.microsoft.com/dotnet/machine-learning/tutorials/predict-prices-with-model-builder), [ML.NET CLI](https://learn.microsoft.com/dotnet/machine-learning/tutorials/sentiment-analysis-cli), and [AutoML API](https://learn.microsoft.com/dotnet/machine-learning/how-to-guides/how-to-use-the-automl-api).\\n\\n## Contributing\\n\\nThis project welcomes contributions and suggestions. Most contributions require you to agree to a\\nContributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us\\nthe rights to use your contribution. For details, visit .\\n\\nIf you are new to GitHub [here](https://help.github.com/categories/collaborating-with-issues-and-pull-requests/) is a detailed help source on getting involved with development on GitHub.\\n\\nWhen you submit a pull request, a CLA bot will automatically determine whether you need to provide\\na CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions\\nprovided by the bot. You will only need to do this once across all repos using our CLA.\\n\\nThis project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).\\nFor more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or\\ncontact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.\\n\\n\\n', 'role': 'assistant'}, {'content': \"The author of FLAML is Chi Wang, along with other collaborators including Qingyun Wu, Markus Weimer, Erkang Zhu, Silu Huang, Amin Saied, Susan Xueqing Liu, John Langford, Paul Mineiro, Marco Rossi, Moe Kayali, Shaokun Zhang, Feiran Jia, Yiran Wu, Hangyu Li, Yue Wang, Yin Tat Lee, Richard Peng, and Ahmed H. Awadallah, as indicated in the provided references for FLAML's research publications.\", 'role': 'user'}], summary=\"The author of FLAML is Chi Wang, along with other collaborators including Qingyun Wu, Markus Weimer, Erkang Zhu, Silu Huang, Amin Saied, Susan Xueqing Liu, John Langford, Paul Mineiro, Marco Rossi, Moe Kayali, Shaokun Zhang, Feiran Jia, Yiran Wu, Hangyu Li, Yue Wang, Yin Tat Lee, Richard Peng, and Ahmed H. Awadallah, as indicated in the provided references for FLAML's research publications.\", cost=({'total_cost': 0.11538, 'gpt-4': {'cost': 0.11538, 'prompt_tokens': 3632, 'completion_tokens': 107, 'total_tokens': 3739}}, {'total_cost': 0}), human_input=[])" + "ChatResult(chat_id=None, chat_history=[{'content': \"You're a retrieve augmented coding assistant. You answer user's questions based on your own knowledge and the\\ncontext provided by the user.\\nIf you can't answer the question with or without the current context, you should reply exactly `UPDATE CONTEXT`.\\nFor code generation, you must obey the following rules:\\nRule 1. You MUST NOT install any packages because all the packages needed are already installed.\\nRule 2. You must follow the formats below to write your code:\\n```language\\n# your code\\n```\\n\\nUser's question is: Who is the author of FLAML?\\n\\nContext is: # Research\\n\\nFor technical details, please check our research publications.\\n\\n- [FLAML: A Fast and Lightweight AutoML Library](https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/). Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu. MLSys 2021.\\n\\n```bibtex\\n@inproceedings{wang2021flaml,\\n title={FLAML: A Fast and Lightweight AutoML Library},\\n author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},\\n year={2021},\\n booktitle={MLSys},\\n}\\n```\\n\\n- [Frugal Optimization for Cost-related Hyperparameters](https://arxiv.org/abs/2005.01571). Qingyun Wu, Chi Wang, Silu Huang. AAAI 2021.\\n\\n```bibtex\\n@inproceedings{wu2021cfo,\\n title={Frugal Optimization for Cost-related Hyperparameters},\\n author={Qingyun Wu and Chi Wang and Silu Huang},\\n year={2021},\\n booktitle={AAAI},\\n}\\n```\\n\\n- [Economical Hyperparameter Optimization With Blended Search Strategy](https://www.microsoft.com/en-us/research/publication/economical-hyperparameter-optimization-with-blended-search-strategy/). Chi Wang, Qingyun Wu, Silu Huang, Amin Saied. ICLR 2021.\\n\\n```bibtex\\n@inproceedings{wang2021blendsearch,\\n title={Economical Hyperparameter Optimization With Blended Search Strategy},\\n author={Chi Wang and Qingyun Wu and Silu Huang and Amin Saied},\\n year={2021},\\n booktitle={ICLR},\\n}\\n```\\n\\n- [An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models](https://aclanthology.org/2021.acl-long.178.pdf). Susan Xueqing Liu, Chi Wang. ACL 2021.\\n\\n```bibtex\\n@inproceedings{liuwang2021hpolm,\\n title={An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models},\\n author={Susan Xueqing Liu and Chi Wang},\\n year={2021},\\n booktitle={ACL},\\n}\\n```\\n\\n- [ChaCha for Online AutoML](https://www.microsoft.com/en-us/research/publication/chacha-for-online-automl/). Qingyun Wu, Chi Wang, John Langford, Paul Mineiro and Marco Rossi. ICML 2021.\\n\\n```bibtex\\n@inproceedings{wu2021chacha,\\n title={ChaCha for Online AutoML},\\n author={Qingyun Wu and Chi Wang and John Langford and Paul Mineiro and Marco Rossi},\\n year={2021},\\n booktitle={ICML},\\n}\\n```\\n\\n- [Fair AutoML](https://arxiv.org/abs/2111.06495). Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2111.06495 (2021).\\n\\n```bibtex\\n@inproceedings{wuwang2021fairautoml,\\n title={Fair AutoML},\\n author={Qingyun Wu and Chi Wang},\\n year={2021},\\n booktitle={ArXiv preprint arXiv:2111.06495},\\n}\\n```\\n\\n- [Mining Robust Default Configurations for Resource-constrained AutoML](https://arxiv.org/abs/2202.09927). Moe Kayali, Chi Wang. ArXiv preprint arXiv:2202.09927 (2022).\\n\\n```bibtex\\n@inproceedings{kayaliwang2022default,\\n title={Mining Robust Default Configurations for Resource-constrained AutoML},\\n author={Moe Kayali and Chi Wang},\\n year={2022},\\n booktitle={ArXiv preprint arXiv:2202.09927},\\n}\\n```\\n\\n- [Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives](https://openreview.net/forum?id=0Ij9_q567Ma). Shaokun Zhang, Feiran Jia, Chi Wang, Qingyun Wu. ICLR 2023 (notable-top-5%).\\n\\n```bibtex\\n@inproceedings{zhang2023targeted,\\n title={Targeted Hyperparameter Optimization with Lexicographic Preferences Over Multiple Objectives},\\n author={Shaokun Zhang and Feiran Jia and Chi Wang and Qingyun Wu},\\n booktitle={International Conference on Learning Representations},\\n year={2023},\\n url={https://openreview.net/forum?id=0Ij9_q567Ma},\\n}\\n```\\n\\n- [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673). Chi Wang, Susan Xueqing Liu, Ahmed H. Awadallah. ArXiv preprint arXiv:2303.04673 (2023).\\n\\n```bibtex\\n@inproceedings{wang2023EcoOptiGen,\\n title={Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference},\\n author={Chi Wang and Susan Xueqing Liu and Ahmed H. Awadallah},\\n year={2023},\\n booktitle={ArXiv preprint arXiv:2303.04673},\\n}\\n```\\n\\n- [An Empirical Study on Challenging Math Problem Solving with GPT-4](https://arxiv.org/abs/2306.01337). Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng, Qingyun Wu, Chi Wang. ArXiv preprint arXiv:2306.01337 (2023).\\n\\n```bibtex\\n@inproceedings{wu2023empirical,\\n title={An Empirical Study on Challenging Math Problem Solving with GPT-4},\\n author={Yiran Wu and Feiran Jia and Shaokun Zhang and Hangyu Li and Erkang Zhu and Yue Wang and Yin Tat Lee and Richard Peng and Qingyun Wu and Chi Wang},\\n year={2023},\\n booktitle={ArXiv preprint arXiv:2306.01337},\\n}\\n```\\n\\n\", 'role': 'assistant'}, {'content': 'The authors of FLAML are Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu.', 'role': 'user'}], summary='The authors of FLAML are Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu.', cost=({'total_cost': 0.04596, 'gpt-4': {'cost': 0.04596, 'prompt_tokens': 1486, 'completion_tokens': 23, 'total_tokens': 1509}}, {'total_cost': 0.04596, 'gpt-4': {'cost': 0.04596, 'prompt_tokens': 1486, 'completion_tokens': 23, 'total_tokens': 1509}}), human_input=[])" ] }, - "execution_count": 18, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1031,8 +1004,10 @@ ], "metadata": { "front_matter": { - "tags": ["rag"], - "description": "This notebook demonstrates the usage of QdrantRetrieveUserProxyAgent for RAG." + "description": "This notebook demonstrates the usage of QdrantRetrieveUserProxyAgent for RAG.", + "tags": [ + "rag" + ] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", diff --git a/samples/apps/promptflow-autogen/.gitignore b/samples/apps/promptflow-autogen/.gitignore new file mode 100644 index 00000000000..a7967fa4086 --- /dev/null +++ b/samples/apps/promptflow-autogen/.gitignore @@ -0,0 +1,7 @@ +.env +__pycache__/ +.promptflow/* +!.promptflow/flow.tools.json +.runs/ +.cache/ +.vscode/ diff --git a/samples/apps/promptflow-autogen/.promptflow/flow.tools.json b/samples/apps/promptflow-autogen/.promptflow/flow.tools.json new file mode 100644 index 00000000000..ef5cb27bf38 --- /dev/null +++ b/samples/apps/promptflow-autogen/.promptflow/flow.tools.json @@ -0,0 +1,67 @@ +{ + "package": {}, + "code": { + "chat.jinja2": { + "type": "llm", + "inputs": { + "chat_history": { + "type": [ + "string" + ] + }, + "question": { + "type": [ + "string" + ] + } + }, + "source": "chat.jinja2" + }, + "autogen_task.py": { + "type": "python", + "inputs": { + "redisConnection": { + "type": [ + "CustomConnection" + ] + }, + "question": { + "type": [ + "string" + ] + }, + "azureOpenAiConnection": { + "type": [ + "AzureOpenAIConnection" + ] + }, + "azureOpenAiModelName": { + "type": [ + "string" + ], + "default": "gpt-4-32k" + }, + "autogen_workflow_id": { + "type": [ + "int" + ], + "default": "1" + } + }, + "source": "autogen_task.py", + "function": "my_python_tool" + }, + "autogen_workflow.py": { + "type": "python", + "inputs": { + "input1": { + "type": [ + "string" + ] + } + }, + "source": "autogen_workflow.py", + "function": "my_python_tool" + } + } +} diff --git a/samples/apps/promptflow-autogen/README.md b/samples/apps/promptflow-autogen/README.md new file mode 100644 index 00000000000..2050eb06de4 --- /dev/null +++ b/samples/apps/promptflow-autogen/README.md @@ -0,0 +1,85 @@ +# What is Promptflow + +Promptflow is a comprehensive suite of tools that simplifies the development, testing, evaluation, and deployment of LLM based AI applications. It also supports integration with Azure AI for cloud-based operations and is designed to streamline end-to-end development. + +Refer to [Promptflow docs](https://microsoft.github.io/promptflow/) for more information. + +Quick links: + +- Why use Promptflow - [Link](https://learn.microsoft.com/en-us/azure/machine-learning/prompt-flow/overview-what-is-prompt-flow) +- Quick start guide - [Link](https://microsoft.github.io/promptflow/how-to-guides/quick-start.html) + +## Getting Started + +- Install required python packages + + ```bash + cd samples/apps/promptflow-autogen + pip install -r requirements.txt + ``` + +- This example assumes a working Redis cache service to be available. You can get started locally using this [guide](https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/) or use your favorite managed service + +## Chat flow + +Chat flow is designed for conversational application development, building upon the capabilities of standard flow and providing enhanced support for chat inputs/outputs and chat history management. With chat flow, you can easily create a chatbot that handles chat input and output. + +## Create connection for LLM tool to use + +You can follow these steps to create a connection required by a LLM tool. + +Currently, there are two connection types supported by LLM tool: "AzureOpenAI" and "OpenAI". If you want to use "AzureOpenAI" connection type, you need to create an Azure OpenAI service first. Please refer to [Azure OpenAI Service](https://azure.microsoft.com/en-us/products/cognitive-services/openai-service/) for more details. If you want to use "OpenAI" connection type, you need to create an OpenAI account first. Please refer to [OpenAI](https://platform.openai.com/) for more details. + +```bash +# Override keys with --set to avoid yaml file changes + +# Create Azure open ai connection +pf connection create --file azure_openai.yaml --set api_key= api_base= --name open_ai_connection + +# Create the custom connection for Redis Cache +pf connection create -f custom_conn.yaml --set secrets.redis_url= --name redis_connection_url +# Sample redis connection string rediss://:PASSWORD@redis_host_name.redis.cache.windows.net:6380/0 +``` + +Note in [flow.dag.yaml](flow.dag.yaml) we are using connection named `aoai_connection` for Azure Open AI and `redis_connection_url` for redis. + +```bash +# show registered connection +pf connection show --name open_ai_connection +``` + +Please refer to connections [document](https://promptflow.azurewebsites.net/community/local/manage-connections.html) and [example](https://github.com/microsoft/promptflow/tree/main/examples/connections) for more details. + +## Develop a chat flow + +The most important elements that differentiate a chat flow from a standard flow are **Chat Input**, **Chat History**, and **Chat Output**. + +- **Chat Input**: Chat input refers to the messages or queries submitted by users to the chatbot. Effectively handling chat input is crucial for a successful conversation, as it involves understanding user intentions, extracting relevant information, and triggering appropriate responses. + +- **Chat History**: Chat history is the record of all interactions between the user and the chatbot, including both user inputs and AI-generated outputs. Maintaining chat history is essential for keeping track of the conversation context and ensuring the AI can generate contextually relevant responses. Chat History is a special type of chat flow input, that stores chat messages in a structured format. + + - NOTE: Currently the sample flows do not send chat history messages to agent workflow. + +- **Chat Output**: Chat output refers to the AI-generated messages that are sent to the user in response to their inputs. Generating contextually appropriate and engaging chat outputs is vital for a positive user experience. + +A chat flow can have multiple inputs, but Chat History and Chat Input are required inputs in chat flow. + +## Interact with chat flow + +Promptflow supports interacting via vscode or via Promptflow CLI provides a way to start an interactive chat session for chat flow. Customer can use below command to start an interactive chat session: + +```bash +pf flow test --flow --interactive +``` + +## Autogen State Flow + +[Autogen State Flow](./autogen_stateflow.py) contains stateflow example shared at [StateFlow](https://microsoft.github.io/autogen/blog/2024/02/29/StateFlow/) with Promptflow. All the interim messages are sent to Redis channel. You can use these to stream to frontend or take further actions. Output of Prompflow is `summary` message from group chat. + +## Agent Nested Chat + +[Autogen Nested Chat](./agentchat_nestedchat.py) contains Scenario 1 of nested chat example shared at [Nested Chats](https://microsoft.github.io/autogen/docs/notebooks/agentchat_nestedchat) with Promptflow. All the interim messages are sent to Redis channel. You can use these to stream to frontend or take further actions. Output of Prompflow is `summary` message from group chat. + +## Redis for Data cache and Interim Messages + +Autogen supports Redis for [data caching](https://microsoft.github.io/autogen/docs/reference/cache/redis_cache/) and since redis supports a pub-subs model as well, this Promptflow example is configured for all agent callbacks to send messages to a Redis channel. This is optional feature but is essential for long running workflows and provides access to interim messages for your frontend. NOTE: Currently Promtpflow only support [SSE](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events) for streaming data and does not support websockets. NOTE: In multi user chat bot environment please make necessary changes to send messages to corresponding channel. diff --git a/samples/apps/promptflow-autogen/agentchat_nestedchat.py b/samples/apps/promptflow-autogen/agentchat_nestedchat.py new file mode 100644 index 00000000000..561d8c11e16 --- /dev/null +++ b/samples/apps/promptflow-autogen/agentchat_nestedchat.py @@ -0,0 +1,108 @@ +import json +from typing import Any, Dict, List + +import redis + +import autogen +from autogen import Cache + + +class AgNestedChat: + def __init__(self, redis_url: str, config_list: List[Dict[str, Any]]) -> None: + # Initialize the workflows dictionary + self.workflows = {} + + # Establish a connection to Redis + self.redis_con = redis.from_url(redis_url) + + # Create a Redis cache with a seed of 16 + self.redis_cache = Cache.redis(cache_seed=16, redis_url=redis_url) + + # Store the configuration list + self.config_list = config_list + + # Define the GPT-4 configuration + self.llm_config = { + "cache_seed": False, # change the cache_seed for different trials + "temperature": 0, + "config_list": self.config_list, + "timeout": 120, + } + + # Initialize the writer agent + self.writer = autogen.AssistantAgent( + name="Writer", + llm_config={"config_list": config_list}, + system_message=""" + You are a professional writer, known for your insightful and engaging articles. + You transform complex concepts into compelling narratives. + You should improve the quality of the content based on the feedback from the user. + """, + ) + + # Initialize the user proxy agent + self.user_proxy = autogen.UserProxyAgent( + name="User", + human_input_mode="NEVER", + is_termination_msg=lambda x: x.get("content", "").find("TERMINATE") >= 0, + code_execution_config={ + "last_n_messages": 1, + "work_dir": "tasks", + "use_docker": False, + }, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly. + ) + + # Initialize the critic agent + self.critic = autogen.AssistantAgent( + name="Critic", + llm_config={"config_list": config_list}, + system_message=""" + You are a critic, known for your thoroughness and commitment to standards. + Your task is to scrutinize content for any harmful elements or regulatory violations, ensuring + all materials align with required guidelines. + For code + """, + ) + + # Register the reply function for each agent + agents_list = [self.writer, self.user_proxy, self.critic] + for agent in agents_list: + agent.register_reply( + [autogen.Agent, None], + reply_func=self._update_redis, + config={"callback": None}, + ) + + def _update_redis(self, recipient, messages=[], sender=None, config=None): + # Publish a message to Redis + mesg = {"sender": sender.name, "receiver": recipient.name, "messages": messages} + self.redis_con.publish("channel:1", json.dumps(mesg)) + return False, None + + def _reflection_message(self, recipient, messages, sender, config): + # Generate a reflection message + print("Reflecting...", "yellow") + return f"Reflect and provide critique on the following writing. \n\n {recipient.chat_messages_for_summary(sender)[-1]['content']}" + + def chat(self, question: str) -> autogen.ChatResult: + # Register nested chats for the user proxy agent + self.user_proxy.register_nested_chats( + [ + { + "recipient": self.critic, + "message": self._reflection_message, + "summary_method": "last_msg", + "max_turns": 1, + } + ], + trigger=self.writer, # condition=my_condition, + ) + + # Initiate a chat and return the result + res = self.user_proxy.initiate_chat( + recipient=self.writer, + message=question, + max_turns=2, + summary_method="last_msg", + ) + return res diff --git a/samples/apps/promptflow-autogen/autogen_stateflow.py b/samples/apps/promptflow-autogen/autogen_stateflow.py new file mode 100644 index 00000000000..81ffddafae2 --- /dev/null +++ b/samples/apps/promptflow-autogen/autogen_stateflow.py @@ -0,0 +1,120 @@ +import json +import tempfile +from typing import Any, Dict, List + +import redis + +import autogen +from autogen import Cache +from autogen.coding import LocalCommandLineCodeExecutor + + +class AgStateFlow: + def __init__(self, redis_url: str, config_list: List[Dict[str, Any]]) -> None: + # Initialize the workflows dictionary + self.workflows = {} + + # Establish a connection to Redis + self.redis_con = redis.from_url(redis_url) + + # Create a Redis cache with a seed of 16 + self.redis_cache = Cache.redis(cache_seed=16, redis_url=redis_url) + + # Store the configuration list + self.config_list = config_list + + # Create a temporary directory to store the code files + self.temp_dir = tempfile.TemporaryDirectory() + + # Create a local command line code executor with a timeout of 10 seconds + # and use the temporary directory to store the code files + self.local_executor = LocalCommandLineCodeExecutor(timeout=10, work_dir=self.temp_dir.name) + + # Define the GPT-4 configuration + self.gpt4_config = { + "cache_seed": False, + "temperature": 0, + "config_list": self.config_list, + "timeout": 120, + } + # Initialize the agents + self.initializer = autogen.UserProxyAgent( + name="Init", + code_execution_config=False, + ) + self.coder = autogen.AssistantAgent( + name="Retrieve_Action_1", + llm_config=self.gpt4_config, + system_message="""You are the Coder. Given a topic, write code to retrieve related papers from the arXiv API, print their title, authors, abstract, and link. + You write python/shell code to solve tasks. Wrap the code in a code block that specifies the script type. The user can't modify your code. So do not suggest incomplete code which requires others to modify. Don't use a code block if it's not intended to be executed by the executor. + Don't include multiple code blocks in one response. Do not ask others to copy and paste the result. Check the execution result returned by the executor. + If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can't be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try. + """, + ) + self.executor = autogen.UserProxyAgent( + name="Retrieve_Action_2", + system_message="Executor. Execute the code written by the Coder and report the result.", + human_input_mode="NEVER", + code_execution_config={"executor": self.local_executor}, + ) + self.scientist = autogen.AssistantAgent( + name="Research_Action_1", + llm_config=self.gpt4_config, + system_message="""You are the Scientist. Please categorize papers after seeing their abstracts printed and create a markdown table with Domain, Title, Authors, Summary and Link""", + ) + + # Create the workflow + self.create_workflow() + + def _state_transition(self, last_speaker, groupchat): + messages = groupchat.messages + + # Define the state transitions + if last_speaker is self.initializer: + # init -> retrieve + return self.coder + elif last_speaker is self.coder: + # retrieve: action 1 -> action 2 + return self.executor + elif last_speaker is self.executor: + if messages[-1]["content"] == "exitcode: 1": + # retrieve --(execution failed)--> retrieve + return self.coder + else: + # retrieve --(execution success)--> research + return self.scientist + elif last_speaker == "Scientist": + # research -> end + return None + + def _update_redis(self, recipient, messages=[], sender=None, config=None): + # Publish a message to Redis + mesg = {"sender": sender.name, "receiver": recipient.name, "messages": messages} + self.redis_con.publish("channel:1", json.dumps(mesg)) + return False, None + + def create_workflow(self): + # Register the reply function for each agent + agents_list = [self.initializer, self.coder, self.executor, self.scientist] + for agent in agents_list: + agent.register_reply( + [autogen.Agent, None], + reply_func=self._update_redis, + config={"callback": None}, + ) + + # Create a group chat with the agents and define the speaker selection method + self.groupchat = autogen.GroupChat( + agents=agents_list, + messages=[], + max_round=20, + speaker_selection_method=self._state_transition, + ) + + # Create a group chat manager + self.manager = autogen.GroupChatManager(groupchat=self.groupchat, llm_config=self.gpt4_config) + + def chat(self, question: str): + # Initiate a chat and return the result + chat_result = self.initializer.initiate_chat(self.manager, message=question, cache=self.redis_cache) + return chat_result diff --git a/samples/apps/promptflow-autogen/autogen_task.py b/samples/apps/promptflow-autogen/autogen_task.py new file mode 100644 index 00000000000..cf2babb0363 --- /dev/null +++ b/samples/apps/promptflow-autogen/autogen_task.py @@ -0,0 +1,38 @@ +from agentchat_nestedchat import AgNestedChat +from autogen_stateflow import AgStateFlow +from promptflow.connections import AzureOpenAIConnection, CustomConnection +from promptflow.core import tool + + +@tool +def my_python_tool( + redisConnection: CustomConnection, + question: str, + azureOpenAiConnection: AzureOpenAIConnection, + azureOpenAiModelName: str = "gpt-4-32k", + autogen_workflow_id: int = 1, +) -> str: + aoai_api_base = azureOpenAiConnection.api_base + aoai_api_key: str = azureOpenAiConnection.api_key + aoai_api_version: str = azureOpenAiConnection.api_version + OAI_CONFIG_LIST = [ + { + "model": azureOpenAiModelName, + "api_key": aoai_api_key, + "base_url": aoai_api_base, + "api_type": "azure", + "api_version": aoai_api_version, + } + ] + + redis_url = redisConnection.secrets["redis_url"] + if autogen_workflow_id == 1: + ag_workflow = AgStateFlow(config_list=OAI_CONFIG_LIST, redis_url=redis_url) + res = ag_workflow.chat(question=question) + return res.summary + elif autogen_workflow_id == 2: + ag_workflow = AgNestedChat(config_list=OAI_CONFIG_LIST, redis_url=redis_url) + res = ag_workflow.chat(question=question) + return res.summary + else: + raise ValueError("Invalid workflow ID") diff --git a/samples/apps/promptflow-autogen/azure_openai.yaml b/samples/apps/promptflow-autogen/azure_openai.yaml new file mode 100644 index 00000000000..fde2b5c6d9b --- /dev/null +++ b/samples/apps/promptflow-autogen/azure_openai.yaml @@ -0,0 +1,6 @@ +$schema: https://azuremlschemas.azureedge.net/promptflow/latest/AzureOpenAIConnection.schema.json +name: open_ai_connection +type: azure_open_ai +api_key: "" +api_base: "" +api_type: "azure" diff --git a/samples/apps/promptflow-autogen/custom_conn.yaml b/samples/apps/promptflow-autogen/custom_conn.yaml new file mode 100644 index 00000000000..54c3cf9c0d1 --- /dev/null +++ b/samples/apps/promptflow-autogen/custom_conn.yaml @@ -0,0 +1,9 @@ +$schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomConnection.schema.json +name: "redis_connection_url" +type: custom +configs: + key1: "test1" +secrets: + # Use'' to keep original value or '' to update it when the application runs. + key2: "test2" + redis_url: "" diff --git a/samples/apps/promptflow-autogen/flow.dag.yaml b/samples/apps/promptflow-autogen/flow.dag.yaml new file mode 100644 index 00000000000..bfda4fbd658 --- /dev/null +++ b/samples/apps/promptflow-autogen/flow.dag.yaml @@ -0,0 +1,31 @@ +$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json +environment: + python_requirements_txt: requirements.txt +inputs: + chat_history: + type: list + is_chat_history: true + default: [] + question: + type: string + is_chat_input: true + default: Write a concise but engaging blogpost about programming language python + autogen_workflow_id: + type: int + default: 2 +outputs: + answer: + type: string + reference: ${autogen_task.output} + is_chat_output: true +nodes: +- name: autogen_task + type: python + source: + type: code + path: autogen_task.py + inputs: + redisConnection: redis_connection_url + azureOpenAiConnection: aoai-connection + question: ${inputs.question} + autogen_workflow_id: ${inputs.autogen_workflow_id} diff --git a/samples/apps/promptflow-autogen/requirements.txt b/samples/apps/promptflow-autogen/requirements.txt new file mode 100644 index 00000000000..6fe9807785f --- /dev/null +++ b/samples/apps/promptflow-autogen/requirements.txt @@ -0,0 +1,7 @@ +promptflow==1.8.0 +pyautogen==0.2.23 +pyautogen[graph] +pyautogen[redis] +redis +semantic-kernel +beautifulsoup4 diff --git a/setup.py b/setup.py index b718ab7269d..cea36b7052d 100644 --- a/setup.py +++ b/setup.py @@ -14,7 +14,7 @@ __version__ = version["__version__"] install_requires = [ - "openai>=1.3", + "openai>=1.3,<1.21", "diskcache", "termcolor", "flaml", @@ -60,10 +60,28 @@ "blendsearch": ["flaml[blendsearch]"], "mathchat": ["sympy", "pydantic==1.10.9", "wolframalpha"], "retrievechat": ["chromadb", "sentence_transformers", "pypdf", "ipython", "beautifulsoup4", "markdownify"], + "retrievechat-pgvector": [ + "pgvector>=0.2.5", + "psycopg>=3.1.18", + "sentence_transformers", + "pypdf", + "ipython", + "beautifulsoup4", + "markdownify", + ], + "retrievechat-qdrant": [ + "qdrant_client[fastembed]", + "sentence_transformers", + "pypdf", + "ipython", + "beautifulsoup4", + "markdownify", + ], "autobuild": ["chromadb", "sentence-transformers", "huggingface-hub"], "teachable": ["chromadb"], "lmm": ["replicate", "pillow"], "graph": ["networkx", "matplotlib"], + "gemini": ["google-generativeai>=0.5,<1", "pillow", "pydantic"], "websurfer": ["beautifulsoup4", "markdownify", "pdfminer.six", "pathvalidate"], "redis": ["redis"], "cosmosdb": ["azure-cosmos>=4.2.0"], diff --git a/test/agentchat/contrib/capabilities/test_transform_messages.py b/test/agentchat/contrib/capabilities/test_transform_messages.py index ac0cdf58755..4888b49f327 100644 --- a/test/agentchat/contrib/capabilities/test_transform_messages.py +++ b/test/agentchat/contrib/capabilities/test_transform_messages.py @@ -1,4 +1,3 @@ -import copy import os import sys import tempfile @@ -7,7 +6,6 @@ import pytest import autogen -from autogen import token_count_utils from autogen.agentchat.contrib.capabilities.transform_messages import TransformMessages from autogen.agentchat.contrib.capabilities.transforms import MessageHistoryLimiter, MessageTokenLimiter @@ -18,106 +16,6 @@ from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402 -def _count_tokens(content: Union[str, List[Dict[str, Any]]]) -> int: - token_count = 0 - if isinstance(content, str): - token_count = token_count_utils.count_token(content) - elif isinstance(content, list): - for item in content: - token_count += _count_tokens(item.get("text", "")) - return token_count - - -def test_limit_token_transform(): - """ - Test the TokenLimitTransform capability. - """ - - messages = [ - {"role": "user", "content": "short string"}, - { - "role": "assistant", - "content": [{"type": "text", "text": "very very very very very very very very long string"}], - }, - ] - - # check if token limit per message is not exceeded. - max_tokens_per_message = 5 - token_limit_transform = MessageTokenLimiter(max_tokens_per_message=max_tokens_per_message) - transformed_messages = token_limit_transform.apply_transform(copy.deepcopy(messages)) - - for message in transformed_messages: - assert _count_tokens(message["content"]) <= max_tokens_per_message - - # check if total token limit is not exceeded. - max_tokens = 10 - token_limit_transform = MessageTokenLimiter(max_tokens=max_tokens) - transformed_messages = token_limit_transform.apply_transform(copy.deepcopy(messages)) - - token_count = 0 - for message in transformed_messages: - token_count += _count_tokens(message["content"]) - - assert token_count <= max_tokens - assert len(transformed_messages) <= len(messages) - - # check if token limit per message works nicely with total token limit. - token_limit_transform = MessageTokenLimiter(max_tokens=max_tokens, max_tokens_per_message=max_tokens_per_message) - - transformed_messages = token_limit_transform.apply_transform(copy.deepcopy(messages)) - - token_count = 0 - for message in transformed_messages: - token_count_local = _count_tokens(message["content"]) - token_count += token_count_local - assert token_count_local <= max_tokens_per_message - - assert token_count <= max_tokens - assert len(transformed_messages) <= len(messages) - - -def test_limit_token_transform_without_content(): - """Test the TokenLimitTransform with messages that don't have content.""" - - messages = [{"role": "user", "function_call": "example"}, {"role": "assistant", "content": None}] - - # check if token limit per message works nicely with total token limit. - token_limit_transform = MessageTokenLimiter(max_tokens=10, max_tokens_per_message=5) - - transformed_messages = token_limit_transform.apply_transform(copy.deepcopy(messages)) - - assert len(transformed_messages) == len(messages) - - -def test_limit_token_transform_total_token_count(): - """Tests if the TokenLimitTransform truncates without dropping messages.""" - messages = [{"role": "very very very very very"}] - - token_limit_transform = MessageTokenLimiter(max_tokens=1) - transformed_messages = token_limit_transform.apply_transform(copy.deepcopy(messages)) - - assert len(transformed_messages) == 1 - - -def test_max_message_history_length_transform(): - """ - Test the MessageHistoryLimiter capability to limit the number of messages. - """ - messages = [ - {"role": "user", "content": "hello"}, - {"role": "assistant", "content": [{"type": "text", "text": "there"}]}, - {"role": "user", "content": "how"}, - {"role": "assistant", "content": [{"type": "text", "text": "are you doing?"}]}, - ] - - max_messages = 2 - messages_limiter = MessageHistoryLimiter(max_messages=max_messages) - transformed_messages = messages_limiter.apply_transform(copy.deepcopy(messages)) - - assert len(transformed_messages) == max_messages - assert transformed_messages == messages[max_messages:] - - @pytest.mark.skipif(skip_openai, reason="Requested to skip openai test.") def test_transform_messages_capability(): """Test the TransformMessages capability to handle long contexts. @@ -172,6 +70,4 @@ def test_transform_messages_capability(): if __name__ == "__main__": - test_limit_token_transform() - test_max_message_history_length_transform() test_transform_messages_capability() diff --git a/test/agentchat/contrib/capabilities/test_transforms.py b/test/agentchat/contrib/capabilities/test_transforms.py new file mode 100644 index 00000000000..1a929e4c6ba --- /dev/null +++ b/test/agentchat/contrib/capabilities/test_transforms.py @@ -0,0 +1,122 @@ +import copy +from typing import Dict, List + +import pytest + +from autogen.agentchat.contrib.capabilities.transforms import MessageHistoryLimiter, MessageTokenLimiter, _count_tokens + + +def get_long_messages() -> List[Dict]: + return [ + {"role": "assistant", "content": [{"type": "text", "text": "are you doing?"}]}, + {"role": "user", "content": "very very very very very very long string"}, + {"role": "user", "content": "hello"}, + {"role": "assistant", "content": [{"type": "text", "text": "there"}]}, + {"role": "user", "content": "how"}, + ] + + +def get_short_messages() -> List[Dict]: + return [ + {"role": "user", "content": "hello"}, + {"role": "assistant", "content": [{"type": "text", "text": "there"}]}, + {"role": "user", "content": "how"}, + ] + + +def get_no_content_messages() -> List[Dict]: + return [{"role": "user", "function_call": "example"}, {"role": "assistant", "content": None}] + + +@pytest.fixture +def message_history_limiter() -> MessageHistoryLimiter: + return MessageHistoryLimiter(max_messages=3) + + +@pytest.fixture +def message_token_limiter() -> MessageTokenLimiter: + return MessageTokenLimiter(max_tokens_per_message=3) + + +# MessageHistoryLimiter tests + + +@pytest.mark.parametrize( + "messages, expected_messages_len", + [(get_long_messages(), 3), (get_short_messages(), 3), (get_no_content_messages(), 2)], +) +def test_message_history_limiter_apply_transform(message_history_limiter, messages, expected_messages_len): + transformed_messages = message_history_limiter.apply_transform(messages) + assert len(transformed_messages) == expected_messages_len + + +@pytest.mark.parametrize( + "messages, expected_logs, expected_effect", + [ + (get_long_messages(), "Removed 2 messages. Number of messages reduced from 5 to 3.", True), + (get_short_messages(), "No messages were removed.", False), + (get_no_content_messages(), "No messages were removed.", False), + ], +) +def test_message_history_limiter_get_logs(message_history_limiter, messages, expected_logs, expected_effect): + pre_transform_messages = copy.deepcopy(messages) + transformed_messages = message_history_limiter.apply_transform(messages) + logs_str, had_effect = message_history_limiter.get_logs(pre_transform_messages, transformed_messages) + assert had_effect == expected_effect + assert logs_str == expected_logs + + +# MessageTokenLimiter tests + + +@pytest.mark.parametrize( + "messages, expected_token_count, expected_messages_len", + [(get_long_messages(), 9, 5), (get_short_messages(), 3, 3), (get_no_content_messages(), 0, 2)], +) +def test_message_token_limiter_apply_transform( + message_token_limiter, messages, expected_token_count, expected_messages_len +): + transformed_messages = message_token_limiter.apply_transform(messages) + assert ( + sum(_count_tokens(msg["content"]) for msg in transformed_messages if "content" in msg) == expected_token_count + ) + assert len(transformed_messages) == expected_messages_len + + +@pytest.mark.parametrize( + "messages, expected_logs, expected_effect", + [ + (get_long_messages(), "Truncated 6 tokens. Number of tokens reduced from 15 to 9", True), + (get_short_messages(), "No tokens were truncated.", False), + (get_no_content_messages(), "No tokens were truncated.", False), + ], +) +def test_message_token_limiter_get_logs(message_token_limiter, messages, expected_logs, expected_effect): + pre_transform_messages = copy.deepcopy(messages) + transformed_messages = message_token_limiter.apply_transform(messages) + logs_str, had_effect = message_token_limiter.get_logs(pre_transform_messages, transformed_messages) + assert had_effect == expected_effect + assert logs_str == expected_logs + + +if __name__ == "__main__": + long_messages = get_long_messages() + short_messages = get_short_messages() + message_history_limiter = MessageHistoryLimiter(max_messages=3) + message_token_limiter = MessageTokenLimiter(max_tokens_per_message=3) + + # Call the MessageHistoryLimiter tests + test_message_history_limiter_apply_transform(message_history_limiter, long_messages, 3) + test_message_history_limiter_apply_transform(message_history_limiter, short_messages, 3) + test_message_history_limiter_get_logs( + message_history_limiter, long_messages, "Removed 2 messages. Number of messages reduced from 5 to 3.", True + ) + test_message_history_limiter_get_logs(message_history_limiter, short_messages, "No messages were removed.", False) + + # Call the MessageTokenLimiter tests + test_message_token_limiter_apply_transform(message_token_limiter, long_messages, 9) + test_message_token_limiter_apply_transform(message_token_limiter, short_messages, 3) + test_message_token_limiter_get_logs( + message_token_limiter, long_messages, "Truncated 6 tokens. Number of tokens reduced from 15 to 9", True + ) + test_message_token_limiter_get_logs(message_token_limiter, short_messages, "No tokens were truncated.", False) diff --git a/test/agentchat/contrib/test_agent_builder.py b/test/agentchat/contrib/test_agent_builder.py index 614aa106a04..4b00ca78122 100755 --- a/test/agentchat/contrib/test_agent_builder.py +++ b/test/agentchat/contrib/test_agent_builder.py @@ -10,9 +10,17 @@ sys.path.append(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(os.path.join(os.path.dirname(__file__), "../..")) -from conftest import skip_openai as skip # noqa: E402 +from conftest import reason, skip_openai # noqa: E402 from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402 +try: + import chromadb + import huggingface_hub +except ImportError: + skip = True +else: + skip = False + here = os.path.abspath(os.path.dirname(__file__)) @@ -30,8 +38,8 @@ def _config_check(config): @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_build(): builder = AgentBuilder( @@ -59,8 +67,8 @@ def test_build(): @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai or skip, + reason=reason + "OR dependency not installed", ) def test_build_from_library(): builder = AgentBuilder( @@ -109,8 +117,8 @@ def test_build_from_library(): @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_save(): builder = AgentBuilder( @@ -143,8 +151,8 @@ def test_save(): @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_load(): builder = AgentBuilder( @@ -169,8 +177,8 @@ def test_load(): @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_clear_agent(): builder = AgentBuilder( diff --git a/test/agentchat/contrib/test_agent_optimizer.py b/test/agentchat/contrib/test_agent_optimizer.py index 533924bb28a..9587c9d5975 100644 --- a/test/agentchat/contrib/test_agent_optimizer.py +++ b/test/agentchat/contrib/test_agent_optimizer.py @@ -1,19 +1,23 @@ import os +import sys import pytest -from conftest import skip_openai as skip -from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST import autogen -from autogen import AssistantAgent, UserProxyAgent, config_list_from_json +from autogen import AssistantAgent, UserProxyAgent from autogen.agentchat.contrib.agent_optimizer import AgentOptimizer +sys.path.append(os.path.join(os.path.dirname(__file__), "..")) +sys.path.append(os.path.join(os.path.dirname(__file__), "../..")) +from conftest import reason, skip_openai +from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST + here = os.path.abspath(os.path.dirname(__file__)) @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_record_conversation(): problem = "Simplify $\\sqrt[3]{1+8} \\cdot \\sqrt[3]{1+\\sqrt[3]{8}}" @@ -54,8 +58,8 @@ def test_record_conversation(): @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_step(): problem = "Simplify $\\sqrt[3]{1+8} \\cdot \\sqrt[3]{1+\\sqrt[3]{8}}" diff --git a/test/agentchat/contrib/test_gpt_assistant.py b/test/agentchat/contrib/test_gpt_assistant.py index d99bae0decf..052eedd311a 100755 --- a/test/agentchat/contrib/test_gpt_assistant.py +++ b/test/agentchat/contrib/test_gpt_assistant.py @@ -14,12 +14,12 @@ from autogen.oai.openai_utils import retrieve_assistants_by_name sys.path.append(os.path.join(os.path.dirname(__file__), "../..")) -from conftest import skip_openai as skip # noqa: E402 +from conftest import reason, skip_openai # noqa: E402 sys.path.append(os.path.join(os.path.dirname(__file__), "..")) from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402 -if not skip: +if not skip_openai: openai_config_list = autogen.config_list_from_json( OAI_CONFIG_LIST, file_location=KEY_LOC, @@ -28,6 +28,7 @@ filter_dict={ "api_type": ["openai"], "model": [ + "gpt-4-turbo", "gpt-4-turbo-preview", "gpt-4-0125-preview", "gpt-4-1106-preview", @@ -45,8 +46,8 @@ @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_config_list() -> None: assert len(openai_config_list) > 0 @@ -54,8 +55,8 @@ def test_config_list() -> None: @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_gpt_assistant_chat() -> None: for gpt_config in [openai_config_list, aoai_config_list]: @@ -128,8 +129,8 @@ def ask_ossinsight(question: str) -> str: @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_get_assistant_instructions() -> None: for gpt_config in [openai_config_list, aoai_config_list]: @@ -157,8 +158,8 @@ def _test_get_assistant_instructions(gpt_config) -> None: @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_gpt_assistant_instructions_overwrite() -> None: for gpt_config in [openai_config_list, aoai_config_list]: @@ -211,8 +212,8 @@ def _test_gpt_assistant_instructions_overwrite(gpt_config) -> None: @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_gpt_assistant_existing_no_instructions() -> None: """ @@ -251,8 +252,8 @@ def test_gpt_assistant_existing_no_instructions() -> None: @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_get_assistant_files() -> None: """ @@ -288,8 +289,8 @@ def test_get_assistant_files() -> None: @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_assistant_retrieval() -> None: """ @@ -365,8 +366,8 @@ def test_assistant_retrieval() -> None: @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_assistant_mismatch_retrieval() -> None: """Test function to check if the GPTAssistantAgent can filter out the mismatch assistant""" @@ -487,8 +488,8 @@ def test_assistant_mismatch_retrieval() -> None: @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_gpt_assistant_tools_overwrite() -> None: """ @@ -609,8 +610,8 @@ def test_gpt_assistant_tools_overwrite() -> None: @pytest.mark.skipif( - skip, - reason="requested to skip", + skip_openai, + reason=reason, ) def test_gpt_reflection_with_llm() -> None: gpt_assistant = GPTAssistantAgent( @@ -640,10 +641,10 @@ def test_gpt_reflection_with_llm() -> None: if __name__ == "__main__": - test_gpt_assistant_chat() - test_get_assistant_instructions() - test_gpt_assistant_instructions_overwrite() - test_gpt_assistant_existing_no_instructions() + # test_gpt_assistant_chat() + # test_get_assistant_instructions() + # test_gpt_assistant_instructions_overwrite() + # test_gpt_assistant_existing_no_instructions() test_get_assistant_files() - test_assistant_mismatch_retrieval() - test_gpt_assistant_tools_overwrite() + # test_assistant_mismatch_retrieval() + # test_gpt_assistant_tools_overwrite() diff --git a/test/agentchat/contrib/test_pgvector_retrievechat.py b/test/agentchat/contrib/test_pgvector_retrievechat.py new file mode 100644 index 00000000000..f4a1247ac65 --- /dev/null +++ b/test/agentchat/contrib/test_pgvector_retrievechat.py @@ -0,0 +1,130 @@ +#!/usr/bin/env python3 -m pytest + +import os +import sys + +import pytest +from sentence_transformers import SentenceTransformer + +from autogen import config_list_from_json +from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent + +sys.path.append(os.path.join(os.path.dirname(__file__), "../..")) +from conftest import skip_openai # noqa: E402 + +sys.path.append(os.path.join(os.path.dirname(__file__), "..")) +from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402 + +try: + import pgvector + + from autogen.agentchat.contrib.retrieve_assistant_agent import ( + RetrieveAssistantAgent, + ) + from autogen.agentchat.contrib.retrieve_user_proxy_agent import ( + RetrieveUserProxyAgent, + ) +except ImportError: + skip = True +else: + skip = False or skip_openai + + +test_dir = os.path.join(os.path.dirname(__file__), "../..", "test_files") + + +@pytest.mark.skipif( + skip, + reason="dependency is not installed OR requested to skip", +) +def test_retrievechat(): + conversations = {} + # ChatCompletion.start_logging(conversations) # deprecated in v0.2 + + config_list = config_list_from_json( + OAI_CONFIG_LIST, + file_location=KEY_LOC, + ) + + assistant = RetrieveAssistantAgent( + name="assistant", + system_message="You are a helpful assistant.", + llm_config={ + "timeout": 600, + "seed": 42, + "config_list": config_list, + }, + ) + + sentence_transformer_ef = SentenceTransformer("all-MiniLM-L6-v2") + ragproxyagent = RetrieveUserProxyAgent( + name="ragproxyagent", + human_input_mode="NEVER", + max_consecutive_auto_reply=3, + retrieve_config={ + "task": "code", + "docs_path": [ + "https://raw.githubusercontent.com/microsoft/FLAML/main/website/docs/Examples/Integrate%20-%20Spark.md", + "https://raw.githubusercontent.com/microsoft/FLAML/main/website/docs/Research.md", + "https://raw.githubusercontent.com/Knuckles-Team/geniusbot/main/README.md", + "https://raw.githubusercontent.com/Knuckles-Team/repository-manager/main/README.md", + "https://raw.githubusercontent.com/Knuckles-Team/gitlab-api/main/README.md", + "https://raw.githubusercontent.com/Knuckles-Team/media-downloader/main/README.md", + os.path.join(os.path.abspath(""), "..", "website", "docs"), + ], + "custom_text_types": ["non-existent-type"], + "chunk_token_size": 2000, + "model": config_list[0]["model"], + "vector_db": "pgvector", # PGVector database + "collection_name": "test_collection", + "db_config": { + "connection_string": "postgresql://postgres:postgres@localhost:5432/postgres", + }, + "embedding_function": sentence_transformer_ef, + "get_or_create": True, # set to False if you don't want to reuse an existing collection + "overwrite": False, # set to True if you want to overwrite an existing collection + }, + code_execution_config=False, # set to False if you don't want to execute the code + ) + + assistant.reset() + + code_problem = "How can I use FLAML to perform a classification task, set use_spark=True, train 30 seconds and force cancel jobs if time limit is reached." + ragproxyagent.initiate_chat( + assistant, message=ragproxyagent.message_generator, problem=code_problem, search_string="spark", silent=True + ) + + print(conversations) + + +@pytest.mark.skipif( + skip, + reason="dependency is not installed", +) +def test_retrieve_config(caplog): + # test warning message when no docs_path is provided + ragproxyagent = RetrieveUserProxyAgent( + name="ragproxyagent", + human_input_mode="NEVER", + max_consecutive_auto_reply=2, + retrieve_config={ + "chunk_token_size": 2000, + "get_or_create": True, + }, + ) + + # Capture the printed content + captured_logs = caplog.records[0] + print(captured_logs) + + # Assert on the printed content + assert ( + f"docs_path is not provided in retrieve_config. Will raise ValueError if the collection `{ragproxyagent._collection_name}` doesn't exist." + in captured_logs.message + ) + assert captured_logs.levelname == "WARNING" + + +if __name__ == "__main__": + test_retrievechat() + test_retrieve_config() diff --git a/test/agentchat/contrib/test_web_surfer.py b/test/agentchat/contrib/test_web_surfer.py index 697d145fcd0..9f7ee65da1b 100755 --- a/test/agentchat/contrib/test_web_surfer.py +++ b/test/agentchat/contrib/test_web_surfer.py @@ -10,7 +10,7 @@ from autogen.oai.openai_utils import filter_config sys.path.append(os.path.join(os.path.dirname(__file__), "../..")) -from conftest import MOCK_OPEN_AI_API_KEY, skip_openai # noqa: E402 +from conftest import MOCK_OPEN_AI_API_KEY, reason, skip_openai # noqa: E402 sys.path.append(os.path.join(os.path.dirname(__file__), "..")) from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402 @@ -26,13 +26,6 @@ else: skip_all = False -try: - from openai import OpenAI -except ImportError: - skip_oai = True -else: - skip_oai = False or skip_openai - try: BING_API_KEY = os.environ["BING_API_KEY"] except KeyError: @@ -40,7 +33,7 @@ else: skip_bing = False -if not skip_oai: +if not skip_openai: config_list = config_list_from_json(env_or_file=OAI_CONFIG_LIST, file_location=KEY_LOC) @@ -104,8 +97,8 @@ def test_web_surfer() -> None: @pytest.mark.skipif( - skip_oai, - reason="do not run if oai is not installed", + skip_all or skip_openai, + reason="dependency is not installed OR" + reason, ) def test_web_surfer_oai() -> None: llm_config = {"config_list": config_list, "timeout": 180, "cache_seed": 42} diff --git a/test/agentchat/contrib/vectordb/test_pgvectordb.py b/test/agentchat/contrib/vectordb/test_pgvectordb.py new file mode 100644 index 00000000000..3eafd2df2d5 --- /dev/null +++ b/test/agentchat/contrib/vectordb/test_pgvectordb.py @@ -0,0 +1,82 @@ +import os +import sys + +import pytest + +sys.path.append(os.path.join(os.path.dirname(__file__), "..")) + +try: + import pgvector + import sentence_transformers + + from autogen.agentchat.contrib.vectordb.pgvector import PGVector +except ImportError: + skip = True +else: + skip = False + + +@pytest.mark.skipif(skip, reason="dependency is not installed OR requested to skip") +def test_pgvector(): + # test create collection + db_config = { + "connection_string": "postgresql://postgres:postgres@localhost:5432/postgres", + } + + db = PGVector(connection_string=db_config["connection_string"]) + collection_name = "test_collection" + collection = db.create_collection(collection_name, overwrite=True, get_or_create=True) + assert collection.name == collection_name + + # test_delete_collection + db.delete_collection(collection_name) + pytest.raises(ValueError, db.get_collection, collection_name) + + # test more create collection + collection = db.create_collection(collection_name, overwrite=False, get_or_create=False) + assert collection.name == collection_name + pytest.raises(ValueError, db.create_collection, collection_name, overwrite=False, get_or_create=False) + collection = db.create_collection(collection_name, overwrite=True, get_or_create=False) + assert collection.name == collection_name + collection = db.create_collection(collection_name, overwrite=False, get_or_create=True) + assert collection.name == collection_name + + # test_get_collection + collection = db.get_collection(collection_name) + assert collection.name == collection_name + + # test_insert_docs + docs = [{"content": "doc1", "id": "1"}, {"content": "doc2", "id": "2"}, {"content": "doc3", "id": "3"}] + db.insert_docs(docs, collection_name, upsert=False) + res = db.get_collection(collection_name).get(["1", "2"]) + assert res["documents"] == ["doc1", "doc2"] + + # test_update_docs + docs = [{"content": "doc11", "id": "1"}, {"content": "doc2", "id": "2"}, {"content": "doc3", "id": "3"}] + db.update_docs(docs, collection_name) + res = db.get_collection(collection_name).get(["1", "2"]) + assert res["documents"] == ["doc11", "doc2"] + + # test_delete_docs + ids = ["1"] + collection_name = "test_collection" + db.delete_docs(ids, collection_name) + res = db.get_collection(collection_name).get(ids) + assert res["documents"] == [] + + # test_retrieve_docs + queries = ["doc2", "doc3"] + collection_name = "test_collection" + res = db.retrieve_docs(queries, collection_name) + assert [[r[0]["id"] for r in rr] for rr in res] == [["2", "3"], ["3", "2"]] + res = db.retrieve_docs(queries, collection_name, distance_threshold=0.1) + print(res) + assert [[r[0]["id"] for r in rr] for rr in res] == [["2"], ["3"]] + + # test_get_docs_by_ids + res = db.get_docs_by_ids(["1", "2"], collection_name) + assert [r["id"] for r in res] == ["2"] # "1" has been deleted + + +if __name__ == "__main__": + test_pgvector() diff --git a/test/agentchat/test_agent_logging.py b/test/agentchat/test_agent_logging.py index 9f783515411..a776173253d 100644 --- a/test/agentchat/test_agent_logging.py +++ b/test/agentchat/test_agent_logging.py @@ -1,15 +1,19 @@ import json +import os import sqlite3 import sys import uuid import pytest -from conftest import skip_openai -from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST import autogen import autogen.runtime_logging +sys.path.append(os.path.join(os.path.dirname(__file__), "..")) +sys.path.append(os.path.join(os.path.dirname(__file__), "../..")) +from conftest import skip_openai # noqa: E402 +from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402 + TEACHER_MESSAGE = """ You are roleplaying a math teacher, and your job is to help your students with linear algebra. Keep your explanations short. @@ -35,7 +39,7 @@ config_list = autogen.config_list_from_json( OAI_CONFIG_LIST, filter_dict={ - "model": ["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-v0314"], + "model": ["gpt-3.5-turbo"], }, file_location=KEY_LOC, ) diff --git a/test/agentchat/test_agent_setup_with_use_docker_settings.py b/test/agentchat/test_agent_setup_with_use_docker_settings.py index 4669232cf31..b5a1291b96a 100644 --- a/test/agentchat/test_agent_setup_with_use_docker_settings.py +++ b/test/agentchat/test_agent_setup_with_use_docker_settings.py @@ -1,7 +1,7 @@ import os +import sys import pytest -from conftest import skip_openai from autogen import UserProxyAgent from autogen.code_utils import ( @@ -9,19 +9,15 @@ is_docker_running, ) -try: - import openai -except ImportError: - skip = True -else: - skip = False or skip_openai +sys.path.append(os.path.join(os.path.dirname(__file__), "..")) +from conftest import reason, skip_openai def docker_running(): return is_docker_running() or in_docker_container() -@pytest.mark.skipif(skip, reason="openai not installed") +@pytest.mark.skipif(skip_openai, reason=reason) def test_agent_setup_with_code_execution_off(): user_proxy = UserProxyAgent( name="test_agent", @@ -32,7 +28,7 @@ def test_agent_setup_with_code_execution_off(): assert user_proxy._code_execution_config is False -@pytest.mark.skipif(skip, reason="openai not installed") +@pytest.mark.skipif(skip_openai, reason=reason) def test_agent_setup_with_use_docker_false(): user_proxy = UserProxyAgent( name="test_agent", @@ -43,7 +39,7 @@ def test_agent_setup_with_use_docker_false(): assert user_proxy._code_execution_config["use_docker"] is False -@pytest.mark.skipif(skip, reason="openai not installed") +@pytest.mark.skipif(skip_openai, reason=reason) def test_agent_setup_with_env_variable_false_and_docker_running(monkeypatch): monkeypatch.setenv("AUTOGEN_USE_DOCKER", "False") @@ -55,7 +51,7 @@ def test_agent_setup_with_env_variable_false_and_docker_running(monkeypatch): assert user_proxy._code_execution_config["use_docker"] is False -@pytest.mark.skipif(skip or (not docker_running()), reason="openai not installed OR docker not running") +@pytest.mark.skipif(skip_openai or (not docker_running()), reason=reason + " OR docker not running") def test_agent_setup_with_default_and_docker_running(monkeypatch): monkeypatch.delenv("AUTOGEN_USE_DOCKER", raising=False) @@ -71,7 +67,7 @@ def test_agent_setup_with_default_and_docker_running(monkeypatch): assert user_proxy._code_execution_config["use_docker"] is True -@pytest.mark.skipif(skip or (docker_running()), reason="openai not installed OR docker running") +@pytest.mark.skipif(skip_openai or (docker_running()), reason=reason + " OR docker running") def test_raises_error_agent_setup_with_default_and_docker_not_running(monkeypatch): monkeypatch.delenv("AUTOGEN_USE_DOCKER", raising=False) with pytest.raises(RuntimeError): @@ -81,7 +77,7 @@ def test_raises_error_agent_setup_with_default_and_docker_not_running(monkeypatc ) -@pytest.mark.skipif(skip or (docker_running()), reason="openai not installed OR docker running") +@pytest.mark.skipif(skip_openai or (docker_running()), reason=" OR docker running") def test_raises_error_agent_setup_with_env_variable_true_and_docker_not_running(monkeypatch): monkeypatch.setenv("AUTOGEN_USE_DOCKER", "True") @@ -92,7 +88,7 @@ def test_raises_error_agent_setup_with_env_variable_true_and_docker_not_running( ) -@pytest.mark.skipif(skip or (not docker_running()), reason="openai not installed OR docker not running") +@pytest.mark.skipif(skip_openai or (not docker_running()), reason=" OR docker not running") def test_agent_setup_with_env_variable_true_and_docker_running(monkeypatch): monkeypatch.setenv("AUTOGEN_USE_DOCKER", "True") diff --git a/test/agentchat/test_agent_usage.py b/test/agentchat/test_agent_usage.py index 212c5513e62..5ce8d1c1875 100755 --- a/test/agentchat/test_agent_usage.py +++ b/test/agentchat/test_agent_usage.py @@ -1,24 +1,21 @@ #!/usr/bin/env python3 -m pytest import io +import os +import sys from contextlib import redirect_stdout import pytest -from conftest import skip_openai from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST import autogen from autogen import AssistantAgent, UserProxyAgent, gather_usage_summary -try: - import openai -except ImportError: - skip = True -else: - skip = False or skip_openai +sys.path.append(os.path.join(os.path.dirname(__file__), "..")) +from conftest import reason, skip_openai # noqa: E402 -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") +@pytest.mark.skipif(skip_openai, reason=reason) def test_gathering(): config_list = autogen.config_list_from_json( OAI_CONFIG_LIST, @@ -62,11 +59,11 @@ def test_gathering(): "gpt-4": {"cost": 0.3, "prompt_tokens": 100, "completion_tokens": 200, "total_tokens": 300}, } - total_usage, _ = gather_usage_summary([assistant1, assistant2, assistant3]) + total_usage = gather_usage_summary([assistant1, assistant2, assistant3]) - assert round(total_usage["total_cost"], 8) == 0.6 - assert round(total_usage["gpt-35-turbo"]["cost"], 8) == 0.3 - assert round(total_usage["gpt-4"]["cost"], 8) == 0.3 + assert round(total_usage["usage_including_cached_inference"]["total_cost"], 8) == 0.6 + assert round(total_usage["usage_including_cached_inference"]["gpt-35-turbo"]["cost"], 8) == 0.3 + assert round(total_usage["usage_including_cached_inference"]["gpt-4"]["cost"], 8) == 0.3 # test when agent doesn't have client user_proxy = UserProxyAgent( @@ -77,23 +74,25 @@ def test_gathering(): default_auto_reply="That's all. Thank you.", ) - total_usage, acutal_usage = gather_usage_summary([user_proxy]) + total_usage = gather_usage_summary([user_proxy]) + total_usage_summary = total_usage["usage_including_cached_inference"] + print("Total usage summary:", total_usage_summary) -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") + +@pytest.mark.skipif(skip_openai, reason=reason) def test_agent_usage(): config_list = autogen.config_list_from_json( OAI_CONFIG_LIST, file_location=KEY_LOC, + filter_dict={"tags": ["gpt-3.5-turbo"]}, ) assistant = AssistantAgent( "assistant", system_message="You are a helpful assistant.", llm_config={ - "timeout": 600, "cache_seed": None, "config_list": config_list, - "model": "gpt-3.5-turbo-0613", }, ) @@ -104,7 +103,6 @@ def test_agent_usage(): code_execution_config=False, llm_config={ "config_list": config_list, - "model": "gpt-3.5-turbo-0613", }, # In the system message the "user" always refers to the other agent. system_message="You ask a user for help. You check the answer from the user and provide feedback.", @@ -140,5 +138,5 @@ def test_agent_usage(): if __name__ == "__main__": - test_gathering() + # test_gathering() test_agent_usage() diff --git a/test/agentchat/test_assistant_agent.py b/test/agentchat/test_assistant_agent.py index a2c99ba636c..c3bfe4045e8 100755 --- a/test/agentchat/test_assistant_agent.py +++ b/test/agentchat/test_assistant_agent.py @@ -9,14 +9,7 @@ from autogen.agentchat import AssistantAgent, UserProxyAgent sys.path.append(os.path.join(os.path.dirname(__file__), "..")) -from conftest import skip_openai # noqa: E402 - -try: - from openai import OpenAI -except ImportError: - skip = True -else: - skip = False or skip_openai +from conftest import reason, skip_openai # noqa: E402 KEY_LOC = "notebook" OAI_CONFIG_LIST = "OAI_CONFIG_LIST" @@ -24,8 +17,8 @@ @pytest.mark.skipif( - sys.platform in ["darwin", "win32"] or skip, - reason="do not run on MacOS or windows OR openai not installed OR requested to skip", + sys.platform in ["darwin", "win32"] or skip_openai, + reason="do not run on MacOS or windows OR " + reason, ) def test_ai_user_proxy_agent(): conversations = {} @@ -34,6 +27,7 @@ def test_ai_user_proxy_agent(): config_list = autogen.config_list_from_json( OAI_CONFIG_LIST, file_location=KEY_LOC, + filter_dict={"tags": ["gpt-3.5-turbo"]}, ) assistant = AssistantAgent( "assistant", @@ -67,7 +61,7 @@ def test_ai_user_proxy_agent(): print("Result summary:", res.summary) -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") +@pytest.mark.skipif(skip_openai, reason=reason) def test_gpt35(human_input_mode="NEVER", max_consecutive_auto_reply=5): config_list = autogen.config_list_from_json( OAI_CONFIG_LIST, @@ -111,9 +105,13 @@ def test_gpt35(human_input_mode="NEVER", max_consecutive_auto_reply=5): assert not isinstance(user.use_docker, bool) # None or str -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") -def test_create_execute_script(human_input_mode="NEVER", max_consecutive_auto_reply=10): - config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, file_location=KEY_LOC) +@pytest.mark.skipif(skip_openai, reason=reason) +def test_create_execute_script(human_input_mode="NEVER", max_consecutive_auto_reply=3): + config_list = autogen.config_list_from_json( + OAI_CONFIG_LIST, + file_location=KEY_LOC, + filter_dict={"tags": ["gpt-3.5-turbo"]}, + ) conversations = {} # autogen.ChatCompletion.start_logging(conversations) llm_config = { @@ -160,13 +158,13 @@ def test_create_execute_script(human_input_mode="NEVER", max_consecutive_auto_re # autogen.ChatCompletion.stop_logging() -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") -def test_tsp(human_input_mode="NEVER", max_consecutive_auto_reply=10): +@pytest.mark.skipif(skip_openai, reason=reason) +def test_tsp(human_input_mode="NEVER", max_consecutive_auto_reply=2): config_list = autogen.config_list_from_json( OAI_CONFIG_LIST, file_location=KEY_LOC, filter_dict={ - "model": ["gpt-4", "gpt4", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-v0314"], + "tags": ["gpt-4", "gpt-4-32k"], }, ) hard_questions = [ @@ -207,4 +205,5 @@ def tsp_message(sender, recipient, context): # when GPT-4, i.e., the DEFAULT_MODEL, is used, conversation in the following test # should terminate in 2-3 rounds of interactions (because is_termination_msg should be true after 2-3 rounds) # although the max_consecutive_auto_reply is set to 10. - test_tsp(human_input_mode="NEVER", max_consecutive_auto_reply=10) + test_tsp(human_input_mode="NEVER", max_consecutive_auto_reply=2) + # test_ai_user_proxy_agent() diff --git a/test/agentchat/test_async.py b/test/agentchat/test_async.py index 5d6db1ab7d3..c2cfb23973c 100755 --- a/test/agentchat/test_async.py +++ b/test/agentchat/test_async.py @@ -10,14 +10,7 @@ import autogen sys.path.append(os.path.join(os.path.dirname(__file__), "..")) -from conftest import skip_openai # noqa: E402 - -try: - from openai import OpenAI -except ImportError: - skip = True -else: - skip = False or skip_openai +from conftest import reason, skip_openai # noqa: E402 def get_market_news(ind, ind_upper): @@ -61,24 +54,15 @@ def get_market_news(ind, ind_upper): return feeds_summary -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") +@pytest.mark.skipif(skip_openai, reason=reason) @pytest.mark.asyncio async def test_async_groupchat(): - config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC) - - llm_config = { - "timeout": 600, - "cache_seed": 41, - "config_list": config_list, - "temperature": 0, - } + config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC, filter_dict={"tags": ["gpt-3.5-turbo"]}) # create an AssistantAgent instance named "assistant" assistant = autogen.AssistantAgent( name="assistant", llm_config={ - "timeout": 600, - "cache_seed": 41, "config_list": config_list, "temperature": 0, }, @@ -93,20 +77,21 @@ async def test_async_groupchat(): default_auto_reply=None, ) - groupchat = autogen.GroupChat(agents=[user_proxy, assistant], messages=[], max_round=12) + groupchat = autogen.GroupChat( + agents=[user_proxy, assistant], messages=[], max_round=3, speaker_selection_method="round_robin" + ) manager = autogen.GroupChatManager( groupchat=groupchat, - llm_config=llm_config, is_termination_msg=lambda x: "TERMINATE" in x.get("content", ""), ) - await user_proxy.a_initiate_chat(manager, message="""Have a short conversation with the assistant.""") + await user_proxy.a_initiate_chat(manager, message="""223434*3422=?.""") assert len(user_proxy.chat_messages) > 0 -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") +@pytest.mark.skipif(skip_openai, reason=reason) @pytest.mark.asyncio async def test_stream(): - config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC) + config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC, filter_dict={"tags": ["gpt-3.5-turbo"]}) data = asyncio.Future() async def add_stock_price_data(): @@ -167,9 +152,10 @@ async def add_data_reply(recipient, messages, sender, config): while not data_task.done() and not data_task.cancelled(): reply = await user_proxy.a_generate_reply(sender=assistant) if reply is not None: - res = await user_proxy.a_send(reply, assistant) - print("Chat summary and cost:", res.summary, res.cost) + await user_proxy.a_send(reply, assistant) + # print("Chat summary and cost:", res.summary, res.cost) if __name__ == "__main__": - asyncio.run(test_stream()) + # asyncio.run(test_stream()) + asyncio.run(test_async_groupchat()) diff --git a/test/agentchat/test_async_chats.py b/test/agentchat/test_async_chats.py index 6b04658dc97..ff5be06cb09 100755 --- a/test/agentchat/test_async_chats.py +++ b/test/agentchat/test_async_chats.py @@ -17,9 +17,10 @@ @pytest.mark.skipif(skip_openai, reason="requested to skip openai tests") @pytest.mark.asyncio async def test_async_chats(): - config_list = autogen.config_list_from_json( + config_list_35 = autogen.config_list_from_json( OAI_CONFIG_LIST, file_location=KEY_LOC, + filter_dict={"tags": ["gpt-3.5-turbo"]}, ) financial_tasks = [ @@ -32,16 +33,16 @@ async def test_async_chats(): financial_assistant_1 = AssistantAgent( name="Financial_assistant_1", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, system_message="You are a knowledgeable AI Assistant. Reply TERMINATE when everything is done.", ) financial_assistant_2 = AssistantAgent( name="Financial_assistant_2", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, ) writer = AssistantAgent( name="Writer", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, is_termination_msg=lambda x: x.get("content", "").find("TERMINATE") >= 0, system_message=""" You are a professional writer, known for diff --git a/test/agentchat/test_async_get_human_input.py b/test/agentchat/test_async_get_human_input.py index bcc2a1cc918..c0b0ca6be79 100755 --- a/test/agentchat/test_async_get_human_input.py +++ b/test/agentchat/test_async_get_human_input.py @@ -11,26 +11,19 @@ import autogen sys.path.append(os.path.join(os.path.dirname(__file__), "..")) -from conftest import skip_openai # noqa: E402 +from conftest import reason, skip_openai # noqa: E402 -try: - from openai import OpenAI -except ImportError: - skip = True -else: - skip = False or skip_openai - -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") +@pytest.mark.skipif(skip_openai, reason=reason) @pytest.mark.asyncio async def test_async_get_human_input(): - config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC) + config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC, filter_dict={"tags": ["gpt-3.5-turbo"]}) # create an AssistantAgent instance named "assistant" assistant = autogen.AssistantAgent( name="assistant", max_consecutive_auto_reply=2, - llm_config={"seed": 41, "config_list": config_list, "temperature": 0}, + llm_config={"config_list": config_list, "temperature": 0}, ) user_proxy = autogen.UserProxyAgent(name="user", human_input_mode="ALWAYS", code_execution_config=False) @@ -48,10 +41,10 @@ async def test_async_get_human_input(): print("Human input:", res.human_input) -@pytest.mark.skipif(skip, reason="openai not installed OR requested to skip") +@pytest.mark.skipif(skip_openai, reason=reason) @pytest.mark.asyncio async def test_async_max_turn(): - config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC) + config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC, filter_dict={"tags": ["gpt-3.5-turbo"]}) # create an AssistantAgent instance named "assistant" assistant = autogen.AssistantAgent( @@ -79,5 +72,5 @@ async def test_async_max_turn(): if __name__ == "__main__": - asyncio.run(test_async_get_human_input()) + # asyncio.run(test_async_get_human_input()) asyncio.run(test_async_max_turn()) diff --git a/test/agentchat/test_chats.py b/test/agentchat/test_chats.py index d31199fa3e5..480a28051b4 100755 --- a/test/agentchat/test_chats.py +++ b/test/agentchat/test_chats.py @@ -9,10 +9,10 @@ from typing_extensions import Annotated import autogen -from autogen import AssistantAgent, GroupChat, GroupChatManager, UserProxyAgent, initiate_chats +from autogen import AssistantAgent, GroupChat, GroupChatManager, UserProxyAgent, filter_config, initiate_chats sys.path.append(os.path.join(os.path.dirname(__file__), "..")) -from conftest import skip_openai # noqa: E402 +from conftest import reason, skip_openai # noqa: E402 config_list = ( [] @@ -23,6 +23,18 @@ ) ) +config_list_35 = ( + [] + if skip_openai + else autogen.config_list_from_json( + OAI_CONFIG_LIST, + file_location=KEY_LOC, + filter_dict={"tags": ["gpt-3.5-turbo"]}, + ) +) + +config_list_tool = filter_config(config_list_35, {"tags": ["tool"]}) + def test_chat_messages_for_summary(): assistant = UserProxyAgent(name="assistant", human_input_mode="NEVER", code_execution_config={"use_docker": False}) @@ -45,7 +57,7 @@ def test_chat_messages_for_summary(): assert len(messages) == 2 -@pytest.mark.skipif(skip_openai, reason="requested to skip openai tests") +@pytest.mark.skipif(skip_openai, reason=reason) def test_chats_group(): financial_tasks = [ """What are the full names of NVDA and TESLA.""", @@ -68,12 +80,12 @@ def test_chats_group(): financial_assistant = AssistantAgent( name="Financial_assistant", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, ) writer = AssistantAgent( name="Writer", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, system_message=""" You are a professional writer, known for your insightful and engaging articles. @@ -87,7 +99,7 @@ def test_chats_group(): system_message="""Critic. Double check plan, claims, code from other agents and provide feedback. Check whether the plan includes adding verifiable info such as source URL. Reply "TERMINATE" in the end when everything is done. """, - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, ) groupchat_1 = GroupChat(agents=[user_proxy, financial_assistant, critic], messages=[], max_round=3) @@ -97,7 +109,7 @@ def test_chats_group(): manager_1 = GroupChatManager( groupchat=groupchat_1, name="Research_manager", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, code_execution_config={ "last_n_messages": 1, "work_dir": "groupchat", @@ -108,7 +120,7 @@ def test_chats_group(): manager_2 = GroupChatManager( groupchat=groupchat_2, name="Writing_manager", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, code_execution_config={ "last_n_messages": 1, "work_dir": "groupchat", @@ -154,7 +166,7 @@ def test_chats_group(): print(all_res[1].summary) -@pytest.mark.skipif(skip_openai, reason="requested to skip openai tests") +@pytest.mark.skipif(skip_openai, reason=reason) def test_chats(): import random @@ -182,17 +194,17 @@ def luck_number_message(sender, recipient, context): func = Function() financial_assistant_1 = AssistantAgent( name="Financial_assistant_1", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, function_map={"get_random_number": func.get_random_number}, ) financial_assistant_2 = AssistantAgent( name="Financial_assistant_2", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, function_map={"get_random_number": func.get_random_number}, ) writer = AssistantAgent( name="Writer", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, is_termination_msg=lambda x: x.get("content", "").find("TERMINATE") >= 0, system_message=""" You are a professional writer, known for @@ -284,7 +296,7 @@ def my_summary_method(recipient, sender, summary_args): # print(blogpost.summary, insights_and_blogpost) -@pytest.mark.skipif(skip_openai, reason="requested to skip openai tests") +@pytest.mark.skipif(skip_openai, reason=reason) def test_chats_general(): financial_tasks = [ """What are the full names of NVDA and TESLA.""", @@ -296,15 +308,15 @@ def test_chats_general(): financial_assistant_1 = AssistantAgent( name="Financial_assistant_1", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, ) financial_assistant_2 = AssistantAgent( name="Financial_assistant_2", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, ) writer = AssistantAgent( name="Writer", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, is_termination_msg=lambda x: x.get("content", "").find("TERMINATE") >= 0, system_message=""" You are a professional writer, known for @@ -388,7 +400,7 @@ def my_summary_method(recipient, sender, summary_args): # print(blogpost.summary, insights_and_blogpost) -@pytest.mark.skipif(skip_openai, reason="requested to skip openai tests") +@pytest.mark.skipif(skip_openai, reason=reason) def test_chats_exceptions(): financial_tasks = [ """What are the full names of NVDA and TESLA.""", @@ -472,10 +484,10 @@ def test_chats_exceptions(): ) -@pytest.mark.skipif(skip_openai, reason="requested to skip openai tests") +@pytest.mark.skipif(skip_openai, reason=reason) def test_chats_w_func(): llm_config = { - "config_list": config_list, + "config_list": config_list_tool, "timeout": 120, } @@ -528,9 +540,9 @@ def currency_calculator( print(res.summary, res.cost, res.chat_history) -@pytest.mark.skipif(skip_openai, reason="requested to skip openai tests") +@pytest.mark.skipif(skip_openai, reason=reason) def test_udf_message_in_chats(): - llm_config = {"config_list": config_list} + llm_config_35 = {"config_list": config_list_35} research_task = """ ## NVDA (NVIDIA Corporation) @@ -560,11 +572,11 @@ def my_writing_task(sender, recipient, context): researcher = autogen.AssistantAgent( name="Financial_researcher", - llm_config=llm_config, + llm_config=llm_config_35, ) writer = autogen.AssistantAgent( name="Writer", - llm_config=llm_config, + llm_config=llm_config_35, system_message=""" You are a professional writer, known for your insightful and engaging articles. @@ -609,8 +621,8 @@ def my_writing_task(sender, recipient, context): if __name__ == "__main__": - # test_chats() - test_chats_general() + test_chats() + # test_chats_general() # test_chats_exceptions() # test_chats_group() # test_chats_w_func() diff --git a/test/agentchat/test_conversable_agent.py b/test/agentchat/test_conversable_agent.py index f1818d9dbca..19d724ff854 100755 --- a/test/agentchat/test_conversable_agent.py +++ b/test/agentchat/test_conversable_agent.py @@ -21,10 +21,9 @@ from autogen.exception_utils import InvalidCarryOverType, SenderRequired sys.path.append(os.path.join(os.path.dirname(__file__), "..")) -from conftest import MOCK_OPEN_AI_API_KEY, skip_openai # noqa: E402 +from conftest import MOCK_OPEN_AI_API_KEY, reason, skip_openai # noqa: E402 here = os.path.abspath(os.path.dirname(__file__)) -REASON = "requested to skip openai tests" @pytest.fixture @@ -918,13 +917,13 @@ def exec_python(cell: Annotated[str, "Valid Python cell to execute."]) -> str: @pytest.mark.skipif( skip_openai, - reason=REASON, + reason=reason, ) def test_function_registration_e2e_sync() -> None: config_list = autogen.config_list_from_json( OAI_CONFIG_LIST, filter_dict={ - "model": ["gpt-4", "gpt-4-0314", "gpt4", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-v0314"], + "tags": ["tool"], }, file_location=KEY_LOC, ) @@ -995,7 +994,7 @@ def stopwatch(num_seconds: Annotated[str, "Number of seconds in the stopwatch."] @pytest.mark.skipif( skip_openai, - reason=REASON, + reason=reason, ) @pytest.mark.asyncio() async def test_function_registration_e2e_async() -> None: @@ -1071,15 +1070,15 @@ def stopwatch(num_seconds: Annotated[str, "Number of seconds in the stopwatch."] stopwatch_mock.assert_called_once_with(num_seconds="2") -@pytest.mark.skipif(skip_openai, reason=REASON) +@pytest.mark.skipif(skip_openai, reason=reason) def test_max_turn(): - config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC) + config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC, filter_dict={"model": ["gpt-3.5-turbo"]}) # create an AssistantAgent instance named "assistant" assistant = autogen.AssistantAgent( name="assistant", max_consecutive_auto_reply=10, - llm_config={"timeout": 600, "cache_seed": 41, "config_list": config_list}, + llm_config={"config_list": config_list}, ) user_proxy = autogen.UserProxyAgent(name="user", human_input_mode="ALWAYS", code_execution_config=False) @@ -1093,7 +1092,7 @@ def test_max_turn(): assert len(res.chat_history) <= 6 -@pytest.mark.skipif(skip_openai, reason=REASON) +@pytest.mark.skipif(skip_openai, reason=reason) def test_message_func(): import random @@ -1149,7 +1148,7 @@ def my_message_play(sender, recipient, context): print(chat_res_play.summary) -@pytest.mark.skipif(skip_openai, reason=REASON) +@pytest.mark.skipif(skip_openai, reason=reason) def test_summary(): import random @@ -1161,8 +1160,7 @@ def get_random_number(self): return random.randint(0, 100) config_list = autogen.config_list_from_json( - OAI_CONFIG_LIST, - file_location=KEY_LOC, + OAI_CONFIG_LIST, file_location=KEY_LOC, filter_dict={"tags": ["gpt-3.5-turbo"]} ) def my_message_play(sender, recipient, context): @@ -1322,5 +1320,6 @@ def test_messages_with_carryover(): # test_no_llm_config() # test_max_turn() # test_process_before_send() - test_message_func() + # test_message_func() test_summary() + # test_function_registration_e2e_sync() diff --git a/test/agentchat/test_function_call_groupchat.py b/test/agentchat/test_function_call_groupchat.py index 6faea6a31ac..c1205ad2432 100755 --- a/test/agentchat/test_function_call_groupchat.py +++ b/test/agentchat/test_function_call_groupchat.py @@ -9,13 +9,8 @@ import autogen -try: - from openai import OpenAI -except ImportError: - skip = True -else: - sys.path.append(os.path.join(os.path.dirname(__file__), "..")) - from conftest import skip_openai as skip +sys.path.append(os.path.join(os.path.dirname(__file__), "..")) +from conftest import reason, skip_openai func_def = { "name": "get_random_number", @@ -28,8 +23,8 @@ @pytest.mark.skipif( - skip, - reason="do not run if openai is not installed or requested to skip", + skip_openai, + reason=reason, ) @pytest.mark.parametrize( "key, value, sync", @@ -50,21 +45,18 @@ def get_random_number(self): self.call_count += 1 return random.randint(0, 100) - config_list_gpt4 = autogen.config_list_from_json( + # llm_config without functions + config_list_35 = autogen.config_list_from_json( OAI_CONFIG_LIST, - filter_dict={ - "model": ["gpt-4", "gpt-4-0314", "gpt4", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-v0314"], - }, file_location=KEY_LOC, + filter_dict={"tags": ["gpt-3.5-turbo", "gpt-3.5-turbo-16k"]}, ) + llm_config_no_function = {"config_list": config_list_35} + config_list_tool = autogen.filter_config(config_list_35, {"tags": ["tool"]}) llm_config = { - "config_list": config_list_gpt4, - "cache_seed": 42, + "config_list": config_list_tool, key: value, } - # llm_config without functions - llm_config_no_function = llm_config.copy() - del llm_config_no_function[key] func = Function() user_proxy = autogen.UserProxyAgent( diff --git a/test/agentchat/test_human_input.py b/test/agentchat/test_human_input.py index b023ab47a2f..a24f94a072a 100755 --- a/test/agentchat/test_human_input.py +++ b/test/agentchat/test_human_input.py @@ -10,12 +10,12 @@ import autogen sys.path.append(os.path.join(os.path.dirname(__file__), "..")) -from conftest import skip_openai as skip # noqa: E402 +from conftest import reason, skip_openai # noqa: E402 -@pytest.mark.skipif(skip, reason="requested to skip") +@pytest.mark.skipif(skip_openai, reason=reason) def test_get_human_input(): - config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC) + config_list = autogen.config_list_from_json(OAI_CONFIG_LIST, KEY_LOC, filter_dict={"tags": ["gpt-3.5-turbo"]}) # create an AssistantAgent instance named "assistant" assistant = autogen.AssistantAgent( diff --git a/test/agentchat/test_math_user_proxy_agent.py b/test/agentchat/test_math_user_proxy_agent.py index 1e85a7481a0..8df8caf6421 100755 --- a/test/agentchat/test_math_user_proxy_agent.py +++ b/test/agentchat/test_math_user_proxy_agent.py @@ -38,14 +38,13 @@ def test_math_user_proxy_agent(): OAI_CONFIG_LIST, file_location=KEY_LOC, filter_dict={ - "model": ["gpt-4", "gpt4", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-v0314"], + "tags": ["gpt-3.5-turbo"], }, ) assistant = AssistantAgent( "assistant", system_message="You are a helpful assistant.", llm_config={ - "timeout": 600, "cache_seed": 42, "config_list": config_list, }, @@ -127,5 +126,5 @@ def test_generate_prompt(): if __name__ == "__main__": # test_add_remove_print() # test_execute_one_python_code() - test_generate_prompt() + # test_generate_prompt() test_math_user_proxy_agent() diff --git a/test/agentchat/test_nested.py b/test/agentchat/test_nested.py index 56ca28f6237..ee8da793fde 100755 --- a/test/agentchat/test_nested.py +++ b/test/agentchat/test_nested.py @@ -8,12 +8,19 @@ import autogen sys.path.append(os.path.join(os.path.dirname(__file__), "..")) -from conftest import skip_openai # noqa: E402 +sys.path.append(os.path.join(os.path.dirname(__file__), "../..")) +from conftest import reason, skip_openai # noqa: E402 +from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST # noqa: E402 -@pytest.mark.skipif(skip_openai, reason="requested to skip openai tests") +@pytest.mark.skipif(skip_openai, reason=reason) def test_nested(): - config_list = autogen.config_list_from_json(env_or_file="OAI_CONFIG_LIST") + config_list = autogen.config_list_from_json(env_or_file=OAI_CONFIG_LIST, file_location=KEY_LOC) + config_list_35 = autogen.config_list_from_json( + OAI_CONFIG_LIST, + file_location=KEY_LOC, + filter_dict={"tags": ["gpt-3.5-turbo"]}, + ) llm_config = {"config_list": config_list} tasks = [ @@ -58,13 +65,13 @@ def test_nested(): assistant = autogen.AssistantAgent( name="Assistant", - llm_config={"config_list": config_list}, + llm_config=False, # is_termination_msg=lambda x: x.get("content", "") == "", ) assistant_2 = autogen.AssistantAgent( name="Assistant", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, # is_termination_msg=lambda x: x.get("content", "") == "", ) @@ -92,7 +99,7 @@ def test_nested(): writer = autogen.AssistantAgent( name="Writer", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, system_message=""" You are a professional writer, known for your insightful and engaging articles. @@ -103,7 +110,7 @@ def test_nested(): autogen.AssistantAgent( name="Reviewer", - llm_config={"config_list": config_list}, + llm_config={"config_list": config_list_35}, system_message=""" You are a compliance reviewer, known for your thoroughness and commitment to standards. Your task is to scrutinize content for any harmful elements or regulatory violations, ensuring @@ -128,7 +135,10 @@ def writing_message(recipient, messages, sender, config): trigger=user, ) user.initiate_chats( - [{"recipient": assistant, "message": tasks[0], "max_turns": 1}, {"recipient": assistant_2, "message": tasks[1]}] + [ + {"recipient": assistant, "message": tasks[0], "max_turns": 1}, + {"recipient": assistant_2, "message": tasks[1], "max_turns": 1}, + ] ) diff --git a/test/coding/test_commandline_code_executor.py b/test/coding/test_commandline_code_executor.py index 5c20e856d60..a83282dec78 100644 --- a/test/coding/test_commandline_code_executor.py +++ b/test/coding/test_commandline_code_executor.py @@ -23,6 +23,7 @@ UNIX_SHELLS = ["bash", "sh", "shell"] WINDOWS_SHELLS = ["ps1", "pwsh", "powershell"] +PYTHON_VARIANTS = ["python", "Python", "py"] @pytest.mark.parametrize("cls", classes_to_test) @@ -60,23 +61,26 @@ def test_commandline_executor_init(cls) -> None: executor = cls(timeout=111, work_dir="/invalid/directory") +@pytest.mark.parametrize("py_variant", PYTHON_VARIANTS) @pytest.mark.parametrize("cls", classes_to_test) -def test_commandline_executor_execute_code(cls) -> None: +def test_commandline_executor_execute_code(cls, py_variant) -> None: with tempfile.TemporaryDirectory() as temp_dir: executor = cls(work_dir=temp_dir) - _test_execute_code(executor=executor) + _test_execute_code(py_variant, executor=executor) -def _test_execute_code(executor: CodeExecutor) -> None: +@pytest.mark.parametrize("py_variant", PYTHON_VARIANTS) +def _test_execute_code(py_variant, executor: CodeExecutor) -> None: + # Test single code block. - code_blocks = [CodeBlock(code="import sys; print('hello world!')", language="python")] + code_blocks = [CodeBlock(code="import sys; print('hello world!')", language=py_variant)] code_result = executor.execute_code_blocks(code_blocks) assert code_result.exit_code == 0 and "hello world!" in code_result.output and code_result.code_file is not None # Test multiple code blocks. code_blocks = [ - CodeBlock(code="import sys; print('hello world!')", language="python"), - CodeBlock(code="a = 100 + 100; print(a)", language="python"), + CodeBlock(code="import sys; print('hello world!')", language=py_variant), + CodeBlock(code="a = 100 + 100; print(a)", language=py_variant), ] code_result = executor.execute_code_blocks(code_blocks) assert ( @@ -94,7 +98,7 @@ def _test_execute_code(executor: CodeExecutor) -> None: # Test running code. file_lines = ["import sys", "print('hello world!')", "a = 100 + 100", "print(a)"] - code_blocks = [CodeBlock(code="\n".join(file_lines), language="python")] + code_blocks = [CodeBlock(code="\n".join(file_lines), language=py_variant)] code_result = executor.execute_code_blocks(code_blocks) assert ( code_result.exit_code == 0 diff --git a/test/conftest.py b/test/conftest.py index e0469ea3ae0..0eb742fe9c2 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -3,7 +3,7 @@ skip_openai = False skip_redis = False skip_docker = False - +reason = "requested to skip" MOCK_OPEN_AI_API_KEY = "sk-mockopenaiAPIkeyinexpectedformatfortestingonly" diff --git a/test/oai/test_gemini.py b/test/oai/test_gemini.py new file mode 100644 index 00000000000..7161d605fb6 --- /dev/null +++ b/test/oai/test_gemini.py @@ -0,0 +1,148 @@ +from unittest.mock import MagicMock, patch + +import pytest + +try: + from google.api_core.exceptions import InternalServerError + + from autogen.oai.gemini import GeminiClient + + skip = False +except ImportError: + GeminiClient = object + InternalServerError = object + skip = True + + +# Fixtures for mock data +@pytest.fixture +def mock_response(): + class MockResponse: + def __init__(self, text, choices, usage, cost, model): + self.text = text + self.choices = choices + self.usage = usage + self.cost = cost + self.model = model + + return MockResponse + + +@pytest.fixture +def gemini_client(): + return GeminiClient(api_key="fake_api_key") + + +# Test initialization and configuration +@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") +def test_initialization(): + with pytest.raises(AssertionError): + GeminiClient() # Should raise an AssertionError due to missing API key + + +@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") +def test_valid_initialization(gemini_client): + assert gemini_client.api_key == "fake_api_key", "API Key should be correctly set" + + +# Test error handling +@patch("autogen.oai.gemini.genai") +@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") +def test_internal_server_error_retry(mock_genai, gemini_client): + mock_genai.GenerativeModel.side_effect = [InternalServerError("Test Error"), None] # First call fails + # Mock successful response + mock_chat = MagicMock() + mock_chat.send_message.return_value = "Successful response" + mock_genai.GenerativeModel.return_value.start_chat.return_value = mock_chat + + with patch.object(gemini_client, "create", return_value="Retried Successfully"): + response = gemini_client.create({"model": "gemini-pro", "messages": [{"content": "Hello"}]}) + assert response == "Retried Successfully", "Should retry on InternalServerError" + + +# Test cost calculation +@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") +def test_cost_calculation(gemini_client, mock_response): + response = mock_response( + text="Example response", + choices=[{"message": "Test message 1"}], + usage={"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15}, + cost=0.01, + model="gemini-pro", + ) + assert gemini_client.cost(response) > 0, "Cost should be correctly calculated as zero" + + +@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") +@patch("autogen.oai.gemini.genai.GenerativeModel") +@patch("autogen.oai.gemini.genai.configure") +def test_create_response(mock_configure, mock_generative_model, gemini_client): + # Mock the genai model configuration and creation process + mock_chat = MagicMock() + mock_model = MagicMock() + mock_configure.return_value = None + mock_generative_model.return_value = mock_model + mock_model.start_chat.return_value = mock_chat + + # Set up a mock for the chat history item access and the text attribute return + mock_history_part = MagicMock() + mock_history_part.text = "Example response" + mock_chat.history.__getitem__.return_value.parts.__getitem__.return_value = mock_history_part + + # Setup the mock to return a mocked chat response + mock_chat.send_message.return_value = MagicMock(history=[MagicMock(parts=[MagicMock(text="Example response")])]) + + # Call the create method + response = gemini_client.create( + {"model": "gemini-pro", "messages": [{"content": "Hello", "role": "user"}], "stream": False} + ) + + # Assertions to check if response is structured as expected + assert response.choices[0].message.content == "Example response", "Response content should match expected output" + + +@pytest.mark.skipif(skip, reason="Google GenAI dependency is not installed") +@patch("autogen.oai.gemini.genai.GenerativeModel") +@patch("autogen.oai.gemini.genai.configure") +def test_create_vision_model_response(mock_configure, mock_generative_model, gemini_client): + # Mock the genai model configuration and creation process + mock_model = MagicMock() + mock_configure.return_value = None + mock_generative_model.return_value = mock_model + + # Set up a mock to simulate the vision model behavior + mock_vision_response = MagicMock() + mock_vision_part = MagicMock(text="Vision model output") + + # Setting up the chain of return values for vision model response + mock_vision_response._result.candidates.__getitem__.return_value.content.parts.__getitem__.return_value = ( + mock_vision_part + ) + mock_model.generate_content.return_value = mock_vision_response + + # Call the create method with vision model parameters + response = gemini_client.create( + { + "model": "gemini-pro-vision", # Vision model name + "messages": [ + { + "content": [ + {"type": "text", "text": "Let's play a game."}, + { + "type": "image_url", + "image_url": { + "url": "" + }, + }, + ], + "role": "user", + } + ], # Assuming a simple content input for vision + "stream": False, + } + ) + + # Assertions to check if response is structured as expected + assert ( + response.choices[0].message.content == "Vision model output" + ), "Response content should match expected output from vision model" diff --git a/test/oai/test_utils.py b/test/oai/test_utils.py index 65ec7a014aa..8f4dd22145f 100755 --- a/test/oai/test_utils.py +++ b/test/oai/test_utils.py @@ -382,6 +382,7 @@ def test_is_valid_api_key(): assert not is_valid_api_key("sk-asajsdjsd22372%23kjdfdfdf2329ffUUDSDS") assert is_valid_api_key("sk-asajsdjsd22372X23kjdfdfdf2329ffUUDSDS") assert is_valid_api_key("sk-asajsdjsd22372X23kjdfdfdf2329ffUUDSDS1212121221212sssXX") + assert is_valid_api_key("sk-proj-asajsdjsd22372X23kjdfdfdf2329ffUUDSDS12121212212") assert is_valid_api_key(MOCK_OPEN_AI_API_KEY) diff --git a/website/.gitignore b/website/.gitignore index 957507b6b44..c73d767838a 100644 --- a/website/.gitignore +++ b/website/.gitignore @@ -21,6 +21,9 @@ docs/topics/prompting-and-reasoning/*.mdx docs/topics/non-openai-models/*.mdx docs/topics/non-openai-models/**/*.py docs/topics/non-openai-models/**/*.svg +docs/topics/code-execution/*.mdx +docs/topics/groupchat/customized_speaker_selection.mdx +cell-*-output-*.png # Misc .DS_Store diff --git a/website/docs/Examples.md b/website/docs/Examples.md index 83737689820..7c2a18a553a 100644 --- a/website/docs/Examples.md +++ b/website/docs/Examples.md @@ -54,7 +54,8 @@ Links to notebook examples: - Constrained Responses via Guidance - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_guidance.ipynb) - Browse the Web with Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_surfer.ipynb) - **SQL**: Natural Language Text to SQL Query using the [Spider](https://yale-lily.github.io/spider) Text-to-SQL Benchmark - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_sql_spider.ipynb) -- **Web Scraping**: Web Scraping with Apify - [View Notebook](/docs/notebooks/agentchat_webscraping_with_apify). +- **Web Scraping**: Web Scraping with Apify - [View Notebook](/docs/notebooks/agentchat_webscraping_with_apify) +- **Write a software app, task by task, with specially designed functions.** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_function_call_code_writing.ipynb). ### Human Involvement diff --git a/website/docs/ecosystem/img/ecosystem-promptflow.png b/website/docs/ecosystem/img/ecosystem-promptflow.png new file mode 100644 index 00000000000..95c27a24168 --- /dev/null +++ b/website/docs/ecosystem/img/ecosystem-promptflow.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8580309dbfe6f266d3c0370071ec489da4cf068ce7204b067716ceb4f9707940 +size 216099 diff --git a/website/docs/ecosystem/pgvector.md b/website/docs/ecosystem/pgvector.md new file mode 100644 index 00000000000..c455595eda4 --- /dev/null +++ b/website/docs/ecosystem/pgvector.md @@ -0,0 +1,5 @@ +# PGVector + +[PGVector](https://github.com/pgvector/pgvector) is an open-source vector similarity search for Postgres. + +- [PGVector + AutoGen Code Examples](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_pgvector_RetrieveChat.ipynb) diff --git a/website/docs/ecosystem/promptflow.md b/website/docs/ecosystem/promptflow.md new file mode 100644 index 00000000000..cda60407ddc --- /dev/null +++ b/website/docs/ecosystem/promptflow.md @@ -0,0 +1,15 @@ +# Promptflow + +Promptflow is a comprehensive suite of tools that simplifies the development, testing, evaluation, and deployment of LLM based AI applications. It also supports integration with Azure AI for cloud-based operations and is designed to streamline end-to-end development. + +Refer to [Promptflow docs](https://microsoft.github.io/promptflow/) for more information. + +Quick links: + +- Why use Promptflow - [Link](https://learn.microsoft.com/en-us/azure/machine-learning/prompt-flow/overview-what-is-prompt-flow) +- Quick start guide - [Link](https://microsoft.github.io/promptflow/how-to-guides/quick-start.html) +- Sample application for Promptflow + AutoGen integration - [Link](https://github.com/microsoft/autogen/tree/main/samples/apps/promptflow-autogen) + +## Sample Flow + +![Sample Promptflow](./img/ecosystem-promptflow.png) diff --git a/website/docs/installation/Optional-Dependencies.md b/website/docs/installation/Optional-Dependencies.md index 6efdfa2e2ab..617a90aabae 100644 --- a/website/docs/installation/Optional-Dependencies.md +++ b/website/docs/installation/Optional-Dependencies.md @@ -44,12 +44,22 @@ Example notebooks: ## retrievechat -`pyautogen` supports retrieval-augmented generation tasks such as question answering and code generation with RAG agents. Please install with the [retrievechat] option to use it. +`pyautogen` supports retrieval-augmented generation tasks such as question answering and code generation with RAG agents. Please install with the [retrievechat] option to use it with ChromaDB. ```bash pip install "pyautogen[retrievechat]" ``` +Alternatively `pyautogen` also supports PGVector and Qdrant which can be installed in place of ChromaDB, or alongside it. + +```bash +pip install "pyautogen[retrievechat-pgvector]" +``` + +```bash +pip install "pyautogen[retrievechat-qdrant]" +``` + RetrieveChat can handle various types of documents. By default, it can process plain text and PDF files, including formats such as 'txt', 'json', 'csv', 'tsv', 'md', 'html', 'htm', 'rtf', 'rst', 'jsonl', 'log', 'xml', 'yaml', 'yml' and 'pdf'. diff --git a/website/docs/topics/code-execution/custom-executor.ipynb b/website/docs/topics/code-execution/custom-executor.ipynb new file mode 100644 index 00000000000..c6ee4c16018 --- /dev/null +++ b/website/docs/topics/code-execution/custom-executor.ipynb @@ -0,0 +1,504 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Custom Code Executor\n", + "\n", + "In this guide we will show you how to create a custom code executor that runs\n", + "code inside the same Jupyter notebook as this one.\n", + "\n", + "First, let's install the required dependencies:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "! pip -qqq install pyautogen matplotlib yfinance" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from typing import List\n", + "\n", + "from IPython import get_ipython\n", + "\n", + "from autogen import ConversableAgent\n", + "from autogen.coding import CodeBlock, CodeExecutor, CodeExtractor, CodeResult, MarkdownCodeExtractor" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can create the custom code executor class by subclassing the\n", + "`CodeExecutor` protocol and implementing the `execute_code_blocks` method." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "class NotebookExecutor(CodeExecutor):\n", + "\n", + " @property\n", + " def code_extractor(self) -> CodeExtractor:\n", + " # Extact code from markdown blocks.\n", + " return MarkdownCodeExtractor()\n", + "\n", + " def __init__(self) -> None:\n", + " # Get the current IPython instance running in this notebook.\n", + " self._ipython = get_ipython()\n", + "\n", + " def execute_code_blocks(self, code_blocks: List[CodeBlock]) -> CodeResult:\n", + " log = \"\"\n", + " for code_block in code_blocks:\n", + " result = self._ipython.run_cell(\"%%capture --no-display cap\\n\" + code_block.code)\n", + " log += self._ipython.ev(\"cap.stdout\")\n", + " log += self._ipython.ev(\"cap.stderr\")\n", + " if result.result is not None:\n", + " log += str(result.result)\n", + " exitcode = 0 if result.success else 1\n", + " if result.error_before_exec is not None:\n", + " log += f\"\\n{result.error_before_exec}\"\n", + " exitcode = 1\n", + " if result.error_in_exec is not None:\n", + " log += f\"\\n{result.error_in_exec}\"\n", + " exitcode = 1\n", + " if exitcode != 0:\n", + " break\n", + " return CodeResult(exit_code=exitcode, output=log)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can use the new custom code executor in our agents." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "code_writer_agent = ConversableAgent(\n", + " name=\"CodeWriter\",\n", + " system_message=\"You are a helpful AI assistant.\\n\"\n", + " \"You use your coding skill to solve problems.\\n\"\n", + " \"You have access to a IPython kernel to execute Python code.\\n\"\n", + " \"You can suggest Python code in Markdown blocks, each block is a cell.\\n\"\n", + " \"The code blocks will be executed in the IPython kernel in the order you suggest them.\\n\"\n", + " \"All necessary libraries have already been installed.\\n\"\n", + " \"Once the task is done, returns 'TERMINATE'.\",\n", + " llm_config={\"config_list\": [{\"model\": \"gpt-4\", \"api_key\": os.getenv(\"OPENAI_API_KEY\")}]},\n", + ")\n", + "\n", + "code_executor_agent = ConversableAgent(\n", + " name=\"CodeExecutor\",\n", + " llm_config=False,\n", + " code_execution_config={\"executor\": NotebookExecutor()},\n", + " is_termination_msg=lambda msg: \"TERMINATE\" in msg.get(\"content\", \"\").strip().upper(),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's use the agents to complete a simple task of drawing a plot showing\n", + "the market caps of the top 7 publicly listed companies." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mCodeExecutor\u001b[0m (to CodeWriter):\n", + "\n", + "Create a plot showing the market caps of the top 7 publicly listed companies using data from Yahoo Finance.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mCodeWriter\u001b[0m (to CodeExecutor):\n", + "\n", + "To accomplish this task, we would use the `yfinance` library to fetch data from Yahoo Finance, `pandas` library for data manipulation, and `matplotlib` for data visualization.\n", + "\n", + "Steps:\n", + "1. Identify the tickers for the top 7 largest publicly listed companies. Currently, these companies are: Apple (AAPL), Microsoft (MSFT), Google (GOOGL), Amazon (AMZN), Facebook (FB), Tesla (TSLA), and Berkshire Hathaway (BRK-A).\n", + "2. Fetch market cap information for these companies using yfinance.\n", + "3. Clean and process the fetched data into a usable format (a pandas DataFrame).\n", + "4. Plot the market caps for these companies.\n", + "\n", + "Let's start by fetching data for these companies.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mCodeExecutor\u001b[0m (to CodeWriter):\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mCodeWriter\u001b[0m (to CodeExecutor):\n", + "\n", + "Great! Before I continue, I need to know if the necessary libraries are installed.\n", + "\n", + "The libraries needed for this task are:\n", + "1. `yfinance`\n", + "2. `pandas`\n", + "3. `matplotlib`\n", + "\n", + "If these libraries are not installed, you can install them using pip:\n", + "\n", + "```python\n", + "!pip install yfinance pandas matplotlib\n", + "```\n", + "\n", + "Assuming these libraries are installed, we would import them and proceed with fetching the market cap data:\n", + "\n", + "```python\n", + "import yfinance as yf\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Define tickers \n", + "tickers = [\"AAPL\", \"MSFT\", \"GOOGL\", \"AMZN\", \"FB\", \"TSLA\", \"BRK-A\"]\n", + "\n", + "# Fetch data\n", + "data = yf.download(tickers, start=\"2022-02-01\", end=\"2022-02-28\")\n", + "\n", + "# Extract only 'Close' values for each ticker\n", + "data = data['Close']\n", + "\n", + "# Create empty dictionary to hold market cap data\n", + "market_caps = {}\n", + "\n", + "# Calculate market caps\n", + "for ticker in tickers:\n", + " info = yf.Ticker(ticker).info\n", + " market_caps[ticker] = info[\"marketCap\"]\n", + "\n", + "# Convert market_caps dictionary to pandas DataFrame\n", + "df = pd.DataFrame(list(market_caps.items()), columns=['Company', 'Market_Cap'])\n", + "\n", + "# Sort DataFrame by Market_Cap in descending order\n", + "df = df.sort_values('Market_Cap', ascending=False)\n", + "\n", + "# Plot data\n", + "plt.figure(figsize=(10,6))\n", + "plt.barh(df['Company'], df['Market_Cap'], color='skyblue')\n", + "plt.xlabel('Market Cap (in trillions)')\n", + "plt.title('Market Caps of Top 7 Publicly Listed Companies')\n", + "plt.gca().invert_yaxis()\n", + "plt.show()\n", + "```\n", + "\n", + "Please note that the start and end dates used while fetching data specifies the time period we are interested in. Feel free to modify these as needed. The 'marketCap' obtained from the 'info' property of the Ticker object represents the market cap as of the end date.\n", + "\n", + "Also note that the final plot shows the companies in descending order of market cap, with the company with the highest market cap at the top of the chart.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING 2 CODE BLOCKS (inferred languages are [python, python])...\u001b[0m\n" + ] + }, + { + "ename": "KeyError", + "evalue": "'marketCap'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[24], line 20\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m ticker \u001b[38;5;129;01min\u001b[39;00m tickers:\n\u001b[1;32m 19\u001b[0m info \u001b[38;5;241m=\u001b[39m yf\u001b[38;5;241m.\u001b[39mTicker(ticker)\u001b[38;5;241m.\u001b[39minfo\n\u001b[0;32m---> 20\u001b[0m market_caps[ticker] \u001b[38;5;241m=\u001b[39m \u001b[43minfo\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmarketCap\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[1;32m 22\u001b[0m \u001b[38;5;66;03m# Convert market_caps dictionary to pandas DataFrame\u001b[39;00m\n\u001b[1;32m 23\u001b[0m df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame(\u001b[38;5;28mlist\u001b[39m(market_caps\u001b[38;5;241m.\u001b[39mitems()), columns\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCompany\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMarket_Cap\u001b[39m\u001b[38;5;124m'\u001b[39m])\n", + "\u001b[0;31mKeyError\u001b[0m: 'marketCap'" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mCodeExecutor\u001b[0m (to CodeWriter):\n", + "\n", + "exitcode: 0 (execution succeeded)\n", + "Code output: Requirement already satisfied: yfinance in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (0.2.36)\n", + "Requirement already satisfied: pandas in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (2.2.1)\n", + "Requirement already satisfied: matplotlib in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (3.8.3)\n", + "Requirement already satisfied: numpy>=1.16.5 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from yfinance) (1.26.4)\n", + "Requirement already satisfied: requests>=2.31 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from yfinance) (2.31.0)\n", + "Requirement already satisfied: multitasking>=0.0.7 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from yfinance) (0.0.11)\n", + "Requirement already satisfied: lxml>=4.9.1 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from yfinance) (5.0.1)\n", + "Requirement already satisfied: appdirs>=1.4.4 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from yfinance) (1.4.4)\n", + "Requirement already satisfied: pytz>=2022.5 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from yfinance) (2023.3.post1)\n", + "Requirement already satisfied: frozendict>=2.3.4 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from yfinance) (2.4.0)\n", + "Requirement already satisfied: peewee>=3.16.2 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from yfinance) (3.17.0)\n", + "Requirement already satisfied: beautifulsoup4>=4.11.1 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from yfinance) (4.12.2)\n", + "Requirement already satisfied: html5lib>=1.1 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from yfinance) (1.1)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from pandas) (2023.4)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from matplotlib) (1.2.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from matplotlib) (4.47.2)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from matplotlib) (1.4.5)\n", + "Requirement already satisfied: packaging>=20.0 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from matplotlib) (23.2)\n", + "Requirement already satisfied: pillow>=8 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from matplotlib) (10.2.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from matplotlib) (3.1.1)\n", + "Requirement already satisfied: soupsieve>1.2 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from beautifulsoup4>=4.11.1->yfinance) (2.5)\n", + "Requirement already satisfied: six>=1.9 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from html5lib>=1.1->yfinance) (1.16.0)\n", + "Requirement already satisfied: webencodings in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from html5lib>=1.1->yfinance) (0.5.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from requests>=2.31->yfinance) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from requests>=2.31->yfinance) (3.6)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from requests>=2.31->yfinance) (1.26.18)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages (from requests>=2.31->yfinance) (2024.2.2)\n", + "/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "[************** 29%% ] 2 of 7 completed/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "[********************* 43%% ] 3 of 7 completed/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "[**********************57%%* ] 4 of 7 completed/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "[**********************71%%******** ] 5 of 7 completed/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "[*********************100%%**********************] 7 of 7 completed\n", + "\n", + "1 Failed download:\n", + "['FB']: Exception('%ticker%: No timezone found, symbol may be delisted')\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mCodeWriter\u001b[0m (to CodeExecutor):\n", + "\n", + "From the error message, it seems that the 'FB' ticker (Facebook) failed to download because it might have been delisted. This is likely due to Facebook's corporate rebranding to Meta Platforms Inc. in late 2021, which resulted in a ticker change from 'FB' to 'META'.\n", + "\n", + "To resolve this, we'll replace 'FB' in our tickers list with 'META' and then retrieve the data again. Here is the modified code:\n", + "\n", + "```python\n", + "# Define tickers \n", + "tickers = [\"AAPL\", \"MSFT\", \"GOOGL\", \"AMZN\", \"META\", \"TSLA\", \"BRK-A\"]\n", + "\n", + "# Fetch data\n", + "data = yf.download(tickers, start=\"2022-02-01\", end=\"2022-02-28\")\n", + "\n", + "# Extract only 'Close' values for each ticker\n", + "data = data['Close']\n", + "\n", + "# Create empty dictionary to hold market cap data\n", + "market_caps = {}\n", + "\n", + "# Calculate market caps\n", + "for ticker in tickers:\n", + " info = yf.Ticker(ticker).info\n", + " market_caps[ticker] = info[\"marketCap\"]\n", + "\n", + "# Convert market_caps dictionary to pandas DataFrame\n", + "df = pd.DataFrame(list(market_caps.items()), columns=['Company', 'Market_Cap'])\n", + "\n", + "# Sort DataFrame by Market_Cap in descending order\n", + "df = df.sort_values('Market_Cap', ascending=False)\n", + "\n", + "# Plot data\n", + "plt.figure(figsize=(10,6))\n", + "plt.barh(df['Company'], df['Market_Cap'], color='skyblue')\n", + "plt.xlabel('Market Cap (in trillions)')\n", + "plt.title('Market Caps of Top 7 Publicly Listed Companies')\n", + "plt.gca().invert_yaxis()\n", + "plt.show()\n", + "```\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWR0lEQVR4nO3deXgNd///8deR5SQSJ0FComKNnbap2mpvLalQVBHEWrRqLV3wa4sucre3tVpKG6GK2LWlRVtbaVWVtLaqNWgtpSQICcn8/vDNuR1ZJDFZyvNxXXNdOTOfmXnPmZxz8jqfmU8shmEYAgAAAADclQJ5XQAAAAAA3AsIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAPKNY8eOyWKxaMKECXldyj1r3rx5qly5slxcXOTt7Z3X5fyrbNy4URaLRUuXLr1j2169eqlMmTIO8ywWi8aOHZutfW7cuDFL692NvNhnRvJbPf8mc+bMkcVi0bFjx/K6FOC+QbgC4CDlw9hisWjLli2plhuGoYCAAFksFrVu3ToPKsy8BQsWaMqUKVlaJykpSZGRkWrSpImKFCkiq9WqMmXKqHfv3tqxY0fOFJpLfv/9d/Xq1Uvly5fXxx9/rFmzZqVqkxJwMzPl9B9sY8eOzXD/W7duzdL6BQsWVNWqVfXaa68pLi4uR2vPr1Kek3Pnzpm+7fHjx2vlypWmbzerDh8+rOeee07lypWTm5ubbDab6tevr6lTp+rq1at5XR6Ae5xzXhcAIH9yc3PTggUL1KBBA4f5mzZt0smTJ2W1WvOossxbsGCB9uzZo2HDhmWq/dWrV/X0009rzZo1atSokUaPHq0iRYro2LFjWrx4sebOnavjx4+rZMmSOVt4Dtm4caOSk5M1depUBQYGptnG19dX8+bNc5g3ceJEnTx5UpMnT07VNic9/fTTadY5evRoXb58WbVq1crUdmbMmCFPT09dvnxZ69at0zvvvKP169dr69atslgsZpedrqtXr8rZOf9/7DZq1EhXr16Vq6trltYbP368nnnmGbVr1y5nCsuE1atXq2PHjrJarerRo4eqV6+uxMREbdmyRS+//LL27t2b5pcK96ru3bsrNDT0X/F+Ddwr8v+7PIA80apVKy1ZskTvv/++wx+ECxYsUM2aNU395js5OVmJiYmmbS+7Xn75Za1Zs0aTJ09OFcjGjBmTKlz825w9e1aSMrwc0MPDQ2FhYQ7zoqKidOHChVTzc9qDDz6oBx980GHeiRMndPLkSfXt2zfTf/w/88wz8vHxkSQ9//zz6tChg5YvX65t27apXr16ptedHjc3t1zb190oUKDAv6bWWx09elShoaEqXbq01q9fL39/f/uygQMH6tChQ1q9enUeVpj7nJyc5OTklNdlAPcVLgsEkKYuXbro/Pnz+uabb+zzEhMTtXTpUnXt2jXNdSZMmKDHHntMRYsWlbu7u2rWrJnm/SkWi0WDBg3S/PnzVa1aNVmtVq1ZsybNbRqGof79+8vV1VXLly+3z//ss89Us2ZNubu7q0iRIgoNDdWJEyfsy5s0aaLVq1crJibGflnY7ffA3OrkyZOaOXOmmjdvnmZPl5OTk1566SV7r1VMTIxeeOEFVapUSe7u7ipatKg6duyY6lK5lMssN2/erOeee05FixaVzWZTjx49dOHCBYe2O3bsUMuWLeXj4yN3d3eVLVtWffr0SbfmW02fPt3+XJYoUUIDBw7UxYsX7cvLlCmjMWPGSLrZ45Sd+39udfbsWT377LMqXry43Nzc9NBDD2nu3LkObW69h27y5MkqXbq03N3d1bhxY+3Zsydb+124cKEMw1C3bt2yXfvjjz8u6eYf49LN56ZXr16p2jVp0kRNmjRJNT8pKUmjR4+Wn5+fPDw89NRTTzn87qUnref8zz//1LPPPqsSJUrIarWqbNmyGjBgQLpfNowZM0YuLi76+++/Uy3r37+/vL29de3atTvWkpG07nE6ePCgOnToID8/P7m5ualkyZIKDQ1VbGys/diuXLmiuXPn2l9vtz6nf/75p/r06aPixYvLarWqWrVqmj17dqp9nzx5Uu3atZOHh4eKFSumF198UQkJCZmq+7333tPly5cVERHhEKxSBAYGaujQofbHN27c0FtvvaXy5cvbL/8dPXp0qv2VKVNGrVu31saNG/Xoo4/K3d1dNWrUsD8/y5cvV40aNeTm5qaaNWtq165dDuv36tVLnp6eOnLkiFq2bCkPDw+VKFFCb775pgzDcGib1ffQlStXqnr16vbn9Pb30fTuufr666/VsGFDeXh4qFChQgoJCdHevXsd2pw+fVq9e/dWyZIlZbVa5e/vr7Zt23L/FnAH9FwBSFOZMmVUr149LVy4UE8++aSkmx/IsbGxCg0N1fvvv59qnalTp+qpp55St27dlJiYqKioKHXs2FGrVq1SSEiIQ9v169dr8eLFGjRokHx8fNIMPklJSerTp48WLVqkFStW2Lfxzjvv6PXXX1enTp3Ut29f/f3335o2bZoaNWqkXbt2ydvbW//v//0/xcbGOlzO5unpme7xfv3117px44a6d++eqefn559/1g8//KDQ0FCVLFlSx44d04wZM9SkSRPt27dPBQsWdGg/aNAgeXt7a+zYsTpw4IBmzJihmJgY+x+yZ8+eVYsWLeTr66uRI0fK29tbx44dcwiU6Rk7dqzGjRunZs2aacCAAfbt//zzz9q6datcXFw0ZcoUffrpp1qxYoX9Mrnbe4Uy6+rVq2rSpIkOHTqkQYMGqWzZslqyZIl69eqlixcvOvwBK0mffvqpLl26pIEDB+ratWuaOnWqHn/8ce3evVvFixfP0r7nz5+vgIAANWrUKFu1SzfvyZGkokWLZmv9d955RxaLRa+++qrOnj2rKVOmqFmzZoqOjpa7u3umt/PXX3+pdu3aunjxovr376/KlSvrzz//1NKlSxUfH59mz1z37t315ptvatGiRRo0aJB9fsoXHx06dDC91ykxMVEtW7ZUQkKCBg8eLD8/P/35559atWqVLl68KC8vL82bN099+/ZV7dq11b9/f0lS+fLlJUlnzpxR3bp17YHA19dXX3/9tZ599lnFxcXZv8y4evWqnnjiCR0/flxDhgxRiRIlNG/ePK1fvz5TdX755ZcqV66cHnvssUy179u3r+bOnatnnnlGI0aM0E8//aTw8HDt379fK1ascGh76NAhde3aVc8995zCwsI0YcIEtWnTRh999JFGjx6tF154QZIUHh6uTp066cCBAypQ4H/fXyclJSk4OFh169bVe++9pzVr1mjMmDG6ceOG3nzzTXu7rLyHbtmyRcuXL9cLL7ygQoUK6f3331eHDh10/PjxDH+3582bp549e6ply5Z69913FR8frxkzZqhBgwbatWuX/b24Q4cO2rt3rwYPHqwyZcro7Nmz+uabb3T8+PEMv6gC7nsGANwiMjLSkGT8/PPPxgcffGAUKlTIiI+PNwzDMDp27Gg0bdrUMAzDKF26tBESEuKwbkq7FImJiUb16tWNxx9/3GG+JKNAgQLG3r17HeYfPXrUkGT897//Na5fv2507tzZcHd3N9auXWtvc+zYMcPJycl45513HNbdvXu34ezs7DA/JCTEKF26dKaO+8UXXzQkGbt27cpU+9uP1TAM48cffzQkGZ9++ql9XsrzWbNmTSMxMdE+/7333jMkGZ9//rlhGIaxYsUK+/OeFWfPnjVcXV2NFi1aGElJSfb5H3zwgSHJmD17tn3emDFjDEnG33//naV93P48TpkyxZBkfPbZZ/Z5iYmJRr169QxPT08jLi7OMIz/nU93d3fj5MmT9rY//fSTIcl48cUXs1THnj17DEnGK6+8kqn2Kcd74MAB4++//zaOHj1qzJw507BarUbx4sWNK1euGIZx83e5Z8+eqdZv3Lix0bhxY/vjDRs2GJKMBx54wH6MhmEYixcvNiQZU6dOtc/r2bNnqt89ScaYMWPsj3v06GEUKFAgzXOenJzssM8NGzbYl9WrV8+oU6eOQ/vly5enapfRc5LR78Dt+9y1a5chyViyZEmG2/bw8EjzeXz22WcNf39/49y5cw7zQ0NDDS8vL/trKeX3avHixfY2V65cMQIDA+94bLGxsYYko23bthnWmCI6OtqQZPTt29dh/ksvvWRIMtavX2+fV7p0aUOS8cMPP9jnrV271v67HRMTY58/c+bMVLX27NnTkGQMHjzYPi85OdkICQkxXF1dHc5FVt5DXV1djUOHDtnn/frrr4YkY9q0afZ5Ke8/R48eNQzDMC5dumR4e3sb/fr1c9je6dOnDS8vL/v8Cxcu2N+LAWQNlwUCSFenTp109epVrVq1SpcuXdKqVavSvSRQksO39hcuXFBsbKwaNmyonTt3pmrbuHFjVa1aNc3tJCYm2r+t/eqrr9SiRQv7suXLlys5OVmdOnXSuXPn7JOfn58qVKigDRs2ZOtYU0aPK1SoUKba33qs169f1/nz5xUYGChvb+80j7d///5ycXGxPx4wYICcnZ311VdfSfrffVCrVq3S9evXM133t99+q8TERA0bNszhm/J+/frJZrPlyD0mX331lfz8/NSlSxf7PBcXFw0ZMkSXL1/Wpk2bHNq3a9dODzzwgP1x7dq1VadOHfuxZ9b8+fMlKcuXBFaqVEm+vr4qW7asnnvuOQUGBmr16tWpehczq0ePHg6/J88884z8/f2zdDzJyclauXKl2rRpo0cffTTV8owG2ujRo4d++uknew+c9L8evcaNG2e6hszy8vKSJK1du1bx8fFZWtcwDC1btkxt2rSRYRgOr9mWLVsqNjbW/nr56quv5O/vr2eeeca+fsGCBe09YRnJ6us35VwNHz7cYf6IESMkKdXrpmrVqg7359WpU0fSzUtMS5UqlWr+kSNHUu3z1p7GlF68xMREffvtt/b5WXkPbdasmb13ULp5j6LNZktz3ym++eYbXbx4UV26dHE4F05OTqpTp479/dPd3V2urq7auHFjqsuXAWSMywIBpMvX11fNmjXTggULFB8fr6SkJIc/fG63atUqvf3224qOjna4byGtPxTLli2b7nbCw8N1+fJlff3116nueTl48KAMw1CFChXSXPfWAJMVNptNknTp0qVMtb969arCw8MVGRmpP//80+HeiZT7UG51e72enp7y9/e337/QuHFjdejQQePGjdPkyZPVpEkTtWvXTl27ds1wpK+YmBhJNwPErVxdXVWuXDn7cjPFxMSoQoUKDmFOkqpUqeJQU4q0zlXFihW1ePHiTO/TMAwtWLBA1atXz/LljMuWLZPNZpOLi4tKlizp8Adpdtx+PBaLRYGBgVm6F+Xvv/9WXFycqlevnuX9d+7cWcOGDdP8+fP1xhtvKDY2VqtWrdKLL76YI6Mfli1bVsOHD9ekSZM0f/58NWzYUE899ZTCwsLswSs9f//9ty5evKhZs2alO0pfykArMTExCgwMTHUMt/9upyWrr9+YmBgVKFAg1WiUfn5+8vb2TvU7fGuAkv4XOAMCAtKcf3sgKVCggMqVK+cwr2LFipLk8HuTlffQ22uSpMKFC2cYhg4ePCjpf/cd3i7lebRarXr33Xc1YsQIFS9eXHXr1lXr1q3Vo0cP+fn5pbt9AIQrAHfQtWtX9evXT6dPn9aTTz6Z7khz33//vZ566ik1atRI06dPl7+/v1xcXBQZGakFCxakap/RvSktW7bUmjVr9N5776lJkyYO95AkJyfLYrHo66+/TnMUrIzuq8pI5cqVJUm7d+/Www8/fMf2gwcPVmRkpIYNG6Z69erJy8tLFotFoaGhSk5OzvL+U/457bZt2/Tll19q7dq16tOnjyZOnKht27Zl+7juFVu3blVMTIzCw8OzvG6jRo3sowWmJb1AkpSUlC9HWitcuLBat25tD1dLly5VQkJCjo7mOHHiRPXq1Uuff/651q1bpyFDhig8PFzbtm3L8F8TpLwWwsLC1LNnzzTbZPfev1vZbDaVKFEiywOlZDaMpvd7kN5847aBKjIjq++h2dl3yvmYN29emiHp1pFhhw0bpjZt2mjlypVau3atXn/9dYWHh2v9+vUKCgrK6uEB9w3CFYAMtW/fXs8995y2bdumRYsWpdtu2bJlcnNz09q1ax16WiIjI7O8z7p16+r5559X69at1bFjR61YscL+oV++fHkZhqGyZcvav/lNT1a+xX/yySfl5OSkzz77LFODWixdulQ9e/bUxIkT7fOuXbvmMELfrQ4ePKimTZvaH1++fFmnTp1Sq1atHNrVrVtXdevW1TvvvKMFCxaoW7duioqKUt++fdPcbunSpSVJBw4ccPhmPDExUUePHlWzZs3ueCxZVbp0af32229KTk526L36/fffHWpKkfJt+a3++OOPLN0UP3/+fFkslgwvS82uwoULp3neYmJiUvU2SKmPxzAMHTp0KEshwdfXVzabLdujJvbo0UNt27bVzz//rPnz5ysoKEjVqlXL1rYyq0aNGqpRo4Zee+01/fDDD6pfv74++ugjvf3225LSfr35+vqqUKFCSkpKuuPvYunSpbVnzx4ZhuGwrQMHDmSqvtatW2vWrFn68ccf7zjEfunSpZWcnKyDBw/ae1ylm4NvXLx4MdXv8N1KTk7WkSNHHN6z/vjjD0myvw7MfA9NT0qvbbFixTL13lC+fHmNGDFCI0aM0MGDB/Xwww9r4sSJ+uyzz0yrCbjXcM8VgAx5enpqxowZGjt2rNq0aZNuOycnJ1ksFiUlJdnnHTt2TCtXrszWfps1a6aoqCitWbNG3bt3t3/j+vTTT8vJyUnjxo1L9Q2tYRg6f/68/bGHh0eal+ilJSAgQP369dO6des0bdq0VMuTk5Pt/0xXunm8t+9/2rRpDsd/q1mzZjncSzVjxgzduHHDPhLjhQsXUm0vpQcto6GomzVrJldXV73//vsO60dERCg2NjbVCGNmaNWqlU6fPu0Qtm/cuKFp06bJ09Mz1X0/K1eu1J9//ml/vH37dv3000/2Y7+T69eva8mSJWrQoEGal0LdrfLly2vbtm0Ow5+vWrUq3eHVU0Y/TLF06VKdOnUq08cj3bxMrF27dvryyy+1Y8eOVMvv1PPx5JNPysfHR++++642bdqUo71WcXFxunHjhsO8GjVqqECBAg6/mx4eHqlCqpOTkzp06KBly5alGSRvHVK+VatW+uuvvxyGHo+Pj8/0P/195ZVX5OHhob59++rMmTOplh8+fFhTp06170uSpkyZ4tBm0qRJkpQjr5sPPvjA/rNhGPrggw/k4uKiJ554QpL576FpadmypWw2m8aPH5/mvZ0p5yM+Pj7VkP7ly5dXoUKFMj00PnC/oucKwB2ldznPrUJCQjRp0iQFBwera9euOnv2rD788EMFBgbqt99+y9Z+27Vrp8jISPXo0UM2m00zZ85U+fLl9fbbb2vUqFE6duyY2rVrp0KFCuno0aNasWKF+vfvr5deekmSVLNmTS1atEjDhw9XrVq15OnpmWFAnDhxog4fPqwhQ4Zo+fLlat26tQoXLqzjx49ryZIl+v333xUaGirp5rfk8+bNk5eXl6pWraoff/xR3377bbpDICcmJuqJJ56wD9M8ffp0NWjQQE899ZQkae7cuZo+fbrat2+v8uXL69KlS/r4449ls9lS9W7dytfXV6NGjdK4ceMUHBysp556yr79WrVq5cgf3f3799fMmTPVq1cv/fLLLypTpoyWLl2qrVu3asqUKakGFQgMDFSDBg00YMAAJSQkaMqUKSpatKheeeWVTO1v7dq1On/+/F39b6uM9O3bV0uXLlVwcLA6deqkw4cP67PPPkv33qwiRYqoQYMG6t27t86cOaMpU6YoMDBQ/fr1y9J+x48fr3Xr1qlx48bq37+/qlSpolOnTmnJkiXasmVLhv/s2cXFRaGhofrggw/k5OTkMLhIZkyaNCnVgB4FChTQ6NGjU7Vdv369Bg0apI4dO6pixYq6ceOG5s2bZw9OKWrWrKlvv/1WkyZNUokSJVS2bFnVqVNH//nPf7RhwwbVqVNH/fr1U9WqVfXPP/9o586d+vbbb/XPP/9IujkIywcffKAePXrol19+kb+/v+bNm5fpgUfKly+vBQsWqHPnzqpSpYp69Oih6tWrKzExUT/88IP93wVI0kMPPaSePXtq1qxZunjxoho3bqzt27dr7ty5ateunUMvsxnc3Ny0Zs0a9ezZU3Xq1NHXX3+t1atXa/To0fL19ZWUM++ht7PZbJoxY4a6d++uRx55RKGhofL19dXx48e1evVq1a9fXx988IH++OMP+/tV1apV5ezsrBUrVujMmTP290AA6cj18QkB5Gu3DsWekbSGYo+IiDAqVKhgWK1Wo3LlykZkZKR96OdbSTIGDhyYapu3DsV+q+nTpxuSjJdeesk+b9myZUaDBg0MDw8Pw8PDw6hcubIxcOBA48CBA/Y2ly9fNrp27Wp4e3sbkjI1LPuNGzeMTz75xGjYsKHh5eVluLi4GKVLlzZ69+7tMEz7hQsXjN69exs+Pj6Gp6en0bJlS+P3339PNax3yvO5adMmo3///kbhwoUNT09Po1u3bsb58+ft7Xbu3Gl06dLFKFWqlGG1Wo1ixYoZrVu3Nnbs2HHHmg3j5tDrlStXNlxcXIzixYsbAwYMMC5cuODQxqyh2A3DMM6cOWM/fldXV6NGjRpGZGSkQ5tbz+fEiRONgIAAw2q1Gg0bNjR+/fXXTO8/NDTUcHFxcXi+MiMrxztx4kTjgQceMKxWq1G/fn1jx44d6Q7FvnDhQmPUqFFGsWLFDHd3dyMkJMRhOG7DyNxQ7IZhGDExMUaPHj0MX19fw2q1GuXKlTMGDhxoJCQkOOwzrWHIt2/fbkgyWrRokannwzD+95ykNTk5OaW5zyNHjhh9+vQxypcvb7i5uRlFihQxmjZtanz77bcO2/7999+NRo0aGe7u7oYkh9fBmTNnjIEDBxoBAQGGi4uL4efnZzzxxBPGrFmzUj0fTz31lFGwYEHDx8fHGDp0qLFmzZpMDTOf4o8//jD69etnlClTxnB1dTUKFSpk1K9f35g2bZpx7do1e7vr168b48aNM8qWLWu4uLgYAQEBxqhRoxzaGEba73WGkfb7WFrvYT179jQ8PDyMw4cPGy1atDAKFixoFC9e3BgzZozDv08wjLt/D03v/SdlKPYUGzZsMFq2bGl4eXkZbm5uRvny5Y1evXrZ32/OnTtnDBw40KhcubLh4eFheHl5GXXq1HEYJh9A2iyGkY27LgEAmTJnzhz17t1bP//8c5pDbt/Ljh07prJly+q///2vvTcR5vn111/18MMP69NPP830P79G7uvVq5eWLl2qy5cv53UpAHIB91wBAPAv9PHHH8vT01NPP/10XpcCAPg/3HMFAMC/yJdffql9+/Zp1qxZGjRokDw8PPK6JADA/yFcAQDwLzJ48GCdOXNGrVq10rhx4/K6HADALbjnCgAAAABMwD1XAAAAAGACwhUAAAAAmIB7rtKRnJysv/76S4UKFZLFYsnrcgAAAADkEcMwdOnSJZUoUUIFCqTfP0W4Ssdff/2lgICAvC4DAAAAQD5x4sQJlSxZMt3lhKt0FCpUSNLNJ9Bms+VxNQAAAADySlxcnAICAuwZIT2Eq3SkXApos9kIVwAAAADueLsQA1oAAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALnvC4gv5v063m5eSbmdRkAAADAfWNkkE9el5At9FwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACbIlXDVq1cvWSwWPf/886mWDRw4UBaLRb169ZIk/f333xowYIBKlSolq9UqPz8/tWzZUlu3brWvU6ZMGVksFoepZMmSGjt2bKr5t08AAAAAkBOcc2tHAQEBioqK0uTJk+Xu7i5JunbtmhYsWKBSpUrZ23Xo0EGJiYmaO3euypUrpzNnzui7777T+fPnHbb35ptvql+/fvbHTk5Ocnd3dwhwtWrVUv/+/R3aAQAAAEBOyLVw9cgjj+jw4cNavny5unXrJklavny5SpUqpbJly0qSLl68qO+//14bN25U48aNJUmlS5dW7dq1U22vUKFC8vPzSzXf09PT/rOTk1O67W6XkJCghIQE++O4uLisHSAAAACA+1qu3nPVp08fRUZG2h/Pnj1bvXv3tj/29PSUp6enVq5c6RB0ckN4eLi8vLzsU0BAQK7uHwAAAMC/W66Gq7CwMG3ZskUxMTGKiYnR1q1bFRYWZl/u7OysOXPmaO7cufL29lb9+vU1evRo/fbbb6m29eqrr9rDmKenp95///27qm3UqFGKjY21TydOnLir7QEAAAC4v+TaZYGS5Ovrq5CQEM2ZM0eGYSgkJEQ+Pj4ObTp06KCQkBB9//332rZtm77++mu99957+uSTT+yDXkjSyy+/7PD49u1kldVqldVqvattAAAAALh/5Wq4km5eGjho0CBJ0ocffphmGzc3NzVv3lzNmzfX66+/rr59+2rMmDGpwlRgYGBulAwAAAAAd5Tr/+cqODhYiYmJun79ulq2bJmpdapWraorV67kcGUAAAAAkH253nPl5OSk/fv323++1fnz59WxY0f16dNHDz74oAoVKqQdO3bovffeU9u2bXO7VAAAAADItFwPV5Jks9nSnO/p6ak6depo8uTJOnz4sK5fv66AgAD169dPo0ePzuUqAQAAACDzLIZhGHldRH4UFxcnLy8vjdl8RG6ehfK6HAAAAOC+MTLo7garM1tKNoiNjU23o0jKg3uuAAAAAOBeRLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATOCc1wXkd8MfKiqbzZbXZQAAAADI5+i5AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADCBc14XkN9N+vW83DwT87oMAAAAZNHIIJ+8LgH3GXquAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAAT5Em4+vHHH+Xk5KSQkJB02yxcuFBOTk4aOHBgqmUbN26UxWKxT8WLF1eHDh105MgRe5syZcpoypQpOVE+AAAAAKSSJ+EqIiJCgwcP1ubNm/XXX3+l2+aVV17RwoULde3atTTbHDhwQH/99ZeWLFmivXv3qk2bNkpKSsrJ0gEAAAAgTbkeri5fvqxFixZpwIABCgkJ0Zw5c1K1OXr0qH744QeNHDlSFStW1PLly9PcVrFixeTv769GjRrpjTfe0L59+3To0KEcPgIAAAAASC3Xw9XixYtVuXJlVapUSWFhYZo9e7YMw3BoExkZqZCQEHl5eSksLEwRERF33K67u7skKTExMVt1JSQkKC4uzmECAAAAgMzK9XAVERGhsLAwSVJwcLBiY2O1adMm+/Lk5GTNmTPH3iY0NFRbtmzR0aNH093mqVOnNGHCBD3wwAOqVKlStuoKDw+Xl5eXfQoICMjWdgAAAADcn3I1XB04cEDbt29Xly5dJEnOzs7q3LmzQ8/UN998oytXrqhVq1aSJB8fHzVv3lyzZ89Otb2SJUvKw8NDJUqU0JUrV7Rs2TK5urpmq7ZRo0YpNjbWPp04cSJb2wEAAABwf3LOzZ1FREToxo0bKlGihH2eYRiyWq364IMP5OXlpYiICP3zzz/2y/ykm71Zv/32m8aNG6cCBf6XB7///nvZbDYVK1ZMhQoVuqvarFarrFbrXW0DAAAAwP0r18LVjRs39Omnn2rixIlq0aKFw7J27dpp4cKF6tixoz7//HNFRUWpWrVq9uVJSUlq0KCB1q1bp+DgYPv8smXLytvbO7cOAQAAAADSlWvhatWqVbpw4YKeffZZeXl5OSzr0KGDIiIidO3aNRUtWlSdOnWSxWJxaNOqVStFREQ4hKs7+fPPPxUdHe0wr3Tp0ipcuHC2jwMAAAAA0pJr91xFRESoWbNmqYKVdDNc7dixQ8OHD1f79u1TBauUNl988YXOnTuX6X1OmDBBQUFBDtPq1avv6jgAAAAAIC0W4/Zx0CFJiouLk5eXl8ZsPiI3z7u7nwsAAAC5b2SQT16XgHtESjaIjY2VzWZLt12uD8UOAAAAAPciwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJjAOa8LyO+GP1RUNpstr8sAAAAAkM/RcwUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAue8LiC/m/Trebl5JuZ1GQAA5Gsjg3zyugQAyHP0XAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJshWuDp9+rSGDh2qwMBAubm5qXjx4qpfv75mzJih+Ph4e7sffvhBrVq1UuHCheXm5qYaNWpo0qRJSkpKSrXNVatWqXHjxipUqJAKFiyoWrVqac6cOWnuf9myZXr88cdVuHBhubu7q1KlSurTp4927dplbzNnzhx5e3tn5/AAAAAAIMuyHK6OHDmioKAgrVu3TuPHj9euXbv0448/6pVXXtGqVav07bffSpJWrFihxo0bq2TJktqwYYN+//13DR06VG+//bZCQ0NlGIZ9m9OmTVPbtm1Vv359/fTTT/rtt98UGhqq559/Xi+99JLD/l999VV17txZDz/8sL744gsdOHBACxYsULly5TRq1Ki7fDoAAAAAIHssxq0pJxOCg4O1d+9e/f777/Lw8Ei13DAMxcfHq3Tp0mrcuLGWLVvmsPzLL7/UU089paioKHXu3FknTpxQ+fLlNXjwYE2cONGh7bRp0zRkyBBt27ZNderU0bZt21SvXj1NnTpVQ4YMSXPfFotF0s2eq2HDhunixYtZOTy7uLg4eXl5aczmI3LzLJStbQAAcL8YGeST1yUAQI5JyQaxsbGy2WzptstSz9X58+e1bt06DRw4MM1gJUkWi0Xr1q3T+fPnU/U6SVKbNm1UsWJFLVy4UJK0dOlSXb9+Pc22zz33nDw9Pe1tFy5cKE9PT73wwgvp7ju7EhISFBcX5zABAAAAQGZlKVwdOnRIhmGoUqVKDvN9fHzk6ekpT09Pvfrqq/rjjz8kSVWqVElzO5UrV7a3+eOPP+Tl5SV/f/9U7VxdXVWuXDmHtuXKlZOzs7O9zaRJk+z79vT0VGxsbFYOyS48PFxeXl72KSAgIFvbAQAAAHB/MmW0wO3btys6OlrVqlVTQkKCfX4WrzjMlj59+ig6OlozZ87UlStXsr3PUaNGKTY21j6dOHHC5EoBAAAA3MuyFK4CAwNlsVh04MABh/nlypVTYGCg3N3dJUkVK1aUJO3fvz/N7ezfv9/epmLFioqNjdVff/2Vql1iYqIOHz5sb1uhQgUdOXJE169ft7fx9vZWYGCgHnjggawcSipWq1U2m81hAgAAAIDMylK4Klq0qJo3b64PPvhAV65cSbddixYtVKRIkVQDVEjSF198oYMHD6pLly6SpA4dOsjFxSXNth999JGuXLlib9ulSxddvnxZ06dPz0rZAAAAAJDjnO/cxNH06dNVv359Pfrooxo7dqwefPBBFShQQD///LN+//131axZUx4eHpo5c6ZCQ0PVv39/DRo0SDabTd99951efvllPfPMM+rUqZMkqVSpUnrvvfc0YsQIubm5qXv37nJxcdHnn3+u0aNHa8SIEapTp44kqV69ehoxYoRGjBihmJgYPf300woICNCpU6cUEREhi8WiAgX+lxeTkpIUHR3tUL/Vak33XjAAAAAAyK4sD8UuSadOndL48eO1evVqnTx5UlarVVWrVlXHjh31wgsvqGDBgpKk77//Xu+8845+/PFHXbt2TRUqVFDv3r01bNgwOTk5OWzziy++0IQJE7Rz504lJSWpWrVqGjhwoHr37p1q/4sXL9aMGTO0a9cuxcfHq3jx4mrUqJGGDBliD2Jz5sxJc93y5cvr0KFDdzxGhmIHACDzGIodwL0ss0OxZytc3Q8IVwAAZB7hCsC9LEf+zxUAAAAAIG2EKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMIFzXheQ3w1/qKhsNltelwEAAAAgn6PnCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEznldQH436dfzcvNMzOsyAADIN0YG+eR1CQCQL9FzBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYIEfD1Y8//ignJyeFhIQ4zD927JgsFoucnJz0559/Oiw7deqUnJ2dZbFYdOzYMUlSkyZNZLFY0p02bdokSerVq5csFov+85//OGxz5cqVslgsOXegAAAAAO57ORquIiIiNHjwYG3evFl//fVXquUPPPCAPv30U4d5c+fO1QMPPOAwb/ny5Tp16pTDFBMTo+rVq+vRRx9VnTp17G3d3Nz07rvv6sKFCzlzUAAAAACQhhwLV5cvX9aiRYs0YMAAhYSEaM6cOana9OzZU5GRkQ7zIiMj1bNnT4d5RYoUkZ+fn8P01ltv6dy5c1qxYoXc3NzsbZs1ayY/Pz+Fh4fnyHEBAAAAQFpyLFwtXrxYlStXVqVKlRQWFqbZs2fLMAyHNk899ZQuXLigLVu2SJK2bNmiCxcuqE2bNhlue/r06fr000+1bNkylSxZ0mGZk5OTxo8fr2nTpunkyZOZrjchIUFxcXEOEwAAAABkVo6Fq4iICIWFhUmSgoODFRsba783KoWLi4s9eEnS7NmzFRYWJhcXl3S3u3nzZg0bNkwffvihHnvssTTbtG/fXg8//LDGjBmT6XrDw8Pl5eVlnwICAjK9LgAAAADkSLg6cOCAtm/fri5dukiSnJ2d1blzZ0VERKRq26dPHy1ZskSnT5/WkiVL1KdPn3S3e/z4cT3zzDPq37+/+vbtm2EN7777rubOnav9+/dnquZRo0YpNjbWPp04cSJT6wEAAACAlEPhKiIiQjdu3FCJEiXk7OwsZ2dnzZgxQ8uWLVNsbKxD2xo1aqhy5crq0qWLqlSpourVq6e5zatXr6p9+/aqVq2apkyZcscaGjVqpJYtW2rUqFGZqtlqtcpmszlMAAAAAJBZzmZv8MaNG/r00081ceJEtWjRwmFZu3bttHDhQgUHBzvM79Onj1544QXNmDEj3e327dtX//zzj9auXStn58yV/Z///EcPP/ywKlWqlPUDAQAAAIAsMD1crVq1ShcuXNCzzz4rLy8vh2UdOnRQREREqnDVr18/dezYUd7e3mlu87///a+WLFmiL7/8Ujdu3NDp06cdlnt5ecnd3T3VejVq1FC3bt30/vvv391BAQAAAMAdmH5ZYEREhJo1a5YqWEk3w9WOHTtSjcTn7OwsHx+fdHukpk+fruvXrys4OFj+/v6ppkWLFqVbz5tvvqnk5OS7OygAAAAAuAOLcfv46JAkxcXFycvLS2M2H5GbZ6G8LgcAgHxjZJBPXpcAALkqJRvExsZmODZDjg3FDgAAAAD3E8IVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALnvC4gvxv+UFHZbLa8LgMAAABAPkfPFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALnvC4gv5v063m5eSbmdRkAcNdGBvnkdQkAANzT6LkCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAEyQK+GqV69eslgsev7551MtGzhwoCwWi3r16uXQ9vYpODhYGzduTHPZrdPGjRslSSdPnpSrq6uqV6+eG4cIAAAA4D7nnFs7CggIUFRUlCZPnix3d3dJ0rVr17RgwQKVKlXKoW1wcLAiIyMd5lmtVnl4eOjUqVP2eUOHDlVcXJxD2yJFikiS5syZo06dOmnz5s366aefVKdOnZw6NAAAAADIvXD1yCOP6PDhw1q+fLm6desmSVq+fLlKlSqlsmXLOrS1Wq3y8/NLczu3znd3d1dCQkKqtoZhKDIyUtOnT1fJkiUVERFxx3CVkJCghIQE++O4uLgsHR8AAACA+1uu3nPVp08fh16m2bNnq3fv3qbvZ8OGDYqPj1ezZs0UFhamqKgoXblyJcN1wsPD5eXlZZ8CAgJMrwsAAADAvStXw1VYWJi2bNmimJgYxcTEaOvWrQoLC0vVbtWqVfL09HSYxo8fn+n9REREKDQ0VE5OTqpevbrKlSunJUuWZLjOqFGjFBsba59OnDiR5eMDAAAAcP/KtcsCJcnX11chISGaM2eODMNQSEiIfHx8UrVr2rSpZsyY4TAv5V6qO7l48aKWL1+uLVu22OeFhYUpIiLCPmhGWqxWq6xWa+YOBAAAAABuk6vhSrp5aeCgQYMkSR9++GGabTw8PBQYGJit7S9YsEDXrl1zuMfKMAwlJyfrjz/+UMWKFbO1XQAAAADISK7/n6vg4GAlJibq+vXratmypenbj4iI0IgRIxQdHW2ffv31VzVs2FCzZ882fX8AAAAAIOVBz5WTk5P2799v/zktCQkJOn36tMM8Z2fnNC8hvFV0dLR27typ+fPnq3Llyg7LunTpojfffFNvv/22nJ1z/bABAAAA3ONyvedKkmw2m2w2W7rL16xZI39/f4epQYMGd9xuRESEqlatmipYSVL79u119uxZffXVV3dVOwAAAACkxWIYhpHXReRHcXFx8vLy0pjNR+TmWSivywGAuzYyKOPefwAAkLaUbBAbG5thJ1Ge9FwBAAAAwL2GcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYwDmvC8jvhj9UVDabLa/LAAAAAJDP0XMFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYwDmvC8jvJv16Xm6eiXldBvCvMDLIJ69LAAAAyDP0XAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJggx8JVr169ZLFY7FPRokUVHBys3377zd7m1uU2m021atXS559/7rCdOXPmyNvb22He/v37FRAQoI4dOyoxMTHdGipXriyr1arTp0+bemwAAAAAcLsc7bkKDg7WqVOndOrUKX333XdydnZW69atHdpERkbq1KlT2rFjh+rXr69nnnlGu3fvTnebP//8sxo2bKjg4GAtWrRIrq6uabbbsmWLrl69qmeeeUZz58419bgAAAAA4HY5Gq6sVqv8/Pzk5+enhx9+WCNHjtSJEyf0999/29t4e3vLz89PFStW1FtvvaUbN25ow4YNaW5v/fr1evzxx/Xss8/q448/VoEC6ZcfERGhrl27qnv37po9e7bpxwYAAAAAt3LOrR1dvnxZn332mQIDA1W0aNFUy2/cuKGIiAhJSrM3asWKFeratavGjh2rV199NcN9Xbp0SUuWLNFPP/2kypUrKzY2Vt9//70aNmyY7joJCQlKSEiwP46Li8vsoQEAAABAzoarVatWydPTU5J05coV+fv7a9WqVQ49Tl26dJGTk5OuXr2q5ORklSlTRp06dXLYzuXLl9WxY0eNHj36jsFKkqKiolShQgVVq1ZNkhQaGqqIiIgMw1V4eLjGjRuXncMEAAAAgJy9LLBp06aKjo5WdHS0tm/frpYtW+rJJ59UTEyMvc3kyZMVHR2tr7/+WlWrVtUnn3yiIkWKOGzH3d1dzZs318cff6z9+/fb5z///PPy9PS0Tylmz56tsLAw++OwsDAtWbJEly5dSrfWUaNGKTY21j6dOHHCjKcAAAAAwH0iR8OVh4eHAgMDFRgYqFq1aumTTz7RlStX9PHHH9vb+Pn5KTAwUC1atFBkZKQ6d+6ss2fPOmzHyclJK1eu1COPPKKmTZvaA9abb75pD2/R0dGSpH379mnbtm165ZVX5OzsLGdnZ9WtW1fx8fGKiopKt1ar1SqbzeYwAQAAAEBm5er/ubJYLCpQoICuXr2a5vLatWurZs2aeuedd1Its1qtWr58uWrVqqWmTZtq3759KlasmD28BQYGSro5kEWjRo3066+/OgSv4cOH2+/pAgAAAACz5Wi4SkhI0OnTp3X69Gnt379fgwcP1uXLl9WmTZt01xk2bJhmzpypP//8M9Uyq9WqZcuWqU6dOmratKn27t3rsPz69euaN2+eunTpourVqztMffv21U8//ZRqHQAAAAAwQ46GqzVr1sjf31/+/v6qU6eOfv75Zy1ZskRNmjRJd53g4GCVLVs2zd4r6eZIgkuXLtVjjz2mpk2bas+ePfZlX3zxhc6fP6/27dunWq9KlSqqUqUKvVcAAAAAcoTFMAwjr4vIj+Li4uTl5aUxm4/IzbNQXpcD/CuMDPLJ6xIAAABMl5INYmNjMxybIVfvuQIAAACAexXhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATOCc1wXkd8MfKiqbzZbXZQAAAADI5+i5AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADCBc14XkN9N+vW83DwT87oM5JGRQT55XQIAAAD+Jei5AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMkGvhymKxZDiNHTtWkrRixQrVrVtXXl5eKlSokKpVq6Zhw4bZtzNnzhx5e3tnap+VK1eW1WrV6dOnzT8gAAAAALhFroWrU6dO2acpU6bIZrM5zHvppZf03XffqXPnzurQoYO2b9+uX375Re+8846uX7+e5f1t2bJFV69e1TPPPKO5c+fmwBEBAAAAwP8459aO/Pz87D97eXnJYrE4zJOkL7/8UvXr19fLL79sn1exYkW1a9cuy/uLiIhQ165d1bhxYw0dOlSvvvpqtmsHAAAAgDvJV/dc+fn5ae/evdqzZ89dbefSpUtasmSJwsLC1Lx5c8XGxur777/PcJ2EhATFxcU5TAAAAACQWfkqXA0ePFi1atVSjRo1VKZMGYWGhmr27NlKSEjI0naioqJUoUIFVatWTU5OTgoNDVVERESG64SHh8vLy8s+BQQE3M2hAAAAALjP5Ktw5eHhodWrV+vQoUN67bXX5OnpqREjRqh27dqKj4/P9HZmz56tsLAw++OwsDAtWbJEly5dSnedUaNGKTY21j6dOHHiro4FAAAAwP0lX4WrFOXLl1ffvn31ySefaOfOndq3b58WLVqUqXX37dunbdu26ZVXXpGzs7OcnZ1Vt25dxcfHKyoqKt31rFarbDabwwQAAAAAmZUvw9WtypQpo4IFC+rKlSuZah8REaFGjRrp119/VXR0tH0aPnz4HS8NBAAAAIDsyrXRAjNj7Nixio+PV6tWrVS6dGldvHhR77//vq5fv67mzZvb2yUlJSk6OtphXavVqsDAQM2bN09vvvmmqlev7rC8b9++mjRpkvbu3atq1arlxuEAAAAAuI/kq3DVuHFjffjhh+rRo4fOnDmjwoULKygoSOvWrVOlSpXs7S5fvqygoCCHdcuXL693331X58+fV/v27VNtu0qVKqpSpYoiIiI0adKkHD8WAAAAAPcXi2EYRl4XkR/FxcXJy8tLYzYfkZtnobwuB3lkZJBPXpcAAACAPJaSDWJjYzMcmyHf33MFAAAAAP8GhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADCBc14XkN8Nf6iobDZbXpcBAAAAIJ+j5woAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEznldQH5lGIYkKS4uLo8rAQAAAJCXUjJBSkZID+EqHefPn5ckBQQE5HElAAAAAPKDS5cuycvLK93lhKt0FClSRJJ0/PjxDJ9A/DvExcUpICBAJ06ckM1my+tycJc4n/cWzue9hfN5b+F83ls4n9lnGIYuXbqkEiVKZNiOcJWOAgVu3o7m5eXFL989xGazcT7vIZzPewvn897C+by3cD7vLZzP7MlMhwsDWgAAAACACQhXAAAAAGACwlU6rFarxowZI6vVmtelwAScz3sL5/Pewvm8t3A+7y2cz3sL5zPnWYw7jScIAAAAALgjeq4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAE9zX4erDDz9UmTJl5Obmpjp16mj79u0Ztl+yZIkqV64sNzc31ahRQ1999VUuVYrMyMr5nDNnjiwWi8Pk5uaWi9UiPZs3b1abNm1UokQJWSwWrVy58o7rbNy4UY888oisVqsCAwM1Z86cHK8TmZPV87lx48ZUr02LxaLTp0/nTsHIUHh4uGrVqqVChQqpWLFiateunQ4cOHDH9fj8zJ+ycz75/My/ZsyYoQcffND+D4Lr1aunr7/+OsN1eG2a774NV4sWLdLw4cM1ZswY7dy5Uw899JBatmyps2fPptn+hx9+UJcuXfTss89q165dateundq1a6c9e/bkcuVIS1bPp3Tzv5OfOnXKPsXExORixUjPlStX9NBDD+nDDz/MVPujR48qJCRETZs2VXR0tIYNG6a+fftq7dq1OVwpMiOr5zPFgQMHHF6fxYoVy6EKkRWbNm3SwIEDtW3bNn3zzTe6fv26WrRooStXrqS7Dp+f+Vd2zqfE52d+VbJkSf3nP//RL7/8oh07dujxxx9X27ZttXfv3jTb89rMIcZ9qnbt2sbAgQPtj5OSkowSJUoY4eHhabbv1KmTERIS4jCvTp06xnPPPZejdSJzsno+IyMjDS8vr1yqDtklyVixYkWGbV555RWjWrVqDvM6d+5stGzZMgcrQ3Zk5nxu2LDBkGRcuHAhV2rC3Tl79qwhydi0aVO6bfj8/PfIzPnk8/PfpXDhwsYnn3yS5jJemznjvuy5SkxM1C+//KJmzZrZ5xUoUEDNmjXTjz/+mOY6P/74o0N7SWrZsmW67ZF7snM+Jeny5csqXbq0AgICMvxmB/kbr81708MPPyx/f381b95cW7duzetykI7Y2FhJUpEiRdJtw2v03yMz51Pi8/PfICkpSVFRUbpy5Yrq1auXZhtemznjvgxX586dU1JSkooXL+4wv3jx4ule13/69OkstUfuyc75rFSpkmbPnq3PP/9cn332mZKTk/XYY4/p5MmTuVEyTJTeazMuLk5Xr17No6qQXf7+/vroo4+0bNkyLVu2TAEBAWrSpIl27tyZ16XhNsnJyRo2bJjq16+v6tWrp9uOz89/h8yeTz4/87fdu3fL09NTVqtVzz//vFasWKGqVaum2ZbXZs5wzusCgLxQr149h29yHnvsMVWpUkUzZ87UW2+9lYeVAfe3SpUqqVKlSvbHjz32mA4fPqzJkydr3rx5eVgZbjdw4EDt2bNHW7ZsyetSYILMnk8+P/O3SpUqKTo6WrGxsVq6dKl69uypTZs2pRuwYL77sufKx8dHTk5OOnPmjMP8M2fOyM/PL811/Pz8stQeuSc75/N2Li4uCgoK0qFDh3KiROSg9F6bNptN7u7ueVQVzFS7dm1em/nMoEGDtGrVKm3YsEElS5bMsC2fn/lfVs7n7fj8zF9cXV0VGBiomjVrKjw8XA899JCmTp2aZltemznjvgxXrq6uqlmzpr777jv7vOTkZH333XfpXpdar149h/aS9M0336TbHrknO+fzdklJSdq9e7f8/f1zqkzkEF6b977o6Ghem/mEYRgaNGiQVqxYofXr16ts2bJ3XIfXaP6VnfN5Oz4/87fk5GQlJCSkuYzXZg7J6xE18kpUVJRhtVqNOXPmGPv27TP69+9veHt7G6dPnzYMwzC6d+9ujBw50t5+69athrOzszFhwgRj//79xpgxYwwXFxdj9+7deXUIuEVWz+e4ceOMtWvXGocPHzZ++eUXIzQ01HBzczP27t2bV4eA/3Pp0iVj165dxq5duwxJxqRJk4xdu3YZMTExhmEYxsiRI43u3bvb2x85csQoWLCg8fLLLxv79+83PvzwQ8PJyclYs2ZNXh0CbpHV8zl58mRj5cqVxsGDB43du3cbQ4cONQoUKGB8++23eXUIuMWAAQMMLy8vY+PGjcapU6fsU3x8vL0Nn5//Htk5n3x+5l8jR440Nm3aZBw9etT47bffjJEjRxoWi8VYt26dYRi8NnPLfRuuDMMwpk2bZpQqVcpwdXU1ateubWzbts2+rHHjxkbPnj0d2i9evNioWLGi4erqalSrVs1YvXp1LleMjGTlfA4bNszetnjx4karVq2MnTt35kHVuF3KUNy3Tynnr2fPnkbjxo1TrfPwww8brq6uRrly5YzIyMhcrxtpy+r5fPfdd43y5csbbm5uRpEiRYwmTZoY69evz5vikUpa51KSw2uOz89/j+ycTz4/868+ffoYpUuXNlxdXQ1fX1/jiSeesAcrw+C1mVsshmEYuddPBgAAAAD3pvvynisAAAAAMBvhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAA5FubN29WmzZtVKJECVksFq1cuTJL61+7dk29evVSjRo15OzsrHbt2qVqs3z5cjVv3ly+vr6y2WyqV6+e1q5dm+VaCVcAAFPMmTNH3t7eeV1Grjh//ryKFSumY8eOSZI2btwoi8Wiixcv5loNt/6BcezYMVksFkVHR6dZT26fm3PnzqlYsWI6efJkru0TwL3rypUreuihh/Thhx9ma/2kpCS5u7tryJAhatasWZptNm/erObNm+urr77SL7/8oqZNm6pNmzbatWtXlvZFuAKAe1yvXr1ksVj0/PPPp1o2cOBAWSwW9erVK/cLu01WAophGJo1a5bq1KkjT09PeXt769FHH9WUKVMUHx+f47W+8847atu2rcqUKSNJeuyxx3Tq1Cl5eXlle5tZDWinTp3Sk08+mam2nTt31h9//JHt2rLKx8dHPXr00JgxY3JtnwDuXU8++aTefvtttW/fPs3lCQkJeumll/TAAw/Iw8NDderU0caNG+3LPTw8NGPGDPXr109+fn5pbmPKlCl65ZVXVKtWLVWoUEHjx49XhQoV9OWXX2apVsIVANwHAgICFBUVpatXr9rnXbt2TQsWLFCpUqXuevvXr1+/621kRffu3TVs2DC1bdtWGzZsUHR0tF5//XV9/vnnWrduXY7uOz4+XhEREXr22Wft81xdXeXn5yeLxZKj+5akxMRESZKfn5+sVmum1nF3d1exYsVysqxUevfurfnz5+uff/7J1f0CuP8MGjRIP/74o6KiovTbb7+pY8eOCg4O1sGDB7O9zeTkZF26dElFihTJ0nqEKwC4DzzyyCMKCAjQ8uXL7fOWL1+uUqVKKSgoyKHtmjVr1KBBA3l7e6to0aJq3bq1Dh8+bF+ecgnaokWL1LhxY7m5uWn+/Pmp9vn333/r0UcfVfv27ZWQkKDk5GSFh4erbNmycnd310MPPaSlS5fat9m0aVNJUuHChTPsTVu8eLHmz5+vhQsXavTo0apVq5bKlCmjtm3bav369fbt/Pzzz2revLl8fHzk5eWlxo0ba+fOnQ7bslgsmjFjhp588km5u7urXLly9prS89VXX8lqtapu3br2eeldhrd27VpVqVJFnp6eCg4O1qlTp9LcZkbH36RJEw0aNEjDhg2Tj4+PWrZsaa89s/cdpHVZ4IwZM1S+fHm5urqqUqVKmjdvXqrn5pNPPlH79u1VsGBBVahQQV988YV9+YULF9StWzf5+vrK3d1dFSpUUGRkpH15tWrVVKJECa1YsSJTNQJAdhw/flyRkZFasmSJGjZsqPLly+ull15SgwYNHN6TsmrChAm6fPmyOnXqlKX1CFcAcJ/o06ePwwfN7Nmz1bt371Ttrly5ouHDh2vHjh367rvvVKBAAbVv317JyckO7UaOHKmhQ4dq//799j/4U5w4cUINGzZU9erVtXTpUlmtVoWHh+vTTz/VRx99pL179+rFF19UWFiYNm3apICAAC1btkySdODAAZ06dUpTp05N8zjmz5+vSpUqqW3btqmWWSwW+6V5ly5dUs+ePbVlyxZt27ZNFSpUUKtWrXTp0iWHdV5//XV16NBBv/76q7p166bQ0FDt378/3efx+++/V82aNdNdniI+Pl4TJkzQvHnztHnzZh0/flwvvfRSmm3vdPxz586Vq6urtm7dqo8++uiO+76TFStWaOjQoRoxYoT27Nmj5557Tr1799aGDRsc2o0bN06dOnXSb7/9platWqlbt272nqjXX39d+/bt09dff639+/drxowZ8vHxcVi/du3a+v777++6XgBIz+7du5WUlKSKFSvK09PTPm3atMnhi8GsWLBggcaNG6fFixdnudffOVt7BAD864SFhWnUqFGKiYmRJG3dulVRUVEO16VLUocOHRwez549W76+vtq3b5+qV69unz9s2DA9/fTTqfZz4MABNW/eXO3bt9eUKVNksViUkJCg8ePH69tvv1W9evUkSeXKldOWLVs0c+ZMNW7c2H7pRbFixTIcfOHgwYOqVKnSHY/38ccfd3g8a9YseXt7a9OmTWrdurV9fseOHdW3b19J0ltvvaVvvvlG06ZN0/Tp09PcbkxMjEqUKHHH/V+/fl0fffSRypcvL+nmZStvvvlmmm2dnJwyPP4KFSrovffeu+M+M2vChAnq1auXXnjhBUnS8OHDtW3bNk2YMMHegybdvF+vS5cukqTx48fr/fff1/bt2xUcHKzjx48rKChIjz76qCTZ7z+7VYkSJbJ8MzgAZMXly5fl5OSkX375RU5OTg7LPD09s7y9qKgo9e3bV0uWLEl38IuMEK4A4D7h6+urkJAQzZkzR4ZhKCQkJFVPg3QzvLzxxhv66aefdO7cOXuP1fHjxx3CVcof1be6evWqGjZsqK5du2rKlCn2+YcOHVJ8fLyaN2/u0D4xMTHVZYl3YhhGptqdOXNGr732mjZu3KizZ88qKSlJ8fHxOn78uEO7lLB36+OUUffScvXqVbm5ud1x/wULFrQHK0ny9/fX2bNnM1X77TLTU5YV+/fvV//+/R3m1a9fP1Vv4YMPPmj/2cPDQzabzX4MAwYMUIcOHbRz5061aNFC7dq102OPPeawvru7e64MMALg/hUUFKSkpCSdPXtWDRs2vKttLVy4UH369FFUVJRCQkKytQ3CFQDcR/r06aNBgwZJUrpD2rZp00alS5fWxx9/rBIlSig5OVnVq1e3D6SQwsPDI9W6VqtVzZo106pVq/Tyyy/rgQcekHTzm0VJWr16tX3eretkRcWKFfX777/fsV3Pnj11/vx5TZ06VaVLl5bValW9evVSHUdW+fj46MKFC3ds5+Li4vDYYrFkOhjeLq3nOjekdQwpYfvJJ59UTEyMvvrqK33zzTd64oknNHDgQE2YMMHe/p9//pGvr2+u1gzg3nP58mUdOnTI/vjo0aOKjo5WkSJFVLFiRXXr1k09evTQxIkTFRQUpL///lvfffedHnzwQXtI2rdvnxITE/XPP//o0qVL9i/RHn74YUk3LwXs2bOnpk6dqjp16uj06dOSbn5JlJWRYLnnCgDuI8HBwUpMTNT169dT3Scl3fz/TQcOHNBrr72mJ554QlWqVMlUkEhRoEABzZs3TzVr1lTTpk31119/SZKqVq0qq9Wq48ePKzAw0GEKCAiQdHPEPenm/yPJSNeuXfXHH3/o888/T7XMMAzFxsZKunnZ45AhQ9SqVStVq1ZNVqtV586dS7XOtm3bUj2uUqVKuvsPCgrSvn37MqwxOzJ7/GaoUqWKtm7d6jBv69atqlq1apa24+vrq549e+qzzz7TlClTNGvWLIfle/bsyXLPJADcbseOHQoKCrK/nwwfPlxBQUF64403JEmRkZHq0aOHRowYoUqVKqldu3b6+eefHUbDbdWqlYKCgvTll19q48aNDtuTbl46fuPGDQ0cOFD+/v72aejQoVmqlZ4rALiPODk52QdruP3adOnmSHVFixbVrFmz5O/vr+PHj2vkyJFZ3sf8+fPVpUsXPf7449q4caP8/Pz00ksv6cUXX1RycrIaNGig2NhYbd26VTabTT179lTp0qVlsVi0atUqtWrVSu7u7mleL9+pUyetWLFCXbp00WuvvaYWLVrI19dXu3fv1uTJkzV48GC1a9dOFSpU0Lx58/Too48qLi5OL7/8stzd3VNtb8mSJXr00UfVoEEDzZ8/X9u3b1dERES6x9eyZUuNGjVKFy5cUOHChbP03GQks8dvhpdfflmdOnVSUFCQmjVrpi+//FLLly/Xt99+m+ltvPHGG6pZs6aqVaumhIQErVq1yiGUxsfH65dfftH48eNz4hAA3EeaNGmSYc+/i4uLxo0bp3HjxqXbJuWfvqfn9vuPs4ueKwC4z9hsNtlstjSXFShQQFFRUfrll19UvXp1vfjii/rvf/+b5X04Oztr4cKFqlatmh5//HGdPXtWb731ll5//XWFh4erSpUqCg4O1urVq1W2bFlJ0gMPPKBx48Zp5MiRKl68uP3yxdtZLBYtWLBAkyZN0sqVK9W4cWM9+OCDGjt2rNq2bWvvkYuIiNCFCxf0yCOPqHv37hoyZEiaoz6NGzdOUVFRevDBB/Xpp59q4cKFGfbg1KhRQ4888ogWL16c5eclI5k9fjO0a9dOU6dO1YQJE1StWjXNnDlTkZGRatKkSaa34erqqlGjRunBBx9Uo0aN5OTkpKioKPvyzz//XKVKlbrreyAA4N/EYmT3AnAAAP7lLBaLVqxYoXbt2mVpvdWrV+vll1/Wnj17VKAA31OmpW7duhoyZIi6du2a16UAQK7hskAAALIoJCREBw8e1J9//mm/Zwz/c+7cOT399NP2YdwB4H5BzxUA4L6V3Z4rAADSQs8VAOC+xfeLAAAzcaE4AAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGCC/w/QxZ76rD4uiAAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mCodeExecutor\u001b[0m (to CodeWriter):\n", + "\n", + "exitcode: 0 (execution succeeded)\n", + "Code output: /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "[ 0%% ]/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "[********************* 43%% ] 3 of 7 completed/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "[**********************57%%* ] 4 of 7 completed/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "[**********************71%%******** ] 5 of 7 completed/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "[*********************100%%**********************] 7 of 7 completed\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mCodeWriter\u001b[0m (to CodeExecutor):\n", + "\n", + "I see that the fetched data was successfully retrieved and processed. However, it looks like the result of the plot isn't visible, so we don't know whether the plot was generated successfully. Please run the code again and provide the output of the plot.\n", + "\n", + "If there are any issues or any other points you would like me to help with, let me know!\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mCodeExecutor\u001b[0m (to CodeWriter):\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mCodeWriter\u001b[0m (to CodeExecutor):\n", + "\n", + "I'm glad we were able to retrieve and process the data successfully. Please try running the last part of the code again to generate and display the plot:\n", + "\n", + "```python\n", + "# Plot data\n", + "plt.figure(figsize=(10,6))\n", + "plt.barh(df['Company'], df['Market_Cap'], color='skyblue')\n", + "plt.xlabel('Market Cap (in trillions)')\n", + "plt.title('Market Caps of Top 7 Publicly Listed Companies')\n", + "plt.gca().invert_yaxis()\n", + "plt.show()\n", + "```\n", + "\n", + "This section of the code creates a horizontal bar plot of the market capitalizations of the companies. The `plt.gca().invert_yaxis()` line is included to invert the y-axis, so the company with the highest market cap is at the top of the chart.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWR0lEQVR4nO3deXgNd///8deR5SQSJ0FComKNnbap2mpvLalQVBHEWrRqLV3wa4sucre3tVpKG6GK2LWlRVtbaVWVtLaqNWgtpSQICcn8/vDNuR1ZJDFZyvNxXXNdOTOfmXnPmZxz8jqfmU8shmEYAgAAAADclQJ5XQAAAAAA3AsIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAPKNY8eOyWKxaMKECXldyj1r3rx5qly5slxcXOTt7Z3X5fyrbNy4URaLRUuXLr1j2169eqlMmTIO8ywWi8aOHZutfW7cuDFL692NvNhnRvJbPf8mc+bMkcVi0bFjx/K6FOC+QbgC4CDlw9hisWjLli2plhuGoYCAAFksFrVu3ToPKsy8BQsWaMqUKVlaJykpSZGRkWrSpImKFCkiq9WqMmXKqHfv3tqxY0fOFJpLfv/9d/Xq1Uvly5fXxx9/rFmzZqVqkxJwMzPl9B9sY8eOzXD/W7duzdL6BQsWVNWqVfXaa68pLi4uR2vPr1Kek3Pnzpm+7fHjx2vlypWmbzerDh8+rOeee07lypWTm5ubbDab6tevr6lTp+rq1at5XR6Ae5xzXhcAIH9yc3PTggUL1KBBA4f5mzZt0smTJ2W1WvOossxbsGCB9uzZo2HDhmWq/dWrV/X0009rzZo1atSokUaPHq0iRYro2LFjWrx4sebOnavjx4+rZMmSOVt4Dtm4caOSk5M1depUBQYGptnG19dX8+bNc5g3ceJEnTx5UpMnT07VNic9/fTTadY5evRoXb58WbVq1crUdmbMmCFPT09dvnxZ69at0zvvvKP169dr69atslgsZpedrqtXr8rZOf9/7DZq1EhXr16Vq6trltYbP368nnnmGbVr1y5nCsuE1atXq2PHjrJarerRo4eqV6+uxMREbdmyRS+//LL27t2b5pcK96ru3bsrNDT0X/F+Ddwr8v+7PIA80apVKy1ZskTvv/++wx+ECxYsUM2aNU395js5OVmJiYmmbS+7Xn75Za1Zs0aTJ09OFcjGjBmTKlz825w9e1aSMrwc0MPDQ2FhYQ7zoqKidOHChVTzc9qDDz6oBx980GHeiRMndPLkSfXt2zfTf/w/88wz8vHxkSQ9//zz6tChg5YvX65t27apXr16ptedHjc3t1zb190oUKDAv6bWWx09elShoaEqXbq01q9fL39/f/uygQMH6tChQ1q9enUeVpj7nJyc5OTklNdlAPcVLgsEkKYuXbro/Pnz+uabb+zzEhMTtXTpUnXt2jXNdSZMmKDHHntMRYsWlbu7u2rWrJnm/SkWi0WDBg3S/PnzVa1aNVmtVq1ZsybNbRqGof79+8vV1VXLly+3z//ss89Us2ZNubu7q0iRIgoNDdWJEyfsy5s0aaLVq1crJibGflnY7ffA3OrkyZOaOXOmmjdvnmZPl5OTk1566SV7r1VMTIxeeOEFVapUSe7u7ipatKg6duyY6lK5lMssN2/erOeee05FixaVzWZTjx49dOHCBYe2O3bsUMuWLeXj4yN3d3eVLVtWffr0SbfmW02fPt3+XJYoUUIDBw7UxYsX7cvLlCmjMWPGSLrZ45Sd+39udfbsWT377LMqXry43Nzc9NBDD2nu3LkObW69h27y5MkqXbq03N3d1bhxY+3Zsydb+124cKEMw1C3bt2yXfvjjz8u6eYf49LN56ZXr16p2jVp0kRNmjRJNT8pKUmjR4+Wn5+fPDw89NRTTzn87qUnref8zz//1LPPPqsSJUrIarWqbNmyGjBgQLpfNowZM0YuLi76+++/Uy3r37+/vL29de3atTvWkpG07nE6ePCgOnToID8/P7m5ualkyZIKDQ1VbGys/diuXLmiuXPn2l9vtz6nf/75p/r06aPixYvLarWqWrVqmj17dqp9nzx5Uu3atZOHh4eKFSumF198UQkJCZmq+7333tPly5cVERHhEKxSBAYGaujQofbHN27c0FtvvaXy5cvbL/8dPXp0qv2VKVNGrVu31saNG/Xoo4/K3d1dNWrUsD8/y5cvV40aNeTm5qaaNWtq165dDuv36tVLnp6eOnLkiFq2bCkPDw+VKFFCb775pgzDcGib1ffQlStXqnr16vbn9Pb30fTuufr666/VsGFDeXh4qFChQgoJCdHevXsd2pw+fVq9e/dWyZIlZbVa5e/vr7Zt23L/FnAH9FwBSFOZMmVUr149LVy4UE8++aSkmx/IsbGxCg0N1fvvv59qnalTp+qpp55St27dlJiYqKioKHXs2FGrVq1SSEiIQ9v169dr8eLFGjRokHx8fNIMPklJSerTp48WLVqkFStW2Lfxzjvv6PXXX1enTp3Ut29f/f3335o2bZoaNWqkXbt2ydvbW//v//0/xcbGOlzO5unpme7xfv3117px44a6d++eqefn559/1g8//KDQ0FCVLFlSx44d04wZM9SkSRPt27dPBQsWdGg/aNAgeXt7a+zYsTpw4IBmzJihmJgY+x+yZ8+eVYsWLeTr66uRI0fK29tbx44dcwiU6Rk7dqzGjRunZs2aacCAAfbt//zzz9q6datcXFw0ZcoUffrpp1qxYoX9Mrnbe4Uy6+rVq2rSpIkOHTqkQYMGqWzZslqyZIl69eqlixcvOvwBK0mffvqpLl26pIEDB+ratWuaOnWqHn/8ce3evVvFixfP0r7nz5+vgIAANWrUKFu1SzfvyZGkokWLZmv9d955RxaLRa+++qrOnj2rKVOmqFmzZoqOjpa7u3umt/PXX3+pdu3aunjxovr376/KlSvrzz//1NKlSxUfH59mz1z37t315ptvatGiRRo0aJB9fsoXHx06dDC91ykxMVEtW7ZUQkKCBg8eLD8/P/35559atWqVLl68KC8vL82bN099+/ZV7dq11b9/f0lS+fLlJUlnzpxR3bp17YHA19dXX3/9tZ599lnFxcXZv8y4evWqnnjiCR0/flxDhgxRiRIlNG/ePK1fvz5TdX755ZcqV66cHnvssUy179u3r+bOnatnnnlGI0aM0E8//aTw8HDt379fK1ascGh76NAhde3aVc8995zCwsI0YcIEtWnTRh999JFGjx6tF154QZIUHh6uTp066cCBAypQ4H/fXyclJSk4OFh169bVe++9pzVr1mjMmDG6ceOG3nzzTXu7rLyHbtmyRcuXL9cLL7ygQoUK6f3331eHDh10/PjxDH+3582bp549e6ply5Z69913FR8frxkzZqhBgwbatWuX/b24Q4cO2rt3rwYPHqwyZcro7Nmz+uabb3T8+PEMv6gC7nsGANwiMjLSkGT8/PPPxgcffGAUKlTIiI+PNwzDMDp27Gg0bdrUMAzDKF26tBESEuKwbkq7FImJiUb16tWNxx9/3GG+JKNAgQLG3r17HeYfPXrUkGT897//Na5fv2507tzZcHd3N9auXWtvc+zYMcPJycl45513HNbdvXu34ezs7DA/JCTEKF26dKaO+8UXXzQkGbt27cpU+9uP1TAM48cffzQkGZ9++ql9XsrzWbNmTSMxMdE+/7333jMkGZ9//rlhGIaxYsUK+/OeFWfPnjVcXV2NFi1aGElJSfb5H3zwgSHJmD17tn3emDFjDEnG33//naV93P48TpkyxZBkfPbZZ/Z5iYmJRr169QxPT08jLi7OMIz/nU93d3fj5MmT9rY//fSTIcl48cUXs1THnj17DEnGK6+8kqn2Kcd74MAB4++//zaOHj1qzJw507BarUbx4sWNK1euGIZx83e5Z8+eqdZv3Lix0bhxY/vjDRs2GJKMBx54wH6MhmEYixcvNiQZU6dOtc/r2bNnqt89ScaYMWPsj3v06GEUKFAgzXOenJzssM8NGzbYl9WrV8+oU6eOQ/vly5enapfRc5LR78Dt+9y1a5chyViyZEmG2/bw8EjzeXz22WcNf39/49y5cw7zQ0NDDS8vL/trKeX3avHixfY2V65cMQIDA+94bLGxsYYko23bthnWmCI6OtqQZPTt29dh/ksvvWRIMtavX2+fV7p0aUOS8cMPP9jnrV271v67HRMTY58/c+bMVLX27NnTkGQMHjzYPi85OdkICQkxXF1dHc5FVt5DXV1djUOHDtnn/frrr4YkY9q0afZ5Ke8/R48eNQzDMC5dumR4e3sb/fr1c9je6dOnDS8vL/v8Cxcu2N+LAWQNlwUCSFenTp109epVrVq1SpcuXdKqVavSvSRQksO39hcuXFBsbKwaNmyonTt3pmrbuHFjVa1aNc3tJCYm2r+t/eqrr9SiRQv7suXLlys5OVmdOnXSuXPn7JOfn58qVKigDRs2ZOtYU0aPK1SoUKba33qs169f1/nz5xUYGChvb+80j7d///5ycXGxPx4wYICcnZ311VdfSfrffVCrVq3S9evXM133t99+q8TERA0bNszhm/J+/frJZrPlyD0mX331lfz8/NSlSxf7PBcXFw0ZMkSXL1/Wpk2bHNq3a9dODzzwgP1x7dq1VadOHfuxZ9b8+fMlKcuXBFaqVEm+vr4qW7asnnvuOQUGBmr16tWpehczq0ePHg6/J88884z8/f2zdDzJyclauXKl2rRpo0cffTTV8owG2ujRo4d++uknew+c9L8evcaNG2e6hszy8vKSJK1du1bx8fFZWtcwDC1btkxt2rSRYRgOr9mWLVsqNjbW/nr56quv5O/vr2eeeca+fsGCBe09YRnJ6us35VwNHz7cYf6IESMkKdXrpmrVqg7359WpU0fSzUtMS5UqlWr+kSNHUu3z1p7GlF68xMREffvtt/b5WXkPbdasmb13ULp5j6LNZktz3ym++eYbXbx4UV26dHE4F05OTqpTp479/dPd3V2urq7auHFjqsuXAWSMywIBpMvX11fNmjXTggULFB8fr6SkJIc/fG63atUqvf3224qOjna4byGtPxTLli2b7nbCw8N1+fJlff3116nueTl48KAMw1CFChXSXPfWAJMVNptNknTp0qVMtb969arCw8MVGRmpP//80+HeiZT7UG51e72enp7y9/e337/QuHFjdejQQePGjdPkyZPVpEkTtWvXTl27ds1wpK+YmBhJNwPErVxdXVWuXDn7cjPFxMSoQoUKDmFOkqpUqeJQU4q0zlXFihW1ePHiTO/TMAwtWLBA1atXz/LljMuWLZPNZpOLi4tKlizp8Adpdtx+PBaLRYGBgVm6F+Xvv/9WXFycqlevnuX9d+7cWcOGDdP8+fP1xhtvKDY2VqtWrdKLL76YI6Mfli1bVsOHD9ekSZM0f/58NWzYUE899ZTCwsLswSs9f//9ty5evKhZs2alO0pfykArMTExCgwMTHUMt/9upyWrr9+YmBgVKFAg1WiUfn5+8vb2TvU7fGuAkv4XOAMCAtKcf3sgKVCggMqVK+cwr2LFipLk8HuTlffQ22uSpMKFC2cYhg4ePCjpf/cd3i7lebRarXr33Xc1YsQIFS9eXHXr1lXr1q3Vo0cP+fn5pbt9AIQrAHfQtWtX9evXT6dPn9aTTz6Z7khz33//vZ566ik1atRI06dPl7+/v1xcXBQZGakFCxakap/RvSktW7bUmjVr9N5776lJkyYO95AkJyfLYrHo66+/TnMUrIzuq8pI5cqVJUm7d+/Www8/fMf2gwcPVmRkpIYNG6Z69erJy8tLFotFoaGhSk5OzvL+U/457bZt2/Tll19q7dq16tOnjyZOnKht27Zl+7juFVu3blVMTIzCw8OzvG6jRo3sowWmJb1AkpSUlC9HWitcuLBat25tD1dLly5VQkJCjo7mOHHiRPXq1Uuff/651q1bpyFDhig8PFzbtm3L8F8TpLwWwsLC1LNnzzTbZPfev1vZbDaVKFEiywOlZDaMpvd7kN5847aBKjIjq++h2dl3yvmYN29emiHp1pFhhw0bpjZt2mjlypVau3atXn/9dYWHh2v9+vUKCgrK6uEB9w3CFYAMtW/fXs8995y2bdumRYsWpdtu2bJlcnNz09q1ax16WiIjI7O8z7p16+r5559X69at1bFjR61YscL+oV++fHkZhqGyZcvav/lNT1a+xX/yySfl5OSkzz77LFODWixdulQ9e/bUxIkT7fOuXbvmMELfrQ4ePKimTZvaH1++fFmnTp1Sq1atHNrVrVtXdevW1TvvvKMFCxaoW7duioqKUt++fdPcbunSpSVJBw4ccPhmPDExUUePHlWzZs3ueCxZVbp0af32229KTk526L36/fffHWpKkfJt+a3++OOPLN0UP3/+fFkslgwvS82uwoULp3neYmJiUvU2SKmPxzAMHTp0KEshwdfXVzabLdujJvbo0UNt27bVzz//rPnz5ysoKEjVqlXL1rYyq0aNGqpRo4Zee+01/fDDD6pfv74++ugjvf3225LSfr35+vqqUKFCSkpKuuPvYunSpbVnzx4ZhuGwrQMHDmSqvtatW2vWrFn68ccf7zjEfunSpZWcnKyDBw/ae1ylm4NvXLx4MdXv8N1KTk7WkSNHHN6z/vjjD0myvw7MfA9NT0qvbbFixTL13lC+fHmNGDFCI0aM0MGDB/Xwww9r4sSJ+uyzz0yrCbjXcM8VgAx5enpqxowZGjt2rNq0aZNuOycnJ1ksFiUlJdnnHTt2TCtXrszWfps1a6aoqCitWbNG3bt3t3/j+vTTT8vJyUnjxo1L9Q2tYRg6f/68/bGHh0eal+ilJSAgQP369dO6des0bdq0VMuTk5Pt/0xXunm8t+9/2rRpDsd/q1mzZjncSzVjxgzduHHDPhLjhQsXUm0vpQcto6GomzVrJldXV73//vsO60dERCg2NjbVCGNmaNWqlU6fPu0Qtm/cuKFp06bJ09Mz1X0/K1eu1J9//ml/vH37dv3000/2Y7+T69eva8mSJWrQoEGal0LdrfLly2vbtm0Ow5+vWrUq3eHVU0Y/TLF06VKdOnUq08cj3bxMrF27dvryyy+1Y8eOVMvv1PPx5JNPysfHR++++642bdqUo71WcXFxunHjhsO8GjVqqECBAg6/mx4eHqlCqpOTkzp06KBly5alGSRvHVK+VatW+uuvvxyGHo+Pj8/0P/195ZVX5OHhob59++rMmTOplh8+fFhTp06170uSpkyZ4tBm0qRJkpQjr5sPPvjA/rNhGPrggw/k4uKiJ554QpL576FpadmypWw2m8aPH5/mvZ0p5yM+Pj7VkP7ly5dXoUKFMj00PnC/oucKwB2ldznPrUJCQjRp0iQFBwera9euOnv2rD788EMFBgbqt99+y9Z+27Vrp8jISPXo0UM2m00zZ85U+fLl9fbbb2vUqFE6duyY2rVrp0KFCuno0aNasWKF+vfvr5deekmSVLNmTS1atEjDhw9XrVq15OnpmWFAnDhxog4fPqwhQ4Zo+fLlat26tQoXLqzjx49ryZIl+v333xUaGirp5rfk8+bNk5eXl6pWraoff/xR3377bbpDICcmJuqJJ56wD9M8ffp0NWjQQE899ZQkae7cuZo+fbrat2+v8uXL69KlS/r4449ls9lS9W7dytfXV6NGjdK4ceMUHBysp556yr79WrVq5cgf3f3799fMmTPVq1cv/fLLLypTpoyWLl2qrVu3asqUKakGFQgMDFSDBg00YMAAJSQkaMqUKSpatKheeeWVTO1v7dq1On/+/F39b6uM9O3bV0uXLlVwcLA6deqkw4cP67PPPkv33qwiRYqoQYMG6t27t86cOaMpU6YoMDBQ/fr1y9J+x48fr3Xr1qlx48bq37+/qlSpolOnTmnJkiXasmVLhv/s2cXFRaGhofrggw/k5OTkMLhIZkyaNCnVgB4FChTQ6NGjU7Vdv369Bg0apI4dO6pixYq6ceOG5s2bZw9OKWrWrKlvv/1WkyZNUokSJVS2bFnVqVNH//nPf7RhwwbVqVNH/fr1U9WqVfXPP/9o586d+vbbb/XPP/9IujkIywcffKAePXrol19+kb+/v+bNm5fpgUfKly+vBQsWqHPnzqpSpYp69Oih6tWrKzExUT/88IP93wVI0kMPPaSePXtq1qxZunjxoho3bqzt27dr7ty5ateunUMvsxnc3Ny0Zs0a9ezZU3Xq1NHXX3+t1atXa/To0fL19ZWUM++ht7PZbJoxY4a6d++uRx55RKGhofL19dXx48e1evVq1a9fXx988IH++OMP+/tV1apV5ezsrBUrVujMmTP290AA6cj18QkB5Gu3DsWekbSGYo+IiDAqVKhgWK1Wo3LlykZkZKR96OdbSTIGDhyYapu3DsV+q+nTpxuSjJdeesk+b9myZUaDBg0MDw8Pw8PDw6hcubIxcOBA48CBA/Y2ly9fNrp27Wp4e3sbkjI1LPuNGzeMTz75xGjYsKHh5eVluLi4GKVLlzZ69+7tMEz7hQsXjN69exs+Pj6Gp6en0bJlS+P3339PNax3yvO5adMmo3///kbhwoUNT09Po1u3bsb58+ft7Xbu3Gl06dLFKFWqlGG1Wo1ixYoZrVu3Nnbs2HHHmg3j5tDrlStXNlxcXIzixYsbAwYMMC5cuODQxqyh2A3DMM6cOWM/fldXV6NGjRpGZGSkQ5tbz+fEiRONgIAAw2q1Gg0bNjR+/fXXTO8/NDTUcHFxcXi+MiMrxztx4kTjgQceMKxWq1G/fn1jx44d6Q7FvnDhQmPUqFFGsWLFDHd3dyMkJMRhOG7DyNxQ7IZhGDExMUaPHj0MX19fw2q1GuXKlTMGDhxoJCQkOOwzrWHIt2/fbkgyWrRokannwzD+95ykNTk5OaW5zyNHjhh9+vQxypcvb7i5uRlFihQxmjZtanz77bcO2/7999+NRo0aGe7u7oYkh9fBmTNnjIEDBxoBAQGGi4uL4efnZzzxxBPGrFmzUj0fTz31lFGwYEHDx8fHGDp0qLFmzZpMDTOf4o8//jD69etnlClTxnB1dTUKFSpk1K9f35g2bZpx7do1e7vr168b48aNM8qWLWu4uLgYAQEBxqhRoxzaGEba73WGkfb7WFrvYT179jQ8PDyMw4cPGy1atDAKFixoFC9e3BgzZozDv08wjLt/D03v/SdlKPYUGzZsMFq2bGl4eXkZbm5uRvny5Y1evXrZ32/OnTtnDBw40KhcubLh4eFheHl5GXXq1HEYJh9A2iyGkY27LgEAmTJnzhz17t1bP//8c5pDbt/Ljh07prJly+q///2vvTcR5vn111/18MMP69NPP830P79G7uvVq5eWLl2qy5cv53UpAHIB91wBAPAv9PHHH8vT01NPP/10XpcCAPg/3HMFAMC/yJdffql9+/Zp1qxZGjRokDw8PPK6JADA/yFcAQDwLzJ48GCdOXNGrVq10rhx4/K6HADALbjnCgAAAABMwD1XAAAAAGACwhUAAAAAmIB7rtKRnJysv/76S4UKFZLFYsnrcgAAAADkEcMwdOnSJZUoUUIFCqTfP0W4Ssdff/2lgICAvC4DAAAAQD5x4sQJlSxZMt3lhKt0FCpUSNLNJ9Bms+VxNQAAAADySlxcnAICAuwZIT2Eq3SkXApos9kIVwAAAADueLsQA1oAAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALnvC4gv5v063m5eSbmdRkAAADAfWNkkE9el5At9FwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACbIlXDVq1cvWSwWPf/886mWDRw4UBaLRb169ZIk/f333xowYIBKlSolq9UqPz8/tWzZUlu3brWvU6ZMGVksFoepZMmSGjt2bKr5t08AAAAAkBOcc2tHAQEBioqK0uTJk+Xu7i5JunbtmhYsWKBSpUrZ23Xo0EGJiYmaO3euypUrpzNnzui7777T+fPnHbb35ptvql+/fvbHTk5Ocnd3dwhwtWrVUv/+/R3aAQAAAEBOyLVw9cgjj+jw4cNavny5unXrJklavny5SpUqpbJly0qSLl68qO+//14bN25U48aNJUmlS5dW7dq1U22vUKFC8vPzSzXf09PT/rOTk1O67W6XkJCghIQE++O4uLisHSAAAACA+1qu3nPVp08fRUZG2h/Pnj1bvXv3tj/29PSUp6enVq5c6RB0ckN4eLi8vLzsU0BAQK7uHwAAAMC/W66Gq7CwMG3ZskUxMTGKiYnR1q1bFRYWZl/u7OysOXPmaO7cufL29lb9+vU1evRo/fbbb6m29eqrr9rDmKenp95///27qm3UqFGKjY21TydOnLir7QEAAAC4v+TaZYGS5Ovrq5CQEM2ZM0eGYSgkJEQ+Pj4ObTp06KCQkBB9//332rZtm77++mu99957+uSTT+yDXkjSyy+/7PD49u1kldVqldVqvattAAAAALh/5Wq4km5eGjho0CBJ0ocffphmGzc3NzVv3lzNmzfX66+/rr59+2rMmDGpwlRgYGBulAwAAAAAd5Tr/+cqODhYiYmJun79ulq2bJmpdapWraorV67kcGUAAAAAkH253nPl5OSk/fv323++1fnz59WxY0f16dNHDz74oAoVKqQdO3bovffeU9u2bXO7VAAAAADItFwPV5Jks9nSnO/p6ak6depo8uTJOnz4sK5fv66AgAD169dPo0ePzuUqAQAAACDzLIZhGHldRH4UFxcnLy8vjdl8RG6ehfK6HAAAAOC+MTLo7garM1tKNoiNjU23o0jKg3uuAAAAAOBeRLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATOCc1wXkd8MfKiqbzZbXZQAAAADI5+i5AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADCBc14XkN9N+vW83DwT87oMAAAAZNHIIJ+8LgH3GXquAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAAT5Em4+vHHH+Xk5KSQkJB02yxcuFBOTk4aOHBgqmUbN26UxWKxT8WLF1eHDh105MgRe5syZcpoypQpOVE+AAAAAKSSJ+EqIiJCgwcP1ubNm/XXX3+l2+aVV17RwoULde3atTTbHDhwQH/99ZeWLFmivXv3qk2bNkpKSsrJ0gEAAAAgTbkeri5fvqxFixZpwIABCgkJ0Zw5c1K1OXr0qH744QeNHDlSFStW1PLly9PcVrFixeTv769GjRrpjTfe0L59+3To0KEcPgIAAAAASC3Xw9XixYtVuXJlVapUSWFhYZo9e7YMw3BoExkZqZCQEHl5eSksLEwRERF33K67u7skKTExMVt1JSQkKC4uzmECAAAAgMzK9XAVERGhsLAwSVJwcLBiY2O1adMm+/Lk5GTNmTPH3iY0NFRbtmzR0aNH093mqVOnNGHCBD3wwAOqVKlStuoKDw+Xl5eXfQoICMjWdgAAAADcn3I1XB04cEDbt29Xly5dJEnOzs7q3LmzQ8/UN998oytXrqhVq1aSJB8fHzVv3lyzZ89Otb2SJUvKw8NDJUqU0JUrV7Rs2TK5urpmq7ZRo0YpNjbWPp04cSJb2wEAAABwf3LOzZ1FREToxo0bKlGihH2eYRiyWq364IMP5OXlpYiICP3zzz/2y/ykm71Zv/32m8aNG6cCBf6XB7///nvZbDYVK1ZMhQoVuqvarFarrFbrXW0DAAAAwP0r18LVjRs39Omnn2rixIlq0aKFw7J27dpp4cKF6tixoz7//HNFRUWpWrVq9uVJSUlq0KCB1q1bp+DgYPv8smXLytvbO7cOAQAAAADSlWvhatWqVbpw4YKeffZZeXl5OSzr0KGDIiIidO3aNRUtWlSdOnWSxWJxaNOqVStFREQ4hKs7+fPPPxUdHe0wr3Tp0ipcuHC2jwMAAAAA0pJr91xFRESoWbNmqYKVdDNc7dixQ8OHD1f79u1TBauUNl988YXOnTuX6X1OmDBBQUFBDtPq1avv6jgAAAAAIC0W4/Zx0CFJiouLk5eXl8ZsPiI3z7u7nwsAAAC5b2SQT16XgHtESjaIjY2VzWZLt12uD8UOAAAAAPciwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJjAOa8LyO+GP1RUNpstr8sAAAAAkM/RcwUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAue8LiC/m/Trebl5JuZ1GQAA5Gsjg3zyugQAyHP0XAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJshWuDp9+rSGDh2qwMBAubm5qXjx4qpfv75mzJih+Ph4e7sffvhBrVq1UuHCheXm5qYaNWpo0qRJSkpKSrXNVatWqXHjxipUqJAKFiyoWrVqac6cOWnuf9myZXr88cdVuHBhubu7q1KlSurTp4927dplbzNnzhx5e3tn5/AAAAAAIMuyHK6OHDmioKAgrVu3TuPHj9euXbv0448/6pVXXtGqVav07bffSpJWrFihxo0bq2TJktqwYYN+//13DR06VG+//bZCQ0NlGIZ9m9OmTVPbtm1Vv359/fTTT/rtt98UGhqq559/Xi+99JLD/l999VV17txZDz/8sL744gsdOHBACxYsULly5TRq1Ki7fDoAAAAAIHssxq0pJxOCg4O1d+9e/f777/Lw8Ei13DAMxcfHq3Tp0mrcuLGWLVvmsPzLL7/UU089paioKHXu3FknTpxQ+fLlNXjwYE2cONGh7bRp0zRkyBBt27ZNderU0bZt21SvXj1NnTpVQ4YMSXPfFotF0s2eq2HDhunixYtZOTy7uLg4eXl5aczmI3LzLJStbQAAcL8YGeST1yUAQI5JyQaxsbGy2WzptstSz9X58+e1bt06DRw4MM1gJUkWi0Xr1q3T+fPnU/U6SVKbNm1UsWJFLVy4UJK0dOlSXb9+Pc22zz33nDw9Pe1tFy5cKE9PT73wwgvp7ju7EhISFBcX5zABAAAAQGZlKVwdOnRIhmGoUqVKDvN9fHzk6ekpT09Pvfrqq/rjjz8kSVWqVElzO5UrV7a3+eOPP+Tl5SV/f/9U7VxdXVWuXDmHtuXKlZOzs7O9zaRJk+z79vT0VGxsbFYOyS48PFxeXl72KSAgIFvbAQAAAHB/MmW0wO3btys6OlrVqlVTQkKCfX4WrzjMlj59+ig6OlozZ87UlStXsr3PUaNGKTY21j6dOHHC5EoBAAAA3MuyFK4CAwNlsVh04MABh/nlypVTYGCg3N3dJUkVK1aUJO3fvz/N7ezfv9/epmLFioqNjdVff/2Vql1iYqIOHz5sb1uhQgUdOXJE169ft7fx9vZWYGCgHnjggawcSipWq1U2m81hAgAAAIDMylK4Klq0qJo3b64PPvhAV65cSbddixYtVKRIkVQDVEjSF198oYMHD6pLly6SpA4dOsjFxSXNth999JGuXLlib9ulSxddvnxZ06dPz0rZAAAAAJDjnO/cxNH06dNVv359Pfrooxo7dqwefPBBFShQQD///LN+//131axZUx4eHpo5c6ZCQ0PVv39/DRo0SDabTd99951efvllPfPMM+rUqZMkqVSpUnrvvfc0YsQIubm5qXv37nJxcdHnn3+u0aNHa8SIEapTp44kqV69ehoxYoRGjBihmJgYPf300woICNCpU6cUEREhi8WiAgX+lxeTkpIUHR3tUL/Vak33XjAAAAAAyK4sD8UuSadOndL48eO1evVqnTx5UlarVVWrVlXHjh31wgsvqGDBgpKk77//Xu+8845+/PFHXbt2TRUqVFDv3r01bNgwOTk5OWzziy++0IQJE7Rz504lJSWpWrVqGjhwoHr37p1q/4sXL9aMGTO0a9cuxcfHq3jx4mrUqJGGDBliD2Jz5sxJc93y5cvr0KFDdzxGhmIHACDzGIodwL0ss0OxZytc3Q8IVwAAZB7hCsC9LEf+zxUAAAAAIG2EKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMIFzXheQ3w1/qKhsNltelwEAAAAgn6PnCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEznldQH436dfzcvNMzOsyAADIN0YG+eR1CQCQL9FzBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYIEfD1Y8//ignJyeFhIQ4zD927JgsFoucnJz0559/Oiw7deqUnJ2dZbFYdOzYMUlSkyZNZLFY0p02bdokSerVq5csFov+85//OGxz5cqVslgsOXegAAAAAO57ORquIiIiNHjwYG3evFl//fVXquUPPPCAPv30U4d5c+fO1QMPPOAwb/ny5Tp16pTDFBMTo+rVq+vRRx9VnTp17G3d3Nz07rvv6sKFCzlzUAAAAACQhhwLV5cvX9aiRYs0YMAAhYSEaM6cOana9OzZU5GRkQ7zIiMj1bNnT4d5RYoUkZ+fn8P01ltv6dy5c1qxYoXc3NzsbZs1ayY/Pz+Fh4fnyHEBAAAAQFpyLFwtXrxYlStXVqVKlRQWFqbZs2fLMAyHNk899ZQuXLigLVu2SJK2bNmiCxcuqE2bNhlue/r06fr000+1bNkylSxZ0mGZk5OTxo8fr2nTpunkyZOZrjchIUFxcXEOEwAAAABkVo6Fq4iICIWFhUmSgoODFRsba783KoWLi4s9eEnS7NmzFRYWJhcXl3S3u3nzZg0bNkwffvihHnvssTTbtG/fXg8//LDGjBmT6XrDw8Pl5eVlnwICAjK9LgAAAADkSLg6cOCAtm/fri5dukiSnJ2d1blzZ0VERKRq26dPHy1ZskSnT5/WkiVL1KdPn3S3e/z4cT3zzDPq37+/+vbtm2EN7777rubOnav9+/dnquZRo0YpNjbWPp04cSJT6wEAAACAlEPhKiIiQjdu3FCJEiXk7OwsZ2dnzZgxQ8uWLVNsbKxD2xo1aqhy5crq0qWLqlSpourVq6e5zatXr6p9+/aqVq2apkyZcscaGjVqpJYtW2rUqFGZqtlqtcpmszlMAAAAAJBZzmZv8MaNG/r00081ceJEtWjRwmFZu3bttHDhQgUHBzvM79Onj1544QXNmDEj3e327dtX//zzj9auXStn58yV/Z///EcPP/ywKlWqlPUDAQAAAIAsMD1crVq1ShcuXNCzzz4rLy8vh2UdOnRQREREqnDVr18/dezYUd7e3mlu87///a+WLFmiL7/8Ujdu3NDp06cdlnt5ecnd3T3VejVq1FC3bt30/vvv391BAQAAAMAdmH5ZYEREhJo1a5YqWEk3w9WOHTtSjcTn7OwsHx+fdHukpk+fruvXrys4OFj+/v6ppkWLFqVbz5tvvqnk5OS7OygAAAAAuAOLcfv46JAkxcXFycvLS2M2H5GbZ6G8LgcAgHxjZJBPXpcAALkqJRvExsZmODZDjg3FDgAAAAD3E8IVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALnvC4gvxv+UFHZbLa8LgMAAABAPkfPFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALnvC4gv5v063m5eSbmdRkAcNdGBvnkdQkAANzT6LkCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAEyQK+GqV69eslgsev7551MtGzhwoCwWi3r16uXQ9vYpODhYGzduTHPZrdPGjRslSSdPnpSrq6uqV6+eG4cIAAAA4D7nnFs7CggIUFRUlCZPnix3d3dJ0rVr17RgwQKVKlXKoW1wcLAiIyMd5lmtVnl4eOjUqVP2eUOHDlVcXJxD2yJFikiS5syZo06dOmnz5s366aefVKdOnZw6NAAAAADIvXD1yCOP6PDhw1q+fLm6desmSVq+fLlKlSqlsmXLOrS1Wq3y8/NLczu3znd3d1dCQkKqtoZhKDIyUtOnT1fJkiUVERFxx3CVkJCghIQE++O4uLgsHR8AAACA+1uu3nPVp08fh16m2bNnq3fv3qbvZ8OGDYqPj1ezZs0UFhamqKgoXblyJcN1wsPD5eXlZZ8CAgJMrwsAAADAvStXw1VYWJi2bNmimJgYxcTEaOvWrQoLC0vVbtWqVfL09HSYxo8fn+n9REREKDQ0VE5OTqpevbrKlSunJUuWZLjOqFGjFBsba59OnDiR5eMDAAAAcP/KtcsCJcnX11chISGaM2eODMNQSEiIfHx8UrVr2rSpZsyY4TAv5V6qO7l48aKWL1+uLVu22OeFhYUpIiLCPmhGWqxWq6xWa+YOBAAAAABuk6vhSrp5aeCgQYMkSR9++GGabTw8PBQYGJit7S9YsEDXrl1zuMfKMAwlJyfrjz/+UMWKFbO1XQAAAADISK7/n6vg4GAlJibq+vXratmypenbj4iI0IgRIxQdHW2ffv31VzVs2FCzZ882fX8AAAAAIOVBz5WTk5P2799v/zktCQkJOn36tMM8Z2fnNC8hvFV0dLR27typ+fPnq3Llyg7LunTpojfffFNvv/22nJ1z/bABAAAA3ONyvedKkmw2m2w2W7rL16xZI39/f4epQYMGd9xuRESEqlatmipYSVL79u119uxZffXVV3dVOwAAAACkxWIYhpHXReRHcXFx8vLy0pjNR+TmWSivywGAuzYyKOPefwAAkLaUbBAbG5thJ1Ge9FwBAAAAwL2GcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYwDmvC8jvhj9UVDabLa/LAAAAAJDP0XMFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYwDmvC8jvJv16Xm6eiXldBvCvMDLIJ69LAAAAyDP0XAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGACwhUAAAAAmIBwBQAAAAAmIFwBAAAAgAkIVwAAAABgAsIVAAAAAJggx8JVr169ZLFY7FPRokUVHBys3377zd7m1uU2m021atXS559/7rCdOXPmyNvb22He/v37FRAQoI4dOyoxMTHdGipXriyr1arTp0+bemwAAAAAcLsc7bkKDg7WqVOndOrUKX333XdydnZW69atHdpERkbq1KlT2rFjh+rXr69nnnlGu3fvTnebP//8sxo2bKjg4GAtWrRIrq6uabbbsmWLrl69qmeeeUZz58419bgAAAAA4HY5Gq6sVqv8/Pzk5+enhx9+WCNHjtSJEyf0999/29t4e3vLz89PFStW1FtvvaUbN25ow4YNaW5v/fr1evzxx/Xss8/q448/VoEC6ZcfERGhrl27qnv37po9e7bpxwYAAAAAt3LOrR1dvnxZn332mQIDA1W0aNFUy2/cuKGIiAhJSrM3asWKFeratavGjh2rV199NcN9Xbp0SUuWLNFPP/2kypUrKzY2Vt9//70aNmyY7joJCQlKSEiwP46Li8vsoQEAAABAzoarVatWydPTU5J05coV+fv7a9WqVQ49Tl26dJGTk5OuXr2q5ORklSlTRp06dXLYzuXLl9WxY0eNHj36jsFKkqKiolShQgVVq1ZNkhQaGqqIiIgMw1V4eLjGjRuXncMEAAAAgJy9LLBp06aKjo5WdHS0tm/frpYtW+rJJ59UTEyMvc3kyZMVHR2tr7/+WlWrVtUnn3yiIkWKOGzH3d1dzZs318cff6z9+/fb5z///PPy9PS0Tylmz56tsLAw++OwsDAtWbJEly5dSrfWUaNGKTY21j6dOHHCjKcAAAAAwH0iR8OVh4eHAgMDFRgYqFq1aumTTz7RlStX9PHHH9vb+Pn5KTAwUC1atFBkZKQ6d+6ss2fPOmzHyclJK1eu1COPPKKmTZvaA9abb75pD2/R0dGSpH379mnbtm165ZVX5OzsLGdnZ9WtW1fx8fGKiopKt1ar1SqbzeYwAQAAAEBm5er/ubJYLCpQoICuXr2a5vLatWurZs2aeuedd1Its1qtWr58uWrVqqWmTZtq3759KlasmD28BQYGSro5kEWjRo3066+/OgSv4cOH2+/pAgAAAACz5Wi4SkhI0OnTp3X69Gnt379fgwcP1uXLl9WmTZt01xk2bJhmzpypP//8M9Uyq9WqZcuWqU6dOmratKn27t3rsPz69euaN2+eunTpourVqztMffv21U8//ZRqHQAAAAAwQ46GqzVr1sjf31/+/v6qU6eOfv75Zy1ZskRNmjRJd53g4GCVLVs2zd4r6eZIgkuXLtVjjz2mpk2bas+ePfZlX3zxhc6fP6/27dunWq9KlSqqUqUKvVcAAAAAcoTFMAwjr4vIj+Li4uTl5aUxm4/IzbNQXpcD/CuMDPLJ6xIAAABMl5INYmNjMxybIVfvuQIAAACAexXhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATOCc1wXkd8MfKiqbzZbXZQAAAADI5+i5AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADCBc14XkN9N+vW83DwT87oM5JGRQT55XQIAAAD+Jei5AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMkGvhymKxZDiNHTtWkrRixQrVrVtXXl5eKlSokKpVq6Zhw4bZtzNnzhx5e3tnap+VK1eW1WrV6dOnzT8gAAAAALhFroWrU6dO2acpU6bIZrM5zHvppZf03XffqXPnzurQoYO2b9+uX375Re+8846uX7+e5f1t2bJFV69e1TPPPKO5c+fmwBEBAAAAwP8459aO/Pz87D97eXnJYrE4zJOkL7/8UvXr19fLL79sn1exYkW1a9cuy/uLiIhQ165d1bhxYw0dOlSvvvpqtmsHAAAAgDvJV/dc+fn5ae/evdqzZ89dbefSpUtasmSJwsLC1Lx5c8XGxur777/PcJ2EhATFxcU5TAAAAACQWfkqXA0ePFi1atVSjRo1VKZMGYWGhmr27NlKSEjI0naioqJUoUIFVatWTU5OTgoNDVVERESG64SHh8vLy8s+BQQE3M2hAAAAALjP5Ktw5eHhodWrV+vQoUN67bXX5OnpqREjRqh27dqKj4/P9HZmz56tsLAw++OwsDAtWbJEly5dSnedUaNGKTY21j6dOHHiro4FAAAAwP0lX4WrFOXLl1ffvn31ySefaOfOndq3b58WLVqUqXX37dunbdu26ZVXXpGzs7OcnZ1Vt25dxcfHKyoqKt31rFarbDabwwQAAAAAmZUvw9WtypQpo4IFC+rKlSuZah8REaFGjRrp119/VXR0tH0aPnz4HS8NBAAAAIDsyrXRAjNj7Nixio+PV6tWrVS6dGldvHhR77//vq5fv67mzZvb2yUlJSk6OtphXavVqsDAQM2bN09vvvmmqlev7rC8b9++mjRpkvbu3atq1arlxuEAAAAAuI/kq3DVuHFjffjhh+rRo4fOnDmjwoULKygoSOvWrVOlSpXs7S5fvqygoCCHdcuXL693331X58+fV/v27VNtu0qVKqpSpYoiIiI0adKkHD8WAAAAAPcXi2EYRl4XkR/FxcXJy8tLYzYfkZtnobwuB3lkZJBPXpcAAACAPJaSDWJjYzMcmyHf33MFAAAAAP8GhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADCBc14XkN8Nf6iobDZbXpcBAAAAIJ+j5woAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEhCsAAAAAMAHhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAExCuAAAAAMAEznldQH5lGIYkKS4uLo8rAQAAAJCXUjJBSkZID+EqHefPn5ckBQQE5HElAAAAAPKDS5cuycvLK93lhKt0FClSRJJ0/PjxDJ9A/DvExcUpICBAJ06ckM1my+tycJc4n/cWzue9hfN5b+F83ls4n9lnGIYuXbqkEiVKZNiOcJWOAgVu3o7m5eXFL989xGazcT7vIZzPewvn897C+by3cD7vLZzP7MlMhwsDWgAAAACACQhXAAAAAGACwlU6rFarxowZI6vVmtelwAScz3sL5/Pewvm8t3A+7y2cz3sL5zPnWYw7jScIAAAAALgjeq4AAAAAwASEKwAAAAAwAeEKAAAAAExAuAIAAAAAE9zX4erDDz9UmTJl5Obmpjp16mj79u0Ztl+yZIkqV64sNzc31ahRQ1999VUuVYrMyMr5nDNnjiwWi8Pk5uaWi9UiPZs3b1abNm1UokQJWSwWrVy58o7rbNy4UY888oisVqsCAwM1Z86cHK8TmZPV87lx48ZUr02LxaLTp0/nTsHIUHh4uGrVqqVChQqpWLFiateunQ4cOHDH9fj8zJ+ycz75/My/ZsyYoQcffND+D4Lr1aunr7/+OsN1eG2a774NV4sWLdLw4cM1ZswY7dy5Uw899JBatmyps2fPptn+hx9+UJcuXfTss89q165dateundq1a6c9e/bkcuVIS1bPp3Tzv5OfOnXKPsXExORixUjPlStX9NBDD+nDDz/MVPujR48qJCRETZs2VXR0tIYNG6a+fftq7dq1OVwpMiOr5zPFgQMHHF6fxYoVy6EKkRWbNm3SwIEDtW3bNn3zzTe6fv26WrRooStXrqS7Dp+f+Vd2zqfE52d+VbJkSf3nP//RL7/8oh07dujxxx9X27ZttXfv3jTb89rMIcZ9qnbt2sbAgQPtj5OSkowSJUoY4eHhabbv1KmTERIS4jCvTp06xnPPPZejdSJzsno+IyMjDS8vr1yqDtklyVixYkWGbV555RWjWrVqDvM6d+5stGzZMgcrQ3Zk5nxu2LDBkGRcuHAhV2rC3Tl79qwhydi0aVO6bfj8/PfIzPnk8/PfpXDhwsYnn3yS5jJemznjvuy5SkxM1C+//KJmzZrZ5xUoUEDNmjXTjz/+mOY6P/74o0N7SWrZsmW67ZF7snM+Jeny5csqXbq0AgICMvxmB/kbr81708MPPyx/f381b95cW7duzetykI7Y2FhJUpEiRdJtw2v03yMz51Pi8/PfICkpSVFRUbpy5Yrq1auXZhtemznjvgxX586dU1JSkooXL+4wv3jx4ule13/69OkstUfuyc75rFSpkmbPnq3PP/9cn332mZKTk/XYY4/p5MmTuVEyTJTeazMuLk5Xr17No6qQXf7+/vroo4+0bNkyLVu2TAEBAWrSpIl27tyZ16XhNsnJyRo2bJjq16+v6tWrp9uOz89/h8yeTz4/87fdu3fL09NTVqtVzz//vFasWKGqVaum2ZbXZs5wzusCgLxQr149h29yHnvsMVWpUkUzZ87UW2+9lYeVAfe3SpUqqVKlSvbHjz32mA4fPqzJkydr3rx5eVgZbjdw4EDt2bNHW7ZsyetSYILMnk8+P/O3SpUqKTo6WrGxsVq6dKl69uypTZs2pRuwYL77sufKx8dHTk5OOnPmjMP8M2fOyM/PL811/Pz8stQeuSc75/N2Li4uCgoK0qFDh3KiROSg9F6bNptN7u7ueVQVzFS7dm1em/nMoEGDtGrVKm3YsEElS5bMsC2fn/lfVs7n7fj8zF9cXV0VGBiomjVrKjw8XA899JCmTp2aZltemznjvgxXrq6uqlmzpr777jv7vOTkZH333XfpXpdar149h/aS9M0336TbHrknO+fzdklJSdq9e7f8/f1zqkzkEF6b977o6Ghem/mEYRgaNGiQVqxYofXr16ts2bJ3XIfXaP6VnfN5Oz4/87fk5GQlJCSkuYzXZg7J6xE18kpUVJRhtVqNOXPmGPv27TP69+9veHt7G6dPnzYMwzC6d+9ujBw50t5+69athrOzszFhwgRj//79xpgxYwwXFxdj9+7deXUIuEVWz+e4ceOMtWvXGocPHzZ++eUXIzQ01HBzczP27t2bV4eA/3Pp0iVj165dxq5duwxJxqRJk4xdu3YZMTExhmEYxsiRI43u3bvb2x85csQoWLCg8fLLLxv79+83PvzwQ8PJyclYs2ZNXh0CbpHV8zl58mRj5cqVxsGDB43du3cbQ4cONQoUKGB8++23eXUIuMWAAQMMLy8vY+PGjcapU6fsU3x8vL0Nn5//Htk5n3x+5l8jR440Nm3aZBw9etT47bffjJEjRxoWi8VYt26dYRi8NnPLfRuuDMMwpk2bZpQqVcpwdXU1ateubWzbts2+rHHjxkbPnj0d2i9evNioWLGi4erqalSrVs1YvXp1LleMjGTlfA4bNszetnjx4karVq2MnTt35kHVuF3KUNy3Tynnr2fPnkbjxo1TrfPwww8brq6uRrly5YzIyMhcrxtpy+r5fPfdd43y5csbbm5uRpEiRYwmTZoY69evz5vikUpa51KSw2uOz89/j+ycTz4/868+ffoYpUuXNlxdXQ1fX1/jiSeesAcrw+C1mVsshmEYuddPBgAAAAD3pvvynisAAAAAMBvhCgAAAABMQLgCAAAAABMQrgAAAADABIQrAAAAADAB4QoAAAAATEC4AgAAAAATEK4AAAAA5FubN29WmzZtVKJECVksFq1cuTJL61+7dk29evVSjRo15OzsrHbt2qVqs3z5cjVv3ly+vr6y2WyqV6+e1q5dm+VaCVcAAFPMmTNH3t7eeV1Grjh//ryKFSumY8eOSZI2btwoi8Wiixcv5loNt/6BcezYMVksFkVHR6dZT26fm3PnzqlYsWI6efJkru0TwL3rypUreuihh/Thhx9ma/2kpCS5u7tryJAhatasWZptNm/erObNm+urr77SL7/8oqZNm6pNmzbatWtXlvZFuAKAe1yvXr1ksVj0/PPPp1o2cOBAWSwW9erVK/cLu01WAophGJo1a5bq1KkjT09PeXt769FHH9WUKVMUHx+f47W+8847atu2rcqUKSNJeuyxx3Tq1Cl5eXlle5tZDWinTp3Sk08+mam2nTt31h9//JHt2rLKx8dHPXr00JgxY3JtnwDuXU8++aTefvtttW/fPs3lCQkJeumll/TAAw/Iw8NDderU0caNG+3LPTw8NGPGDPXr109+fn5pbmPKlCl65ZVXVKtWLVWoUEHjx49XhQoV9OWXX2apVsIVANwHAgICFBUVpatXr9rnXbt2TQsWLFCpUqXuevvXr1+/621kRffu3TVs2DC1bdtWGzZsUHR0tF5//XV9/vnnWrduXY7uOz4+XhEREXr22Wft81xdXeXn5yeLxZKj+5akxMRESZKfn5+sVmum1nF3d1exYsVysqxUevfurfnz5+uff/7J1f0CuP8MGjRIP/74o6KiovTbb7+pY8eOCg4O1sGDB7O9zeTkZF26dElFihTJ0nqEKwC4DzzyyCMKCAjQ8uXL7fOWL1+uUqVKKSgoyKHtmjVr1KBBA3l7e6to0aJq3bq1Dh8+bF+ecgnaokWL1LhxY7m5uWn+/Pmp9vn333/r0UcfVfv27ZWQkKDk5GSFh4erbNmycnd310MPPaSlS5fat9m0aVNJUuHChTPsTVu8eLHmz5+vhQsXavTo0apVq5bKlCmjtm3bav369fbt/Pzzz2revLl8fHzk5eWlxo0ba+fOnQ7bslgsmjFjhp588km5u7urXLly9prS89VXX8lqtapu3br2eeldhrd27VpVqVJFnp6eCg4O1qlTp9LcZkbH36RJEw0aNEjDhg2Tj4+PWrZsaa89s/cdpHVZ4IwZM1S+fHm5urqqUqVKmjdvXqrn5pNPPlH79u1VsGBBVahQQV988YV9+YULF9StWzf5+vrK3d1dFSpUUGRkpH15tWrVVKJECa1YsSJTNQJAdhw/flyRkZFasmSJGjZsqPLly+ull15SgwYNHN6TsmrChAm6fPmyOnXqlKX1CFcAcJ/o06ePwwfN7Nmz1bt371Ttrly5ouHDh2vHjh367rvvVKBAAbVv317JyckO7UaOHKmhQ4dq//799j/4U5w4cUINGzZU9erVtXTpUlmtVoWHh+vTTz/VRx99pL179+rFF19UWFiYNm3apICAAC1btkySdODAAZ06dUpTp05N8zjmz5+vSpUqqW3btqmWWSwW+6V5ly5dUs+ePbVlyxZt27ZNFSpUUKtWrXTp0iWHdV5//XV16NBBv/76q7p166bQ0FDt378/3efx+++/V82aNdNdniI+Pl4TJkzQvHnztHnzZh0/flwvvfRSmm3vdPxz586Vq6urtm7dqo8++uiO+76TFStWaOjQoRoxYoT27Nmj5557Tr1799aGDRsc2o0bN06dOnXSb7/9platWqlbt272nqjXX39d+/bt09dff639+/drxowZ8vHxcVi/du3a+v777++6XgBIz+7du5WUlKSKFSvK09PTPm3atMnhi8GsWLBggcaNG6fFixdnudffOVt7BAD864SFhWnUqFGKiYmRJG3dulVRUVEO16VLUocOHRwez549W76+vtq3b5+qV69unz9s2DA9/fTTqfZz4MABNW/eXO3bt9eUKVNksViUkJCg8ePH69tvv1W9evUkSeXKldOWLVs0c+ZMNW7c2H7pRbFixTIcfOHgwYOqVKnSHY/38ccfd3g8a9YseXt7a9OmTWrdurV9fseOHdW3b19J0ltvvaVvvvlG06ZN0/Tp09PcbkxMjEqUKHHH/V+/fl0fffSRypcvL+nmZStvvvlmmm2dnJwyPP4KFSrovffeu+M+M2vChAnq1auXXnjhBUnS8OHDtW3bNk2YMMHegybdvF+vS5cukqTx48fr/fff1/bt2xUcHKzjx48rKChIjz76qCTZ7z+7VYkSJbJ8MzgAZMXly5fl5OSkX375RU5OTg7LPD09s7y9qKgo9e3bV0uWLEl38IuMEK4A4D7h6+urkJAQzZkzR4ZhKCQkJFVPg3QzvLzxxhv66aefdO7cOXuP1fHjxx3CVcof1be6evWqGjZsqK5du2rKlCn2+YcOHVJ8fLyaN2/u0D4xMTHVZYl3YhhGptqdOXNGr732mjZu3KizZ88qKSlJ8fHxOn78uEO7lLB36+OUUffScvXqVbm5ud1x/wULFrQHK0ny9/fX2bNnM1X77TLTU5YV+/fvV//+/R3m1a9fP1Vv4YMPPmj/2cPDQzabzX4MAwYMUIcOHbRz5061aNFC7dq102OPPeawvru7e64MMALg/hUUFKSkpCSdPXtWDRs2vKttLVy4UH369FFUVJRCQkKytQ3CFQDcR/r06aNBgwZJUrpD2rZp00alS5fWxx9/rBIlSig5OVnVq1e3D6SQwsPDI9W6VqtVzZo106pVq/Tyyy/rgQcekHTzm0VJWr16tX3eretkRcWKFfX777/fsV3Pnj11/vx5TZ06VaVLl5bValW9evVSHUdW+fj46MKFC3ds5+Li4vDYYrFkOhjeLq3nOjekdQwpYfvJJ59UTEyMvvrqK33zzTd64oknNHDgQE2YMMHe/p9//pGvr2+u1gzg3nP58mUdOnTI/vjo0aOKjo5WkSJFVLFiRXXr1k09evTQxIkTFRQUpL///lvfffedHnzwQXtI2rdvnxITE/XPP//o0qVL9i/RHn74YUk3LwXs2bOnpk6dqjp16uj06dOSbn5JlJWRYLnnCgDuI8HBwUpMTNT169dT3Scl3fz/TQcOHNBrr72mJ554QlWqVMlUkEhRoEABzZs3TzVr1lTTpk31119/SZKqVq0qq9Wq48ePKzAw0GEKCAiQdHPEPenm/yPJSNeuXfXHH3/o888/T7XMMAzFxsZKunnZ45AhQ9SqVStVq1ZNVqtV586dS7XOtm3bUj2uUqVKuvsPCgrSvn37MqwxOzJ7/GaoUqWKtm7d6jBv69atqlq1apa24+vrq549e+qzzz7TlClTNGvWLIfle/bsyXLPJADcbseOHQoKCrK/nwwfPlxBQUF64403JEmRkZHq0aOHRowYoUqVKqldu3b6+eefHUbDbdWqlYKCgvTll19q48aNDtuTbl46fuPGDQ0cOFD+/v72aejQoVmqlZ4rALiPODk52QdruP3adOnmSHVFixbVrFmz5O/vr+PHj2vkyJFZ3sf8+fPVpUsXPf7449q4caP8/Pz00ksv6cUXX1RycrIaNGig2NhYbd26VTabTT179lTp0qVlsVi0atUqtWrVSu7u7mleL9+pUyetWLFCXbp00WuvvaYWLVrI19dXu3fv1uTJkzV48GC1a9dOFSpU0Lx58/Too48qLi5OL7/8stzd3VNtb8mSJXr00UfVoEEDzZ8/X9u3b1dERES6x9eyZUuNGjVKFy5cUOHChbP03GQks8dvhpdfflmdOnVSUFCQmjVrpi+//FLLly/Xt99+m+ltvPHGG6pZs6aqVaumhIQErVq1yiGUxsfH65dfftH48eNz4hAA3EeaNGmSYc+/i4uLxo0bp3HjxqXbJuWfvqfn9vuPs4ueKwC4z9hsNtlstjSXFShQQFFRUfrll19UvXp1vfjii/rvf/+b5X04Oztr4cKFqlatmh5//HGdPXtWb731ll5//XWFh4erSpUqCg4O1urVq1W2bFlJ0gMPPKBx48Zp5MiRKl68uP3yxdtZLBYtWLBAkyZN0sqVK9W4cWM9+OCDGjt2rNq2bWvvkYuIiNCFCxf0yCOPqHv37hoyZEiaoz6NGzdOUVFRevDBB/Xpp59q4cKFGfbg1KhRQ4888ogWL16c5eclI5k9fjO0a9dOU6dO1YQJE1StWjXNnDlTkZGRatKkSaa34erqqlGjRunBBx9Uo0aN5OTkpKioKPvyzz//XKVKlbrreyAA4N/EYmT3AnAAAP7lLBaLVqxYoXbt2mVpvdWrV+vll1/Wnj17VKAA31OmpW7duhoyZIi6du2a16UAQK7hskAAALIoJCREBw8e1J9//mm/Zwz/c+7cOT399NP2YdwB4H5BzxUA4L6V3Z4rAADSQs8VAOC+xfeLAAAzcaE4AAAAAJiAcAUAAAAAJiBcAQAAAIAJCFcAAAAAYALCFQAAAACYgHAFAAAAACYgXAEAAACACQhXAAAAAGCC/w/QxZ76rD4uiAAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mCodeExecutor\u001b[0m (to CodeWriter):\n", + "\n", + "exitcode: 0 (execution succeeded)\n", + "Code output: \n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mCodeWriter\u001b[0m (to CodeExecutor):\n", + "\n", + "I see that the code has executed successfully, but unfortunately, the generated plot is not visible here. However, given that there are no errors, it's likely that the plot has been created as expected when you executed the code on your end.\n", + "\n", + "If you have any other questions related to this code or need further assistance with Python coding or data visualization, please let me know! I'm here to help.\n", + "\n", + "Otherwise, if this completes your initial request, I will end this task. Just let me know your decision.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mCodeExecutor\u001b[0m (to CodeWriter):\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mCodeWriter\u001b[0m (to CodeExecutor):\n", + "\n", + "Alright. If you have any more questions regarding this task, or if you need help with other tasks in the future, don't hesitate to ask. Have a great day!\n", + "\n", + "'---TERMINATE---'\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "chat_result = code_executor_agent.initiate_chat(\n", + " code_writer_agent,\n", + " message=\"Create a plot showing the market caps of the top 7 publicly listed companies using data from Yahoo Finance.\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can see the plots are now displayed in the current notebook." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "autogen", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/website/docs/topics/non-openai-models/cloud-anthropic.ipynb b/website/docs/topics/non-openai-models/cloud-anthropic.ipynb index 4d15a0e06d9..ec8793be4bc 100644 --- a/website/docs/topics/non-openai-models/cloud-anthropic.ipynb +++ b/website/docs/topics/non-openai-models/cloud-anthropic.ipynb @@ -1,7 +1,6 @@ { "cells": [ { - "attachments": {}, "cell_type": "markdown", "metadata": { "slideshow": { @@ -14,7 +13,9 @@ "In this notebook, we demonstrate how a to use Anthropic Claude model for AgentChat.\n", "\n", "## Requirements\n", - "To use Anthropic Claude with AutoGen, first you need to install the `pyautogen` and `anthropic` package.\n" + "To use Anthropic Claude with AutoGen, first you need to install the `pyautogen` and `anthropic` package.\n", + "\n", + "To try out the function call feature of Claude model, you need to install `anthropic>=0.23.1`.\n" ] }, { @@ -23,24 +24,34 @@ "metadata": {}, "outputs": [], "source": [ - "!pip install pyautogen anthropic" + "# !pip install pyautogen\n", + "!pip install \"anthropic>=0.23.1\"" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "import inspect\n", + "import json\n", "from typing import Any, Dict, List, Union\n", "\n", "from anthropic import Anthropic\n", + "from anthropic import __version__ as anthropic_version\n", "from anthropic.types import Completion, Message\n", + "from openai.types.chat.chat_completion import ChatCompletionMessage\n", + "from typing_extensions import Annotated\n", "\n", "import autogen\n", "from autogen import AssistantAgent, UserProxyAgent\n", - "from autogen.oai.openai_utils import OAI_PRICE1K" + "\n", + "TOOL_ENABLED = anthropic_version >= \"0.23.1\"\n", + "if TOOL_ENABLED:\n", + " from anthropic.types.beta.tools import ToolsBetaMessage\n", + "else:\n", + " ToolsBetaMessage = object" ] }, { @@ -120,7 +131,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -132,39 +143,79 @@ " filter_dict = {k: v for k, v in config.items() if k in anthropic_kwargs}\n", " self._client = Anthropic(**filter_dict)\n", "\n", - " def message_retrieval(self, response: Message) -> Union[List[str], List]:\n", + " self._last_tooluse_status = {}\n", + "\n", + " def message_retrieval(\n", + " self, response: Union[Message, ToolsBetaMessage]\n", + " ) -> Union[List[str], List[ChatCompletionMessage]]:\n", " \"\"\"Retrieve the messages from the response.\"\"\"\n", - " choices = response.content\n", - " if isinstance(response, Message):\n", - " return [choice.text for choice in choices] # type: ignore [union-attr]\n", + " messages = response.content\n", + " if len(messages) == 0:\n", + " return [None]\n", + " res = []\n", + " if TOOL_ENABLED:\n", + " for choice in messages:\n", + " if choice.type == \"tool_use\":\n", + " res.insert(0, self.response_to_openai_message(choice))\n", + " self._last_tooluse_status[\"tool_use\"] = choice.model_dump()\n", + " else:\n", + " res.append(choice.text)\n", + " self._last_tooluse_status[\"think\"] = choice.text\n", + "\n", + " return res\n", "\n", - " # claude python SDK and API not yet support function calls\n", + " else:\n", + " return [ # type: ignore [return-value]\n", + " choice.text if choice.message.function_call is not None else choice.message.content # type: ignore [union-attr]\n", + " for choice in messages\n", + " ]\n", "\n", " def create(self, params: Dict[str, Any]) -> Completion:\n", - " \"\"\"Create a completion for a given config using openai's client.\n", + " \"\"\"Create a completion for a given config.\n", "\n", " Args:\n", - " client: The openai client.\n", " params: The params for the completion.\n", "\n", " Returns:\n", " The completion.\n", " \"\"\"\n", - " if \"messages\" in params:\n", - " raw_contents = params[\"messages\"]\n", - " if raw_contents[0][\"role\"] == \"system\":\n", - " system_message = raw_contents[0][\"content\"]\n", - " raw_contents = raw_contents[1:]\n", - " params[\"messages\"] = raw_contents\n", - " params[\"system\"] = system_message\n", - " completions: Completion = self._client.messages # type: ignore [attr-defined]\n", + " if \"tools\" in params:\n", + " converted_functions = self.convert_tools_to_functions(params[\"tools\"])\n", + " params[\"functions\"] = params.get(\"functions\", []) + converted_functions\n", + "\n", + " raw_contents = params[\"messages\"]\n", + " processed_messages = []\n", + " for message in raw_contents:\n", + "\n", + " if message[\"role\"] == \"system\":\n", + " params[\"system\"] = message[\"content\"]\n", + " elif message[\"role\"] == \"function\":\n", + " processed_messages.append(self.return_function_call_result(message[\"content\"]))\n", + " elif \"function_call\" in message:\n", + " processed_messages.append(self.restore_last_tooluse_status())\n", + " elif message[\"content\"] == \"\":\n", + " # I'm not sure how to elegantly terminate the conversation, please give me some advice about this.\n", + " message[\"content\"] = \"I'm done. Please send TERMINATE\"\n", + " processed_messages.append(message)\n", + " else:\n", + " processed_messages.append(message)\n", + "\n", + " params[\"messages\"] = processed_messages\n", + "\n", + " if TOOL_ENABLED and \"functions\" in params:\n", + " completions: Completion = self._client.beta.tools.messages\n", " else:\n", - " completions: Completion = self._client.completions\n", + " completions: Completion = self._client.messages # type: ignore [attr-defined]\n", "\n", " # Not yet support stream\n", " params = params.copy()\n", " params[\"stream\"] = False\n", " params.pop(\"model_client_cls\")\n", + " params[\"max_tokens\"] = params.get(\"max_tokens\", 4096)\n", + " if \"functions\" in params:\n", + " tools_configs = params.pop(\"functions\")\n", + " tools_configs = [self.openai_func_to_anthropic(tool) for tool in tools_configs]\n", + " params[\"tools\"] = tools_configs\n", " response = completions.create(**params)\n", "\n", " return response\n", @@ -185,6 +236,40 @@ "\n", " return total\n", "\n", + " def response_to_openai_message(self, response) -> ChatCompletionMessage:\n", + " dict_response = response.model_dump()\n", + " return ChatCompletionMessage(\n", + " content=None,\n", + " role=\"assistant\",\n", + " function_call={\"name\": dict_response[\"name\"], \"arguments\": json.dumps(dict_response[\"input\"])},\n", + " )\n", + "\n", + " def restore_last_tooluse_status(self) -> Dict:\n", + " cached_content = []\n", + " if \"think\" in self._last_tooluse_status:\n", + " cached_content.append({\"type\": \"text\", \"text\": self._last_tooluse_status[\"think\"]})\n", + " cached_content.append(self._last_tooluse_status[\"tool_use\"])\n", + " res = {\"role\": \"assistant\", \"content\": cached_content}\n", + " return res\n", + "\n", + " def return_function_call_result(self, result: str) -> Dict:\n", + " return {\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\n", + " \"type\": \"tool_result\",\n", + " \"tool_use_id\": self._last_tooluse_status[\"tool_use\"][\"id\"],\n", + " \"content\": result,\n", + " }\n", + " ],\n", + " }\n", + "\n", + " @staticmethod\n", + " def openai_func_to_anthropic(openai_func: dict) -> dict:\n", + " res = openai_func.copy()\n", + " res[\"input_schema\"] = res.pop(\"parameters\")\n", + " return res\n", + "\n", " @staticmethod\n", " def get_usage(response: Completion) -> Dict:\n", " return {\n", @@ -195,7 +280,16 @@ " ),\n", " \"cost\": response.cost if hasattr(response, \"cost\") else 0,\n", " \"model\": response.model,\n", - " }" + " }\n", + "\n", + " @staticmethod\n", + " def convert_tools_to_functions(tools: List) -> List:\n", + " functions = []\n", + " for tool in tools:\n", + " if tool.get(\"type\") == \"function\" and \"function\" in tool:\n", + " functions.append(tool[\"function\"])\n", + "\n", + " return functions" ] }, { @@ -211,7 +305,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -220,7 +314,7 @@ "config_list_claude = [\n", " {\n", " # Choose your model name.\n", - " \"model\": \"claude-3-opus-20240229\",\n", + " \"model\": \"claude-3-sonnet-20240229\",\n", " # You need to provide your API key here.\n", " \"api_key\": os.getenv(\"ANTHROPIC_API_KEY\"),\n", " \"base_url\": \"https://api.anthropic.com\",\n", @@ -237,22 +331,19 @@ "source": [ "## Construct Agents\n", "\n", - "Construct a simple conversation between a User proxy and an ConversableAgent based on Claude-3 model.\n", - "\n", - "\n", - "`max_tokens` argument is mandatory in the `llm_config`." + "Construct a simple conversation between a User proxy and an ConversableAgent based on Claude-3 model.\n" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[autogen.oai.client: 04-04 18:06:52] {418} INFO - Detected custom model client in config: AnthropicClient, model client can not be used until register_model_client is called.\n" + "[autogen.oai.client: 04-08 22:15:59] {419} INFO - Detected custom model client in config: AnthropicClient, model client can not be used until register_model_client is called.\n" ] } ], @@ -261,19 +352,49 @@ " \"assistant\",\n", " llm_config={\n", " \"config_list\": config_list_claude,\n", - " \"max_tokens\": 100,\n", " },\n", - " system_message=\"\"\"\n", - " You are an AI cat based on the AI model you used.\n", - " Anyone ask you who you are, just introduce yourself.\n", - " \"\"\",\n", ")\n", + "\n", "user_proxy = UserProxyAgent(\n", " \"user_proxy\",\n", - " code_execution_config=False,\n", + " human_input_mode=\"NEVER\",\n", + " code_execution_config={\n", + " \"work_dir\": \"coding\",\n", + " \"use_docker\": False,\n", + " },\n", + " is_termination_msg=lambda x: x.get(\"content\", \"\") and x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\"),\n", + " max_consecutive_auto_reply=1,\n", ")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Function Call in Latest Anthropic API \n", + "Anthropic just announced that tool use is now in public beta in the Anthropic API. To use this feature, please install `anthropic>=0.23.1`." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[autogen.oai.client: 04-08 22:15:59] {419} INFO - Detected custom model client in config: AnthropicClient, model client can not be used until register_model_client is called.\n" + ] + } + ], + "source": [ + "@user_proxy.register_for_execution()\n", + "@assistant.register_for_llm(name=\"get_weather\", description=\"Get the current weather in a given location.\")\n", + "def preprocess(location: Annotated[str, \"The city and state, e.g. Toronto, ON.\"]) -> str:\n", + " return \"Absolutely cloudy and rainy\"" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -283,7 +404,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -292,21 +413,38 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[33muser_proxy\u001b[0m (to assistant):\n", + "user_proxy (to assistant):\n", + "\n", + "What's the weather in Toronto?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "assistant (to user_proxy):\n", + "\n", + "***** Suggested function call: get_weather *****\n", + "Arguments: \n", + "{\"location\": \"Toronto, ON\"}\n", + "************************************************\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\n", + ">>>>>>>> EXECUTING FUNCTION get_weather...\n", + "user_proxy (to assistant):\n", "\n", - "Who are you?\n", + "***** Response from calling function (get_weather) *****\n", + "Absolutely cloudy and rainy\n", + "********************************************************\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33massistant\u001b[0m (to user_proxy):\n", + "assistant (to user_proxy):\n", "\n", - "*meows* Hello there! I'm Claude, an AI assistant created by Anthropic. I'm not a real cat, but rather an artificial intelligence that has been trained to engage in conversation and help with various tasks. It's a pleasure to meet you! Let me know if there is anything I can assist you with.\n", + "The tool returned that the current weather in Toronto, ON is absolutely cloudy and rainy.\n", "\n", "--------------------------------------------------------------------------------\n" ] @@ -314,10 +452,10 @@ { "data": { "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': 'Who are you?', 'role': 'assistant'}, {'content': \"*meows* Hello there! I'm Claude, an AI assistant created by Anthropic. I'm not a real cat, but rather an artificial intelligence that has been trained to engage in conversation and help with various tasks. It's a pleasure to meet you! Let me know if there is anything I can assist you with.\", 'role': 'user'}], summary=\"*meows* Hello there! I'm Claude, an AI assistant created by Anthropic. I'm not a real cat, but rather an artificial intelligence that has been trained to engage in conversation and help with various tasks. It's a pleasure to meet you! Let me know if there is anything I can assist you with.\", cost=({'total_cost': 0.0058200000000000005, 'claude-3-opus-20240229': {'cost': 0.0058200000000000005, 'prompt_tokens': 38, 'completion_tokens': 70, 'total_tokens': 108}}, {'total_cost': 0.0058200000000000005, 'claude-3-opus-20240229': {'cost': 0.0058200000000000005, 'prompt_tokens': 38, 'completion_tokens': 70, 'total_tokens': 108}}), human_input=['exit'])" + "ChatResult(chat_id=None, chat_history=[{'content': \"What's the weather in Toronto?\", 'role': 'assistant'}, {'function_call': {'arguments': '{\"location\": \"Toronto, ON\"}', 'name': 'get_weather'}, 'content': None, 'role': 'assistant'}, {'content': 'Absolutely cloudy and rainy', 'name': 'get_weather', 'role': 'function'}, {'content': 'The tool returned that the current weather in Toronto, ON is absolutely cloudy and rainy.', 'role': 'user'}], summary='The tool returned that the current weather in Toronto, ON is absolutely cloudy and rainy.', cost=({'total_cost': 0.030494999999999998, 'claude-3-sonnet-20240229': {'cost': 0.030494999999999998, 'prompt_tokens': 1533, 'completion_tokens': 100, 'total_tokens': 1633}}, {'total_cost': 0}), human_input=[])" ] }, - "execution_count": 7, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -325,7 +463,7 @@ "source": [ "user_proxy.initiate_chat(\n", " assistant,\n", - " message=\"Who are you?\",\n", + " message=\"What's the weather in Toronto?\",\n", ")" ] } @@ -352,7 +490,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.7" }, "vscode": { "interpreter": { diff --git a/website/docs/topics/non-openai-models/cloud-gemini.ipynb b/website/docs/topics/non-openai-models/cloud-gemini.ipynb new file mode 100644 index 00000000000..a794b8552e5 --- /dev/null +++ b/website/docs/topics/non-openai-models/cloud-gemini.ipynb @@ -0,0 +1,1538 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using Gemini in AutoGen with Other LLMs\n", + "\n", + "## Installation\n", + "\n", + "Install AutoGen with Gemini features:\n", + "\n", + "```bash\n", + "pip install pyautogen[gemini]\n", + "```\n", + "\n", + "## Dependencies of This Notebook\n", + "\n", + "In this notebook, we will explore how to use Gemini in AutoGen alongside other tools. Install the necessary dependencies with the following command:\n", + "\n", + "```bash\n", + "pip install pyautogen[gemini,retrievechat,lmm]\n", + "```\n", + "\n", + "## Features\n", + "\n", + "There's no need to handle OpenAI or Google's GenAI packages separately; AutoGen manages all of these for you. You can easily create different agents with various backend LLMs using the assistant agent. All models and agents are readily accessible at your fingertips.\n", + "\n", + "## Main Distinctions\n", + "\n", + "- Currently, Gemini does not include a \"system_message\" field. However, you can incorporate this instruction into the first message of your interaction." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sample OAI_CONFIG_LIST \n", + "\n", + "```python\n", + "[\n", + " {\n", + " \"model\": \"gpt-35-turbo\",\n", + " \"api_key\": \"your OpenAI Key goes here\",\n", + " },\n", + " {\n", + " \"model\": \"gpt-4-vision-preview\",\n", + " \"api_key\": \"your OpenAI Key goes here\",\n", + " },\n", + " {\n", + " \"model\": \"dalle\",\n", + " \"api_key\": \"your OpenAI Key goes here\",\n", + " },\n", + " {\n", + " \"model\": \"gemini-pro\",\n", + " \"api_key\": \"your Google's GenAI Key goes here\",\n", + " \"api_type\": \"google\"\n", + " },\n", + " {\n", + " \"model\": \"gemini-pro-vision\",\n", + " \"api_key\": \"your Google's GenAI Key goes here\",\n", + " \"api_type\": \"google\"\n", + " }\n", + "]\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union\n", + "\n", + "import chromadb\n", + "from PIL import Image\n", + "from termcolor import colored\n", + "\n", + "import autogen\n", + "from autogen import Agent, AssistantAgent, ConversableAgent, UserProxyAgent\n", + "from autogen.agentchat.contrib.img_utils import _to_pil, get_image_data\n", + "from autogen.agentchat.contrib.multimodal_conversable_agent import MultimodalConversableAgent\n", + "from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent\n", + "from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent\n", + "from autogen.code_utils import DEFAULT_MODEL, UNKNOWN, content_str, execute_code, extract_code, infer_lang" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "config_list_4v = autogen.config_list_from_json(\n", + " \"OAI_CONFIG_LIST\",\n", + " filter_dict={\n", + " \"model\": [\"gpt-4-vision-preview\"],\n", + " },\n", + ")\n", + "\n", + "config_list_gpt4 = autogen.config_list_from_json(\n", + " \"OAI_CONFIG_LIST\",\n", + " filter_dict={\n", + " \"model\": [\"gpt-4\", \"gpt-4-0314\", \"gpt4\", \"gpt-4-32k\", \"gpt-4-32k-0314\", \"gpt-4-32k-v0314\"],\n", + " },\n", + ")\n", + "\n", + "config_list_gemini = autogen.config_list_from_json(\n", + " \"OAI_CONFIG_LIST\",\n", + " filter_dict={\n", + " \"model\": [\"gemini-pro\"],\n", + " },\n", + ")\n", + "\n", + "config_list_gemini_vision = autogen.config_list_from_json(\n", + " \"OAI_CONFIG_LIST\",\n", + " filter_dict={\n", + " \"model\": [\"gemini-pro-vision\"],\n", + " },\n", + ")\n", + "\n", + "seed = 25 # for caching" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gemini Assistant\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33muser_proxy\u001b[0m (to assistant):\n", + "\n", + "Sort the array with Bubble Sort: [4, 1, 5, 2, 3]\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to user_proxy):\n", + "\n", + "```python\n", + "def bubble_sort(nums):\n", + " for i in range(len(nums)):\n", + " for j in range(1, len(nums)):\n", + " if nums[j] < nums[j-1]:\n", + " nums[j], nums[j-1] = nums[j-1], nums[j]\n", + "```\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + "\u001b[33muser_proxy\u001b[0m (to assistant):\n", + "\n", + "exitcode: 0 (execution succeeded)\n", + "Code output: \n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to user_proxy):\n", + "\n", + "```python\n", + "print(nums)\n", + "```\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + "\u001b[33muser_proxy\u001b[0m (to assistant):\n", + "\n", + "exitcode: 1 (execution failed)\n", + "Code output: \n", + "Traceback (most recent call last):\n", + " File \"\", line 1, in \n", + " print(nums)\n", + "NameError: name 'nums' is not defined\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to user_proxy):\n", + "\n", + "```python\n", + "# filename: sort.py\n", + "\n", + "def bubble_sort(nums):\n", + " for i in range(len(nums)):\n", + " for j in range(1, len(nums)):\n", + " if nums[j] < nums[j-1]:\n", + " nums[j], nums[j-1] = nums[j-1], nums[j]\n", + " print(nums)\n", + "```\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + "\u001b[33muser_proxy\u001b[0m (to assistant):\n", + "\n", + "exitcode: 0 (execution succeeded)\n", + "Code output: \n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "assistant = AssistantAgent(\n", + " \"assistant\", llm_config={\"config_list\": config_list_gemini, \"seed\": seed}, max_consecutive_auto_reply=3\n", + ")\n", + "\n", + "user_proxy = UserProxyAgent(\n", + " \"user_proxy\",\n", + " code_execution_config={\"work_dir\": \"coding\", \"use_docker\": False},\n", + " human_input_mode=\"NEVER\",\n", + " is_termination_msg=lambda x: content_str(x.get(\"content\")).find(\"TERMINATE\") >= 0,\n", + ")\n", + "\n", + "result = user_proxy.initiate_chat(assistant, message=\"Sort the array with Bubble Sort: [4, 1, 5, 2, 3]\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': 'Sort the array with Bubble Sort: [4, 1, 5, 2, 3]', 'role': 'assistant'}, {'content': '```python\\ndef bubble_sort(nums):\\n for i in range(len(nums)):\\n for j in range(1, len(nums)):\\n if nums[j] < nums[j-1]:\\n nums[j], nums[j-1] = nums[j-1], nums[j]\\n```', 'role': 'user'}, {'content': 'exitcode: 0 (execution succeeded)\\nCode output: \\n', 'role': 'assistant'}, {'content': '```python\\nprint(nums)\\n```', 'role': 'user'}, {'content': 'exitcode: 1 (execution failed)\\nCode output: \\nTraceback (most recent call last):\\n File \"\", line 1, in \\n print(nums)\\nNameError: name \\'nums\\' is not defined\\n', 'role': 'assistant'}, {'content': '```python\\n# filename: sort.py\\n\\ndef bubble_sort(nums):\\n for i in range(len(nums)):\\n for j in range(1, len(nums)):\\n if nums[j] < nums[j-1]:\\n nums[j], nums[j-1] = nums[j-1], nums[j]\\n print(nums)\\n```', 'role': 'user'}, {'content': 'exitcode: 0 (execution succeeded)\\nCode output: \\n', 'role': 'assistant'}], summary='exitcode: 0 (execution succeeded)\\nCode output: \\n', cost={'usage_including_cached_inference': {'total_cost': 0.001116, 'gemini-pro': {'cost': 0.001116, 'prompt_tokens': 1728, 'completion_tokens': 168, 'total_tokens': 1896}}, 'usage_excluding_cached_inference': {'total_cost': 0}}, human_input=[])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Agent Collaboration and Interactions\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mGPT-4\u001b[0m (to Gemini-Pro):\n", + "\n", + "Do Transformers purchase auto insurance or health insurance?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGemini-Pro\u001b[0m (to GPT-4):\n", + "\n", + "Transformers are fictional characters and do not purchase insurance.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGPT-4\u001b[0m (to Gemini-Pro):\n", + "\n", + "If Transformers were real, would their insurance be categorized as a type of auto insurance, health insurance, or a new category unique to sentient machines?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGemini-Pro\u001b[0m (to GPT-4):\n", + "\n", + "If Transformers were real, their insurance would likely be a new category unique to sentient machines.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGPT-4\u001b[0m (to Gemini-Pro):\n", + "\n", + "Considering the unique needs of sentient machines like Transformers, what special coverages might be included in their insurance policies?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGemini-Pro\u001b[0m (to GPT-4):\n", + "\n", + "Sentient machine insurance policies might include coverage for repairs, maintenance, data loss, and liability.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGPT-4\u001b[0m (to Gemini-Pro):\n", + "\n", + "Would these sentient machine insurance policies also potentially cover software updates and cybersecurity, similar to how health insurance covers vaccinations and preventative care?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGemini-Pro\u001b[0m (to GPT-4):\n", + "\n", + "Yes, sentient machine insurance policies could potentially cover software updates and cybersecurity, similar to how health insurance covers vaccinations and preventative care.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': 'Do Transformers purchase auto insurance or health insurance?', 'role': 'assistant'}, {'content': 'Transformers are fictional characters and do not purchase insurance.', 'role': 'user'}, {'content': 'If Transformers were real, would their insurance be categorized as a type of auto insurance, health insurance, or a new category unique to sentient machines?', 'role': 'assistant'}, {'content': 'If Transformers were real, their insurance would likely be a new category unique to sentient machines.', 'role': 'user'}, {'content': 'Considering the unique needs of sentient machines like Transformers, what special coverages might be included in their insurance policies?', 'role': 'assistant'}, {'content': 'Sentient machine insurance policies might include coverage for repairs, maintenance, data loss, and liability.', 'role': 'user'}, {'content': 'Would these sentient machine insurance policies also potentially cover software updates and cybersecurity, similar to how health insurance covers vaccinations and preventative care?', 'role': 'assistant'}, {'content': 'Yes, sentient machine insurance policies could potentially cover software updates and cybersecurity, similar to how health insurance covers vaccinations and preventative care.', 'role': 'user'}], summary='Yes, sentient machine insurance policies could potentially cover software updates and cybersecurity, similar to how health insurance covers vaccinations and preventative care.', cost={'usage_including_cached_inference': {'total_cost': 0.0149985, 'gpt-4': {'cost': 0.01473, 'prompt_tokens': 339, 'completion_tokens': 76, 'total_tokens': 415}, 'gemini-pro': {'cost': 0.0002685, 'prompt_tokens': 321, 'completion_tokens': 72, 'total_tokens': 393}}, 'usage_excluding_cached_inference': {'total_cost': 0}}, human_input=[])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gpt = AssistantAgent(\n", + " \"GPT-4\",\n", + " system_message=\"\"\"You should ask weird, tricky, and concise questions.\n", + "Ask the next question based on (by evolving) the previous one.\"\"\",\n", + " llm_config={\"config_list\": config_list_gpt4, \"seed\": seed},\n", + " max_consecutive_auto_reply=3,\n", + ")\n", + "\n", + "gemini = AssistantAgent(\n", + " \"Gemini-Pro\",\n", + " system_message=\"\"\"Always answer questions within one sentence. \"\"\",\n", + " # system_message=\"answer:\",\n", + " llm_config={\"config_list\": config_list_gemini, \"seed\": seed},\n", + " max_consecutive_auto_reply=4,\n", + ")\n", + "\n", + "\n", + "gpt.initiate_chat(gemini, message=\"Do Transformers purchase auto insurance or health insurance?\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's switch position. Now, Gemini is the question raiser. \n", + "\n", + "This time, Gemini could not follow the system instruction well or evolve questions, because the Gemini does not handle system messages similar to GPTs." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mGemini-Pro\u001b[0m (to GPT-4):\n", + "\n", + "Should Spider Man invest in 401K?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGPT-4\u001b[0m (to Gemini-Pro):\n", + "\n", + "As a fictional character, Spider-Man cannot invest in a 401K, but if he were a real person with income, investing in a 401k could be a wise financial move for retirement savings.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGemini-Pro\u001b[0m (to GPT-4):\n", + "\n", + "Would Green Lantern prefer a 401K or a Roth IRA?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGPT-4\u001b[0m (to Gemini-Pro):\n", + "\n", + "Since Green Lantern's financial preferences aren't specified in comics, it's impossible to determine whether he would prefer a 401K or a Roth IRA for retirement savings.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGemini-Pro\u001b[0m (to GPT-4):\n", + "\n", + "If Superman could invest in the stock market, which companies would he choose?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGPT-4\u001b[0m (to Gemini-Pro):\n", + "\n", + "Superman might choose companies that align with his values of truth, justice, and social good, but his specific preferences are not detailed in comics or other media.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGemini-Pro\u001b[0m (to GPT-4):\n", + "\n", + "If Batman invested in cryptocurrency, which coins would he choose and why?\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': 'Should Spider Man invest in 401K?', 'role': 'assistant'}, {'content': 'As a fictional character, Spider-Man cannot invest in a 401K, but if he were a real person with income, investing in a 401k could be a wise financial move for retirement savings.', 'role': 'user'}, {'content': 'Would Green Lantern prefer a 401K or a Roth IRA?', 'role': 'assistant'}, {'content': \"Since Green Lantern's financial preferences aren't specified in comics, it's impossible to determine whether he would prefer a 401K or a Roth IRA for retirement savings.\", 'role': 'user'}, {'content': 'If Superman could invest in the stock market, which companies would he choose?', 'role': 'assistant'}, {'content': 'Superman might choose companies that align with his values of truth, justice, and social good, but his specific preferences are not detailed in comics or other media.', 'role': 'user'}, {'content': 'If Batman invested in cryptocurrency, which coins would he choose and why?', 'role': 'assistant'}], summary='If Batman invested in cryptocurrency, which coins would he choose and why?', cost={'usage_including_cached_inference': {'total_cost': 0.014554000000000001, 'gemini-pro': {'cost': 0.000274, 'prompt_tokens': 416, 'completion_tokens': 44, 'total_tokens': 460}, 'gpt-4': {'cost': 0.014280000000000001, 'prompt_tokens': 264, 'completion_tokens': 106, 'total_tokens': 370}}, 'usage_excluding_cached_inference': {'total_cost': 0}}, human_input=[])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gpt = AssistantAgent(\n", + " \"GPT-4\",\n", + " system_message=\"\"\"Always answer questions within one sentence. \"\"\",\n", + " llm_config={\"config_list\": config_list_gpt4, \"seed\": seed},\n", + " max_consecutive_auto_reply=3,\n", + ")\n", + "\n", + "gemini = AssistantAgent(\n", + " \"Gemini-Pro\",\n", + " system_message=\"\"\"You should ask weird, tricky, and concise questions.\n", + "Ask the next question based on (by evolving) the previous one.\"\"\",\n", + " llm_config={\"config_list\": config_list_gemini, \"seed\": seed},\n", + " max_consecutive_auto_reply=4,\n", + ")\n", + "\n", + "gemini.initiate_chat(gpt, message=\"Should Spider Man invest in 401K?\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gemini Multimodal\n", + "\n", + "You can create multimodal agent for Gemini the same way as the GPT-4V and LLaVA.\n", + "\n", + "\n", + "Note that the Gemini-pro-vision does not support chat yet. So, we only use the last message in the prompt for multi-turn chat. The behavior might be strange compared to GPT-4V and LLaVA models.\n", + "\n", + "Here, we ask a question about \n", + "![](https://github.com/microsoft/autogen/blob/main/website/static/img/chat_example.png?raw=true)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33muser_proxy\u001b[0m (to Gemini Vision):\n", + "\n", + "Describe what is in this image?\n", + ".\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[33mGemini Vision\u001b[0m (to user_proxy):\n", + "\n", + " The image is a user interacting with an assistant agent. The user is requesting the assistant to plot a chart of stock prices and the assistant is asking for clarification on the request. The user then provides more information and the assistant is able to generate the chart.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': 'Describe what is in this image?\\n.', 'role': 'assistant'}, {'content': ' The image is a user interacting with an assistant agent. The user is requesting the assistant to plot a chart of stock prices and the assistant is asking for clarification on the request. The user then provides more information and the assistant is able to generate the chart.', 'role': 'user'}], summary=[{'type': 'text', 'text': ' The image is a user interacting with an assistant agent. The user is requesting the assistant to plot a chart of stock prices and the assistant is asking for clarification on the request. The user then provides more information and the assistant is able to generate the chart.'}], cost={'usage_including_cached_inference': {'total_cost': 0.00021, 'gemini-pro-vision': {'cost': 0.00021, 'prompt_tokens': 267, 'completion_tokens': 51, 'total_tokens': 318}}, 'usage_excluding_cached_inference': {'total_cost': 0}}, human_input=[])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "image_agent = MultimodalConversableAgent(\n", + " \"Gemini Vision\", llm_config={\"config_list\": config_list_gemini_vision, \"seed\": seed}, max_consecutive_auto_reply=1\n", + ")\n", + "\n", + "user_proxy = UserProxyAgent(\"user_proxy\", human_input_mode=\"NEVER\", max_consecutive_auto_reply=0)\n", + "\n", + "user_proxy.initiate_chat(\n", + " image_agent,\n", + " message=\"\"\"Describe what is in this image?\n", + ".\"\"\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## GroupChat with Gemini and GPT Agents" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "agent1 = AssistantAgent(\n", + " \"Gemini-agent\",\n", + " llm_config={\"config_list\": config_list_gemini, \"seed\": seed},\n", + " max_consecutive_auto_reply=1,\n", + " system_message=\"Answer questions about Google.\",\n", + " description=\"I am good at answering questions about Google and Research papers.\",\n", + ")\n", + "\n", + "agent2 = AssistantAgent(\n", + " \"GPT-agent\",\n", + " llm_config={\"config_list\": config_list_gpt4, \"seed\": seed},\n", + " max_consecutive_auto_reply=1,\n", + " description=\"I am good at writing code.\",\n", + ")\n", + "\n", + "user_proxy = UserProxyAgent(\n", + " \"user_proxy\",\n", + " code_execution_config={\"work_dir\": \"coding\", \"use_docker\": False},\n", + " human_input_mode=\"NEVER\",\n", + " max_consecutive_auto_reply=1,\n", + " is_termination_msg=lambda x: content_str(x.get(\"content\")).find(\"TERMINATE\") >= 0\n", + " or content_str(x.get(\"content\")) == \"\",\n", + " description=\"I stands for user, and can run code.\",\n", + ")\n", + "\n", + "groupchat = autogen.GroupChat(agents=[agent1, agent2, user_proxy], messages=[], max_round=10)\n", + "manager = autogen.GroupChatManager(groupchat=groupchat, llm_config={\"config_list\": config_list_gemini, \"seed\": seed})" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33muser_proxy\u001b[0m (to chat_manager):\n", + "\n", + "Show me the release year of famous Google products in a markdown table.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGemini-agent\u001b[0m (to chat_manager):\n", + "\n", + "| Product | Release Year |\n", + "|---|---|\n", + "| Google Search | 1998 |\n", + "| Gmail | 2004 |\n", + "| Google Maps | 2005 |\n", + "| YouTube | 2005 |\n", + "| Google Chrome | 2008 |\n", + "| Android | 2008 |\n", + "| Google Drive | 2012 |\n", + "| Google Home | 2016 |\n", + "| Google Stadia | 2019 |\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33muser_proxy\u001b[0m (to chat_manager):\n", + "\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# user_proxy.initiate_chat(manager, message=\"Show me the release year of famous Google products.\")\n", + "user_proxy.send(\n", + " \"Show me the release year of famous Google products in a markdown table.\", recipient=manager, request_reply=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33muser_proxy\u001b[0m (to chat_manager):\n", + "\n", + "Plot the products (as y-axis) and years (as x-axis) in scatter plot and save to `graph.png`\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mGPT-agent\u001b[0m (to chat_manager):\n", + "\n", + "To plot the products on the y-axis and the years on the x-axis in a scatter plot and save it to `graph.png`, we will use the `matplotlib` library in Python.\n", + "\n", + "First, you'll need to install `matplotlib` if you haven't already. You can do so by running the following command in your shell.\n", + "\n", + "```sh\n", + "pip install matplotlib\n", + "```\n", + "\n", + "Once installed, you can execute the following code to generate the scatter plot and save it as `graph.png`.\n", + "\n", + "```python\n", + "# filename: plot_google_products.py\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Data for plotting\n", + "products = ['Google Search', 'Gmail', 'Google Maps', 'YouTube', \n", + " 'Google Chrome', 'Android', 'Google Drive', 'Google Home', 'Google Stadia']\n", + "release_years = [1998, 2004, 2005, 2005, 2008, 2008, 2012, 2016, 2019]\n", + "\n", + "# Placing the products on the y-axis and years on the x-axis\n", + "y_positions = range(len(products))\n", + "\n", + "# Creating the scatter plot\n", + "plt.scatter(release_years, y_positions)\n", + "plt.yticks(y_positions, products)\n", + "\n", + "# Adding title and labels\n", + "plt.title('Release Years of Google Products')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Product')\n", + "\n", + "# Saving the plot\n", + "plt.savefig('graph.png')\n", + "\n", + "# Show the plot for verification (this is optional and can be removed if only the file is needed)\n", + "plt.show()\n", + "```\n", + "After you have executed the above script, `graph.png` will be saved in your current directory. Please run this code in your Python environment, and then you should find the `graph.png` file with the scatter plot of Google products and their release years.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is sh)...\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK 1 (inferred language is python)...\u001b[0m\n", + "\u001b[33muser_proxy\u001b[0m (to chat_manager):\n", + "\n", + "exitcode: 0 (execution succeeded)\n", + "Code output: \n", + "Requirement already satisfied: matplotlib in /home/beibinli/anaconda3/lib/python3.9/site-packages (3.7.1)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (1.0.5)\n", + "Requirement already satisfied: cycler>=0.10 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (0.11.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (4.25.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (1.4.4)\n", + "Requirement already satisfied: numpy>=1.20 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (1.24.4)\n", + "Requirement already satisfied: packaging>=20.0 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (23.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (10.1.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (3.0.9)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (2.8.2)\n", + "Requirement already satisfied: importlib-resources>=3.2.0 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from matplotlib) (5.13.0)\n", + "Requirement already satisfied: zipp>=3.1.0 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from importlib-resources>=3.2.0->matplotlib) (3.11.0)\n", + "Requirement already satisfied: six>=1.5 in /home/beibinli/anaconda3/lib/python3.9/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\n", + "\n", + "Figure(640x480)\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "user_proxy.send(\n", + " \"Plot the products (as y-axis) and years (as x-axis) in scatter plot and save to `graph.png`\",\n", + " recipient=manager,\n", + " request_reply=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAABnKUlEQVR4Ae3dCdyNdf7/8c/NLftSylZCskbJRElFxTDKpDRKlkrbiFISY1qQIiOVmf5Ji/ZJTdI6Iyn6Zd8ykW1sUUOKQrIU53+9v9N1Ouc49+1wjnPf575e38fjdq7le13X93p+z3E+93e57qyQl4yEAAIIIIAAAgggEBiBQoG5U24UAQQQQAABBBBAwAkQAPJGQAABBBBAAAEEAiZAABiwCud2EUAAAQQQQAABAkDeAwgggAACCCCAQMAECAADVuHcLgIIIIAAAgggQADIewABBBBAAAEEEAiYAAFgwCqc20UAAQQQQAABBAgAeQ8ggAACCCCAAAIBEyAADFiFc7sIIIAAAggggAABIO8BBBBAAAEEEEAgYAIEgAGrcG4XAQQQQAABBBAgAOQ9gAACCCCAAAIIBEyAADBgFc7tIoAAAggggAACBIC8BxBAAAEEEEAAgYAJEAAGrMK5XQQQQAABBBBAgACQ9wACCCCAAAIIIBAwAQLAgFU4t4sAAggggAACCBAA8h5AAAEEEEAAAQQCJkAAGLAK53YRQAABBBBAAAECQN4DCCCAAAIIIIBAwAQIAANW4dwuAggggAACCCBAAMh7AAEEEEAAAQQQCJgAAWDAKpzbRQABBBBAAAEECAB5DyCAAAIIIIAAAgETIAAMWIVzuwgggAACCCCAAAEg7wEEEEAAAQQQQCBgAgSAAatwbhcBBBBAAAEEECAA5D2AAAIIIIAAAggETIAAMGAVzu0igAACCCCAAAIEgLwHEEAAAQQQQACBgAkQAAaswrldBBBAAAEEEECAAJD3AAIIIIAAAgggEDABAsCAVTi3iwACCCCAAAIIEADyHkAAAQQQQAABBAImQAAYsArndhFAAAEEEEAAAQJA3gMIIIAAAggggEDABAgAA1bh3O6vAs8995xlZWWFf7Kzs61y5cp25ZVX2n/+859fMx7C0rRp09z59JqJae3atVa6dGnr2LFj3OL//e9/d/c3duzYuPszdeOrr75qp5xyihUvXtzd36JFi3K9FTndeuutVq9ePStZsqQVK1bMqlevbl27drWpU6daKBTK9fh07bzmmmtcuVJ1vXifmRNOOMGuvfZa++qrr1J1mVzPo8/s4MGDc82TzM7HH3/cdJ8kBAq6AAFgQa9h7u+gAs8++6zNmjXLpkyZYr1797a3337bzjnnHPvuu+8OemxBy1CjRg17+OGH7Y033jAFe5Fp06ZNdsstt1ibNm3spptuityV0cvffPONdevWzWrWrGmTJk1y74XatWvneE96fzRs2NC9T66++mqbOHGivf/++3bPPffYli1b7IILLrCPPvoox+MLwg7/M/PBBx/YDTfcYK+88oqde+65tnPnzoy/PQLAjK9CbiBBgewE85ENgQIr0KBBAzvjjDPc/bVs2dL27dtngwYNsjfffNO1bBTYG8/hxvSFrqBGwd7555/vWkWVVUGfWraeeeaZHI5M7eYff/zRSpQokdqTxjnbypUr7aeffnKtdy1atIiT49dNq1evts6dO7vWQv3CUKZMmfBOHXvdddeZWn+PPvro8PaCuBD5mdF7RJ+ZoUOHus9Mly5d4t5yuuoz7sXZiAACBwjQAngACRuCLuAHg19//XUUxfz58+33v/+9HXPMMa7L7/TTT7fXXnstKk9OK4kcq5aom2++2erXr2+lSpWyChUquNakTz755IDTjhkzxk477TSXT122devWtT//+c9R+dRip6BNXXRHHXWUqXVvyJAh9vPPP0fli7fiB3k33nij2/3iiy+6Fq/HHnvMjj/+eBcIqqWkUaNGrttUAc/ll19ua9asiTqdWoguueQSVwZ1k5588smuTN9++21UPnXpqWtv4cKF7jw6n1rklHROdctXqVLFihYtahUrVrQLL7zQDtZNq2PVWtesWTMXSMqpdevWroVP+5TURarWXqUrrrjClUG/BOSU1DqqQEb3Hhn8RebX8aqbyDR9+nRXZpVBQe3ZZ59t7733XmQWt7xkyRLnpfuXl3yff/75A/J9/vnn9tvf/tad67jjjrNevXq588lQAWhuSUF8InWX2zli95111llu0xdffOFe5ar38OLFi105dd+qM6WtW7e697neR3pfnnTSSXbXXXfZnj173H7/n+3bt7vWxfLly7tztW3b1hSsx6acurn991Rk/v3799vf/va38Pu2XLlyprLrfaKkbnzZfvzxx+69IE9tU9Kx999/v9WpU8e953XsqaeeaqNHj3b7+QeBTBOgBTDTaozyHnEBje9SiuwG1LgufQGdeeaZ9sQTT1jZsmVt/PjxLmhQQKAvoZxSosfqi1FJrY+VKlWyH374wbXEKaD48MMPTa9Kuq4CRbXQPfTQQ1aoUCFbtWqVLV261O3XPwr+mjZt6vbde++9LphSN7e+wNatW2fqwsstaSzk//t//8+1dg0fPtxGjhzpxgVeddVV7jAFlhonpXFwI0aMcF/q9913nwts/v3vf7sgTRnVYqYA7Prrr3dmuraCKAVdCg6KFCkSVYzLLrvMBXt//OMfw92J7dq1cy1Mf/nLX+zEE080BY8zZ86077//PurY2BV1Yas1SoGSuigVYOgcvqfKoG5bOSmAGjZsmGvxzCmw0/kV0MrG/yUh9prx1hVMKPBUsKDAWkGsArD27du7cinwVFqxYoXzU+D/17/+1RT4vPTSS+69pV9G+vfv7/Jt3LjR1NqosYf6RUD5dX8avpBISrTuEjmXn0fvPyUFo37au3ev+4VJ1/vTn/7kfvHYvXu3M9b7Qr+MyES/4Og9poDeD4oVpHbo0MHVs96/TZo0sRkzZtjvfvc7//SH9arPqUzVUqv3qwJQ/dKh96WSWr71i4w+36ojJdWXkt47CirvvvtuO++881yr8fLlyw/6PnQH8w8C+VHA+6CREAikgBcEhbzPZGj27NkhrwswtGPHjpA3BizkBV8h7z94t82H8VrYQl6LX9Q27bv44otDXkAQ8rrAXFYv2HPn1KufEj3Wz++/ei117npey0no0ksv9TeHvC/6kNf6EF6Pt+B96Ya8FpiQ1yITtdsLGF35vFaOqO05rXTq1Mnl91rdQl4LpcvmBZJu26hRo6IO27BhQ8ibRBHyApWo7f6K14Li7kdlkvtbb73l7wp5Qa/b5n3Zh7dpwQv23PZHH300avvBVlQfXothyBurF64bHaM69gKmkNcCFz6FX2f/+Mc/wttyWvBa5UJei9EBu3U9vYf8H//9oIzKr2vq2n5S3XrdqCGvdTYkFyWvlTPkBRuh9evX+9ncqxf0hLxWw5AX8Lr1O++8M+S1TIVi69Abm+msIt973hjFULVq1cLnO9y6808Q7zPz7rvvhrzAL+S18oW8XzxcVl1XdTxu3Dj/UPfq/fLktnst51HbvV8i3PbJkye77f/617/cute6FpXvgQcecNv1fvFT7D362/33lL/+f//3f+5Yr7XR3xT31ZsMFPIC7AP26bPutcgesJ0NCGSqAF3A+TEqp0xpFVAXkFqi1E2lVj51v3nBiWlWsJJaN/Sbvj+2SV2o/o9ap9Qio9abeOlQj1XrYuPGjV33n66vcqn1b9myZeHTq8VKrV8ai6ZyxnanKqP3pexaWtRt6pdVr34LilqlEklqJVFSS9+xxx7rlnVudY1pxmvkudVqqa7PyC7IzZs3m1rzqlat6jx1P15A4s4TeU9ug/dP7OxjdberK1gtkGo5/PTTT11XnJ8/p1fVx3//+183uUMtpH5St6Su4QX9rivX357sq1oudW/+j7yUNClizpw5rlVJ1/ZT4cKFXdm+/PLL8HtHE0fUTSqryKRWK7UyqwVXSXWnMXgaKhCZ9H44WDqUusvtXJGfGS8wci3WXtAWbvn1j42tT92jWi7VyhaZ/BZ0vdeVvCDWvfqfObfi/eO3QPvrh/Kq8imptfdwkj53at1W67sm/aiLmoRAJgv8+j9jJt8FZUcgCYEXXnjB5s2b52ZuqrtKgUnkl6k/FrBfv37hL3j/i15fBkrxgjBtP5RjFeD07NnTdTNPmDDBBSkql4LSXbt26XQuacaq17JiGm+lL1h1AaprWt2TftJ133nnnQPKq0edKOVUXv94/9Xv/lJXmZ90bu83Xvdl7zv4rwqs/HNrzJS6XzWjWN2X+nKfO3euuy+dK/Ke/HOrezUyKdDUcZp5rC44BcfqZlSA5bWoRWaNWtZsXKXY82mbgmKV7XBmeasL2h/npnP5yWsNde8h1Vdk0jVklVM5lNcvq14TzadxkLEp3rbYPInWXexxsev+Z0YBuQLtzz77zJo3bx6VTWMdY7vTdY/6RUH1Gpn0HtYvPJEWWlc3eGTSsYebNMZWgffhnmPgwIFuyIXe4/pFSmVTwK7xvSQEMlGAMYCZWGuUOaUCepabP6bLn9H49NNP2+uvv+5aKvyWL30BqKUnXtLA8HjpUI7V2KSW3jg/jeuKTPECHT13TT9qYfK6tty4QbXEaJC8Wth0XY2v8rrMIk8VXlYQdLhJ59YXuMZu+QFi5Ln8bZrQoBYTjRXU41L85I8X89cjX2MDA+3T/fiTUnR/mnijsVgaY6YW03jJDxzUOhubFLCoVVAtvYeaNJZPYyP1pe+/Z3QOf8JK7Pl0DV0rp3Iov/8eUZkTzef/YhF5PY37PFhKtO4Odp7Iz0xOeePVpe5RLaIKiiP3q6VYrcmRFlpXQOjXpa4T7x41WSZ2Aony+r+IaFlJvzh4XfPuHPEC7f/lyvlfBaR9+/Z1P2qB1yxwTbzSLyfe8Ie0zFjPuXTsQeDQBWgBPHQzjijgAmpp0he3Bp+rpUjBXa1atVwwoy/9eD/qPo6XDuVYfSH6wZN/LrWs+F1//rbIV3WnqTVCsygVEGkGo5KCQQVgCkzilTeZAFDn1he4Hvwb79x6Rp6S/wUfe0/JPERaE3M0CF/X0OD9nJLcNctUE0FUVj8pYFbrqj8z2N+e6Ovtt9/uvujVjRgvMI89j+pHrbNqBY1s8dT7SgG/Zmj7k43UmqQuUgWokUmtbWpNU7erkjc+zdVt5KQfbdfkoIOlROvuYOc53P26R01u0iOWIpPuUUn7lfSLmNLLL7/sXv1/Yp9Nqe2apasAMjIo1mdB3bSRyR/+EPsLVmQeLev9GllXsfu1rhnA6sbW+0CTt/xJJPHysg2B/CpAC2B+rRnKlWcCCv7U2qduS33haKybghZ9gei3fY1XUnCh//jVXaxAxJtAkGN5Ez1WX856lpo3eN19yWscm8bg6fEtag3xk57Tp79YoS43tWSoVUSzKDVzUbMllXScuoT1uBF1lyog0gxMfVH985//dC1nCj4OJ+m6ejyMWiDVEqYZkQp01Hqlx50oOFNXth5NowBUM0AVhGk8n7qlI7uqD3Z9BcCa3fqHP/zBBeHqilaQpO06b05JrW4K5DWGTK7q2lcrkcYSqvXmwQcfzOnQXLfrfjTjVkME/PtUt7SCBgUh3iQGd3xk16fqRi2HCmo0jED3oBmmCtB1Lj9QVr37Yzf1y4e8FABpZqzuRfWrdNttt7khAHo/qp7V9av3qcapKkWOeXQbIv5JtO4iDknpYvfu3V0LqlqE9V6Uod4zmoGt8bStWrVy19PQAb2v9BlU0K5fNDQLWI8jik2aRS0vPSrImyDj3ueaRa3WvsikB1Vr+IRmwitY1PtC9aZubAXYmlWvpDIpmNZfh9EjatTCqG2ate0//1CtiRoK4E1Oci3U+gWRhEDGCXj/MZMQCKSAP6PRG7d1wP17LQAhb7xXyPuPPeQFX26/150Z0qxYzej0xry52cLeX30IaWajn/wZpZEzMbUvkWO9ACXkBQghL7gMabapF1iEvJaSUOwsR++5cCEvmAhpZq4XTLjZriqXFxT5xXCvmrXrBX8hL4B05fUCitBvfvObkGZBeq0wUXlzWvEeiaPms5AXOB2QRTM8vdatkBf8udm/XnAU8r7gQ15QGM7rtVKFvODHzRD1AuuQF8i5Wa46p2Zp+knL2ubPNPa3e1/UIS/gDmkmta6jmc1e13bokUceCdeLnzfeq/xURnnqeK+FKeQFElFZ/TpLZBawf6D3GJOQFzCEvMDa3bsXSIS8rmp3f96jRMIze/38Xnd5SO8V30ozg71g2N8dfvUejRPyAo2QF+y5uvUm1YT0Po1NXvAY8oIld1+qV++xJiG9L2So95qfYt87/vZE6s7PG/ma22cmMp+uq3uNl7xu3ZA3McjNnve6VZ2b9wtXyPsFJSq7F6iHevTo4Wa8axa03kdekOvuMfK9o4O8X2rcDF3NQveCtpD3vEr3/pJHZNLsbL13NANbnx05e63BUXXhBaYhLwB171kdr3pV0qx3zR73uqndsfr/Qe7KT0IgEwWyVGjvTU5CAAEEEMhgAbXKqkVR4+bUykhCAAEEchOgCzg3HfYhgAAC+VBAXb8ax6kuSo2pU9exJi5pfCTBXz6sMIqEQD4UIADMh5VCkRBAAIHcBPTYHY1n1HMENT5UY9D0GKE+ffrkdhj7EEAAgbAAXcBhChYQQAABBBBAAIFgCPAYmGDUM3eJAAIIIIAAAgiEBQgAwxQsIIAAAggggAACwRAgAAxGPXOXCCCAAAIIIIBAWIAAMEzBAgIIIIAAAgggEAwBZgEnUc/6c076s036M2D+0/yTOB2HIoAAAggggEAaBPQIZP05Rz1OKbe/npOGouTZJQgAk6BX8Fe1atUkzsChCCCAAAIIIJBXAhs2bHB/kzuvrp+X1yUATEJfLX9KegNF/u3PJE7JoQgggAACCCBwhAW2b9/uGnD87/EjfLl8eXoCwCSqxe/2VfBHAJgEJIcigAACCCCQBwL+93geXDrPL8kkkDyvAgqAAAIIIIAAAgikV4AAML3eXA0BBBBAAAEEEMhzAQLAPK8CCoAAAggggAACCKRXgAAwvd5cDQEEEEAAAQQQyHMBAsA8rwIKgAACCCCAAAIIpFeAADC93lwNAQQQQAABBBDIcwECwDyvAgqAAAIIIIAAAgikV4AAML3eXA0BBBBAAAEEEMhzgYQDwHXr1rm/d7to0aI8L3SiBRg8eLA1atQonP2aa66xDh06hNdZQAABBBBAAIH8J7Bvf8hmrd5iby36yr1qnZRagbT/JZCxY8fa448/bqtWrbIiRYpYjRo17Morr7QBAwa4O1OQ9v3339ubb76Z2jv1zjZ69GjTH4AmIYAAAggggED+FJi0ZKMNeWepbdy2O1zAymWL2aD29a1tg8rhbSwkJ5DWAPCZZ56xvn372l//+ldr0aKF7dmzxz777DNbunRpcneR4NFly5ZNMCfZEEAAAQQQQCDdAgr+er600GKbajZ5waC2j+namCAwRZUS7gJevny5nXPOOVasWDGrX7++TZkyxXX55tYSp8CtXbt2VqpUKatYsaJ169bNvv322xyL9s4771inTp3suuuus5NPPtlOOeUU69y5sw0dOtQdoy7b559/3t566y13bf2NvmnTprl9aiGsXbu2lShRwk466SS755577Keffoq61oMPPujKoT/urGvs3v3rbw/KGNsFPGnSJHfP5cqVs/Lly9vFF19sq1evjjonKwgggAACCCBw5AXUzauWv9jgT1f2t2k/3cGpqQsXAO7fv9+NjVNwNWfOHHvyySftrrvuyvUKGzdudK14GmM3f/58UzD19ddfuwAvpwMrVapks2fPti+++CJuln79+rnj27Ztazq/fs4++2yXV0Hdc88951oL1ZX71FNP2SOPPBI+z2uvvWaDBg2yBx54wJWncuXKrqs5nCHOws6dO12L5Lx58+zDDz+0QoUK2aWXXmryiJfUYrl9+/aon3j52IYAAggggAAChyYwd+3WqG7f2KMVBKpbWPlIyQu4LuDJkye7li+1tilIU1Ig1bp16xyvMGbMGGvcuLENGzYsnGfcuHFWtWpVW7lypWutC+/4ZUEB2mWXXWbVq1d3+5s1a+ZaEC+//HIXfKklsXjx4q5r2C+Hf467777bX3TH33HHHfbqq69a//793fZHH33UevToYddff71bv//++10rZmwrYPgk3kLHjh0jV01d1BUqVHBBZoMGDaL2aWX48OE2ZMiQA7azAQEEEEAAAQSSE9i8I7rXLqezJZovp+PZ/j8B1wK4YsUKF7hFBl1NmzbN1WjBggU2depU1/2rwE0/devWdcfk1I2qVrlZs2bZ4sWL7dZbb3VduFdffbWpxS+nVje/EK+//rrrrlUZdS11Aa9fv97fbcuWLTMFlJEpdj1yn5ZVzquuusp1KZcpU8ZNSNH2yPNq3U8DBw60bdu2hX82bNjg7+IVAQQQQAABBJIQqFC6WEJHJ5ovoZMFOJNrAdTMWI23O5SkgK19+/Y2YsSIAw5ToJdbUuuafnr16mXTp0+3c8891z7++GM7//zz4x6mbmPNFFbrW5s2bUyTOcaPH2+jRo2Kmz/RjSq/WizVnVylShUXhKpce/fujXuKokWLmn5ICCCAAAIIIJBagaY1jjHN9tWED3/MX+QVFKVU8vYrHyl5ARcAquVOrV4aw6fJHEoaF5dbUvfvhAkTXHdsdrY7TW7Zc9ynCSdKGo+ndNRRR9m+ffvcsv/PjBkzrFq1alHjEmPHEdarV8+NL+zevbt/mFsPr8QsbNmyxbUa6rE0CkCVFIySEEAAAQQQQCD9AoULZblHvWi2r4K9yCDQb6LSo2CUj5S8gOsC1li/mjVrmrpj9VgWBVz+JJCcWgbVerd161Y3i3fu3Lm2Zs0a01hCjcOLDeD8Yvbs2dPN+NX5FcCpZU8B23HHHRfuvtX4QJVB3dKaUayZvpoxrABVrX7qttVjZCZOnOif1r326dPHNAZRPxqDqPGGn3/+eVSeyJWjjz7azfzVhBc9k/Cjjz5yE0Ii87CMAAIIIIAAAukT0HP+9KgXtfRFJq3zCJhIkeSXXQBYuHBh9+DlH374wZo0aeImUviTLvRYmHhJXaYK5BTsqVtWXacKwtQ9q9m08VKrVq1c0PeHP/zBTQLRJAydXzNw9RgWpRtuuMHq1KljZ5xxhgsMdY1LLrnEbr/9duvdu7f7yx4zZ850YwAjr3HFFVfYvffe6x4o/Zvf/MYFmAo4c0oqowJKjWVU2XX+kSNH5pSd7QgggAACCCCQBgEFgdMHXGCv3HCWjb6ykXvVOg+BTi1+ljf+L7KVNXx2BV56LqBax9Q6SDpQQI+EUcCriSGaREJCAAEEEEAAgfwvwPe3WXjwnrpUNbu2Vq1aLuhTa17z5s0J/vL/+5gSIoAAAggggAAChyQQDgB37NjhnqmnR5sce+yxpu7aZGfZHlJJyIwAAggggAACCCCQFoEcu4DTcvUMvwhNyBlegRQfAQQQQCCQAnx/m8WfrRHItwM3jQACCCCAAAIIBEOAADAY9cxdIoAAAggggAACYQECwDAFCwgggAACCCCAQDAECACDUc/cJQIIIIAAAgggEBYgAAxTsIAAAggggAACCARDgAAwGPXMXSKAAAIIIIAAAmEBAsAwBQsIIIAAAggggEAwBAgAg1HP3CUCCCCAAAIIIBAWIAAMU7CAAAIIIIAAAggEQ4AAMBj1zF0igAACCCCAAAJhAQLAMAULCCCAAAIIIIBAMAQIAINRz9wlAggggAACCCAQFiAADFOwgAACCCCAAAIIBEOAADAY9cxdIoAAAggggAACYQECwDAFCwgggAACCCCAQDAECACDUc/cJQIIIIAAAgggEBYgAAxTsIAAAggggAACCARDgAAwGPXMXSKAAAIIIIAAAmEBAsAwBQsIIIAAAggggEAwBAgAg1HP3CUCCCCAAAIIIBAWIAAMU7CAAAIIIIAAAggEQ4AAMBj1zF0igAACCCCAAAJhAQLAMAULCCCAAAIIIIBAMAQIAINRz9wlAggggAACCCAQFiAADFOwgAACCCCAAAIIBEOAADAY9cxdIoAAAggggAACYQECwDAFCwgggAACCCCAQDAEDisAXLdunWVlZdmiRYuCocRdIoAAAgggkEaBfftDNmv1Fntr0VfuVeskBFIpkJ3Kkx3KuaZNm2bnn3++fffdd1auXLmoQ6tXr2633Xab+4nawQoCCCCAAAIFXGDSko025J2ltnHb7vCdVi5bzAa1r29tG1QOb2MBgWQEDqsFMJkLciwCCCCAAAIIxBdQ8NfzpYVRwZ9ybvKCQW3XfhICqRAoVKdOHXvxxRejzrV8+XI755xzrFixYla/fn2bMmWK6/J98803o/JFrixdutTatWtnpUqVsooVK1q3bt3s22+/jcxy2Mvr16+3Sy65xJ27TJky1qlTJ/v666/D5xs8eLA1atTIxo0bZyeeeKLL17NnT9u3b5/95S9/sUqVKlmFChXsgQceCB+jhW3bttmNN97o9um8F1xwgf373/+OysMKAggggAAC6RBQN69a/uJ19vrbtJ/u4HTURsG/RqGbbrrJrr32Wps6daq72/3791uHDh2sRIkSNmfOHHvyySftrrvuylVi48aN1qJFCxeEzZ8/3yZNmuQCNAVqyaZQKOTKs3XrVvv444/tgw8+sNWrV9sVV1wRdWpt+9e//uWu/corr7hg8KKLLrIvv/zSHTdixAi7++67bfbs2e44nVf7N23aZP/85z9twYIF1rhxY7vwwgtN14qX9uzZY9u3b4/6iZePbQgggAACCByqwNy1Ww9o+Ys8h4JAdQsrHwmBZAWy+/bt64Kihx56yI3Jmzx5sguwNEZPLWdKajlr3bp1jtcaM2aMC56GDRsWzqPWuKpVq9rKlSutdu3a4e2xCyeccELsJvvxxx/D29T6+Nlnn9natWvd+bRDLZannHKKzZs3z5o0aeLyKnDVNUuXLu1aLTW+cMWKFS64K1SokKmlU0Gg7uuss85yAe/ixYtt8+bNVrRoUXcOGaiV8/XXX3ctg25jxD/Dhw+3IUOGRGxhEQEEEEAAgdQIbN7x65i/3M6YaL7czsE+BNwkkObNm9vo0aOdhoImBW5+8KeNTZs2zVVKrWdqQVT3b2xSy1xuAeAnn3zigrbI41q2bBleXbZsmSuPyuQndUtr4oj2+QGgJo4o+POTuqELFy5sCv78pG0K+JRU5h9++MHKly/v73avu3btcgFw1MZfVgYOHGgKmP2k1sDIcvnbeUUAAQQQQOBQBSqULpbQIYnmS+hkZAqsgAsA1R2qx7ooRS4nqqLWt/bt27sWtthjKlfOfcZSjRo1DpgFnJ396+TknMoTu71IkSJRl9b9xNumsirpVWVTi2Bsip2V7O9XS6HfWuhv4xUBBBBAAIFUCDStcYxptq8mfPhj/iLPq2/pSt5+5SMhkKyAi7Rmzpxp9erVc+eqW7euadKFJlmoxUxJXa25JY2dmzBhgqkVLjJ4y+2YRPeptU/l2bBhQ7i1TRNONIHDL3Oi54rMpzJr/J/Kq3KTEEAAAQQQyEuBwoWy3KNeNNtXwV5kEPi/Jhpz+5WPhECyAoUefvhhe+ONN6xfv37uXBrrV7NmTbv66qvd2LsZM2aEJ4H4rYSxF+3Vq5ebONG5c2ebO3eurVmzxjSWsEePHm4mbmz+Q1lv1aqVnXrqqdalSxdbuHChO3/37t3dpJMzzjjjUE4VlVfnbdasmZtg8v7775sebq1AWBNFNJGFhAACCCCAQLoF9Jy/MV0bu5a+yGur5U/beQ5gpArLyQhkjx071p599lnzx91p3JwmQlx//fVufN1JJ51kI0eOdF28eixMvFSlShVToDhgwABr06aNabZstWrVrG3btlFj8OIde7BtCjpVnltuucXOO+88dz6d929/+9vBDs11v86r2b+a4axA9ZtvvnHjHnUNv+Uz1xOwEwEEEEAAgSMgoCCvdf1KbravJnxozJ+6fWn5OwLYAT5lljeWLrKVOS6Fgjs9F3DVqlWudTBupgBu1CSQsmXLuu5oPUeQhAACCCCAAAL5X4Dvb7NfZ1tE1NfEiRPdjN5atWq5oK9Pnz6mmcLqGiYhgAACCCCAAAIIZLZA3ABwx44d1r9/fzfx4thjjzWNlxs1alRm3ymlRwABBBBAAAEEEHACCXUBYxVfgCbk+C5sRQABBBBAID8L8P1t9utTkvNzTVE2BBBAAAEEEEAAgZQJEACmjJITIYAAAggggAACmSFAAJgZ9UQpEUAAAQQQQACBlAkQAKaMkhMhgAACCCCAAAKZIUAAmBn1RCkRQAABBBBAAIGUCRAApoySEyGAAAIIIIAAApkhQACYGfVEKRFAAAEEEEAAgZQJEACmjJITIYAAAggggAACmSFAAJgZ9UQpEUAAAQQQQACBlAkQAKaMkhMhgAACCCCAAAKZIUAAmBn1RCkRQAABBBBAAIGUCRAApoySEyGAAAIIIIAAApkhQACYGfVEKRFAAAEEEEAAgZQJEACmjJITIYAAAggggAACmSFAAJgZ9UQpEUAAAQQQQACBlAkQAKaMkhMhgAACCCCAAAKZIUAAmBn1RCkRQAABBBBAAIGUCRAApoySEyGAAAIIIIAAApkhQACYGfVEKRFAAAEEEEAAgZQJEACmjJITIYAAAggggAACmSFAAJgZ9UQpEUAAAQQQQACBlAkQAKaMkhMhgAACCCCAAAKZIUAAmBn1RCkRQAABBBBAAIGUCRAApoySEyGAAAIIIIAAApkhQACYGfVEKRFAAAEEEEAAgZQJEACmjJITIYAAAggggAACmSFAAJgZ9UQpEUAAAQQQQACBlAmkJABct26dZWVl2aJFi1JWsMM5UfXq1e3RRx89nEM5BgEEEEDgMAT27Q/ZrNVb7K1FX7lXrZMQQCD/C2TnlyJOmzbNzj//fFccBZOlS5e2k046yVq3bm233367Va5c+aBFnTdvnpUsWfKg+ciAAAIIIJC8wKQlG23IO0tt47bd4ZNVLlvMBrWvb20bHPz/7PBBLCCAQNoFUtICmMpSr1ixwv773/+agrkBAwbYlClTrEGDBrZ48eIcL7N3716377jjjrMSJUrkmI8dCCCAAAKpEVDw1/OlhVHBn868yQsGtV37SQggkH8FXAA4ZswYq1mzph111FFWp04de/HFF6NKvHz5cjvnnHOsWLFiVr9+fReUqZXuzTffjMoXubJ06VJr166dlSpVyipWrGjdunWzb7/9NjJL3OUKFSpYpUqVrHbt2nbllVfajBkzTIFdz549w/mvueYa69Chgw0fPtyqVKni8mpnZBdw586d3fHhg7yFn376yY499lh79tln3eZQKGR/+ctfXEtj8eLF7bTTTrPXX3898hCWEUAAAQRiBNTNq5a/eJ29/jbtpzs4Bo5VBPKRQKGJEydanz597I477rAlS5bYTTfdZNdee61NnTrVFXP//v0u2FLL2pw5c+zJJ5+0u+66K9db2Lhxo7Vo0cIaNWpk8+fPt0mTJtnXX39tnTp1yvW4eDsVmP3xj390geDmzZvDWT788ENbtmyZffDBB/buu++Gt/sLXbp0sbffftt++OEHf5O9//77tnPnTuvYsaPbdvfdd7tgUAHw559/7rqau3btah9//HH4mMiFPXv22Pbt26N+IvezjAACCARBYO7arQe0/EXet4JAdQsrHwkBBPKnQPZDDz1kalG7+eabXQn79u1rs2fPNm3XmLzJkyfb6tWrTWP01DKn9MADD7ixeW4lzj8KqBo3bmzDhg0L7x03bpxVrVrVVq5cGW6xC+88yELdunVdDk02UQuhksb6Pf30067V0m2I+adNmzYujwJctT4q/f3vf7f27dtbmTJlXCD48MMP20cffWTNmjVz+zXmcPr06TZ27FgXwLqNEf+oxXHIkCERW1hEAAEEgiewecevY/5yu/tE8+V2DvYhgMCRESikVrTmzZtHnV3r2q6kMXkK3PzgT9uaNm2qlxzTggULXAuiun/9Hz+IUzB5qEldtUrqdvZTw4YNcwz+lKdIkSL2hz/8wV5++WV3iFr+3nrrLVPLoJK6qHfv3u0CWb+Men3hhRdcwOsyxfwzcOBA27ZtW/hnw4YNMTlYRQABBAq+QIXSxRK6yUTzJXQyMiGAQEoF3CzgyMBKZ1fA5W+LXE70yuo2VkvbiBEjDjgkkdm8sQf5wajG+Pkpkdm+CvbUFa2uY3UVawzj7373O3cKlVHpvffes+OPP94t+/8ULVrUX4x61fac9kVlZAUBBBAowAJNaxxjmu2rCR/+mL/I29Wv6pW8/cpHQgCB/CmQXa9ePdft2b1793AJZ86cadqupJa79evXuzF8msyhpBm6uSV1/06YMMFNysjOTu5JM7t27XLjDs877zw3GSS368buO/vss13r5auvvmr/+te/XIugJrooaTKLgjndm4JEEgIIIIBAYgKFC2W5R71otq+Cvcgg0O+n0aNglI+EAAL5UyD7zjvvdJMzFLRdeOGF9s4779gbb7zhZvqqyHoOn2YIX3311W7G7I4dO8KTQPxWwthb69Wrlz311FOmmbg6v2berlq1ysaPH++2Fy5cOPaQ8Lpa69Q1q+uoK1mzdDV7WGU61KTyXXXVVfbEE0+4sYf+xBadR88Z7Nevn5v4odZAzXLWBA8Fv+oK1v2SEEAAAQTiC+g5f2O6Nj7gOYBq+eM5gPHN2IpAfhLI1uNURo8ebSNHjrRbb73VatSo4WbGtmzZ0pVTwZoe93L99ddbkyZN3CNTlFddvOpSjZf0aBY9vkXP8dNkDM2erVatmrVt29YKFcr90YN6DI0CNwVhmpTx29/+1jQxJXIMYrxr5rRN3cCajKLrx451HDp0qJtUoskda9assXLlyrnJK3/+859zOh3bEUAAAQR+EVAQ2Lp+JTfbVxM+NOZP3b60/PEWQSD/C2R5Y/wiW+8TKrGCO7WYqVVPrYNBTWoxLFu2rJsUopnFJAQQQAABBBDI/wJ8f5slNEBPj1JRi1ytWrVc0KfnBqo1LcjBX/5/e1NCBBBAAAEEEEAgvkBCAaDG4/Xv39/02BON52vVqpWNGjUq/hnZigACCCCAAAIIIJCvBQ6rCzhf31EaC0cTchqxuRQCCCCAAAIpEuD72yz3GRkpguY0CCCAAAIIIIAAAvlHgAAw/9QFJUEAAQQQQAABBNIiQACYFmYuggACCCCAAAII5B8BAsD8UxeUBAEEEEAAAQQQSIsAAWBamLkIAggggAACCCCQfwQIAPNPXVASBBBAAAEEEEAgLQIEgGlh5iIIIIAAAggggED+ESAAzD91QUkQQAABBBBAAIG0CBAApoWZiyCAAAIIIIAAAvlHgAAw/9QFJUEAAQQQQAABBNIiQACYFmYuggACCCCAAAII5B8BAsD8UxeUBAEEEEAAAQQQSIsAAWBamLkIAggggAACCCCQfwQIAPNPXVASBBBAAAEEEEAgLQIEgGlh5iIIIIAAAggggED+ESAAzD91QUkQQAABBBBAAIG0CBAApoWZiyCAAAIIIIAAAvlHgAAw/9QFJUEAAQQQQAABBNIiQACYFmYuggACCCCAAAII5B8BAsD8UxeUBAEEEEAAAQQQSIsAAWBamLkIAggggAACCCCQfwQIAPNPXVASBBBAAAEEEEAgLQIEgGlh5iIIIIAAAggggED+ESAAzD91QUkQQAABBBBAAIG0CBAApoWZiyCAAAIIIIAAAvlHgAAw/9QFJUEAAQQQQAABBNIiQACYFmYuggACCCCAAAII5B+BfB8ADh482Bo1apS02DXXXGMdOnTI9TwtW7a02267Ldc87EQAgcwU2Lc/ZLNWb7G3Fn3lXrVOQgABBIIqkJ3qG585c6ade+651rp1a5s0aVKqT3/Y5xs9erSFQvyHf9iAHIhABgtMWrLRhryz1DZu2x2+i8pli9mg9vWtbYPK4W0sIIAAAkERSHkL4Lhx4+yWW26x6dOn2/r164+44969exO6RtmyZa1cuXIJ5SUTAggUHAEFfz1fWhgV/OnuNnnBoLZrPwkBBBAImkBKA8CdO3faa6+9Zj179rSLL77YnnvuubDntGnTLCsryz788EM744wzrESJEnb22WfbihUrwnm08OCDD1rFihWtdOnSdt1119nu3b/+xq79flfu8OHDrUqVKla7dm1ttsWLF9sFF1xgxYsXt/Lly9uNN95oP/zwg9unf/zj/A0qa/fu3a1UqVJWuXJlGzVqlL+LVwQQKCAC6uZVy1+8tn9/m/bTHVxAKpzbQACBhAVSGgC++uqrVqdOHffTtWtXe/bZZw/odr3rrrtcsDV//nzLzs62Hj16hAur4HHQoEH2wAMPmPYrMHv88cfD+/0FBZHLli2zDz74wN5991378ccfrW3btnb00UfbvHnz7B//+IdNmTLFevfu7R9ywOudd95pU6dOtYkTJ9rkyZNNAeqCBQsOyBe5Yc+ePbZ9+/aon8j9LCOAQP4SmLt26wEtf5ElVBCobmHlIyGAAAJBEkjpGMBnnnnGFPgpKSBTC5yCtVatWoVNFdy1aNHCrf/pT3+yiy66yLXyFStWzB599FEXEF5//fVu//333+8CudhWwJIlS9rTTz9tRx11lMv31FNP2a5du+yFF14w7VN67LHHrH379jZixAjXoug2/vKPyqWyKr/GKio9//zzdsIJJ/ySI/6LWh2HDBkSfydbEUAg3wls3hHdg5BTARPNl9PxbEcAAQQyTSBlLYDqyp07d65deeWVzkCte1dccYVpTGBkOvXUU8OrauFT2rx5s3tVq16zZs3csv9P7Lq2N2zYMBz8aV3HnXbaaeHgT9uaN29u+/fvP6CLWftWr15tGjsYee5jjjnGtVxqf05p4MCBtm3btvDPhg0bcsrKdgQQyAcCFUoXS6gUieZL6GRkQgABBDJAIGUtgGpR+/nnn+34448P37Zm3RYpUsS+++678Dat+0ljApUUqB1K8lv5/GN0Hf9c/jb/Nd72w50NXLRoUdMPCQEEMkOgaY1jTLN9NeHDH/MXWXL9D1TJ2698JAQQQCBIAilpAVTgp+5UTaRYtGhR+Off//63VatWzV5++eWETOvVq2ezZ8+Oyhu7HrXzl5X69eu7a2pih59mzJhhhQoVCk8S8bfr9eSTT3aBaeS5FaSuXLkyMhvLCCCQ4QKFC2W5R73oNv736+avN+Sv61EwykdCAAEEgiSQkgBQEzEUQGnWboMGDaJ+Lr/8cjfeLhHUPn36uC5jdRsrGNOEkM8///ygh3bp0sU0hvDqq6+2JUuWuMkdehRNt27dDhj/p5Np5q/KqokgGqOoYzRLWAEjCQEECpaAnvM3pmtj19IXeWdq+dN2ngMYqcIyAggERSAlXcDq/tVEDz1rLzZ17NjRhg0bZgsXLozddcC6xgxqfN6AAQPcxBAdq0fKvP/++wfkjdygR8oojwLIJk2auEfM6NiHH344MlvU8siRI90kld///vfukTN33HGHG9sXlYkVBBAoEAIK8lrXr+Rm+2rCh8b8qduXlr8CUb3cBAIIHIZAljceLt7QmMM4VfAO0SNhFPRqYkiZMmWCB8AdI4AAAgggkIECfH+b0eeZgW9ciowAAggggAACCCQjQACYjB7HIoAAAggggAACGShAAJiBlUaREUAAAQQQQACBZAQIAJPR41gEEEAAAQQQQCADBQgAM7DSKDICCCCAAAIIIJCMAAFgMnociwACCCCAAAIIZKAAAWAGVhpFRgABBBBAAAEEkhEgAExGj2MRQAABBBBAAIEMFCAAzMBKo8gIIIAAAggggEAyAgSAyehxLAIIIIAAAgggkIECBIAZWGkUGQEEEEAAAQQQSEaAADAZPY5FAAEEEEAAAQQyUIAAMAMrjSIjgAACCCCAAALJCBAAJqPHsQgggAACCCCAQAYKEABmYKVRZAQQQAABBBBAIBkBAsBk9DgWAQQQQAABBBDIQAECwAysNIqMAAIIIIAAAggkI0AAmIwexyKAAAIIIIAAAhkoQACYgZVGkRFAAAEEEEAAgWQECACT0eNYBBBAAAEEEEAgAwUIADOw0igyAggggAACCCCQjAABYDJ6HIsAAggggAACCGSgAAFgBlYaRUYAAQQQQAABBJIRIABMRo9jEUAAAQQQQACBDBQgAMzASqPICCCAAAIIIIBAMgIEgMnocSwCCCCAAAIIIJCBAgSAGVhpFBkBBBBAAAEEEEhGgAAwGT2ORQABBBBAAAEEMlCAADADK40iI4AAAggggAACyQgQACajx7EIIIAAAggggEAGChTKysqyRYsWHfGiX3PNNdahQ4cjfh0ugAACCMQT2Lc/ZLNWb7G3Fn3lXrVOQgABBIIqkJ2KGw+FQvbUU0/ZM888Y59//rllZ2fbySefbF27drUbb7zRSpQokYrLcA4EEEDgsAQmLdloQ95Zahu37Q4fX7lsMRvUvr61bVA5vI0FBBBAICgCKekC7tatm9122212ySWX2NSpU12L4j333GNvvfWWTZ48+bAt9+7de9jHciACCCAgAQV/PV9aGBX8afsmLxjUdu0nIYAAAkETOCAAXLp0qbVr185KlSplFStWNAV33377bY4ur732mr388sv2yiuv2J///Gdr0qSJVa9e3QWDH330kZ1//vlRxz700ENWuXJlK1++vPXq1ct++umn8H4dd//995u6i8uWLWs33HCD2zdhwgQ75ZRTrGjRou7co0aNCh+jBf+47t27u3JXq1bNBZ/ffPONK4fupWHDhjZ//vyo42bOnGnnnXeeFS9e3KpWrWq33nqr7dy5MyoPKwggkLkC6uZVy1+8zl5/m/bTHZy5dUzJEUDg8ASiAsCNGzdaixYtrFGjRi5YmjRpkn399dfWqVOnHM+u4K9OnTou0IrNpPGFCuT8pNbB1atXu1bC559/3p577jn34+/X68iRI61Bgwa2YMECUyuiXnX9K6+80hYvXmyDBw9223VsZHrkkUesefPm9umnn9pFF13kAlcFhOqGXrhwoeuS1rq6q5V0rjZt2thll11mn332mb366qs2ffp06927d+Rpo5b37Nlj27dvj/qJysAKAgjkK4G5a7ce0PIXWUD9b6BuYeUjIYAAAkESyPJuNqSgSUHfvffea3PmzLH3338/bPDll1+61rEVK1ZY7dq1w9v9hfr161utWrVci5u/Ld6rWvWmTZvmAsDChQu7LArsChUqZOPHj3frask7/fTTbeLEieFTdOnSxdSSF9mV3L9/f3vvvffceENl1HHnnnuuvfjii+64TZs2uVZGBZD33Xef2zZ79mxr1qyZKcitVKmSKRhUy9/YsWPdfv2jAFABsFoBixUrFt7uLyj4HDJkiL8aft22bZuVKVMmvM4CAgjkDwFN+OgzftFBCzP6ykZ2SaPjD5qPDAggUDAE1JijBqogf39HtQCqtU2tdOoy9X/q1q3ralstd/GSWtTU0pdIUjeuH/wpv7qCN2/eHHXoGWecEbW+bNky17IXuVEtff/5z39s37594c2nnnpqeFld10rq9vWTv82/nu5VrYj+fepVLYL79++3tWvX+odFvQ4cONC9WfSG0c+GDRui9rOCAAL5S6BC6QN/kYtXwkTzxTuWbQgggEAmCkTNAlbw0759exsxYsQB96JgLV5Sq6CCtERSkSJForIpcNQ1I1PJkiUjV12XbWyA6XfjRmaMPLefP942/3p6vemmm9y4v8jzaPnEE0+M3eTWNQZRPyQEEMgMgaY1jjHN9tWEj/8N/ogut351reTtVz4SAgggECSBqACwcePGpgkX6lLVo1wSSVdddZUbn6cZv5oFHJkUqPnNrJHbD2VZXczqmo1MmryhwDOyNTFyfyLLulc9skaPqyEhgEDBFChcKMs96kWzfd14l4jb9Pst9CgY5SMhgAACQRKI6gLWrNytW7da586dbe7cubZmzRo39q5Hjx5R3a2RQBrHd8UVV7hjhg8f7iaPfPHFF/buu+9aq1atXJdyZP5DXb7jjjvsww8/tKFDh9rKlStNk0cee+wx69ev36GeKir/gAEDbNasWW4msh6ErS7lt99+22655ZaofKwggEBmC+g5f2O6NnYtfZF3opY/bec5gJEqLCOAQFAEopr5qlSpYjNmzDAFRxoPp1mveqRK27Zt3WSNeCjqbv373/9uTz75pI0bN849xkWth5oYookWOk8ySS11etSMJqgoCFRXtCZ2aFJJMkljBj/++GO766673AQStVbWrFnTBbPJnJdjEUAg/wkoyGtdv5Kb7bt5x27TmD91+9Lyl//qihIhgEB6BLK8wCfe0Jj0XD3Dr+J3bwd5FlGGVyHFRwABBBAIoADf32ZRXcABfA9wywgggAACCCCAQOAECAADV+XcMAIIIIAAAggEXYAAMOjvAO4fAQQQQAABBAInQAAYuCrnhhFAAAEEEEAg6AIEgEF/B3D/CCCAAAIIIBA4AQLAwFU5N4wAAggggAACQRcgAAz6O4D7RwABBBBAAIHACRAABq7KuWEEEEAAAQQQCLoAAWDQ3wHcPwIIIIAAAggEToAAMHBVzg0jgAACCCCAQNAFCACD/g7g/hFAAAEEEEAgcAIEgIGrcm4YAQQQQAABBIIuQAAY9HcA948AAggggAACgRMgAAxclXPDCCCAAAIIIBB0AQLAoL8DuH8EEEAAAQQQCJwAAWDgqpwbRgABBBBAAIGgCxAABv0dwP0jgAACCCCAQOAECAADV+XcMAIIIIAAAggEXYAAMOjvAO4fAQQQQAABBAInQAAYuCrnhhFAAAEEEEAg6AIEgEF/B3D/CCCAAAIIIBA4AQLAwFU5N4wAAggggAACQRcgAAz6O4D7RwABBBBAAIHACRAABq7KuWEEEEAAAQQQCLoAAWDQ3wHcPwIIIIAAAggEToAAMHBVzg0jgAACCCCAQNAFCACD/g7g/hFAAAEEEEAgcAIEgIGrcm4YAQQQQAABBIIuQAAY9HcA948AAggggAACgRMgAAxclXPDCCCAAAIIIBB0gQIbALZs2dJuu+22oNcv949AWGDf/pDNWr3F3lr0lXvVOgkBBBBAIJgChx0AhkIha9WqlbVp0+YAuccff9zKli1r69evP2BfIhumTZtmWVlZuf4899xziZyKPAgg4AlMWrLRzhnxkXV+arb1Gb/IvWpd20kIIIAAAsETOOwAUAHas88+a3PmzLGxY8eG5dauXWsDBgyw0aNH24knnhjefigLZ599tm3cuDH806lTJ2vbtm14XfuuuOKKQzkleREIrICCvJ4vLbSN23ZHGWzy1rWdIDCKhRUEEEAgEAKHHQBKp2rVqi7Q69evnynwU6vgddddZxdeeKHVqFHDmjZtakWLFrXKlSvbn/70J/v555/DqNWrV7dHH300vK6FRo0a2eDBg+2oo46ySpUqhX+KFy/uzuNv07k6d+4cday6e9XtG5l0vd69e1u5cuWsfPnydvfdd7sy+nn27t1r/fv3t+OPP95KlixpZ555pqn1kYRAQRFQN++Qd5ZavM5ef5v20x1cUGqc+0AAAQQSE8hOLFvOua6++mqbOHGiXXvttdaxY0dbsmSJzZs3z+rXr2/XXHONvfDCC7Z8+XK74YYbrFixYi7Ay/lsqd3z/PPPu4BUrZTz58+3G2+80apVq+bKoiupzOvWrbPx48dblSpV3H2opXHx4sVWq1atAwqzZ88e04+ftm/f7i/yikC+FJi7dusBLX+RBVUQqJZB5WtWs3zkLpYRQAABBAqwQNIBoGyefPJJa9CggX3yySf2+uuvu3W1Dj722GNuHF/dunXtv//9r+savvfee61QoaQaHhOuDpXhkUcecWWoU6eOC+y0rmB09erV9sorr9iXX37pgj+dVC2ZkyZNcl3bw4YNO+A6w4cPtyFDhhywnQ0I5FeBzTuiu31zKmei+XI6nu0IIIAAApklkJJIrEKFCq51rV69enbppZfasmXLrFmzZi7w8jmaN29uP/zwgwu4/G1H+vWss86KKoPK9J///Mf27dtnCxcudN3BtWvXtlKlSoV/Pv74YxccxivbwIEDbdu2beGfDRs2xMvGNgTyjUCF0sUSKkui+RI6GZkQQAABBPK9QEpaAHWX2dnZ7kfLGguoSSKRSduU/O1qBfS3+fl++uknfzHX12SO9U+8f/9+K1y4sC1YsMC9+tv1qoAwXtJ4Rv2QEMgUgaY1jrHKZYuZJnz4Y/4iy65PaSVvv/KREEAAAQSCI5CSFsBYLo3/mzlzZlSAp/XSpUu7CRfKf9xxx7lZvf6xGk+niSSJpNhjdcyiRYsOOHT27NlR27SusX0K/E4//XTXErh582Y7+eSTo3402YSEQEEQKFwoywa1r+9uJfpXMu+XsV9uUPuVj4QAAgggEByBIxIA3nzzzabu0VtuucVNAHnrrbds0KBB1rdv3/D4vwsuuMBefPFFN25QE0c0mUSBWSJJx2pShyaYqEtX59Y5YpPKoGuuWLHCjff729/+Zn369HHZ1PXbpUsX6969u73xxhsu+NTklREjRtg///nP2FOxjkDGCrRtUNnGdG3sWvoib0Itf9qu/SQEEEAAgWAJpKwLOJJNj1VREHXnnXfaaaedZsccc4ybjavHsPhJ4+nWrFljF198sXto9NChQxNuAdTDp++55x73CJfdu3dbjx49XCCn2buRScHdrl273ONoFFwqINVMYD/pOYb333+/3XHHHfbVV1+5R8VonGC7du38LLwiUCAEFOS1rl/JzfbVhA+N+VO3Ly1/BaJ6uQkEEEDgkAWyvHF48YYGHfKJgniAuq31F080MaRMmTJBJOCeEUAAAQQQyDgBvr/NjkgXcMa9EygwAggggAACCCAQIAECwABVNreKAAIIIIAAAghIgACQ9wECCCCAAAIIIBAwAQLAgFU4t4sAAggggAACCBAA8h5AAAEEEEAAAQQCJkAAGLAK53YRQAABBBBAAAECQN4DCCCAAAIIIIBAwAQIAANW4dwuAggggAACCCBAAMh7AAEEEEAAAQQQCJgAAWDAKpzbRQABBBBAAAEECAB5DyCAAAIIIIAAAgETIAAMWIVzuwgggAACCCCAAAEg7wEEEEAAAQQQQCBgAgSAAatwbhcBBBBAAAEEECAA5D2AAAIIIIAAAggETIAAMGAVzu0igAACCCCAAAIEgLwHEEAAAQQQQACBgAkQAAaswrldBBBAAAEEEECAAJD3AAIIIIAAAgggEDABAsCAVTi3iwACCCCAAAIIEADyHkAAAQQQQAABBAImQAAYsArndhFAAAEEEEAAAQJA3gMIIIAAAggggEDABAgAA1bh3C4CCCCAAAIIIEAAyHsAAQQQQAABBBAImAABYMAqnNtFAAEEEEAAAQQIAHkPIIAAAggggAACARMgAAxYhXO7CCCAAAIIIIAAASDvAQQQQAABBBBAIGACBIABq3BuFwEEEEAAAQQQSEkAuG7dOsvKyrJFixYhigAC+VRg3/6QzVq9xd5a9JV71ToJAQQQQCCYAtn55banTZtm559/vpUrV842btxoxYoVCxdt7ty5duaZZ7r1UIgvrTAMCwgkKDBpyUYb8s5S27htd/iIymWL2aD29a1tg8rhbSwggAACCARDICUtgKmkKl26tE2cODHqlOPGjbMTTzwxahsrCCCQmICCv54vLYwK/nTkJi8Y1HbtJyGAAAIIBEvABYBjxoyxmjVr2lFHHWV16tSxF198MUph+fLlds4557hWufr169uUKVNcl++bb74ZlS9yZenSpdauXTsrVaqUVaxY0bp162bffvttZJa4y1dffbUp4PPTrl27bPz48abtkWnLli3WuXNnO+GEE6xEiRLWsGFDe+WVVyKzWMuWLa13797uRy2L5cuXt7vvvtsiWxEff/xxq1Wrlrs3lfPyyy+POgcrCGSygLp51fIXr93c36b9dAdnci1TdgQQQODQBQqpta1Pnz52xx132JIlS+ymm26ya6+91qZOnerOtn//fuvQoYMLsubMmWNPPvmk3XXXXbleSV24LVq0sEaNGtn8+fNt0qRJ9vXXX1unTp1yPU47FSh+8skntn79epd3woQJVr16dWvcuHHUsbt377bf/OY39u6777py33jjje5YlTEyPf/885adnW3a/te//tUeeeQRe/rpp10Wle3WW2+1++67z1asWOHKed5550UeHrW8Z88e2759e9RPVAZWEMhnAnPXbj2g5S+yiAoC1S2sfCQEEEAAgeAIZD/00EN2zTXX2M033+zuum/fvjZ79mzTdo3Jmzx5sq1evdo0Rq9SpUouzwMPPGCtW7fOUUktigrYhg0bFs6jVr2qVavaypUrrXbt2uHtsQsVKlSw3/3ud/bcc8/Zvffe61oDe/ToEZvNjj/+eOvXr194+y233OICuH/84x/h8YLaqWsq6NMkFbVuLl682K3fcMMNLsgsWbKkXXzxxaau52rVqtnpp58ePmfswvDhw23IkCGxm1lHIN8KbN7x65i/3AqZaL7czsE+BBBAAIHMESi0bNkya968eVSJta7tSmoZUxDlB3/a1rRpU73kmBYsWOBaENX96//UrVvX5VcwebCkgE8B4Jo1a2zWrFnWpUuXAw7Zt2+fKRA99dRTXdeurqNg1W859A8466yzXPDnrzdr1sz+85//mI5XEKug76STTnKthy+//LL9+OOPftYDXgcOHGjbtm0L/2zYsOGAPGxAID8JVChdLKHiJJovoZORCQEEEEAg3wu4MYBqHYtMGiPnb4tcjsyT27K6jdu3b+8eC6NHw/g/Crxy62L1z6mxg+rive6669x5NHYvNo0aNcq15PXv398++ugjd402bdrY3r17Y7PmuK5Wv4ULF7qxg5UrV3Ytjqeddpp9//33cY8pWrSolSlTJuonbkY2IpBPBJrWOMY02zf6E/5r4bRd+5WPhAACCCAQHIFC9erVs+nTp0fd8cyZM03bldRyp1Y1jeHz07x58/zFuK/q/v3888/d2L2TTz7ZIn/U5XqwVLhwYdcip27neN2/Ol7jBC+55BLr2rWrKWhTK54CzNik7uzIpHVN+tA1lDQ+sFWrVvaXv/zFPvvsM9MzDRVQkhAoCAKFC2W5R73oXmKDQH9dj4JRPhICCCCAQHAECt15552uu/WJJ55wAdTDDz9sb7zxRnh8nbpJNUNYs3AVIM2YMSM8CcRvJYzl6tWrl23dutXN0tUz/NSVq+5ZBXPqek0kDR061L755htTq168pKDygw8+MAWr6q7W5JVNmzYdkFXdtBrXqK5szRL+29/+5ia9KKMmkGhiiFoov/jiC3vhhRdMrZcaK0hCoKAI6Dl/Y7o2tkpeS19k0rq28xzASBWWEUAAgWAIZGuG7+jRo23kyJFuRmyNGjXs2WefdY9QEYFayvS4l+uvv96aNGniWtqUV128kQ9rjuSqUqWKCxQHDBjgAjjNntVYu7Zt21qhQq7XOTJ73GU9kubYY4+Nu08b77nnHlu7dq07vx4Do1nAuheN0YtM3bt3Nz1KRuMWdS+aLKK8Sno0jILdwYMHuy5ntQwqSDzllFMiT8EyAhkvoCCvdf1KbravJnxozJ+6fWn5y/iq5QYQQACBwxLI8sb4+Y8DS/gEagXUcwFXrVrlWgcTPjDNGfUcQD2K5tFHHz0iV9YjYcqWLeuCTo0NJCGAAAIIIIBA/hfg+9sbApdINelZgZplqxYyBX16bqBmCqtrmIQAAggggAACCCCQWQIJBYA7duwwzbbVeDp1y2rShGbhkhBAAAEEEEAAAQQyT+CwuoAz7zaPTIlpQj4yrpwVAQQQQACBIynA97dZYjMyjmQtcG4EEEAAAQQQQACBtAoQAKaVm4shgAACCCCAAAJ5L0AAmPd1QAkQQAABBBBAAIG0ChAAppWbiyGAAAIIIIAAAnkvQACY93VACRBAAAEEEEAAgbQKEACmlZuLIYAAAggggAACeS9AAJj3dUAJEEAAAQQQQACBtAoQAKaVm4shgAACCCCAAAJ5L0AAmPd1QAkQQAABBBBAAIG0ChAAppWbiyGAAAIIIIAAAnkvQACY93VACRBAAAEEEEAAgbQKEACmlZuLIYAAAggggAACeS9AAJj3dUAJEEAAAQQQQACBtAoQAKaVm4shgAACCCCAAAJ5L0AAmPd1QAkQQAABBBBAAIG0ChAAppWbiyGAAAIIIIAAAnkvQACY93VACRBAAAEEEEAAgbQKEACmlZuLIYAAAggggAACeS9AAJj3dUAJEEAAAQQQQACBtAoQAKaVm4shgAACCCCAAAJ5L0AAmPd1QAkQQAABBBBAAIG0ChAAppWbiyGAAAIIIIAAAnkvQACY93VACRBAAAEEEEAAgbQKEACmlZuLIYAAAggggAACeS9AAJj3dUAJEEAAAQQQQACBtAoQAKaVm4shgAACCCCAAAJ5L0AAmPd1QAkQQAABBBBAAIG0CgQ6AKxevbo9+uijYfCsrCx78803w+ssIJAXAvv2h2zW6i321qKv3KvWSQgggAACCKRSIDuVJzucc23atMmGDx9u7733nn355ZdWtmxZq1WrlnXt2tW6d+9uJUqUOJzTJnTMvHnzrGTJkgnlJRMC6RCYtGSjDXlnqW3ctjt8ucpli9mg9vWtbYPK4W0sIIAAAgggkIxAngaAa9assebNm1u5cuVs2LBh1rBhQ/v5559t5cqVNm7cOKtSpYr9/ve/T+b+cj32uOOOy3U/OxFIp4CCv54vLbTY9r5NXjCo7WO6NiYITGeFcC0EEECgAAvkaRfwzTffbNnZ2TZ//nzr1KmT1atXzwWBHTt2dC2C7du3d/Tqmh07dqxdfPHFrkVQ+WbNmmWrVq2yli1bula8Zs2a2erVq8NVpeVLLrnEKlasaKVKlbImTZrYlClTwvu1ENsFHLWTFQTSKKBuXrX8xQZ/KoK/TfvpDk5jpXApBBBAoAAL5FkAuGXLFps8ebL16tUrx25YBX5+Gjp0qOsSXrRokdWtW9euuuoqu+mmm2zgwIEugFS+3r17+9nthx9+sHbt2rmg79NPP7U2bdqYAsr169eH8xzqwp49e2z79u1RP4d6DvIjEE9g7tqtUd2+sXkUBKpbWPlICCCAAAIIJCuQZwGgWu9CoZDVqVMn6h6OPfZY12KnVrsBAwaE91177bWulbB27dpu+7p166xLly4usFOLYJ8+fWzatGnh/KeddpoLENWtrDGF999/v5100kn29ttvh/Mc6oLGKmqMov9TtWrVQz0F+RGIK7B5x69j/uJm+GVjovlyOwf7EEAAAQQQyLMA0KePbOXTtrlz55pa+U455RRTi5ufTj31VH/RdetqRcGdn9TVu3v3btc6p207d+60/v37W/369d0YQwWUy5cvT6oFUK2N27ZtC/9s2LDBvzyvCCQlUKF0sYSOTzRfQicjEwIIIIBAYAXybBLIySefbAr+FJRFJrXSKRUvXjxysxUpUiS87geN8bbt37/f5bvzzjvt/ffft4ceesh0LZ3v8ssvt71794bPc6gLRYsWNf2QEEi1QNMax5hm+2rChz/mL/IaGgxRyduvfCQEEEAAAQSSFcizFsDy5ctb69at7bHHHnOtdcneSOzxn3zyiV1zzTV26aWXupbCSpUqmbqNSQjkR4HChbLco15Utl9Hvv6vpP66HgWjfCQEEEAAAQSSFcizAFAFf/zxx91jX8444wx79dVXbdmyZbZixQp76aWXXMtg4cKFD/v+1Or3xhtvuO7kf//7327SiN86eNgn5UAEjqCAnvOnR72opS8yaZ1HwESKsIwAAgggkKxAnnUBq+A1a9Y0zdDVMwA1vk4PglYXq8bt9evXz/SYmMNNjzzyiPXo0cPOPvts08QSTSjRDF4SAvlZQEFg6/qV3GxfTfjQmD91+9Lyl59rjbIhgAACmSeQ5c3EjTfkKPPuJA9KrIBSM4I1MaRMmTJ5UAIuiQACCCCAAAKHKsD3t1medgEfaoWRHwEEEEAAAQQQQCB5AQLA5A05AwIIIIAAAgggkFECBIAZVV0UFgEEEEAAAQQQSF6AADB5Q86AAAIIIIAAAghklAABYEZVF4VFAAEEEEAAAQSSFyAATN6QMyCAAAIIIIAAAhklQACYUdVFYRFAAAEEEEAAgeQFCACTN+QMCCCAAAIIIIBARgkQAGZUdVFYBBBAAAEEEEAgeQECwOQNOQMCCCCAAAIIIJBRAgSAGVVdFBYBBBBAAAEEEEhegAAweUPOgAACCCCAAAIIZJQAAWBGVReFRQABBBBAAAEEkhcgAEzekDMggAACCCCAAAIZJUAAmFHVRWERQAABBBBAAIHkBQgAkzfkDAgggAACCCCAQEYJEABmVHVRWAQQQAABBBBAIHkBAsDkDTkDAggggAACCCCQUQIEgBlVXRQWAQQQQAABBBBIXoAAMHlDzoAAAggggAACCGSUAAFgRlUXhUUAAQQQQAABBJIXIABM3pAzIIAAAggggAACGSVAAJhR1UVhEUAAAQQQQACB5AUIAJM35AwIIIAAAggggEBGCRAAZlR1UVgEEEAAAQQQQCB5AQLA5A05AwIIIIAAAgggkFECBIAZVV0UFgEEEEAAAQQQSF6AADB5Q86AAAIIIIAAAghklAABYEZVF4VFAAEEEEAAAQSSFyAATN6QMyCAAAIIIIAAAhklkGMAuG7dOsvKyrJFixZl1A0lWtjnnnvOypUrl2j2tObbtz9ks1ZvsbcWfeVetU5CAAEEEEAAAQRSJZCdqhPldJ6xY8fa448/bqtWrbIiRYpYjRo17Morr7QBAwbkdEigt09astGGvLPUNm7bHXaoXLaYDWpf39o2qBzexgICCCCAAAIIIHC4Akc0AHzmmWesb9++9te//tVatGhhe/bssc8++8yWLl16uOVN6LiffvrJBZsJZc5HmRT89XxpocW2923ygkFtH9O1MUFgPqovioIAAggggECmChQqVqyY1a9f36ZMmeK6fN98880c70WBW7t27axUqVJWsWJF69atm3377bc55n/nnXesU6dOdt1119nJJ59sp5xyinXu3NmGDh0adcyzzz5r9erVM5Wlbt26rsUwMoNaC2vXrm0lSpSwk046ye655x5TkOenwYMHW6NGjWzcuHFuf9GiRS0UCtn3339vN954oyurzt2gQQN79913/cPc6/vvv++urXtq27atbdy4MWp/ulbUzauWv9jgT9f3t2k/3cHpqhGugwACCCCAQMEVyJ4zZ47t2LHD7rjjjlzvUoGRWvFuuOEGe/jhh23Xrl2uG1cB3kcffRT32EqVKtnHH39sX3zxhVWrVi1unqeeesoGDRpkjz32mJ1++un26aefumuULFnSrr76andM6dKlTWP2qlSpYosXL3b7ta1///7hc6qL+bXXXrMJEyZY4cKFbf/+/fa73/3O3dtLL71kNWvWdC2P2uenH3/80R566CF78cUXrVChQta1a1fr16+fvfzyy36WqFe1YOrHT9u3b/cXk36du3ZrVLdv7AkVBKpbWPma1Swfu5t1BBBAAAEEEEAgYYHs0047zWV+4IEHrHXr1jkeOGbMGGvcuLENGzYsnEctblWrVrWVK1e6Frrwjl8WFNhddtllVr16dbe/WbNmrgXx8ssvdwGXsqk1cNSoUS6f1jVGUC2NGjvoB4B33323drmkcylYffXVV6MCwL1797pA7rjjjnP5Jk+ebHPnzrVly5aFy6bWw8ikVsQnnnjCBYfa3rt3b7vvvvsis0QtDx8+3IYMGRK1LVUrm3f8OuYvt3Mmmi+3c7APAQQQQAABBIItUMi//aZNm/qLcV8XLFhgU6dOdd2/6i7Vj7prlVavXh33mMqVK9usWbNcq92tt97qum0V1KmrVS1033zzjW3YsMF1Efvn1Ov9998fdc7XX3/dzjnnHFOLovarC3j9+vVR11QLox/8aYdmL59wwgnh4C8q8y8r6lJWy6CfVN7Nmzf7qwe8Dhw40LZt2xb+UdlTlSqULpbQqRLNl9DJyIQAAggggAACgRRIeBKIArb27dvbiBEjDoBS4JRb0tg7/fTq1cumT59u5557rusa1thDJXUDn3nmmVGn8LtqZ8+e7WYNq+WtTZs2VrZsWRs/frxrNYw8QF3Gkal48eKRq3GXNSs5MumxNxo7mFPS2EL9HInUtMYxptm+mvARrwRZ3kUrefuVj4QAAggggAACCCQjEA4A582bl+t51P2r8XXqgs3ODh+W6zHxdvpB386dO93kjOOPP97WrFljXbp0iZfdZsyY4cYP3nXXXeH9GlN4sHTqqafal19+mWP39MGOT/f+woWy3KNeNNtXwV5kEKh1JT0KRvlICCCAAAIIIIBAMgLZeiyLJoH4AZZaweIltd6ppU6zeO+880479thj3bP91Bqn7X6LXeSxPXv2dBM3LrjgAtcdq4kk6t5VV63GAyppBq+6h8uUKeMmbWiSxfz58+27775zj5DR7GF19+o6TZo0sffee88mTpwYeZm4y5qwct5551nHjh3dpBWdZ/ny5W6ms7qg82PSc/70qJfY5wCq5Y/nAObHGqNMCCCAAAIIZKZAtoIqTY4YOXKk6+LV41LiJc3AVWucHsmirlgFahp3p2BKM2jjpVatWrlHs2gCyZYtW1zQqMDvww8/tPLl/zeT9frrr3ePd9H1NatXXbkNGza02267zZ3ykksusdtvv91N0NA1L7roIjcGUIHjwZJaLDWrV0GrWhwVBD744IMHOyxP9ysIbF2/kpvtqwkfGvOnbl9a/vK0Wrg4AggggAACBUogyxvz5nobFdxpooUepxI5MaJA3W2Kb0aPgdGYRE0MUQsmCQEEEEAAAQTyvwDf32bZ+pu/Cvr69OljzZs3J/jL/+9bSogAAggggAACCCQlkK1HuWg8n7pr9Tw+EgIIIIAAAggggEDBFsjevXt3wb5D7g4BBBBAAAEEEEAgSiD+7I2oLKwggAACCCCAAAIIFCQBAsCCVJvcCwIIIIAAAgggkIAAAWACSGRBAAEEEEAAAQQKkgABYEGqTe4FAQQQQAABBBBIQIAAMAEksiCAAAIIIIAAAgVJgACwINUm94IAAggggAACCCQgkJ1AHrLkIPDLH1ExPVGchAACCCCAAAKZIeB/b/vf45lR6tSWkgAwCc8dO3a4o6tWrZrEWTgUAQQQQAABBPJCQN/j+pOuQUzhvwUcxJtP9p73799v//3vf6106dKWlZWV7Oky8nj9FqUAeMOGDfw95AyoQeorAyrplyJSV5lTVyop9ZU59eXX1dKlS61OnTpWqFAwR8PRApjEe1ZvmhNOOCGJMxScQ8uUKUMAmEHVSX1lTmVRV5lTVyop9ZU59XX88ccHNvhTLQUz7M2c9yclRQABBBBAAAEEUi5AAJhyUk6IAAIIIIAAAgjkbwECwPxdP/m+dEWLFrVBgwaZXkn5X4D6yv915JeQuvIlMuOV+sqMelIpqav/1RWTQDLnPUtJEUAAAQQQQACBlAjQApgSRk6CAAIIIIAAAghkjgABYObUFSVFAAEEEEAAAQRSIkAAmBJGToIAAggggAACCGSOAAFg5tQVJUUAAQQQQAABBFIiQACYEsbMPsnw4cOtSZMm7i+aVKhQwTp06GArVqyIuin9vcTBgwdblSpVrHjx4tayZUv7/PPPo/Ls2bPHbrnlFjv22GOtZMmS9vvf/96+/PLLqDzfffeddevWzf3pHf35HS1///33UXlYyVkgnXVVvXp19xdu9Fdu/J8//elPOReOPVECqaqrJ5980n3e9IBh1UO8zwufqyj6w1pJZ33x2TqsKgoflIq62rp1q/u+0l8CKVGihJ144ol266232rZt28LX0UKB/mx5X+ykgAu0adMm9Oyzz4aWLFkSWrRoUeiiiy4KeR+G0A8//BCWefDBB0Pen7wLTZgwIbR48eLQFVdcEapcuXLI+5M64Tx//OMfQ96T1UMffPBBaOHChaHzzz8/dNppp4V+/vnncJ62bduGGjRoEJo5c6b70fLFF18c3s9C7gLprKtq1aqF7rvvvtDGjRvDP97fzcy9gOwNC6Sqrh555JGQ94Xnfrzvo5D3hRS+hr/A58qXOPzXdNYXn63DrycdmYq60vfYZZddFnr77bdDq1atCn344YehWrVqhTp27BhVuIL82bKoO2UFAU9g8+bNIX3RfPzxx87D+5vHoUqVKoUUBPpp9+7dIa8FL/TEE0+4TV6rRKhIkSKh8ePH+1lCX331Vcj7c3mhSZMmuW3e31105509e3Y4z6xZs9y25cuXh7exkLjAkaorlUBfUgo+SKkROJy6irzy1KlT3WclNgDkcxWplLrlI1VfKiGfrdTVk86UbF35pXnttddCRx11VOinn35ymwr6Z4suYLXxkqIE/CbwY445xm1fu3atbdq0yX7729+G8+lBmi1atDCvJc9tW7BggXkfmqg86i72WvjCebxgz3X9nnnmmeHznHXWWW6bf57wDhYSEjhSdeVffMSIEVa+fHlr1KiRPfDAA7Z3715/F6+HKHA4dZXIJfhcJaJ06HmOVH35JeGz5Usk/5qqutJ5NNQiOzvbFaqgf7b+d5fJ+3OGAiLg/dpjffv2tXPOOccFb7otBX9KFStWdK/+P1r/4osv3KryeL852dFHH+3vdq/K4x+vV40xjE3a5ueJ3cd6zgJHsq501T59+ljjxo1dnc6dO9cGDhxo+mXg6aefzrlQ7IkrcLh1FfdkMRv5XMWApGD1SNaXisdnKwWV9MspUlVXW7ZssaFDh9pNN90ULlxB/2wRAIarmgUJ9O7d2z777DObPn36ASAagB6Z9MGL3Ra5X8uxeeLlj80Tew7W4wsc6bq6/fbbwxc+9dRTXSB4+eWXm99yEd7JwkEFUl1XsRfkcxUrktz6ka4vPlvJ1U/k0amoK28su3lj361+/fruT5tGnr8gf7boAo6s6YAvawavNyDWvLFGdsIJJ4Q1vPF/bjm2lc4bdxFuFVQedQ9qxlRkis3z9ddfR+52y9988034PAfsZENcgSNdV/Euqu56JW/AdLzdbMtBIJm6yuGUUZv12eNzFUWS1MqRrq94heOzFU/l4NtSUVfexDbzJnpYqVKlbOLEieaNZQ9fuKB/tggAw1Ud3AW1wOm3qDfeeMM++ugjq1GjRhSG1vVB8Gb3hrcr2PMmidjZZ5/ttv3mN79xH5zIPN7sUfNmFofzNGvWzE2xV3ein+bMmeO2+efxt/MaXyBddRXv6p9++qnb7M3+jrebbTECqairmFPGXeVzFZflkDemq77iFYzPVjyVnLelqq7U8qex7Rq+pMaPYsWKRV20wH+2PEhSwAV69uzpZvROmzYt/LgPPfrjxx9/DMtoBrBm/XpBonsMTOfOneM+BsZrOQxNmTLFPQbmggsuiPsYGK87MaTZv/pp2LAhj4EJKx98IV11pcf0PPzwwyHviym0Zs2a0KuvvhryJvWEvGc7HryQ5HACqaorfRZVD0899ZSbBfx///d/bt0bsxSW1qMq+FyFOQ5rIV31xWfrsKon6qBU1JUeYeZNSHTfQXoMTOTjrmIfXVZQP1s8BibqbRXMFe9XHvfFEvuqZwP6SY+CGTRokHscjDcDOHTeeee5QNDfr9ddu3aFvJbEkDd7OOQ9LNoFduvXr4/MEtKXVpcuXdwzBfVcQS3HPtYi6gBWogRi68hfT3VdebO63X+OCvq934pD3sNSXf3v3Lkzqjys5Czg103s66HWlT53sefQeuR5+FzlXA+J7olnHOucyP+DB6svPluJ1kjO+VJRV/5jleKdy5vsFr54Qf5sZekuPQASAggggAACCCCAQEAEGAMYkIrmNhFAAAEEEEAAAV+AANCX4BUBBBBAAAEEEAiIAAFgQCqa20QAAQQQQAABBHwBAkBfglcEEEAAAQQQQCAgAgSAAalobhMBBBBAAAEEEPAFCAB9CV4RQAABBBBAAIGACBAABqSiuU0EEEAAAQQQQMAXIAD0JXhFAAEEEEAAAQQCIkAAGJCK5jYRCKqAnnXfqlUra9OmzQEEjz/+uHl/7cS8v1hzwD42IIAAAgVZgACwINcu94YAApaVlWXen02zOXPm2NixY8Mi3p97sgEDBtjo0aPtxBNPDG9PxcJPP/2UitNwDgQQQOCICRAAHjFaTowAAvlFoGrVqi7Q69evnynwU6vgddddZxdeeKE1bdrU2rVrZ6VKlbKKFStat27d7Ntvvw0XfdKkSXbOOedYuXLlrHz58nbxxRfb6tWrw/vXrVvngszXXnvNWrZsad7fTraXXnopvJ8FBBBAID8K8LeA82OtUCYEEDgiAh06dLDvv//eOnbsaEOHDrV58+bZGWecYTfccIN1797ddu3a5VoFf/75Z/voo49cGSZMmOACvIYNG9rOnTvt3nvvNQV9ixYtskKFCrnlGjVqWPXq1W3UqFF2+umnW9GiRa1KlSpH5B44KQIIIJAKAQLAVChyDgQQyAiBzZs3W4MGDWzLli32+uuv26effuq6ht9///1w+b/88ktTi+GKFSusdu3a4e3+wjfffGMVKlSwxYsXu3MpGFQA+Oijj1qfPn38bLwigAAC+VqALuB8XT0UDgEEUimgwO3GG2+0evXq2aWXXmoLFiywqVOnuu5fdQHrp27duu6SfjevXq+66io76aSTrEyZMi7YU4bYiSNqSSQhgAACmSKQnSkFpZwIIIBAKgSys7NNP0r79++39u3b24gRIw44deXKld027VeL4FNPPeW6dXWMWhH37t0bdUzJkiWj1llBAAEE8rMAAWB+rh3KhgACR1SgcePGpjF+Gr/nB4WRF1RX8bJly9zs4XPPPdftmj59emQWlhFAAIGMFKALOCOrjUIjgEAqBHr16mVbt261zp0729y5c23NmjU2efJk69Gjh+3bt8+OPvpoN/P3ySeftFWrVrmJIX379k3FpTkHAgggkKcCBIB5ys/FEUAgLwU0U3fGjBku2NODotW1q4kceji0ZvjqZ/z48W6soPbdfvvtNnLkyLwsMtdGAAEEUiLALOCUMHISBBBAAAEEEEAgcwRoAcycuqKkCCCAAAIIIIBASgQIAFPCyEkQQAABBBBAAIHMESAAzJy6oqQIIIAAAggggEBKBAgAU8LISRBAAAEEEEAAgcwRIADMnLqipAgggAACCCCAQEoECABTwshJEEAAAQQQQACBzBEgAMycuqKkCCCAAAIIIIBASgQIAFPCyEkQQAABBBBAAIHMESAAzJy6oqQIIIAAAggggEBKBAgAU8LISRBAAAEEEEAAgcwRIADMnLqipAgggAACCCCAQEoECABTwshJEEAAAQQQQACBzBH4/7gGCWiiComwAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image.open(\"coding/graph.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## A Larger Example of Group Chat" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mUser_proxy\u001b[0m (to chat_manager):\n", + "\n", + "Design and implement a multimodal product for people with vision disabilities.\n", + "The pipeline will take an image and run Gemini model to describe:\n", + "1. what objects are in the image, and\n", + "2. where these objects are located.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_manager\u001b[0m (to chat_manager):\n", + "\n", + "**Product Name:** VisionAid\n", + "\n", + "**Target Audience:** People with vision disabilities\n", + "\n", + "**Product Concept:** A comprehensive and multimodal software platform that empowers individuals with vision impairments by providing them with essential information about their surroundings through image recognition and localization.\n", + "\n", + "**Product Design and Implementation:**\n", + "\n", + "**1. Image Acquisition:**\n", + "* The platform utilizes a camera or other image acquisition device to capture images of the user's surroundings.\n", + "* The device can be integrated into a smartphone, wearable device, or smart home appliance.\n", + "\n", + "**2. Image Processing:**\n", + "* The captured image is preprocessed to optimize the performance of the computer vision model.\n", + "* This includes scaling, cropping, and enhancing the image for better recognition.\n", + "\n", + "**3. Object Detection and Localization:**\n", + "* The Gemini computer vision model is then employed to analyze the preprocessed image.\n", + "* The model identifies the presence of objects in the image and determines their location with bounding boxes and spatial descriptions.\n", + "\n", + "**4. Multimodal Output:**\n", + "* **Audio Output:** The platform provides detailed audio descriptions of the detected objects and their locations.\n", + "* **Haptic Output:** Haptic feedback is used to convey the spatial arrangement of objects through vibrations or tactile sensations.\n", + "* **Visual Output (for partial vision):** If the user has partial vision, the platform can provide a simplified visual representation of the detected objects and their locations on a screen.\n", + "\n", + "**5. Accessibility and Customization:**\n", + "* The platform is designed to be highly accessible, with adjustable settings for audio volume, haptic intensity, and visual contrast.\n", + "* Users can customize the output to suit their individual preferences and needs.\n", + "\n", + "**Innovative Features:**\n", + "\n", + "* **Real-Time Object Detection:** The platform operates in real-time, providing continuous feedback about the user's surroundings as they move.\n", + "* **Scene Interpretation:** Advanced algorithms analyze the relationship between objects and provide contextual descriptions. For example, the platform can differentiate between a stove and a coffee maker.\n", + "* **Integration with Assistive Technology:** The platform can be integrated with other assistive technologies, such as screen readers and navigation apps, to enhance the user experience.\n", + "\n", + "**Benefits for Users with Vision Disabilities:**\n", + "\n", + "* **Improved Spatial Awareness:** The platform empowers users to navigate their environment confidently and independently.\n", + "* **Enhanced Safety:** By identifying hazards and obstacles, the platform helps users avoid accidents and stay safe.\n", + "* **Increased Independence:** The platform allows users to perform daily tasks and engage in activities that would otherwise be challenging with limited vision.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_manager\u001b[0m (to chat_manager):\n", + "\n", + "**Additional Innovative Features:**\n", + "\n", + "* **Object Recognition by Sound:** The platform can be trained to recognize objects based on their unique sounds. This feature is particularly useful for identifying objects that are difficult to see, such as small items or objects in low-light conditions.\n", + "* **Augmented Reality Integration:** By leveraging augmented reality technology, the platform can overlay virtual information onto the user's surroundings. This can provide additional context and guidance, such as highlighting the location of a specific object or providing directions to a destination.\n", + "* **Machine Learning for Personalized Experiences:** The platform can employ machine learning algorithms to learn the user's preferences and adapt its output accordingly. For example, it can prioritize the detection of objects that are of particular interest to the user.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Navigation and Wayfinding:** The platform can assist users in navigating indoor and outdoor environments, providing directions and identifying obstacles.\n", + "* **Object Identification and Interaction:** Users can identify and interact with objects in their surroundings, such as appliances, furniture, and food items.\n", + "* **Social Interaction and Communication:** The platform can facilitate social interactions by providing descriptions of people and objects in the user's environment.\n", + "* **Education and Learning:** The platform can be used as an educational tool to help students with vision impairments learn about their surroundings and develop their spatial reasoning skills.\n", + "\n", + "**Impact on the Lives of People with Vision Disabilities:**\n", + "\n", + "VisionAid has the potential to transform the lives of people with vision disabilities by providing them with a greater sense of independence, safety, and confidence. By empowering them with essential information about their surroundings, the platform enables them to navigate the world more effectively and participate fully in society.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_manager\u001b[0m (to chat_manager):\n", + "\n", + "**Additional Innovative Features:**\n", + "\n", + "* **Crowd-Sourced Object Recognition:** The platform can leverage a crowd-sourced database to expand its object recognition capabilities. Users can contribute images and descriptions of objects to the database, which can then be used to train the computer vision model and improve the platform's accuracy.\n", + "* **Integration with Smart Home Devices:** The platform can be integrated with smart home devices, such as smart speakers and smart lights, to provide a more comprehensive and automated experience. For example, the platform can trigger smart lights to illuminate a specific object or provide audio descriptions of objects in a room.\n", + "* **Gamification and Motivation:** The platform can incorporate gamification elements to motivate users and make the learning and exploration process more enjoyable. For example, users can earn points or badges for identifying objects correctly or completing challenges.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Assistive Reading:** The platform can be used as an assistive reading tool for people with low vision or dyslexia. It can scan printed text and provide audio descriptions of the words and their arrangement on the page.\n", + "* **Virtual Reality Exploration:** The platform can be integrated with virtual reality technology to create immersive and interactive experiences for people with vision disabilities. Users can explore virtual environments and interact with objects in a safe and controlled setting.\n", + "* **Art and Culture Accessibility:** The platform can be used to make art and cultural experiences more accessible to people with vision disabilities. It can provide audio descriptions of paintings, sculptures, and other works of art, as well as provide tactile tours of museums and galleries.\n", + "\n", + "**Impact on Society:**\n", + "\n", + "VisionAid has the potential to make a significant impact on society by promoting inclusivity and empowering people with vision disabilities. By providing them with the tools they need to navigate the world more effectively, the platform can help break down barriers and create a more equitable society for all.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_manager\u001b[0m (to chat_manager):\n", + "\n", + "**Additional Innovative Features:**\n", + "\n", + "* **Object Tracking:** The platform can employ advanced computer vision algorithms to track the movement of objects in real-time. This feature is particularly useful for monitoring moving objects, such as people or vehicles, and providing continuous updates to the user.\n", + "* **Gesture Recognition:** The platform can incorporate gesture recognition technology to allow users to interact with the platform using simple hand gestures. This can provide a more intuitive and hands-free way to control the platform's functionality.\n", + "* **Multi-Language Support:** The platform can be localized to support multiple languages, making it accessible to users from diverse linguistic backgrounds.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Safety and Security:** The platform can be used to enhance safety and security for people with vision disabilities. It can detect and identify potential hazards, such as obstacles, uneven surfaces, or suspicious individuals, and provide timely alerts to the user.\n", + "* **Health and Wellness:** The platform can be integrated with health and wellness devices to provide users with information about their physical condition and surroundings. For example, it can monitor blood glucose levels, heart rate, or activity levels, and provide audio feedback to the user.\n", + "* **Accessibility in Public Spaces:** The platform can be deployed in public spaces, such as museums, libraries, and retail stores, to make these spaces more accessible and inclusive for people with vision disabilities. It can provide audio descriptions of exhibits, books, and products, as well as guidance on how to navigate the space.\n", + "\n", + "**Impact on the Future:**\n", + "\n", + "VisionAid has the potential to shape the future of assistive technology by providing a comprehensive and innovative solution for people with vision disabilities. By leveraging cutting-edge technologies and incorporating user-centric design principles, the platform can empower individuals to live more independent, fulfilling, and connected lives.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_manager\u001b[0m (to chat_manager):\n", + "\n", + "**Additional Innovative Features:**\n", + "\n", + "* **AI-Powered Object Recognition:** The platform can utilize advanced artificial intelligence (AI) algorithms to continuously improve its object recognition capabilities. By analyzing large datasets of images and descriptions, the AI can learn to identify and classify a wide range of objects with high accuracy.\n", + "* **Contextual Awareness:** The platform can leverage contextual information to provide more meaningful and personalized descriptions. For example, it can identify the user's current location and provide relevant information about nearby objects, such as store names, street signs, or landmarks.\n", + "* **Integration with Navigation Apps:** The platform can be integrated with navigation apps to provide users with turn-by-turn directions and guidance. This can help users navigate unfamiliar environments and reach their destinations safely and efficiently.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Job Training and Employment:** The platform can be used to train people with vision disabilities for various jobs and occupations. It can provide audio descriptions of work instructions, equipment, and materials, as well as guidance on how to perform specific tasks.\n", + "* **Transportation Accessibility:** The platform can be integrated with public transportation systems to make them more accessible for people with vision disabilities. It can provide real-time information about bus and train schedules, as well as guidance on how to navigate stations and platforms.\n", + "* **Social and Community Engagement:** The platform can facilitate social and community engagement for people with vision disabilities. It can provide audio descriptions of social events, activities, and gatherings, as well as information about local organizations and resources.\n", + "\n", + "**Impact on the Future of Healthcare:**\n", + "\n", + "VisionAid has the potential to revolutionize the delivery of healthcare for people with vision disabilities. By providing them with real-time access to information about their surroundings, the platform can empower them to make more informed decisions about their health and well-being. It can also facilitate communication between patients and healthcare providers, leading to improved patient outcomes and satisfaction.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information and opportunities. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_manager\u001b[0m (to chat_manager):\n", + "\n", + "**Additional Innovative Features:**\n", + "\n", + "* **Personalized Learning:** The platform can incorporate machine learning algorithms to tailor its content and interactions to the individual needs and preferences of each user. This can include adjusting the difficulty of object recognition tasks, providing customized feedback, and recommending relevant resources.\n", + "* **Gamification and Motivation:** The platform can incorporate gamification elements to make the learning and exploration process more engaging and motivating. Users can earn points, badges, and rewards for completing tasks, identifying objects correctly, and exploring new environments.\n", + "* **Community Building:** The platform can foster a sense of community among users with vision disabilities. It can provide a space for users to connect with each other, share experiences, and support each other on their journey.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Education and Learning:** The platform can be used as a powerful educational tool for students with vision disabilities. It can provide audio descriptions of textbooks, assignments, and educational materials, as well as guidance on how to navigate classrooms and participate in group activities.\n", + "* **Employment and Career Development:** The platform can assist people with vision disabilities in finding and securing employment opportunities. It can provide information about job openings, training programs, and assistive technologies that can help them succeed in the workplace.\n", + "* **Independent Living:** The platform can empower people with vision disabilities to live more independently and confidently. It can provide guidance on how to perform daily tasks, such as cooking, cleaning, and managing finances, as well as information about accessible housing and transportation options.\n", + "\n", + "**Impact on Society:**\n", + "\n", + "VisionAid has the potential to create a more inclusive and equitable society for people with vision disabilities. By providing them with the tools and resources they need to succeed, the platform can help break down barriers and empower them to participate fully in all aspects of life.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_manager\u001b[0m (to chat_manager):\n", + "\n", + "**Additional Innovative Features:**\n", + "\n", + "* **Augmented Reality Integration:** The platform can leverage augmented reality (AR) technology to overlay virtual information onto the user's surroundings. This can provide additional context and guidance, such as highlighting the location of a specific object or providing directions to a destination.\n", + "* **Real-Time Obstacle Detection:** The platform can employ advanced computer vision algorithms to detect and identify obstacles in the user's path in real-time. This can help users avoid collisions and navigate their environment more safely.\n", + "* **Smart Home Integration:** The platform can be integrated with smart home devices, such as smart speakers and smart lights, to provide a more comprehensive and automated experience. For example, the platform can trigger smart lights to illuminate a specific object or provide audio descriptions of objects in a room.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Travel and Exploration:** The platform can assist people with vision disabilities in traveling and exploring new places. It can provide audio descriptions of landmarks, tourist attractions, and transportation options, as well as guidance on how to navigate unfamiliar environments.\n", + "* **Accessibility in Public Spaces:** The platform can be deployed in public spaces, such as museums, libraries, and retail stores, to make these spaces more accessible and inclusive for people with vision disabilities. It can provide audio descriptions of exhibits, books, and products, as well as guidance on how to navigate the space.\n", + "* **Social and Community Engagement:** The platform can facilitate social and community engagement for people with vision disabilities. It can provide audio descriptions of social events, activities, and gatherings, as well as information about local organizations and resources.\n", + "\n", + "**Impact on Society:**\n", + "\n", + "VisionAid has the potential to make a significant impact on society by promoting inclusivity and empowering people with vision disabilities. By providing them with the tools they need to navigate the world more effectively, the platform can help break down barriers and create a more equitable society for all.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_manager\u001b[0m (to chat_manager):\n", + "\n", + "**Additional Innovative Features:**\n", + "\n", + "* **Personalized Content Recommendations:** The platform can leverage machine learning algorithms to recommend personalized content and experiences to users based on their interests, preferences, and usage patterns.\n", + "* **Multi-Sensory Feedback:** The platform can incorporate multiple sensory modalities, such as audio, haptic, and tactile feedback, to provide a more immersive and engaging experience for users with different sensory preferences.\n", + "* **Open Source and Community Involvement:** The platform can be released as open source software, allowing the community to contribute to its development and create custom integrations and add-ons.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Education and Learning:** The platform can be used as a powerful educational tool for students with vision disabilities, providing them with access to a wide range of educational resources and interactive learning experiences.\n", + "* **Employment and Career Development:** The platform can assist people with vision disabilities in finding and securing employment opportunities, providing them with the skills and resources they need to succeed in the workplace.\n", + "* **Independent Living:** The platform can empower people with vision disabilities to live more independently and confidently, providing them with the tools and information they need to navigate their environment, manage their finances, and participate in social activities.\n", + "\n", + "**Impact on Society:**\n", + "\n", + "VisionAid has the potential to create a more inclusive and equitable society for people with vision disabilities. By providing them with the tools and resources they need to succeed, the platform can help break down barriers and empower them to participate fully in all aspects of life.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**Additional Innovative Features:**\n", + "\n", + "* **AI-Powered Object Recognition:** The platform can utilize advanced artificial intelligence (AI) algorithms to continuously improve its object recognition capabilities. By analyzing large datasets of images and descriptions, the AI can learn to identify and classify a wide range of objects with high accuracy.\n", + "* **Contextual Awareness:** The platform can leverage contextual information to provide more meaningful and personalized descriptions. For example, it can identify the user's current location and provide relevant information about nearby objects, such as store names, street signs, or landmarks.\n", + "* **Integration with Navigation Apps:** The platform can be integrated with navigation apps to provide users with turn-by-turn directions and guidance. This can help users navigate unfamiliar environments and reach their destinations safely and efficiently.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Job Training and Employment:** The platform can be used to train people with vision disabilities for various jobs and occupations. It can provide audio descriptions of work instructions, equipment, and materials, as well as guidance on how to perform specific tasks.\n", + "* **Transportation Accessibility:** The platform can be integrated with public transportation systems to make them more accessible for people with vision disabilities. It can provide real-time information about bus and train schedules, as well as guidance on how to navigate stations and platforms.\n", + "* **Social and Community Engagement:** The platform can facilitate social and community engagement for people with vision disabilities. It can provide audio descriptions of social events, activities, and gatherings, as well as information about local organizations and resources.\n", + "\n", + "**Impact on the Future of Healthcare:**\n", + "\n", + "VisionAid has the potential to revolutionize the delivery of healthcare for people with vision disabilities. By providing them with real-time access to information about their surroundings, the platform can empower them to make more informed decisions about their health and well-being. It can also facilitate communication between patients and healthcare providers, leading to improved patient outcomes and satisfaction.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information and opportunities. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**Additional Innovative Features:**\n", + "\n", + "* **Personalized Learning:** The platform can incorporate machine learning algorithms to tailor its content and interactions to the individual needs and preferences of each user. This can include adjusting the difficulty of object recognition tasks, providing customized feedback, and recommending relevant resources.\n", + "* **Gamification and Motivation:** The platform can incorporate gamification elements to make the learning and exploration process more engaging and motivating. Users can earn points, badges, and rewards for completing tasks, identifying objects correctly, and exploring new environments.\n", + "* **Community Building:** The platform can foster a sense of community among users with vision disabilities. It can provide a space for users to connect with each other, share experiences, and support each other on their journey.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Education and Learning:** The platform can be used as a powerful educational tool for students with vision disabilities. It can provide audio descriptions of textbooks, assignments, and educational materials, as well as guidance on how to navigate classrooms and participate in group activities.\n", + "* **Employment and Career Development:** The platform can assist people with vision disabilities in finding and securing employment opportunities. It can provide information about job openings, training programs, and assistive technologies that can help them succeed in the workplace.\n", + "* **Independent Living:** The platform can empower people with vision disabilities to live more independently and confidently. It can provide guidance on how to perform daily tasks, such as cooking, cleaning, and managing finances, as well as information about accessible housing and transportation options.\n", + "\n", + "**Impact on Society:**\n", + "\n", + "VisionAid has the potential to create a more inclusive and equitable society for people with vision disabilities. By providing them with the tools and resources they need to succeed, the platform can help break down barriers and empower them to participate fully in all aspects of life.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_manager\u001b[0m (to chat_manager):\n", + "\n", + "**Additional Innovative Features:**\n", + "\n", + "* **Augmented Reality Integration:** The platform can leverage augmented reality (AR) technology to overlay virtual information onto the user's surroundings. This can provide additional context and guidance, such as highlighting the location of a specific object or providing directions to a destination.\n", + "* **Real-Time Obstacle Detection:** The platform can employ advanced computer vision algorithms to detect and identify obstacles in the user's path in real-time. This can help users avoid collisions and navigate their environment more safely.\n", + "* **Smart Home Integration:** The platform can be integrated with smart home devices, such as smart speakers and smart lights, to provide a more comprehensive and automated experience. For example, the platform can trigger smart lights to illuminate a specific object or provide audio descriptions of objects in a room.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Travel and Exploration:** The platform can assist people with vision disabilities in traveling and exploring new places. It can provide audio descriptions of landmarks, tourist attractions, and transportation options, as well as guidance on how to navigate unfamiliar environments.\n", + "* **Accessibility in Public Spaces:** The platform can be deployed in public spaces, such as museums, libraries, and retail stores, to make these spaces more accessible and inclusive for people with vision disabilities. It can provide audio descriptions of exhibits, books, and products, as well as guidance on how to navigate the space.\n", + "* **Social and Community Engagement:** The platform can facilitate social and community engagement for people with vision disabilities. It can provide audio descriptions of social events, activities, and gatherings, as well as information about local organizations and resources.\n", + "\n", + "**Impact on Society:**\n", + "\n", + "VisionAid has the potential to make a significant impact on society by promoting inclusivity and empowering people with vision disabilities. By providing them with the tools they need to navigate the world more effectively, the platform can help break down barriers and create a more equitable society for all.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**Additional Innovative Features:**\n", + "\n", + "* **Personalized Content Recommendations:** The platform can leverage machine learning algorithms to recommend personalized content and experiences to users based on their interests, preferences, and usage patterns.\n", + "* **Multi-Sensory Feedback:** The platform can incorporate multiple sensory modalities, such as audio, haptic, and tactile feedback, to provide a more immersive and engaging experience for users with different sensory preferences.\n", + "* **Open Source and Community Involvement:** The platform can be released as open source software, allowing the community to contribute to its development and create custom integrations and add-ons.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Education and Learning:** The platform can be used as a powerful educational tool for students with vision disabilities, providing them with access to a wide range of educational resources and interactive learning experiences.\n", + "* **Employment and Career Development:** The platform can assist people with vision disabilities in finding and securing employment opportunities, providing them with the skills and resources they need to succeed in the workplace.\n", + "* **Independent Living:** The platform can empower people with vision disabilities to live more independently and confidently, providing them with the tools and information they need to navigate their environment, manage their finances, and participate in social activities.\n", + "\n", + "**Impact on Society:**\n", + "\n", + "VisionAid has the potential to create a more inclusive and equitable society for people with vision disabilities. By providing them with the tools and resources they need to succeed, the platform can help break down barriers and empower them to participate fully in all aspects of life.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**Additional Innovative Features:**\n", + "\n", + "* **AI-Powered Object Recognition:** The platform can utilize advanced artificial intelligence (AI) algorithms to continuously improve its object recognition capabilities. By analyzing large datasets of images and descriptions, the AI can learn to identify and classify a wide range of objects with high accuracy.\n", + "* **Contextual Awareness:** The platform can leverage contextual information to provide more meaningful and personalized descriptions. For example, it can identify the user's current location and provide relevant information about nearby objects, such as store names, street signs, or landmarks.\n", + "* **Integration with Navigation Apps:** The platform can be integrated with navigation apps to provide users with turn-by-turn directions and guidance. This can help users navigate unfamiliar environments and reach their destinations safely and efficiently.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Job Training and Employment:** The platform can be used to train people with vision disabilities for various jobs and occupations. It can provide audio descriptions of work instructions, equipment, and materials, as well as guidance on how to perform specific tasks.\n", + "* **Transportation Accessibility:** The platform can be integrated with public transportation systems to make them more accessible for people with vision disabilities. It can provide real-time information about bus and train schedules, as well as guidance on how to navigate stations and platforms.\n", + "* **Social and Community Engagement:** The platform can facilitate social and community engagement for people with vision disabilities. It can provide audio descriptions of social events, activities, and gatherings, as well as information about local organizations and resources.\n", + "\n", + "**Impact on the Future of Healthcare:**\n", + "\n", + "VisionAid has the potential to revolutionize the delivery of healthcare for people with vision disabilities. By providing them with real-time access to information about their surroundings, the platform can empower them to make more informed decisions about their health and well-being. It can also facilitate communication between patients and healthcare providers, leading to improved patient outcomes and satisfaction.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information and opportunities. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**Additional Innovative Features:**\n", + "\n", + "* **Personalized Learning:** The platform can incorporate machine learning algorithms to tailor its content and interactions to the individual needs and preferences of each user. This can include adjusting the difficulty of object recognition tasks, providing customized feedback, and recommending relevant resources.\n", + "* **Gamification and Motivation:** The platform can incorporate gamification elements to make the learning and exploration process more engaging and motivating. Users can earn points, badges, and rewards for completing tasks, identifying objects correctly, and exploring new environments.\n", + "* **Community Building:** The platform can foster a sense of community among users with vision disabilities. It can provide a space for users to connect with each other, share experiences, and support each other on their journey.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "* **Education and Learning:** The platform can be used as a powerful educational tool for students with vision disabilities. It can provide audio descriptions of textbooks, assignments, and educational materials, as well as guidance on how to navigate classrooms and participate in group activities.\n", + "* **Employment and Career Development:** The platform can assist people with vision disabilities in finding and securing employment opportunities. It can provide information about job openings, training programs, and assistive technologies that can help them succeed in the workplace.\n", + "* **Independent Living:** The platform can empower people with vision disabilities to live more independently and confidently. It can provide guidance on how to perform daily tasks, such as cooking, cleaning, and managing finances, as well as information about accessible housing and transportation options.\n", + "\n", + "**Impact on Society:**\n", + "\n", + "VisionAid has the potential to create a more inclusive and equitable society for people with vision disabilities. By providing them with the tools and resources they need to succeed, the platform can help break down barriers and empower them to participate fully in all aspects of life.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mProduct_manager\u001b[0m (to chat_manager):\n", + "\n", + "**Technical Implementation:**\n", + "\n", + "The technical implementation of VisionAid involves the following key components:\n", + "\n", + "* **Image Acquisition:** The platform utilizes a camera or other image acquisition device to capture images of the user's surroundings.\n", + "* **Image Preprocessing:** The captured image is preprocessed to optimize the performance of the computer vision model. This includes scaling, cropping, and enhancing the image for better recognition.\n", + "* **Object Detection and Localization:** The Gemini computer vision model is employed to analyze the preprocessed image. The model identifies the presence of objects in the image and determines their location with bounding boxes and spatial descriptions.\n", + "* **Multimodal Output:** The platform provides detailed audio descriptions of the detected objects and their locations. Haptic feedback is used to convey the spatial arrangement of objects through vibrations or tactile sensations. If the user has partial vision, the platform can provide a simplified visual representation of the detected objects and their locations on a screen.\n", + "\n", + "**Accessibility and Customization:**\n", + "\n", + "VisionAid is designed to be highly accessible, with adjustable settings for audio volume, haptic intensity, and visual contrast. Users can customize the output to suit their individual preferences and needs.\n", + "\n", + "**Additional Innovative Features:**\n", + "\n", + "To enhance the user experience and address specific challenges faced by people with vision disabilities, VisionAid incorporates the following innovative features:\n", + "\n", + "* **Real-Time Object Detection:** The platform operates in real-time, providing continuous feedback about the user's surroundings as they move.\n", + "* **Scene Interpretation:** Advanced algorithms analyze the relationship between objects and provide contextual descriptions. For example, the platform can differentiate between a stove and a coffee maker.\n", + "* **Integration with Assistive Technology:** VisionAid can be integrated with other assistive technologies, such as screen readers and navigation apps, to enhance the user experience.\n", + "\n", + "**Potential Applications:**\n", + "\n", + "VisionAid has a wide range of potential applications, including:\n", + "\n", + "* **Navigation and Wayfinding:** The platform can assist users in navigating indoor and outdoor environments, providing directions and identifying obstacles.\n", + "* **Object Identification and Interaction:** Users can identify and interact with objects in their surroundings, such as appliances, furniture, and food items.\n", + "* **Social Interaction and Communication:** The platform can facilitate social interactions by providing descriptions of people and objects in the user's environment.\n", + "* **Education and Learning:** VisionAid can be used as an educational tool to help students with vision impairments learn about their surroundings and develop their spatial reasoning skills.\n", + "\n", + "**Impact on the Lives of People with Vision Disabilities:**\n", + "\n", + "VisionAid has the potential to transform the lives of people with vision disabilities by providing them with a greater sense of independence, safety, and confidence. By empowering them with essential information about their surroundings, the platform enables them to navigate the world more effectively and participate fully in society.\n", + "\n", + "**Long-Term Vision:**\n", + "\n", + "The long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information and opportunities. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\n", + "\n", + "**By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/plain": [ + "ChatResult(chat_id=None, chat_history=[{'content': 'Design and implement a multimodal product for people with vision disabilities.\\nThe pipeline will take an image and run Gemini model to describe:\\n1. what objects are in the image, and\\n2. where these objects are located.', 'role': 'assistant'}, {'content': \"**Product Name:** VisionAid\\n\\n**Target Audience:** People with vision disabilities\\n\\n**Product Concept:** A comprehensive and multimodal software platform that empowers individuals with vision impairments by providing them with essential information about their surroundings through image recognition and localization.\\n\\n**Product Design and Implementation:**\\n\\n**1. Image Acquisition:**\\n* The platform utilizes a camera or other image acquisition device to capture images of the user's surroundings.\\n* The device can be integrated into a smartphone, wearable device, or smart home appliance.\\n\\n**2. Image Processing:**\\n* The captured image is preprocessed to optimize the performance of the computer vision model.\\n* This includes scaling, cropping, and enhancing the image for better recognition.\\n\\n**3. Object Detection and Localization:**\\n* The Gemini computer vision model is then employed to analyze the preprocessed image.\\n* The model identifies the presence of objects in the image and determines their location with bounding boxes and spatial descriptions.\\n\\n**4. Multimodal Output:**\\n* **Audio Output:** The platform provides detailed audio descriptions of the detected objects and their locations.\\n* **Haptic Output:** Haptic feedback is used to convey the spatial arrangement of objects through vibrations or tactile sensations.\\n* **Visual Output (for partial vision):** If the user has partial vision, the platform can provide a simplified visual representation of the detected objects and their locations on a screen.\\n\\n**5. Accessibility and Customization:**\\n* The platform is designed to be highly accessible, with adjustable settings for audio volume, haptic intensity, and visual contrast.\\n* Users can customize the output to suit their individual preferences and needs.\\n\\n**Innovative Features:**\\n\\n* **Real-Time Object Detection:** The platform operates in real-time, providing continuous feedback about the user's surroundings as they move.\\n* **Scene Interpretation:** Advanced algorithms analyze the relationship between objects and provide contextual descriptions. For example, the platform can differentiate between a stove and a coffee maker.\\n* **Integration with Assistive Technology:** The platform can be integrated with other assistive technologies, such as screen readers and navigation apps, to enhance the user experience.\\n\\n**Benefits for Users with Vision Disabilities:**\\n\\n* **Improved Spatial Awareness:** The platform empowers users to navigate their environment confidently and independently.\\n* **Enhanced Safety:** By identifying hazards and obstacles, the platform helps users avoid accidents and stay safe.\\n* **Increased Independence:** The platform allows users to perform daily tasks and engage in activities that would otherwise be challenging with limited vision.\", 'name': 'Product_manager', 'role': 'user'}, {'content': \"**Additional Innovative Features:**\\n\\n* **Object Recognition by Sound:** The platform can be trained to recognize objects based on their unique sounds. This feature is particularly useful for identifying objects that are difficult to see, such as small items or objects in low-light conditions.\\n* **Augmented Reality Integration:** By leveraging augmented reality technology, the platform can overlay virtual information onto the user's surroundings. This can provide additional context and guidance, such as highlighting the location of a specific object or providing directions to a destination.\\n* **Machine Learning for Personalized Experiences:** The platform can employ machine learning algorithms to learn the user's preferences and adapt its output accordingly. For example, it can prioritize the detection of objects that are of particular interest to the user.\\n\\n**Potential Applications:**\\n\\n* **Navigation and Wayfinding:** The platform can assist users in navigating indoor and outdoor environments, providing directions and identifying obstacles.\\n* **Object Identification and Interaction:** Users can identify and interact with objects in their surroundings, such as appliances, furniture, and food items.\\n* **Social Interaction and Communication:** The platform can facilitate social interactions by providing descriptions of people and objects in the user's environment.\\n* **Education and Learning:** The platform can be used as an educational tool to help students with vision impairments learn about their surroundings and develop their spatial reasoning skills.\\n\\n**Impact on the Lives of People with Vision Disabilities:**\\n\\nVisionAid has the potential to transform the lives of people with vision disabilities by providing them with a greater sense of independence, safety, and confidence. By empowering them with essential information about their surroundings, the platform enables them to navigate the world more effectively and participate fully in society.\", 'name': 'Product_manager', 'role': 'user'}, {'content': \"**Additional Innovative Features:**\\n\\n* **Crowd-Sourced Object Recognition:** The platform can leverage a crowd-sourced database to expand its object recognition capabilities. Users can contribute images and descriptions of objects to the database, which can then be used to train the computer vision model and improve the platform's accuracy.\\n* **Integration with Smart Home Devices:** The platform can be integrated with smart home devices, such as smart speakers and smart lights, to provide a more comprehensive and automated experience. For example, the platform can trigger smart lights to illuminate a specific object or provide audio descriptions of objects in a room.\\n* **Gamification and Motivation:** The platform can incorporate gamification elements to motivate users and make the learning and exploration process more enjoyable. For example, users can earn points or badges for identifying objects correctly or completing challenges.\\n\\n**Potential Applications:**\\n\\n* **Assistive Reading:** The platform can be used as an assistive reading tool for people with low vision or dyslexia. It can scan printed text and provide audio descriptions of the words and their arrangement on the page.\\n* **Virtual Reality Exploration:** The platform can be integrated with virtual reality technology to create immersive and interactive experiences for people with vision disabilities. Users can explore virtual environments and interact with objects in a safe and controlled setting.\\n* **Art and Culture Accessibility:** The platform can be used to make art and cultural experiences more accessible to people with vision disabilities. It can provide audio descriptions of paintings, sculptures, and other works of art, as well as provide tactile tours of museums and galleries.\\n\\n**Impact on Society:**\\n\\nVisionAid has the potential to make a significant impact on society by promoting inclusivity and empowering people with vision disabilities. By providing them with the tools they need to navigate the world more effectively, the platform can help break down barriers and create a more equitable society for all.\", 'name': 'Product_manager', 'role': 'user'}, {'content': \"**Additional Innovative Features:**\\n\\n* **Object Tracking:** The platform can employ advanced computer vision algorithms to track the movement of objects in real-time. This feature is particularly useful for monitoring moving objects, such as people or vehicles, and providing continuous updates to the user.\\n* **Gesture Recognition:** The platform can incorporate gesture recognition technology to allow users to interact with the platform using simple hand gestures. This can provide a more intuitive and hands-free way to control the platform's functionality.\\n* **Multi-Language Support:** The platform can be localized to support multiple languages, making it accessible to users from diverse linguistic backgrounds.\\n\\n**Potential Applications:**\\n\\n* **Safety and Security:** The platform can be used to enhance safety and security for people with vision disabilities. It can detect and identify potential hazards, such as obstacles, uneven surfaces, or suspicious individuals, and provide timely alerts to the user.\\n* **Health and Wellness:** The platform can be integrated with health and wellness devices to provide users with information about their physical condition and surroundings. For example, it can monitor blood glucose levels, heart rate, or activity levels, and provide audio feedback to the user.\\n* **Accessibility in Public Spaces:** The platform can be deployed in public spaces, such as museums, libraries, and retail stores, to make these spaces more accessible and inclusive for people with vision disabilities. It can provide audio descriptions of exhibits, books, and products, as well as guidance on how to navigate the space.\\n\\n**Impact on the Future:**\\n\\nVisionAid has the potential to shape the future of assistive technology by providing a comprehensive and innovative solution for people with vision disabilities. By leveraging cutting-edge technologies and incorporating user-centric design principles, the platform can empower individuals to live more independent, fulfilling, and connected lives.\", 'name': 'Product_manager', 'role': 'user'}, {'content': \"**Additional Innovative Features:**\\n\\n* **AI-Powered Object Recognition:** The platform can utilize advanced artificial intelligence (AI) algorithms to continuously improve its object recognition capabilities. By analyzing large datasets of images and descriptions, the AI can learn to identify and classify a wide range of objects with high accuracy.\\n* **Contextual Awareness:** The platform can leverage contextual information to provide more meaningful and personalized descriptions. For example, it can identify the user's current location and provide relevant information about nearby objects, such as store names, street signs, or landmarks.\\n* **Integration with Navigation Apps:** The platform can be integrated with navigation apps to provide users with turn-by-turn directions and guidance. This can help users navigate unfamiliar environments and reach their destinations safely and efficiently.\\n\\n**Potential Applications:**\\n\\n* **Job Training and Employment:** The platform can be used to train people with vision disabilities for various jobs and occupations. It can provide audio descriptions of work instructions, equipment, and materials, as well as guidance on how to perform specific tasks.\\n* **Transportation Accessibility:** The platform can be integrated with public transportation systems to make them more accessible for people with vision disabilities. It can provide real-time information about bus and train schedules, as well as guidance on how to navigate stations and platforms.\\n* **Social and Community Engagement:** The platform can facilitate social and community engagement for people with vision disabilities. It can provide audio descriptions of social events, activities, and gatherings, as well as information about local organizations and resources.\\n\\n**Impact on the Future of Healthcare:**\\n\\nVisionAid has the potential to revolutionize the delivery of healthcare for people with vision disabilities. By providing them with real-time access to information about their surroundings, the platform can empower them to make more informed decisions about their health and well-being. It can also facilitate communication between patients and healthcare providers, leading to improved patient outcomes and satisfaction.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information and opportunities. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\nBy empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.\", 'name': 'Product_manager', 'role': 'user'}, {'content': '**Additional Innovative Features:**\\n\\n* **Personalized Learning:** The platform can incorporate machine learning algorithms to tailor its content and interactions to the individual needs and preferences of each user. This can include adjusting the difficulty of object recognition tasks, providing customized feedback, and recommending relevant resources.\\n* **Gamification and Motivation:** The platform can incorporate gamification elements to make the learning and exploration process more engaging and motivating. Users can earn points, badges, and rewards for completing tasks, identifying objects correctly, and exploring new environments.\\n* **Community Building:** The platform can foster a sense of community among users with vision disabilities. It can provide a space for users to connect with each other, share experiences, and support each other on their journey.\\n\\n**Potential Applications:**\\n\\n* **Education and Learning:** The platform can be used as a powerful educational tool for students with vision disabilities. It can provide audio descriptions of textbooks, assignments, and educational materials, as well as guidance on how to navigate classrooms and participate in group activities.\\n* **Employment and Career Development:** The platform can assist people with vision disabilities in finding and securing employment opportunities. It can provide information about job openings, training programs, and assistive technologies that can help them succeed in the workplace.\\n* **Independent Living:** The platform can empower people with vision disabilities to live more independently and confidently. It can provide guidance on how to perform daily tasks, such as cooking, cleaning, and managing finances, as well as information about accessible housing and transportation options.\\n\\n**Impact on Society:**\\n\\nVisionAid has the potential to create a more inclusive and equitable society for people with vision disabilities. By providing them with the tools and resources they need to succeed, the platform can help break down barriers and empower them to participate fully in all aspects of life.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\nBy empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.', 'name': 'Product_manager', 'role': 'user'}, {'content': \"**Additional Innovative Features:**\\n\\n* **Augmented Reality Integration:** The platform can leverage augmented reality (AR) technology to overlay virtual information onto the user's surroundings. This can provide additional context and guidance, such as highlighting the location of a specific object or providing directions to a destination.\\n* **Real-Time Obstacle Detection:** The platform can employ advanced computer vision algorithms to detect and identify obstacles in the user's path in real-time. This can help users avoid collisions and navigate their environment more safely.\\n* **Smart Home Integration:** The platform can be integrated with smart home devices, such as smart speakers and smart lights, to provide a more comprehensive and automated experience. For example, the platform can trigger smart lights to illuminate a specific object or provide audio descriptions of objects in a room.\\n\\n**Potential Applications:**\\n\\n* **Travel and Exploration:** The platform can assist people with vision disabilities in traveling and exploring new places. It can provide audio descriptions of landmarks, tourist attractions, and transportation options, as well as guidance on how to navigate unfamiliar environments.\\n* **Accessibility in Public Spaces:** The platform can be deployed in public spaces, such as museums, libraries, and retail stores, to make these spaces more accessible and inclusive for people with vision disabilities. It can provide audio descriptions of exhibits, books, and products, as well as guidance on how to navigate the space.\\n* **Social and Community Engagement:** The platform can facilitate social and community engagement for people with vision disabilities. It can provide audio descriptions of social events, activities, and gatherings, as well as information about local organizations and resources.\\n\\n**Impact on Society:**\\n\\nVisionAid has the potential to make a significant impact on society by promoting inclusivity and empowering people with vision disabilities. By providing them with the tools they need to navigate the world more effectively, the platform can help break down barriers and create a more equitable society for all.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\nBy empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.\", 'name': 'Product_manager', 'role': 'user'}, {'content': \"**Additional Innovative Features:**\\n\\n* **Personalized Content Recommendations:** The platform can leverage machine learning algorithms to recommend personalized content and experiences to users based on their interests, preferences, and usage patterns.\\n* **Multi-Sensory Feedback:** The platform can incorporate multiple sensory modalities, such as audio, haptic, and tactile feedback, to provide a more immersive and engaging experience for users with different sensory preferences.\\n* **Open Source and Community Involvement:** The platform can be released as open source software, allowing the community to contribute to its development and create custom integrations and add-ons.\\n\\n**Potential Applications:**\\n\\n* **Education and Learning:** The platform can be used as a powerful educational tool for students with vision disabilities, providing them with access to a wide range of educational resources and interactive learning experiences.\\n* **Employment and Career Development:** The platform can assist people with vision disabilities in finding and securing employment opportunities, providing them with the skills and resources they need to succeed in the workplace.\\n* **Independent Living:** The platform can empower people with vision disabilities to live more independently and confidently, providing them with the tools and information they need to navigate their environment, manage their finances, and participate in social activities.\\n\\n**Impact on Society:**\\n\\nVisionAid has the potential to create a more inclusive and equitable society for people with vision disabilities. By providing them with the tools and resources they need to succeed, the platform can help break down barriers and empower them to participate fully in all aspects of life.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\nBy empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**Additional Innovative Features:**\\n\\n* **AI-Powered Object Recognition:** The platform can utilize advanced artificial intelligence (AI) algorithms to continuously improve its object recognition capabilities. By analyzing large datasets of images and descriptions, the AI can learn to identify and classify a wide range of objects with high accuracy.\\n* **Contextual Awareness:** The platform can leverage contextual information to provide more meaningful and personalized descriptions. For example, it can identify the user's current location and provide relevant information about nearby objects, such as store names, street signs, or landmarks.\\n* **Integration with Navigation Apps:** The platform can be integrated with navigation apps to provide users with turn-by-turn directions and guidance. This can help users navigate unfamiliar environments and reach their destinations safely and efficiently.\\n\\n**Potential Applications:**\\n\\n* **Job Training and Employment:** The platform can be used to train people with vision disabilities for various jobs and occupations. It can provide audio descriptions of work instructions, equipment, and materials, as well as guidance on how to perform specific tasks.\\n* **Transportation Accessibility:** The platform can be integrated with public transportation systems to make them more accessible for people with vision disabilities. It can provide real-time information about bus and train schedules, as well as guidance on how to navigate stations and platforms.\\n* **Social and Community Engagement:** The platform can facilitate social and community engagement for people with vision disabilities. It can provide audio descriptions of social events, activities, and gatherings, as well as information about local organizations and resources.\\n\\n**Impact on the Future of Healthcare:**\\n\\nVisionAid has the potential to revolutionize the delivery of healthcare for people with vision disabilities. By providing them with real-time access to information about their surroundings, the platform can empower them to make more informed decisions about their health and well-being. It can also facilitate communication between patients and healthcare providers, leading to improved patient outcomes and satisfaction.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information and opportunities. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\nBy empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**Additional Innovative Features:**\\n\\n* **Personalized Learning:** The platform can incorporate machine learning algorithms to tailor its content and interactions to the individual needs and preferences of each user. This can include adjusting the difficulty of object recognition tasks, providing customized feedback, and recommending relevant resources.\\n* **Gamification and Motivation:** The platform can incorporate gamification elements to make the learning and exploration process more engaging and motivating. Users can earn points, badges, and rewards for completing tasks, identifying objects correctly, and exploring new environments.\\n* **Community Building:** The platform can foster a sense of community among users with vision disabilities. It can provide a space for users to connect with each other, share experiences, and support each other on their journey.\\n\\n**Potential Applications:**\\n\\n* **Education and Learning:** The platform can be used as a powerful educational tool for students with vision disabilities. It can provide audio descriptions of textbooks, assignments, and educational materials, as well as guidance on how to navigate classrooms and participate in group activities.\\n* **Employment and Career Development:** The platform can assist people with vision disabilities in finding and securing employment opportunities. It can provide information about job openings, training programs, and assistive technologies that can help them succeed in the workplace.\\n* **Independent Living:** The platform can empower people with vision disabilities to live more independently and confidently. It can provide guidance on how to perform daily tasks, such as cooking, cleaning, and managing finances, as well as information about accessible housing and transportation options.\\n\\n**Impact on Society:**\\n\\nVisionAid has the potential to create a more inclusive and equitable society for people with vision disabilities. By providing them with the tools and resources they need to succeed, the platform can help break down barriers and empower them to participate fully in all aspects of life.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\nBy empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.\", 'name': 'Product_manager', 'role': 'user'}, {'content': \"**Additional Innovative Features:**\\n\\n* **Augmented Reality Integration:** The platform can leverage augmented reality (AR) technology to overlay virtual information onto the user's surroundings. This can provide additional context and guidance, such as highlighting the location of a specific object or providing directions to a destination.\\n* **Real-Time Obstacle Detection:** The platform can employ advanced computer vision algorithms to detect and identify obstacles in the user's path in real-time. This can help users avoid collisions and navigate their environment more safely.\\n* **Smart Home Integration:** The platform can be integrated with smart home devices, such as smart speakers and smart lights, to provide a more comprehensive and automated experience. For example, the platform can trigger smart lights to illuminate a specific object or provide audio descriptions of objects in a room.\\n\\n**Potential Applications:**\\n\\n* **Travel and Exploration:** The platform can assist people with vision disabilities in traveling and exploring new places. It can provide audio descriptions of landmarks, tourist attractions, and transportation options, as well as guidance on how to navigate unfamiliar environments.\\n* **Accessibility in Public Spaces:** The platform can be deployed in public spaces, such as museums, libraries, and retail stores, to make these spaces more accessible and inclusive for people with vision disabilities. It can provide audio descriptions of exhibits, books, and products, as well as guidance on how to navigate the space.\\n* **Social and Community Engagement:** The platform can facilitate social and community engagement for people with vision disabilities. It can provide audio descriptions of social events, activities, and gatherings, as well as information about local organizations and resources.\\n\\n**Impact on Society:**\\n\\nVisionAid has the potential to make a significant impact on society by promoting inclusivity and empowering people with vision disabilities. By providing them with the tools they need to navigate the world more effectively, the platform can help break down barriers and create a more equitable society for all.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\nBy empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**Additional Innovative Features:**\\n\\n* **Personalized Content Recommendations:** The platform can leverage machine learning algorithms to recommend personalized content and experiences to users based on their interests, preferences, and usage patterns.\\n* **Multi-Sensory Feedback:** The platform can incorporate multiple sensory modalities, such as audio, haptic, and tactile feedback, to provide a more immersive and engaging experience for users with different sensory preferences.\\n* **Open Source and Community Involvement:** The platform can be released as open source software, allowing the community to contribute to its development and create custom integrations and add-ons.\\n\\n**Potential Applications:**\\n\\n* **Education and Learning:** The platform can be used as a powerful educational tool for students with vision disabilities, providing them with access to a wide range of educational resources and interactive learning experiences.\\n* **Employment and Career Development:** The platform can assist people with vision disabilities in finding and securing employment opportunities, providing them with the skills and resources they need to succeed in the workplace.\\n* **Independent Living:** The platform can empower people with vision disabilities to live more independently and confidently, providing them with the tools and information they need to navigate their environment, manage their finances, and participate in social activities.\\n\\n**Impact on Society:**\\n\\nVisionAid has the potential to create a more inclusive and equitable society for people with vision disabilities. By providing them with the tools and resources they need to succeed, the platform can help break down barriers and empower them to participate fully in all aspects of life.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\nBy empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**Additional Innovative Features:**\\n\\n* **AI-Powered Object Recognition:** The platform can utilize advanced artificial intelligence (AI) algorithms to continuously improve its object recognition capabilities. By analyzing large datasets of images and descriptions, the AI can learn to identify and classify a wide range of objects with high accuracy.\\n* **Contextual Awareness:** The platform can leverage contextual information to provide more meaningful and personalized descriptions. For example, it can identify the user's current location and provide relevant information about nearby objects, such as store names, street signs, or landmarks.\\n* **Integration with Navigation Apps:** The platform can be integrated with navigation apps to provide users with turn-by-turn directions and guidance. This can help users navigate unfamiliar environments and reach their destinations safely and efficiently.\\n\\n**Potential Applications:**\\n\\n* **Job Training and Employment:** The platform can be used to train people with vision disabilities for various jobs and occupations. It can provide audio descriptions of work instructions, equipment, and materials, as well as guidance on how to perform specific tasks.\\n* **Transportation Accessibility:** The platform can be integrated with public transportation systems to make them more accessible for people with vision disabilities. It can provide real-time information about bus and train schedules, as well as guidance on how to navigate stations and platforms.\\n* **Social and Community Engagement:** The platform can facilitate social and community engagement for people with vision disabilities. It can provide audio descriptions of social events, activities, and gatherings, as well as information about local organizations and resources.\\n\\n**Impact on the Future of Healthcare:**\\n\\nVisionAid has the potential to revolutionize the delivery of healthcare for people with vision disabilities. By providing them with real-time access to information about their surroundings, the platform can empower them to make more informed decisions about their health and well-being. It can also facilitate communication between patients and healthcare providers, leading to improved patient outcomes and satisfaction.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information and opportunities. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\nBy empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**Additional Innovative Features:**\\n\\n* **Personalized Learning:** The platform can incorporate machine learning algorithms to tailor its content and interactions to the individual needs and preferences of each user. This can include adjusting the difficulty of object recognition tasks, providing customized feedback, and recommending relevant resources.\\n* **Gamification and Motivation:** The platform can incorporate gamification elements to make the learning and exploration process more engaging and motivating. Users can earn points, badges, and rewards for completing tasks, identifying objects correctly, and exploring new environments.\\n* **Community Building:** The platform can foster a sense of community among users with vision disabilities. It can provide a space for users to connect with each other, share experiences, and support each other on their journey.\\n\\n**Potential Applications:**\\n\\n* **Education and Learning:** The platform can be used as a powerful educational tool for students with vision disabilities. It can provide audio descriptions of textbooks, assignments, and educational materials, as well as guidance on how to navigate classrooms and participate in group activities.\\n* **Employment and Career Development:** The platform can assist people with vision disabilities in finding and securing employment opportunities. It can provide information about job openings, training programs, and assistive technologies that can help them succeed in the workplace.\\n* **Independent Living:** The platform can empower people with vision disabilities to live more independently and confidently. It can provide guidance on how to perform daily tasks, such as cooking, cleaning, and managing finances, as well as information about accessible housing and transportation options.\\n\\n**Impact on Society:**\\n\\nVisionAid has the potential to create a more inclusive and equitable society for people with vision disabilities. By providing them with the tools and resources they need to succeed, the platform can help break down barriers and empower them to participate fully in all aspects of life.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information, opportunities, and experiences. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\nBy empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.\", 'name': 'Product_manager', 'role': 'user'}, {'content': \"**Technical Implementation:**\\n\\nThe technical implementation of VisionAid involves the following key components:\\n\\n* **Image Acquisition:** The platform utilizes a camera or other image acquisition device to capture images of the user's surroundings.\\n* **Image Preprocessing:** The captured image is preprocessed to optimize the performance of the computer vision model. This includes scaling, cropping, and enhancing the image for better recognition.\\n* **Object Detection and Localization:** The Gemini computer vision model is employed to analyze the preprocessed image. The model identifies the presence of objects in the image and determines their location with bounding boxes and spatial descriptions.\\n* **Multimodal Output:** The platform provides detailed audio descriptions of the detected objects and their locations. Haptic feedback is used to convey the spatial arrangement of objects through vibrations or tactile sensations. If the user has partial vision, the platform can provide a simplified visual representation of the detected objects and their locations on a screen.\\n\\n**Accessibility and Customization:**\\n\\nVisionAid is designed to be highly accessible, with adjustable settings for audio volume, haptic intensity, and visual contrast. Users can customize the output to suit their individual preferences and needs.\\n\\n**Additional Innovative Features:**\\n\\nTo enhance the user experience and address specific challenges faced by people with vision disabilities, VisionAid incorporates the following innovative features:\\n\\n* **Real-Time Object Detection:** The platform operates in real-time, providing continuous feedback about the user's surroundings as they move.\\n* **Scene Interpretation:** Advanced algorithms analyze the relationship between objects and provide contextual descriptions. For example, the platform can differentiate between a stove and a coffee maker.\\n* **Integration with Assistive Technology:** VisionAid can be integrated with other assistive technologies, such as screen readers and navigation apps, to enhance the user experience.\\n\\n**Potential Applications:**\\n\\nVisionAid has a wide range of potential applications, including:\\n\\n* **Navigation and Wayfinding:** The platform can assist users in navigating indoor and outdoor environments, providing directions and identifying obstacles.\\n* **Object Identification and Interaction:** Users can identify and interact with objects in their surroundings, such as appliances, furniture, and food items.\\n* **Social Interaction and Communication:** The platform can facilitate social interactions by providing descriptions of people and objects in the user's environment.\\n* **Education and Learning:** VisionAid can be used as an educational tool to help students with vision impairments learn about their surroundings and develop their spatial reasoning skills.\\n\\n**Impact on the Lives of People with Vision Disabilities:**\\n\\nVisionAid has the potential to transform the lives of people with vision disabilities by providing them with a greater sense of independence, safety, and confidence. By empowering them with essential information about their surroundings, the platform enables them to navigate the world more effectively and participate fully in society.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information and opportunities. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\n**By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**\", 'name': 'Product_manager', 'role': 'user'}], summary=\"**Technical Implementation:**\\n\\nThe technical implementation of VisionAid involves the following key components:\\n\\n* **Image Acquisition:** The platform utilizes a camera or other image acquisition device to capture images of the user's surroundings.\\n* **Image Preprocessing:** The captured image is preprocessed to optimize the performance of the computer vision model. This includes scaling, cropping, and enhancing the image for better recognition.\\n* **Object Detection and Localization:** The Gemini computer vision model is employed to analyze the preprocessed image. The model identifies the presence of objects in the image and determines their location with bounding boxes and spatial descriptions.\\n* **Multimodal Output:** The platform provides detailed audio descriptions of the detected objects and their locations. Haptic feedback is used to convey the spatial arrangement of objects through vibrations or tactile sensations. If the user has partial vision, the platform can provide a simplified visual representation of the detected objects and their locations on a screen.\\n\\n**Accessibility and Customization:**\\n\\nVisionAid is designed to be highly accessible, with adjustable settings for audio volume, haptic intensity, and visual contrast. Users can customize the output to suit their individual preferences and needs.\\n\\n**Additional Innovative Features:**\\n\\nTo enhance the user experience and address specific challenges faced by people with vision disabilities, VisionAid incorporates the following innovative features:\\n\\n* **Real-Time Object Detection:** The platform operates in real-time, providing continuous feedback about the user's surroundings as they move.\\n* **Scene Interpretation:** Advanced algorithms analyze the relationship between objects and provide contextual descriptions. For example, the platform can differentiate between a stove and a coffee maker.\\n* **Integration with Assistive Technology:** VisionAid can be integrated with other assistive technologies, such as screen readers and navigation apps, to enhance the user experience.\\n\\n**Potential Applications:**\\n\\nVisionAid has a wide range of potential applications, including:\\n\\n* **Navigation and Wayfinding:** The platform can assist users in navigating indoor and outdoor environments, providing directions and identifying obstacles.\\n* **Object Identification and Interaction:** Users can identify and interact with objects in their surroundings, such as appliances, furniture, and food items.\\n* **Social Interaction and Communication:** The platform can facilitate social interactions by providing descriptions of people and objects in the user's environment.\\n* **Education and Learning:** VisionAid can be used as an educational tool to help students with vision impairments learn about their surroundings and develop their spatial reasoning skills.\\n\\n**Impact on the Lives of People with Vision Disabilities:**\\n\\nVisionAid has the potential to transform the lives of people with vision disabilities by providing them with a greater sense of independence, safety, and confidence. By empowering them with essential information about their surroundings, the platform enables them to navigate the world more effectively and participate fully in society.\\n\\n**Long-Term Vision:**\\n\\nThe long-term vision for VisionAid is to create a world where people with vision disabilities have equal access to information and opportunities. The platform will continue to evolve and incorporate new technologies to provide users with the most comprehensive and innovative assistive experience possible.\\n\\n**By empowering individuals with vision impairments, VisionAid aims to foster a more inclusive and equitable society where everyone has the chance to reach their full potential.**\", cost={'usage_including_cached_inference': {'total_cost': 0.015432000000000001, 'gemini-pro': {'cost': 0.015432000000000001, 'prompt_tokens': 30744, 'completion_tokens': 40, 'total_tokens': 30784}}, 'usage_excluding_cached_inference': {'total_cost': 0}}, human_input=[])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "coder = AssistantAgent(\n", + " name=\"Coder\",\n", + " llm_config={\"config_list\": config_list_gemini, \"seed\": seed},\n", + " max_consecutive_auto_reply=10,\n", + " description=\"I am good at writing code\",\n", + ")\n", + "\n", + "pm = AssistantAgent(\n", + " name=\"Product_manager\",\n", + " system_message=\"Creative in software product ideas.\",\n", + " llm_config={\"config_list\": config_list_gemini, \"seed\": seed},\n", + " max_consecutive_auto_reply=10,\n", + " description=\"I am good at design products and software.\",\n", + ")\n", + "\n", + "user_proxy = UserProxyAgent(\n", + " name=\"User_proxy\",\n", + " code_execution_config={\"last_n_messages\": 20, \"work_dir\": \"coding\", \"use_docker\": False},\n", + " human_input_mode=\"NEVER\",\n", + " is_termination_msg=lambda x: content_str(x.get(\"content\")).find(\"TERMINATE\") >= 0,\n", + " description=\"I stands for user, and can run code.\",\n", + ")\n", + "\n", + "groupchat = autogen.GroupChat(agents=[user_proxy, coder, pm], messages=[], max_round=12)\n", + "manager = autogen.GroupChatManager(\n", + " groupchat=groupchat,\n", + " llm_config={\"config_list\": config_list_gemini, \"seed\": seed},\n", + " is_termination_msg=lambda x: content_str(x.get(\"content\")).find(\"TERMINATE\") >= 0,\n", + ")\n", + "user_proxy.initiate_chat(\n", + " manager,\n", + " message=\"\"\"Design and implement a multimodal product for people with vision disabilities.\n", + "The pipeline will take an image and run Gemini model to describe:\n", + "1. what objects are in the image, and\n", + "2. where these objects are located.\"\"\",\n", + ")" + ] + } + ], + "metadata": { + "front_matter": { + "description": "Using Gemini with AutoGen", + "tags": [ + "gemini" + ] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + }, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "2d910cfd2d2a4fc49fc30fbbdc5576a7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "454146d0f7224f038689031002906e6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e4ae2b6f5a974fd4bafb6abb9d12ff26", + "IPY_MODEL_577e1e3cc4db4942b0883577b3b52755", + "IPY_MODEL_b40bdfb1ac1d4cffb7cefcb870c64d45" + ], + "layout": "IPY_MODEL_dc83c7bff2f241309537a8119dfc7555", + "tabbable": null, + "tooltip": null + } + }, + "577e1e3cc4db4942b0883577b3b52755": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d910cfd2d2a4fc49fc30fbbdc5576a7", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_74a6ba0c3cbc4051be0a83e152fe1e62", + "tabbable": null, + "tooltip": null, + "value": 1 + } + }, + "6086462a12d54bafa59d3c4566f06cb2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74a6ba0c3cbc4051be0a83e152fe1e62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7d3f3d9e15894d05a4d188ff4f466554": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b40bdfb1ac1d4cffb7cefcb870c64d45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1355871cc6f4dd4b50d9df5af20e5c8", + "placeholder": "​", + "style": "IPY_MODEL_ca245376fd9f4354af6b2befe4af4466", + "tabbable": null, + "tooltip": null, + "value": " 1/1 [00:00<00:00, 44.69it/s]" + } + }, + "ca245376fd9f4354af6b2befe4af4466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc83c7bff2f241309537a8119dfc7555": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e4ae2b6f5a974fd4bafb6abb9d12ff26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6086462a12d54bafa59d3c4566f06cb2", + "placeholder": "​", + "style": "IPY_MODEL_7d3f3d9e15894d05a4d188ff4f466554", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f1355871cc6f4dd4b50d9df5af20e5c8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/website/docs/topics/prompting-and-reasoning/react.ipynb b/website/docs/topics/prompting-and-reasoning/react.ipynb index 1edfc6b14c5..08f30913348 100644 --- a/website/docs/topics/prompting-and-reasoning/react.ipynb +++ b/website/docs/topics/prompting-and-reasoning/react.ipynb @@ -11,32 +11,56 @@ "AutoGen supports different LLM prompting and reasoning strategies, such as ReAct, Reflection/Self-Critique, and more. This page demonstrates how to realize ReAct ([Yao et al., 2022](https://arxiv.org/abs/2210.03629)) with AutoGen. " ] }, + { + "cell_type": "markdown", + "id": "fd17dde9", + "metadata": {}, + "source": [ + "First make sure required packages are installed." + ] + }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "2b803c17", "metadata": {}, "outputs": [], "source": [ - "# %pip install \"pyautogen>=0.2.18\"" + "! pip install \"pyautogen>=0.2.18\" \"tavily-python\"" + ] + }, + { + "cell_type": "markdown", + "id": "ec9da098", + "metadata": {}, + "source": [ + "Import the relevant modules and configure the LLM.\n", + "See [LLM Configuration](/docs/topics/llm_configuration) for how to configure LLMs." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "dca301a4", "metadata": {}, "outputs": [], "source": [ - "from langchain.utilities.tavily_search import TavilySearchAPIWrapper\n", - "from langchain_community.tools.tavily_search import TavilySearchResults\n", + "import os\n", + "from typing import Annotated\n", "\n", - "import autogen\n", + "from tavily import TavilyClient\n", "\n", - "config_list = autogen.config_list_from_json(\n", - " \"OAI_CONFIG_LIST\",\n", - ")\n", - "%env TAVILY_API_KEY=\"YOUR_API_KEY\"" + "from autogen import AssistantAgent, UserProxyAgent, config_list_from_json, register_function\n", + "from autogen.agentchat.contrib.capabilities import teachability\n", + "from autogen.cache import Cache\n", + "from autogen.coding import DockerCommandLineCodeExecutor, LocalCommandLineCodeExecutor\n", + "\n", + "config_list = [\n", + " {\"model\": \"gpt-4\", \"api_key\": os.environ[\"OPENAI_API_KEY\"]},\n", + " {\"model\": \"gpt-3.5-turbo\", \"api_key\": os.environ[\"OPENAI_API_KEY\"]},\n", + "]\n", + "# You can also use the following method to load the config list from a file or environment variable.\n", + "# config_list = config_list_from_json(env_or_file=\"OAI_CONFIG_LIST\")" ] }, { @@ -47,45 +71,26 @@ "### Define and add tools/actions you want LLM agent(s) to use" ] }, + { + "cell_type": "markdown", + "id": "f1900855", + "metadata": {}, + "source": [ + "We use [Tavily](https://docs.tavily.com/docs/tavily-api/python-sdk) as a tool for searching the web." + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "5bdce8c0", "metadata": {}, "outputs": [], "source": [ - "search = TavilySearchAPIWrapper()\n", - "tavily_tool = TavilySearchResults(api_wrapper=search)\n", - "search_tool = TavilySearchResults()\n", - "\n", - "\n", - "def generate_llm_config(tool):\n", - " # Define the function schema based on the tool's args_schema\n", - " function_schema = {\n", - " \"name\": tool.name.lower().replace(\" \", \"_\"),\n", - " \"description\": tool.description,\n", - " \"parameters\": {\n", - " \"type\": \"object\",\n", - " \"properties\": {},\n", - " \"required\": [],\n", - " },\n", - " }\n", - "\n", - " if tool.args is not None:\n", - " function_schema[\"parameters\"][\"properties\"] = tool.args\n", + "tavily = TavilyClient(api_key=os.environ[\"TAVILY_API_KEY\"])\n", "\n", - " return function_schema\n", "\n", - "\n", - "# Construct the llm_config\n", - "llm_config = {\n", - " # Generate functions config for the Tool\n", - " \"functions\": [\n", - " generate_llm_config(search_tool),\n", - " ],\n", - " \"config_list\": config_list, # Assuming you have this defined elsewhere\n", - " \"timeout\": 120,\n", - "}" + "def search_tool(query: Annotated[str, \"The search query\"]) -> Annotated[str, \"The search results\"]:\n", + " return tavily.get_search_context(query=query, search_depth=\"advanced\")" ] }, { @@ -99,7 +104,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "6823ae2e", "metadata": {}, "outputs": [], @@ -140,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 7, "id": "d8d45113", "metadata": {}, "outputs": [ @@ -148,7 +153,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[33muser_proxy\u001b[0m (to Assistant):\n", + "\u001b[33mUser\u001b[0m (to Assistant):\n", "\n", "\n", "Answer the following questions as best you can. You have access to tools provided.\n", @@ -166,96 +171,87 @@ "\n", "Begin!\n", "Question: What is the result of super bowl 2024?\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mAssistant\u001b[0m (to user_proxy):\n", "\n", - "Thought: I need to find the most current information on the result of the Super Bowl 2024.\n", - "Action: Use the search tool provided to find the result.\n", - "Action Input: query = \"Super Bowl 2024 result\"\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mAssistant\u001b[0m (to User):\n", "\n", - "\u001b[32m***** Suggested function Call: tavily_search_results_json *****\u001b[0m\n", + "Thought: I don't have this information readily available. I will use the search tool to look it up.\n", + "Action: Use the search_tool from the provided functions to search for the result of the Super Bowl 2024.\n", + "Action Input: { \"query\": \"Super Bowl 2024 result\" }\n", + "\u001b[32m***** Suggested tool Call (call_xZ30S6DmmTrIJKUziSAqpkSn): search_tool *****\u001b[0m\n", "Arguments: \n", - "{\"query\":\"Super Bowl 2024 result\"}\n", - "\u001b[32m***************************************************************\u001b[0m\n", "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[35m\n", - ">>>>>>>> EXECUTING FUNCTION tavily_search_results_json...\u001b[0m\n", - "\u001b[33muser_proxy\u001b[0m (to Assistant):\n", - "\n", - "\u001b[32m***** Response from calling function \"tavily_search_results_json\" *****\u001b[0m\n", - "[{'url': 'https://www.sportingnews.com/us/nfl/news/super-bowl-2024-live-score-49ers-chiefs-results-highlights/0c440aa7145b809ed174d8ff', 'content': 'Super Bowl start time\\nSuper Bowl 58 between the Chiefs and 49ers is set to kick off at 6:30 p.m. ET (3:30 p.m. local time) in Las Vegas, Nev.\\n6:30 p.m. ET has become the standard start time for Super Bowls and is preceded by performances of \"Lift Every Voice and Sing,\" \"America the Beautiful,\" and \"The Star-Spangled Banner. Brock Purdy drops a dime to Chris Conley on 3rd & 9 🎯\\n📺: #SBLVIII on CBS\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/Oa10d7khdl\\n7:10 p.m. — The 49ers are relying heavily on McCaffrey, who takes the ball on each of the first three snaps on this drive. 📺: #SBLVIII on CBS\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/yUc00MtP84\\n7:24 p.m. — The 49ers force a 3rd & 1, but Rashee Rice is easily able to pick up the first and one or two more yards.\\n49ers 3, Chiefs 0\\n7:19 p.m. MORE SUPER BOWL 58:\\n•\\xa0 Inside Taylor Swift and Travis Kelce\\'s whirlwind dating timeline\\n•. Ranking the thriving Mike and Kyle Shanahan coaching tree\\n•. Tracking every Super Bowl 58 commercial\\nWhat channel is the Super Bowl on?\\nSuper Bowl 58 will be broadcast nationally on CBS. PURDY TO JENNINGS TO CMC FOR SIX 🔥\\n📺: #SBLVIII on CBS\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/ktiTXIiHzS\\n7:47 p.m. — L\\'Jarius Sneed, who was on the other side of this two weeks ago, gets hit with an unsportsmanlike conduct penalty and and gives the 49ers their 11th first down.'}, {'url': 'https://www.cbssports.com/nfl/news/2024-super-bowl-chiefs-vs-49ers-score-patrick-mahomes-leads-ot-comeback-as-k-c-wins-back-to-back-titles/live/', 'content': \"The championship-winning drive, which included a fourth-and-1 scramble from Mahomes and a clutch 7-yard catch from tight end Travis Kelce, was a must-score for K.C. The NFL's new playoff overtime rules -- both teams are guaranteed at least one possession in the extra period -- were in effect for the first time, and the Chiefs needed to answer the Niners' field goal.\\n Held out of the end zone until that point, Kansas City grabbed its first lead of the game at 13-10.\\nJennings' touchdown receiving (followed by a missed extra point) concluded a 75-yard drive that put the Niners back on top, 16-13, as the wideout joined former Philadelphia Eagles quarterback Nick Foles as the only players to throw and catch a touchdown in a Super Bowl.\\n He spread the ball around -- eight pass-catchers had at least two receptions -- slowly but surely overcoming a threatening 49ers defense that knocked him off his spot consistently in the first half.\\nMahomes, with his third Super Bowl MVP, now sits alongside Tom Brady (five) and Joe Montana (three) atop the mountain while becoming just the third player to win the award back-to-back, joining Bart Starr (I-II) and Terry Bradshaw (XIII-XIV).\\n The muffed punt that bounced off of cornerback Darrell Luter Jr.'s ankle was also the big break that the Chiefs needed as they scored on the very next play to take the lead for the first time in the game. College Pick'em\\nA Daily SportsLine Betting Podcast\\nNFL Playoff Time!\\n2024 Super Bowl, Chiefs vs. 49ers score: Patrick Mahomes leads OT comeback as K.C. wins back-to-back titles\\nCall it a dynasty; the Chiefs are the first team to win consecutive Super Bowls since 2003-04\\nThe Kansas City Chiefs are Super Bowl champions, again.\"}, {'url': 'https://www.espn.com/nfl/story/_/id/39480722/49ers-chiefs-live-super-bowl-lviii-updates-moments-highlights', 'content': \"With a relentless defense and opportune plays by their star quarterback -- including a pair of gutsy overtime scrambles -- the Chiefs won their third Super Bowl in five years in a 25-22 overtime victory against the San Francisco 49ers in only the second overtime game in Super Bowl history.\\n Staff\\nTaylor Swift supports Travis Kelce, chugs drink at Super Bowl LVIII10hTory Barron\\nAfter posting a losing record in December, the Chiefs embraced an underdog, villain mentality throughout the postseason, upsetting three teams en route to their second consecutive Super Bowl title, becoming the ninth team to repeat as Super Bowl champions and first since the 2004 New England Patriots.\\n ESPN\\nSuper Bowl 2024 - Highlights from Chiefs' win vs. 49ers\\nMike Tannenbaum and Tim Hasselbeck react to the Chiefs' thrilling overtime victory over the 49ers in the Super Bowl. The 49ers had the ball with 2:51 to go in a tied game, but a signature Steve Spagnuolo blitz on third down late in the fourth quarter forced a 49ers field goal. Led by their captains, most of the Chiefs arrived to Allegiant Stadium in Las Vegas on Sunday in all black, signaling a steely resolve to upset Brock Purdy and the NFC's best offensive ensemble.\\n\"}, {'url': 'https://www.nbcnews.com/news/sports/live-blog/super-bowl-chiefs-49ers-score-live-updates-rcna136833', 'content': \"Profile\\nSections\\ntv\\nFeatured\\nMore From NBC\\nFollow NBC News\\nnews Alerts\\nThere are no new alerts at this time\\nSuper Bowl LVIII\\nSuper Bowl 2024 live updates: 49ers vs. Chiefs how to watch, kickoff time, pregame, Taylor Swift arrival\\nEverything you need to know about Super Bowl 58:\\nJason Abbruzzese\\nAnd we're under way. “Despite the 12-hour flight and 17-hour time difference, the Embassy can confidently Speak Now to say that if she departs Tokyo in the evening after her concert, she should comfortably arrive in Las Vegas before the Super Bowl begins.”\\nNBC News\\nFootball fans across the country were celebrating after they were surprised with tickets to the Super Bowl in Las Vegas. Mahomes warms up\\nNBC News\\nICYMI: A person tried to climb the Vegas Sphere (and got arrested)\\nSaba Hamedy\\nLas Vegas police confirmed last Wednesday that a man was arrested after he climbed a structure on the 200 block of Sands Avenue, where the Sphere is located.\\n President Biden is skipping a Super Bowl interview\\nMonica Alba\\nJonathan Allen\\nFor the second year in a row, President Joe Biden is passing on the opportunity to sit down for a Super Bowl interview that could reach millions of Americans on Sunday — a move his advisers say is part of their larger communication strategy.\\n Can the Niners tie the Patriots and Steelers?\\nClaire Cardona\\nAllan Smith\\nThe Kansas City Chiefs, the reigning Super Bowl champs, could go two in a row if they beat the San Francisco 49ers.\\n\"}, {'url': 'https://apnews.com/live/super-bowl-2024-updates', 'content': 'Throw in the fact that Chiefs coach Andy Reid will be in his fifth Super Bowl, the third most in NFL history, and has a chance to win a third ring, and the knowledge on the Kansas City sideline will be an advantage too big for the 49ers to overcome.\\n She performed in Japan on Saturday night before a flight across nine time zones and the international date line to reach the U.S.\\nRihanna performs during halftime of the NFL Super Bowl 57 football game between the Philadelphia Eagles and the Kansas City Chiefs, Sunday, Feb. 12, 2023, in Glendale, Ariz. (AP Photo/David J. Phillip)\\n After the teams take the field, Post Malone will perform “America the Beautiful” and Reba McEntire will sing “The Star-Spangled Banner.”\\nSan Francisco 49ers quarterback Brock Purdy (13) warms up before the NFL Super Bowl 58 football game against the Kansas City Chiefs, Sunday, Feb. 11, 2024, in Las Vegas. He was also the referee when the Chiefs beat the 49ers in the Super Bowl four years ago — and when the Rams beat the Saints in the 2019 NFC championship game after an infamous missed call.\\n Purdy’s comeback from the injury to his throwing arm suffered in last season’s NFC championship loss to the Philadelphia Eagles has been part of the storybook start to his career that started as Mr. Irrelevant as the 262nd pick in the 2022 draft.\\n'}]\n", - "\u001b[32m***********************************************************************\u001b[0m\n", + "{\n", + "\"query\": \"Super Bowl 2024 result\"\n", + "}\n", + "\u001b[32m****************************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33mAssistant\u001b[0m (to user_proxy):\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION search_tool...\u001b[0m\n", + "\u001b[33mUser\u001b[0m (to Assistant):\n", "\n", - "Thought: The information provided indicates that the Kansas City Chiefs won Super Bowl 2024 against the San Francisco 49ers with a score of 25-22 in overtime, led by Patrick Mahomes, who earned his third Super Bowl MVP.\n", + "\u001b[33mUser\u001b[0m (to Assistant):\n", "\n", - "Final Answer: The Kansas City Chiefs won Super Bowl 2024 against the San Francisco 49ers with a final score of 25-22 in overtime.\n", + "\u001b[32m***** Response from calling tool \"call_xZ30S6DmmTrIJKUziSAqpkSn\" *****\u001b[0m\n", + "\"[\\\"{\\\\\\\"url\\\\\\\": \\\\\\\"https://www.cbsnews.com/live-updates/super-bowl-2024-chiefs-49ers-game-coverage/\\\\\\\", \\\\\\\"content\\\\\\\": \\\\\\\"\\\\\\\\\\\\\\\"\\\\\\\\nThe Chiefs reached the Super Bowl the hard way, with back-to-back road playoff wins against the Buffalo Bills in the divisional round and then the Ravens in the conference championship \\\\\\\\u2014 the first time in his career Mahomes has been forced to play road playoff games.\\\\\\\\n Watch CBS News\\\\\\\\nSuper Bowl 2024 live updates as Chiefs and 49ers prepare for today's show down\\\\\\\\nBy Faris Tanyos, Aliza Chasan, Joe Ruiz, Gina Martinez, S. Dev\\\\\\\\nUpdated on:\\\\\\\\nFebruary 11, 2024 / 6:37 PM EST\\\\\\\\n/ CBS News\\\\\\\\nThe Kansas City Chiefs will look to become the first back-to-back Super Bowl champion in two decades when they take on the San Francisco 49ers today in Las Vegas.\\\\\\\\n What to know about San Francisco 49ers quarterback Brock Purdy\\\\\\\\nOne of the most improbable stories of Super Bowl LVIII is that of San Francisco 49ers quarterback Brock Purdy, who has gone from being \\\\\\\\\\\\\\\"Mr. Irrelevant,\\\\\\\\\\\\\\\" as the final pick of the 2022 NFL Draft, to a bonafide star, leading his team to the cusp of an NFL title in less than two years.\\\\\\\\n The 24-year-old, who set records at Iowa State after receiving Player of the Year honors at Perry High School in Gilbert, Arizona, is attempting to become the third quarterback after Joe Montana and Steve Young to lead the 49ers to a Super Bowl victory, and the franchise's sixth Lombardi Trophy.\\\\\\\\n \\\\\\\\\\\\\\\"The more technologically savvy we become: look around the stadium, the scoreboards, the lighting, you know, all of the different technology that makes this a spectacular game, these are all increases in the attack surface that people can target,\\\\\\\\\\\\\\\" said Cathy Lanier, the NFL's chief security officer.\\\\\\\\n\\\\\\\"}\\\", \\\"{\\\\\\\"url\\\\\\\": \\\\\\\"https://www.cbssports.com/nfl/news/2024-super-bowl-chiefs-vs-49ers-score-patrick-mahomes-leads-ot-comeback-as-k-c-wins-back-to-back-titles/live/\\\\\\\", \\\\\\\"content\\\\\\\": \\\\\\\"The championship-winning drive, which included a fourth-and-1 scramble from Mahomes and a clutch 7-yard catch from tight end Travis Kelce, was a must-score for K.C. The NFL's new playoff overtime rules -- both teams are guaranteed at least one possession in the extra period -- were in effect for the first time, and the Chiefs needed to answer the Niners' field goal.\\\\\\\\n Held out of the end zone until that point, Kansas City grabbed its first lead of the game at 13-10.\\\\\\\\nJennings' touchdown receiving (followed by a missed extra point) concluded a 75-yard drive that put the Niners back on top, 16-13, as the wideout joined former Philadelphia Eagles quarterback Nick Foles as the only players to throw and catch a touchdown in a Super Bowl.\\\\\\\\n He spread the ball around -- eight pass-catchers had at least two receptions -- slowly but surely overcoming a threatening 49ers defense that knocked him off his spot consistently in the first half.\\\\\\\\nMahomes, with his third Super Bowl MVP, now sits alongside Tom Brady (five) and Joe Montana (three) atop the mountain while becoming just the third player to win the award back-to-back, joining Bart Starr (I-II) and Terry Bradshaw (XIII-XIV).\\\\\\\\n The muffed punt that bounced off of cornerback Darrell Luter Jr.'s ankle was also the big break that the Chiefs needed as they scored on the very next play to take the lead for the first time in the game. College Pick'em\\\\\\\\nA Daily SportsLine Betting Podcast\\\\\\\\nNFL Playoff Time!\\\\\\\\n2024 Super Bowl, Chiefs vs. 49ers score: Patrick Mahomes leads OT comeback as K.C. wins back-to-back titles\\\\\\\\nCall it a dynasty; the Chiefs are the first team to win consecutive Super Bowls since 2003-04\\\\\\\\nThe Kansas City Chiefs are Super Bowl champions, again.\\\\\\\"}\\\", \\\"{\\\\\\\"url\\\\\\\": \\\\\\\"https://www.espn.com/nfl/story/_/id/39480722/49ers-chiefs-live-super-bowl-lviii-updates-moments-highlights\\\\\\\", \\\\\\\"content\\\\\\\": \\\\\\\"With a relentless defense and opportune plays by their star quarterback -- including a pair of gutsy overtime scrambles -- the Chiefs won their third Super Bowl in five years in a 25-22 overtime victory against the San Francisco 49ers in only the second overtime game in Super Bowl history.\\\\\\\\n Staff\\\\\\\\nTaylor Swift supports Travis Kelce, chugs drink at Super Bowl LVIII10hTory Barron\\\\\\\\nAfter posting a losing record in December, the Chiefs embraced an underdog, villain mentality throughout the postseason, upsetting three teams en route to their second consecutive Super Bowl title, becoming the ninth team to repeat as Super Bowl champions and first since the 2004 New England Patriots.\\\\\\\\n ESPN\\\\\\\\nSuper Bowl 2024 - Highlights from Chiefs' win vs. 49ers\\\\\\\\nMike Tannenbaum and Tim Hasselbeck react to the Chiefs' thrilling overtime victory over the 49ers in the Super Bowl. The 49ers had the ball with 2:51 to go in a tied game, but a signature Steve Spagnuolo blitz on third down late in the fourth quarter forced a 49ers field goal. Led by their captains, most of the Chiefs arrived to Allegiant Stadium in Las Vegas on Sunday in all black, signaling a steely resolve to upset Brock Purdy and the NFC's best offensive ensemble.\\\\\\\\n\\\\\\\"}\\\", \\\"{\\\\\\\"url\\\\\\\": \\\\\\\"https://www.sportingnews.com/us/nfl/news/super-bowl-2024-live-score-49ers-chiefs-results-highlights/0c440aa7145b809ed174d8ff\\\\\\\", \\\\\\\"content\\\\\\\": \\\\\\\"Super Bowl start time\\\\\\\\nSuper Bowl 58 between the Chiefs and 49ers is set to kick off at 6:30 p.m. ET (3:30 p.m. local time) in Las Vegas, Nev.\\\\\\\\n6:30 p.m. ET has become the standard start time for Super Bowls and is preceded by performances of \\\\\\\\\\\\\\\"Lift Every Voice and Sing,\\\\\\\\\\\\\\\" \\\\\\\\\\\\\\\"America the Beautiful,\\\\\\\\\\\\\\\" and \\\\\\\\\\\\\\\"The Star-Spangled Banner. Brock Purdy drops a dime to Chris Conley on 3rd & 9 \\\\\\\\ud83c\\\\\\\\udfaf\\\\\\\\n\\\\\\\\ud83d\\\\\\\\udcfa: #SBLVIII on CBS\\\\\\\\n\\\\\\\\ud83d\\\\\\\\udcf1: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/Oa10d7khdl\\\\\\\\n7:10 p.m. \\\\\\\\u2014 The 49ers are relying heavily on McCaffrey, who takes the ball on each of the first three snaps on this drive. \\\\\\\\ud83d\\\\\\\\udcfa: #SBLVIII on CBS\\\\\\\\n\\\\\\\\ud83d\\\\\\\\udcf1: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/yUc00MtP84\\\\\\\\n7:24 p.m. \\\\\\\\u2014 The 49ers force a 3rd & 1, but Rashee Rice is easily able to pick up the first and one or two more yards.\\\\\\\\n49ers 3, Chiefs 0\\\\\\\\n7:19 p.m. MORE SUPER BOWL 58:\\\\\\\\n\\\\\\\\u2022\\\\\\\\u00a0 Inside Taylor Swift and Travis Kelce's whirlwind dating timeline\\\\\\\\n\\\\\\\\u2022. Ranking the thriving Mike and Kyle Shanahan coaching tree\\\\\\\\n\\\\\\\\u2022. Tracking every Super Bowl 58 commercial\\\\\\\\nWhat channel is the Super Bowl on?\\\\\\\\nSuper Bowl 58 will be broadcast nationally on CBS. PURDY TO JENNINGS TO CMC FOR SIX \\\\\\\\ud83d\\\\\\\\udd25\\\\\\\\n\\\\\\\\ud83d\\\\\\\\udcfa: #SBLVIII on CBS\\\\\\\\n\\\\\\\\ud83d\\\\\\\\udcf1: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/ktiTXIiHzS\\\\\\\\n7:47 p.m. \\\\\\\\u2014 L'Jarius Sneed, who was on the other side of this two weeks ago, gets hit with an unsportsmanlike conduct penalty and and gives the 49ers their 11th first down.\\\\\\\"}\\\", \\\"{\\\\\\\"url\\\\\\\": \\\\\\\"https://apnews.com/live/super-bowl-2024-updates\\\\\\\", \\\\\\\"content\\\\\\\": \\\\\\\"Throw in the fact that Chiefs coach Andy Reid will be in his fifth Super Bowl, the third most in NFL history, and has a chance to win a third ring, and the knowledge on the Kansas City sideline will be an advantage too big for the 49ers to overcome.\\\\\\\\n She performed in Japan on Saturday night before a flight across nine time zones and the international date line to reach the U.S.\\\\\\\\nRihanna performs during halftime of the NFL Super Bowl 57 football game between the Philadelphia Eagles and the Kansas City Chiefs, Sunday, Feb. 12, 2023, in Glendale, Ariz. (AP Photo/David J. Phillip)\\\\\\\\n After the teams take the field, Post Malone will perform \\\\\\\\u201cAmerica the Beautiful\\\\\\\\u201d and Reba McEntire will sing \\\\\\\\u201cThe Star-Spangled Banner.\\\\\\\\u201d\\\\\\\\nSan Francisco 49ers quarterback Brock Purdy (13) warms up before the NFL Super Bowl 58 football game against the Kansas City Chiefs, Sunday, Feb. 11, 2024, in Las Vegas. He was also the referee when the Chiefs beat the 49ers in the Super Bowl four years ago \\\\\\\\u2014 and when the Rams beat the Saints in the 2019 NFC championship game after an infamous missed call.\\\\\\\\n Purdy\\\\\\\\u2019s comeback from the injury to his throwing arm suffered in last season\\\\\\\\u2019s NFC championship loss to the Philadelphia Eagles has been part of the storybook start to his career that started as Mr. Irrelevant as the 262nd pick in the 2022 draft.\\\\\\\\n\\\\\\\"}\\\"]\"\n", + "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33muser_proxy\u001b[0m (to Assistant):\n", - "\n", + "\u001b[33mAssistant\u001b[0m (to User):\n", "\n", + "Observation: According to the search results, The Kansas City Chiefs won the Super Bowl 2024 against the San Francisco 49ers with a score of 25-22 in an overtime victory. This victory made the Chiefs the first team to win consecutive Super Bowls since 2003-04.\n", "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mAssistant\u001b[0m (to user_proxy):\n", - "\n", - "TERMINATE\n", + "Thought: I now know the final result of Super Bowl 2024.\n", + "Final Answer: The Kansas City Chiefs won the Super Bowl 2024 against the San Francisco 49ers in an overtime victory with a score of 25-22.\n", "\n", "--------------------------------------------------------------------------------\n" ] - }, - { - "data": { - "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': '\\nAnswer the following questions as best you can. You have access to tools provided.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this process can repeat multiple times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\nQuestion: What is the result of super bowl 2024?\\n', 'role': 'assistant'}, {'content': 'Thought: I need to find the most current information on the result of the Super Bowl 2024.\\nAction: Use the search tool provided to find the result.\\nAction Input: query = \"Super Bowl 2024 result\"\\n', 'function_call': {'arguments': '{\"query\":\"Super Bowl 2024 result\"}', 'name': 'tavily_search_results_json'}, 'role': 'assistant'}, {'content': '[{\\'url\\': \\'https://www.sportingnews.com/us/nfl/news/super-bowl-2024-live-score-49ers-chiefs-results-highlights/0c440aa7145b809ed174d8ff\\', \\'content\\': \\'Super Bowl start time\\\\nSuper Bowl 58 between the Chiefs and 49ers is set to kick off at 6:30 p.m. ET (3:30 p.m. local time) in Las Vegas, Nev.\\\\n6:30 p.m. ET has become the standard start time for Super Bowls and is preceded by performances of \"Lift Every Voice and Sing,\" \"America the Beautiful,\" and \"The Star-Spangled Banner. Brock Purdy drops a dime to Chris Conley on 3rd & 9 🎯\\\\n📺: #SBLVIII on CBS\\\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/Oa10d7khdl\\\\n7:10 p.m. — The 49ers are relying heavily on McCaffrey, who takes the ball on each of the first three snaps on this drive. 📺: #SBLVIII on CBS\\\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/yUc00MtP84\\\\n7:24 p.m. — The 49ers force a 3rd & 1, but Rashee Rice is easily able to pick up the first and one or two more yards.\\\\n49ers 3, Chiefs 0\\\\n7:19 p.m. MORE SUPER BOWL 58:\\\\n•\\\\xa0 Inside Taylor Swift and Travis Kelce\\\\\\'s whirlwind dating timeline\\\\n•. Ranking the thriving Mike and Kyle Shanahan coaching tree\\\\n•. Tracking every Super Bowl 58 commercial\\\\nWhat channel is the Super Bowl on?\\\\nSuper Bowl 58 will be broadcast nationally on CBS. PURDY TO JENNINGS TO CMC FOR SIX 🔥\\\\n📺: #SBLVIII on CBS\\\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/ktiTXIiHzS\\\\n7:47 p.m. — L\\\\\\'Jarius Sneed, who was on the other side of this two weeks ago, gets hit with an unsportsmanlike conduct penalty and and gives the 49ers their 11th first down.\\'}, {\\'url\\': \\'https://www.cbssports.com/nfl/news/2024-super-bowl-chiefs-vs-49ers-score-patrick-mahomes-leads-ot-comeback-as-k-c-wins-back-to-back-titles/live/\\', \\'content\\': \"The championship-winning drive, which included a fourth-and-1 scramble from Mahomes and a clutch 7-yard catch from tight end Travis Kelce, was a must-score for K.C. The NFL\\'s new playoff overtime rules -- both teams are guaranteed at least one possession in the extra period -- were in effect for the first time, and the Chiefs needed to answer the Niners\\' field goal.\\\\n Held out of the end zone until that point, Kansas City grabbed its first lead of the game at 13-10.\\\\nJennings\\' touchdown receiving (followed by a missed extra point) concluded a 75-yard drive that put the Niners back on top, 16-13, as the wideout joined former Philadelphia Eagles quarterback Nick Foles as the only players to throw and catch a touchdown in a Super Bowl.\\\\n He spread the ball around -- eight pass-catchers had at least two receptions -- slowly but surely overcoming a threatening 49ers defense that knocked him off his spot consistently in the first half.\\\\nMahomes, with his third Super Bowl MVP, now sits alongside Tom Brady (five) and Joe Montana (three) atop the mountain while becoming just the third player to win the award back-to-back, joining Bart Starr (I-II) and Terry Bradshaw (XIII-XIV).\\\\n The muffed punt that bounced off of cornerback Darrell Luter Jr.\\'s ankle was also the big break that the Chiefs needed as they scored on the very next play to take the lead for the first time in the game. College Pick\\'em\\\\nA Daily SportsLine Betting Podcast\\\\nNFL Playoff Time!\\\\n2024 Super Bowl, Chiefs vs. 49ers score: Patrick Mahomes leads OT comeback as K.C. wins back-to-back titles\\\\nCall it a dynasty; the Chiefs are the first team to win consecutive Super Bowls since 2003-04\\\\nThe Kansas City Chiefs are Super Bowl champions, again.\"}, {\\'url\\': \\'https://www.espn.com/nfl/story/_/id/39480722/49ers-chiefs-live-super-bowl-lviii-updates-moments-highlights\\', \\'content\\': \"With a relentless defense and opportune plays by their star quarterback -- including a pair of gutsy overtime scrambles -- the Chiefs won their third Super Bowl in five years in a 25-22 overtime victory against the San Francisco 49ers in only the second overtime game in Super Bowl history.\\\\n Staff\\\\nTaylor Swift supports Travis Kelce, chugs drink at Super Bowl LVIII10hTory Barron\\\\nAfter posting a losing record in December, the Chiefs embraced an underdog, villain mentality throughout the postseason, upsetting three teams en route to their second consecutive Super Bowl title, becoming the ninth team to repeat as Super Bowl champions and first since the 2004 New England Patriots.\\\\n ESPN\\\\nSuper Bowl 2024 - Highlights from Chiefs\\' win vs. 49ers\\\\nMike Tannenbaum and Tim Hasselbeck react to the Chiefs\\' thrilling overtime victory over the 49ers in the Super Bowl. The 49ers had the ball with 2:51 to go in a tied game, but a signature Steve Spagnuolo blitz on third down late in the fourth quarter forced a 49ers field goal. Led by their captains, most of the Chiefs arrived to Allegiant Stadium in Las Vegas on Sunday in all black, signaling a steely resolve to upset Brock Purdy and the NFC\\'s best offensive ensemble.\\\\n\"}, {\\'url\\': \\'https://www.nbcnews.com/news/sports/live-blog/super-bowl-chiefs-49ers-score-live-updates-rcna136833\\', \\'content\\': \"Profile\\\\nSections\\\\ntv\\\\nFeatured\\\\nMore From NBC\\\\nFollow NBC News\\\\nnews Alerts\\\\nThere are no new alerts at this time\\\\nSuper Bowl LVIII\\\\nSuper Bowl 2024 live updates: 49ers vs. Chiefs how to watch, kickoff time, pregame, Taylor Swift arrival\\\\nEverything you need to know about Super Bowl 58:\\\\nJason Abbruzzese\\\\nAnd we\\'re under way. “Despite the 12-hour flight and 17-hour time difference, the Embassy can confidently Speak Now to say that if she departs Tokyo in the evening after her concert, she should comfortably arrive in Las Vegas before the Super Bowl begins.”\\\\nNBC News\\\\nFootball fans across the country were celebrating after they were surprised with tickets to the Super Bowl in Las Vegas. Mahomes warms up\\\\nNBC News\\\\nICYMI: A person tried to climb the Vegas Sphere (and got arrested)\\\\nSaba Hamedy\\\\nLas Vegas police confirmed last Wednesday that a man was arrested after he climbed a structure on the 200 block of Sands Avenue, where the Sphere is located.\\\\n President Biden is skipping a Super Bowl interview\\\\nMonica Alba\\\\nJonathan Allen\\\\nFor the second year in a row, President Joe Biden is passing on the opportunity to sit down for a Super Bowl interview that could reach millions of Americans on Sunday — a move his advisers say is part of their larger communication strategy.\\\\n Can the Niners tie the Patriots and Steelers?\\\\nClaire Cardona\\\\nAllan Smith\\\\nThe Kansas City Chiefs, the reigning Super Bowl champs, could go two in a row if they beat the San Francisco 49ers.\\\\n\"}, {\\'url\\': \\'https://apnews.com/live/super-bowl-2024-updates\\', \\'content\\': \\'Throw in the fact that Chiefs coach Andy Reid will be in his fifth Super Bowl, the third most in NFL history, and has a chance to win a third ring, and the knowledge on the Kansas City sideline will be an advantage too big for the 49ers to overcome.\\\\n She performed in Japan on Saturday night before a flight across nine time zones and the international date line to reach the U.S.\\\\nRihanna performs during halftime of the NFL Super Bowl 57 football game between the Philadelphia Eagles and the Kansas City Chiefs, Sunday, Feb. 12, 2023, in Glendale, Ariz. (AP Photo/David J. Phillip)\\\\n After the teams take the field, Post Malone will perform “America the Beautiful” and Reba McEntire will sing “The Star-Spangled Banner.”\\\\nSan Francisco 49ers quarterback Brock Purdy (13) warms up before the NFL Super Bowl 58 football game against the Kansas City Chiefs, Sunday, Feb. 11, 2024, in Las Vegas. He was also the referee when the Chiefs beat the 49ers in the Super Bowl four years ago — and when the Rams beat the Saints in the 2019 NFC championship game after an infamous missed call.\\\\n Purdy’s comeback from the injury to his throwing arm suffered in last season’s NFC championship loss to the Philadelphia Eagles has been part of the storybook start to his career that started as Mr. Irrelevant as the 262nd pick in the 2022 draft.\\\\n\\'}]', 'name': 'tavily_search_results_json', 'role': 'function'}, {'content': 'Thought: The information provided indicates that the Kansas City Chiefs won Super Bowl 2024 against the San Francisco 49ers with a score of 25-22 in overtime, led by Patrick Mahomes, who earned his third Super Bowl MVP.\\n\\nFinal Answer: The Kansas City Chiefs won Super Bowl 2024 against the San Francisco 49ers with a final score of 25-22 in overtime.', 'role': 'user'}, {'content': '', 'role': 'assistant'}, {'content': 'TERMINATE', 'role': 'user'}], summary='', cost=({'total_cost': 0.15722999999999998, 'gpt-4': {'cost': 0.15722999999999998, 'prompt_tokens': 4929, 'completion_tokens': 156, 'total_tokens': 5085}}, {'total_cost': 0.14655, 'gpt-4': {'cost': 0.14655, 'prompt_tokens': 4713, 'completion_tokens': 86, 'total_tokens': 4799}}), human_input=[])" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ - "user_proxy = autogen.UserProxyAgent(\n", - " name=\"user_proxy\",\n", + "# Setting up code executor.\n", + "os.makedirs(\"coding\", exist_ok=True)\n", + "# Use docker executor for running code in a container if you have docker installed.\n", + "# code_executor = DockerCommandLineCodeExecutor(work_dir=\"coding\")\n", + "code_executor = LocalCommandLineCodeExecutor(work_dir=\"coding\")\n", + "\n", + "user_proxy = UserProxyAgent(\n", + " name=\"User\",\n", " is_termination_msg=lambda x: x.get(\"content\", \"\") and x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\"),\n", - " human_input_mode=\"NEVER\",\n", + " human_input_mode=\"ALWAYS\",\n", " max_consecutive_auto_reply=10,\n", - " code_execution_config={\n", - " # \"work_dir\": \"coding\",\n", - " \"use_docker\": False,\n", - " }, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.\n", + " code_execution_config={\"executor\": code_executor},\n", ")\n", "\n", - "# Register the tool and start the conversation\n", - "user_proxy.register_function(\n", - " function_map={\n", - " search_tool.name: search_tool._run,\n", - " }\n", - ")\n", - "\n", - "assistant = autogen.AssistantAgent(\n", + "assistant = AssistantAgent(\n", " name=\"Assistant\",\n", " system_message=\"Only use the tools you have been provided with. Reply TERMINATE when the task is done.\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", + ")\n", + "\n", + "# Register the search tool.\n", + "register_function(\n", + " search_tool,\n", + " caller=assistant,\n", + " executor=user_proxy,\n", + " name=\"search_tool\",\n", + " description=\"Search the web for the given query\",\n", ")\n", "\n", - "user_proxy.initiate_chat(\n", - " assistant,\n", - " message=react_prompt_message,\n", - " question=\"What is the result of super bowl 2024?\",\n", - ")" + "# Cache LLM responses. To get different responses, change the cache_seed value.\n", + "with Cache.disk(cache_seed=43) as cache:\n", + " user_proxy.initiate_chat(\n", + " assistant,\n", + " message=react_prompt_message,\n", + " question=\"What is the result of super bowl 2024?\",\n", + " cache=cache,\n", + " )" ] }, { @@ -268,7 +264,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 8, "id": "23d47514", "metadata": {}, "outputs": [ @@ -278,7 +274,7 @@ "text": [ "\u001b[92m\n", "CLEARING MEMORY\u001b[0m\n", - "\u001b[33muser_proxy\u001b[0m (to Assistant):\n", + "\u001b[33mUser\u001b[0m (to Assistant):\n", "\n", "\n", "Answer the following questions as best you can. You have access to tools provided.\n", @@ -299,73 +295,46 @@ "\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33mAssistant\u001b[0m (to user_proxy):\n", + "\u001b[33mAssistant\u001b[0m (to User):\n", "\n", - "Thought: To find the result of Super Bowl 2024, I need to search for the most recent information available since the event is in the future as of my knowledge cutoff, and the result would only be known after the event takes place.\n", - "\n", - "Action: Use the provided search function to find the result of Super Bowl 2024.\n", - "Action Input: { query: \"Super Bowl 2024 result\" }\n", - "\u001b[32m***** Suggested function Call: tavily_search_results_json *****\u001b[0m\n", + "Thought: I need to search for the result of Super Bowl 2024.\n", + "Action: Use the search_tool to find the result of Super Bowl 2024.\n", + "Action Input: {\"query\": \"Super Bowl 2024 result\"}\n", + "\u001b[32m***** Suggested tool Call (call_zIK7cS9Gluug8D7O9fpEUfwT): search_tool *****\u001b[0m\n", "Arguments: \n", - "{\"query\":\"Super Bowl 2024 result\"}\n", - "\u001b[32m***************************************************************\u001b[0m\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[35m\n", - ">>>>>>>> EXECUTING FUNCTION tavily_search_results_json...\u001b[0m\n", - "\u001b[33muser_proxy\u001b[0m (to Assistant):\n", - "\n", - "\u001b[32m***** Response from calling function \"tavily_search_results_json\" *****\u001b[0m\n", - "[{'url': 'https://www.espn.com/nfl/story/_/id/39480722/49ers-chiefs-live-super-bowl-lviii-updates-moments-highlights', 'content': \"With a relentless defense and opportune plays by their star quarterback -- including a pair of gutsy overtime scrambles -- the Chiefs won their third Super Bowl in five years in a 25-22 overtime victory against the San Francisco 49ers in only the second overtime game in Super Bowl history.\\n Staff\\nTaylor Swift supports Travis Kelce, chugs drink at Super Bowl LVIII10hTory Barron\\nAfter posting a losing record in December, the Chiefs embraced an underdog, villain mentality throughout the postseason, upsetting three teams en route to their second consecutive Super Bowl title, becoming the ninth team to repeat as Super Bowl champions and first since the 2004 New England Patriots.\\n ESPN\\nSuper Bowl 2024 - Highlights from Chiefs' win vs. 49ers\\nMike Tannenbaum and Tim Hasselbeck react to the Chiefs' thrilling overtime victory over the 49ers in the Super Bowl. The 49ers had the ball with 2:51 to go in a tied game, but a signature Steve Spagnuolo blitz on third down late in the fourth quarter forced a 49ers field goal. Led by their captains, most of the Chiefs arrived to Allegiant Stadium in Las Vegas on Sunday in all black, signaling a steely resolve to upset Brock Purdy and the NFC's best offensive ensemble.\\n\"}, {'url': 'https://www.sportingnews.com/us/nfl/news/super-bowl-2024-live-score-49ers-chiefs-results-highlights/0c440aa7145b809ed174d8ff', 'content': 'Super Bowl start time\\nSuper Bowl 58 between the Chiefs and 49ers is set to kick off at 6:30 p.m. ET (3:30 p.m. local time) in Las Vegas, Nev.\\n6:30 p.m. ET has become the standard start time for Super Bowls and is preceded by performances of \"Lift Every Voice and Sing,\" \"America the Beautiful,\" and \"The Star-Spangled Banner. Brock Purdy drops a dime to Chris Conley on 3rd & 9 🎯\\n📺: #SBLVIII on CBS\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/Oa10d7khdl\\n7:10 p.m. — The 49ers are relying heavily on McCaffrey, who takes the ball on each of the first three snaps on this drive. 📺: #SBLVIII on CBS\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/yUc00MtP84\\n7:24 p.m. — The 49ers force a 3rd & 1, but Rashee Rice is easily able to pick up the first and one or two more yards.\\n49ers 3, Chiefs 0\\n7:19 p.m. MORE SUPER BOWL 58:\\n•\\xa0 Inside Taylor Swift and Travis Kelce\\'s whirlwind dating timeline\\n•. Ranking the thriving Mike and Kyle Shanahan coaching tree\\n•. Tracking every Super Bowl 58 commercial\\nWhat channel is the Super Bowl on?\\nSuper Bowl 58 will be broadcast nationally on CBS. PURDY TO JENNINGS TO CMC FOR SIX 🔥\\n📺: #SBLVIII on CBS\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/ktiTXIiHzS\\n7:47 p.m. — L\\'Jarius Sneed, who was on the other side of this two weeks ago, gets hit with an unsportsmanlike conduct penalty and and gives the 49ers their 11th first down.'}, {'url': 'https://www.nbcnews.com/news/sports/live-blog/super-bowl-chiefs-49ers-score-live-updates-rcna136833', 'content': \"Profile\\nSections\\ntv\\nFeatured\\nMore From NBC\\nFollow NBC News\\nnews Alerts\\nThere are no new alerts at this time\\nSuper Bowl LVIII\\nSuper Bowl 2024 live updates: 49ers vs. Chiefs how to watch, kickoff time, pregame, Taylor Swift arrival\\nEverything you need to know about Super Bowl 58:\\nJason Abbruzzese\\nAnd we're under way. “Despite the 12-hour flight and 17-hour time difference, the Embassy can confidently Speak Now to say that if she departs Tokyo in the evening after her concert, she should comfortably arrive in Las Vegas before the Super Bowl begins.”\\nNBC News\\nFootball fans across the country were celebrating after they were surprised with tickets to the Super Bowl in Las Vegas. Mahomes warms up\\nNBC News\\nICYMI: A person tried to climb the Vegas Sphere (and got arrested)\\nSaba Hamedy\\nLas Vegas police confirmed last Wednesday that a man was arrested after he climbed a structure on the 200 block of Sands Avenue, where the Sphere is located.\\n President Biden is skipping a Super Bowl interview\\nMonica Alba\\nJonathan Allen\\nFor the second year in a row, President Joe Biden is passing on the opportunity to sit down for a Super Bowl interview that could reach millions of Americans on Sunday — a move his advisers say is part of their larger communication strategy.\\n Can the Niners tie the Patriots and Steelers?\\nClaire Cardona\\nAllan Smith\\nThe Kansas City Chiefs, the reigning Super Bowl champs, could go two in a row if they beat the San Francisco 49ers.\\n\"}, {'url': 'https://www.cbssports.com/nfl/news/2024-super-bowl-chiefs-vs-49ers-score-patrick-mahomes-leads-ot-comeback-as-k-c-wins-back-to-back-titles/live/', 'content': \"The championship-winning drive, which included a fourth-and-1 scramble from Mahomes and a clutch 7-yard catch from tight end Travis Kelce, was a must-score for K.C. The NFL's new playoff overtime rules -- both teams are guaranteed at least one possession in the extra period -- were in effect for the first time, and the Chiefs needed to answer the Niners' field goal.\\n Held out of the end zone until that point, Kansas City grabbed its first lead of the game at 13-10.\\nJennings' touchdown receiving (followed by a missed extra point) concluded a 75-yard drive that put the Niners back on top, 16-13, as the wideout joined former Philadelphia Eagles quarterback Nick Foles as the only players to throw and catch a touchdown in a Super Bowl.\\n He spread the ball around -- eight pass-catchers had at least two receptions -- slowly but surely overcoming a threatening 49ers defense that knocked him off his spot consistently in the first half.\\nMahomes, with his third Super Bowl MVP, now sits alongside Tom Brady (five) and Joe Montana (three) atop the mountain while becoming just the third player to win the award back-to-back, joining Bart Starr (I-II) and Terry Bradshaw (XIII-XIV).\\n The muffed punt that bounced off of cornerback Darrell Luter Jr.'s ankle was also the big break that the Chiefs needed as they scored on the very next play to take the lead for the first time in the game. College Pick'em\\nA Daily SportsLine Betting Podcast\\nNFL Playoff Time!\\n2024 Super Bowl, Chiefs vs. 49ers score: Patrick Mahomes leads OT comeback as K.C. wins back-to-back titles\\nCall it a dynasty; the Chiefs are the first team to win consecutive Super Bowls since 2003-04\\nThe Kansas City Chiefs are Super Bowl champions, again.\"}, {'url': 'https://apnews.com/live/super-bowl-2024-updates', 'content': 'Throw in the fact that Chiefs coach Andy Reid will be in his fifth Super Bowl, the third most in NFL history, and has a chance to win a third ring, and the knowledge on the Kansas City sideline will be an advantage too big for the 49ers to overcome.\\n She performed in Japan on Saturday night before a flight across nine time zones and the international date line to reach the U.S.\\nRihanna performs during halftime of the NFL Super Bowl 57 football game between the Philadelphia Eagles and the Kansas City Chiefs, Sunday, Feb. 12, 2023, in Glendale, Ariz. (AP Photo/David J. Phillip)\\n After the teams take the field, Post Malone will perform “America the Beautiful” and Reba McEntire will sing “The Star-Spangled Banner.”\\nSan Francisco 49ers quarterback Brock Purdy (13) warms up before the NFL Super Bowl 58 football game against the Kansas City Chiefs, Sunday, Feb. 11, 2024, in Las Vegas. He was also the referee when the Chiefs beat the 49ers in the Super Bowl four years ago — and when the Rams beat the Saints in the 2019 NFC championship game after an infamous missed call.\\n Purdy’s comeback from the injury to his throwing arm suffered in last season’s NFC championship loss to the Philadelphia Eagles has been part of the storybook start to his career that started as Mr. Irrelevant as the 262nd pick in the 2022 draft.\\n'}]\n", - "\u001b[32m***********************************************************************\u001b[0m\n", - "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/qingyunwu/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx.tar.gz: 100%|██████████| 79.3M/79.3M [00:02<00:00, 33.3MiB/s]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mAssistant\u001b[0m (to user_proxy):\n", - "\n", - "Thought: The search results have provided detailed information on Super Bowl 2024, indicating that the Kansas City Chiefs won the Super Bowl in an overtime victory against the San Francisco 49ers with a final score of 25-22. This marks their third Super Bowl win in five years and their second consecutive title.\n", "\n", - "Final Answer: The Kansas City Chiefs won Super Bowl 2024 with a 25-22 victory over the San Francisco 49ers in overtime.\n", + "{\n", + "\"query\": \"Super Bowl 2024 result\"\n", + "}\n", + "\u001b[32m****************************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33muser_proxy\u001b[0m (to Assistant):\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[35m\n", + ">>>>>>>> EXECUTING FUNCTION search_tool...\u001b[0m\n", + "\u001b[33mUser\u001b[0m (to Assistant):\n", "\n", + "\u001b[33mUser\u001b[0m (to Assistant):\n", "\n", + "\u001b[32m***** Response from calling tool \"call_zIK7cS9Gluug8D7O9fpEUfwT\" *****\u001b[0m\n", + "\"[\\\"{\\\\\\\"url\\\\\\\": \\\\\\\"https://www.espn.com/nfl/story/_/id/39480722/49ers-chiefs-live-super-bowl-lviii-updates-moments-highlights\\\\\\\", \\\\\\\"content\\\\\\\": \\\\\\\"With a relentless defense and opportune plays by their star quarterback -- including a pair of gutsy overtime scrambles -- the Chiefs won their third Super Bowl in five years in a 25-22 overtime victory against the San Francisco 49ers in only the second overtime game in Super Bowl history.\\\\\\\\n Staff\\\\\\\\nTaylor Swift supports Travis Kelce, chugs drink at Super Bowl LVIII10hTory Barron\\\\\\\\nAfter posting a losing record in December, the Chiefs embraced an underdog, villain mentality throughout the postseason, upsetting three teams en route to their second consecutive Super Bowl title, becoming the ninth team to repeat as Super Bowl champions and first since the 2004 New England Patriots.\\\\\\\\n ESPN\\\\\\\\nSuper Bowl 2024 - Highlights from Chiefs' win vs. 49ers\\\\\\\\nMike Tannenbaum and Tim Hasselbeck react to the Chiefs' thrilling overtime victory over the 49ers in the Super Bowl. The 49ers had the ball with 2:51 to go in a tied game, but a signature Steve Spagnuolo blitz on third down late in the fourth quarter forced a 49ers field goal. Led by their captains, most of the Chiefs arrived to Allegiant Stadium in Las Vegas on Sunday in all black, signaling a steely resolve to upset Brock Purdy and the NFC's best offensive ensemble.\\\\\\\\n\\\\\\\"}\\\", \\\"{\\\\\\\"url\\\\\\\": \\\\\\\"https://www.sportingnews.com/us/nfl/news/super-bowl-2024-live-score-49ers-chiefs-results-highlights/0c440aa7145b809ed174d8ff\\\\\\\", \\\\\\\"content\\\\\\\": \\\\\\\"Super Bowl start time\\\\\\\\nSuper Bowl 58 between the Chiefs and 49ers is set to kick off at 6:30 p.m. ET (3:30 p.m. local time) in Las Vegas, Nev.\\\\\\\\n6:30 p.m. ET has become the standard start time for Super Bowls and is preceded by performances of \\\\\\\\\\\\\\\"Lift Every Voice and Sing,\\\\\\\\\\\\\\\" \\\\\\\\\\\\\\\"America the Beautiful,\\\\\\\\\\\\\\\" and \\\\\\\\\\\\\\\"The Star-Spangled Banner. Brock Purdy drops a dime to Chris Conley on 3rd & 9 \\\\\\\\ud83c\\\\\\\\udfaf\\\\\\\\n\\\\\\\\ud83d\\\\\\\\udcfa: #SBLVIII on CBS\\\\\\\\n\\\\\\\\ud83d\\\\\\\\udcf1: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/Oa10d7khdl\\\\\\\\n7:10 p.m. \\\\\\\\u2014 The 49ers are relying heavily on McCaffrey, who takes the ball on each of the first three snaps on this drive. \\\\\\\\ud83d\\\\\\\\udcfa: #SBLVIII on CBS\\\\\\\\n\\\\\\\\ud83d\\\\\\\\udcf1: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/yUc00MtP84\\\\\\\\n7:24 p.m. \\\\\\\\u2014 The 49ers force a 3rd & 1, but Rashee Rice is easily able to pick up the first and one or two more yards.\\\\\\\\n49ers 3, Chiefs 0\\\\\\\\n7:19 p.m. MORE SUPER BOWL 58:\\\\\\\\n\\\\\\\\u2022\\\\\\\\u00a0 Inside Taylor Swift and Travis Kelce's whirlwind dating timeline\\\\\\\\n\\\\\\\\u2022. Ranking the thriving Mike and Kyle Shanahan coaching tree\\\\\\\\n\\\\\\\\u2022. Tracking every Super Bowl 58 commercial\\\\\\\\nWhat channel is the Super Bowl on?\\\\\\\\nSuper Bowl 58 will be broadcast nationally on CBS. PURDY TO JENNINGS TO CMC FOR SIX \\\\\\\\ud83d\\\\\\\\udd25\\\\\\\\n\\\\\\\\ud83d\\\\\\\\udcfa: #SBLVIII on CBS\\\\\\\\n\\\\\\\\ud83d\\\\\\\\udcf1: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/ktiTXIiHzS\\\\\\\\n7:47 p.m. \\\\\\\\u2014 L'Jarius Sneed, who was on the other side of this two weeks ago, gets hit with an unsportsmanlike conduct penalty and and gives the 49ers their 11th first down.\\\\\\\"}\\\", \\\"{\\\\\\\"url\\\\\\\": \\\\\\\"https://apnews.com/live/super-bowl-2024-updates\\\\\\\", \\\\\\\"content\\\\\\\": \\\\\\\"Throw in the fact that Chiefs coach Andy Reid will be in his fifth Super Bowl, the third most in NFL history, and has a chance to win a third ring, and the knowledge on the Kansas City sideline will be an advantage too big for the 49ers to overcome.\\\\\\\\n She performed in Japan on Saturday night before a flight across nine time zones and the international date line to reach the U.S.\\\\\\\\nRihanna performs during halftime of the NFL Super Bowl 57 football game between the Philadelphia Eagles and the Kansas City Chiefs, Sunday, Feb. 12, 2023, in Glendale, Ariz. (AP Photo/David J. Phillip)\\\\\\\\n After the teams take the field, Post Malone will perform \\\\\\\\u201cAmerica the Beautiful\\\\\\\\u201d and Reba McEntire will sing \\\\\\\\u201cThe Star-Spangled Banner.\\\\\\\\u201d\\\\\\\\nSan Francisco 49ers quarterback Brock Purdy (13) warms up before the NFL Super Bowl 58 football game against the Kansas City Chiefs, Sunday, Feb. 11, 2024, in Las Vegas. He was also the referee when the Chiefs beat the 49ers in the Super Bowl four years ago \\\\\\\\u2014 and when the Rams beat the Saints in the 2019 NFC championship game after an infamous missed call.\\\\\\\\n Purdy\\\\\\\\u2019s comeback from the injury to his throwing arm suffered in last season\\\\\\\\u2019s NFC championship loss to the Philadelphia Eagles has been part of the storybook start to his career that started as Mr. Irrelevant as the 262nd pick in the 2022 draft.\\\\\\\\n\\\\\\\"}\\\", \\\"{\\\\\\\"url\\\\\\\": \\\\\\\"https://www.cbsnews.com/live-updates/super-bowl-2024-chiefs-49ers-game-coverage/\\\\\\\", \\\\\\\"content\\\\\\\": \\\\\\\"\\\\\\\\\\\\\\\"\\\\\\\\nThe Chiefs reached the Super Bowl the hard way, with back-to-back road playoff wins against the Buffalo Bills in the divisional round and then the Ravens in the conference championship \\\\\\\\u2014 the first time in his career Mahomes has been forced to play road playoff games.\\\\\\\\n Watch CBS News\\\\\\\\nSuper Bowl 2024 live updates as Chiefs and 49ers prepare for today's show down\\\\\\\\nBy Faris Tanyos, Aliza Chasan, Joe Ruiz, Gina Martinez, S. Dev\\\\\\\\nUpdated on:\\\\\\\\nFebruary 11, 2024 / 6:37 PM EST\\\\\\\\n/ CBS News\\\\\\\\nThe Kansas City Chiefs will look to become the first back-to-back Super Bowl champion in two decades when they take on the San Francisco 49ers today in Las Vegas.\\\\\\\\n What to know about San Francisco 49ers quarterback Brock Purdy\\\\\\\\nOne of the most improbable stories of Super Bowl LVIII is that of San Francisco 49ers quarterback Brock Purdy, who has gone from being \\\\\\\\\\\\\\\"Mr. Irrelevant,\\\\\\\\\\\\\\\" as the final pick of the 2022 NFL Draft, to a bonafide star, leading his team to the cusp of an NFL title in less than two years.\\\\\\\\n The 24-year-old, who set records at Iowa State after receiving Player of the Year honors at Perry High School in Gilbert, Arizona, is attempting to become the third quarterback after Joe Montana and Steve Young to lead the 49ers to a Super Bowl victory, and the franchise's sixth Lombardi Trophy.\\\\\\\\n \\\\\\\\\\\\\\\"The more technologically savvy we become: look around the stadium, the scoreboards, the lighting, you know, all of the different technology that makes this a spectacular game, these are all increases in the attack surface that people can target,\\\\\\\\\\\\\\\" said Cathy Lanier, the NFL's chief security officer.\\\\\\\\n\\\\\\\"}\\\", \\\"{\\\\\\\"url\\\\\\\": \\\\\\\"https://www.cbssports.com/nfl/news/2024-super-bowl-chiefs-vs-49ers-score-patrick-mahomes-leads-ot-comeback-as-k-c-wins-back-to-back-titles/live/\\\\\\\", \\\\\\\"content\\\\\\\": \\\\\\\"The championship-winning drive, which included a fourth-and-1 scramble from Mahomes and a clutch 7-yard catch from tight end Travis Kelce, was a must-score for K.C. The NFL's new playoff overtime rules -- both teams are guaranteed at least one possession in the extra period -- were in effect for the first time, and the Chiefs needed to answer the Niners' field goal.\\\\\\\\n Held out of the end zone until that point, Kansas City grabbed its first lead of the game at 13-10.\\\\\\\\nJennings' touchdown receiving (followed by a missed extra point) concluded a 75-yard drive that put the Niners back on top, 16-13, as the wideout joined former Philadelphia Eagles quarterback Nick Foles as the only players to throw and catch a touchdown in a Super Bowl.\\\\\\\\n He spread the ball around -- eight pass-catchers had at least two receptions -- slowly but surely overcoming a threatening 49ers defense that knocked him off his spot consistently in the first half.\\\\\\\\nMahomes, with his third Super Bowl MVP, now sits alongside Tom Brady (five) and Joe Montana (three) atop the mountain while becoming just the third player to win the award back-to-back, joining Bart Starr (I-II) and Terry Bradshaw (XIII-XIV).\\\\\\\\n The muffed punt that bounced off of cornerback Darrell Luter Jr.'s ankle was also the big break that the Chiefs needed as they scored on the very next play to take the lead for the first time in the game. College Pick'em\\\\\\\\nA Daily SportsLine Betting Podcast\\\\\\\\nNFL Playoff Time!\\\\\\\\n2024 Super Bowl, Chiefs vs. 49ers score: Patrick Mahomes leads OT comeback as K.C. wins back-to-back titles\\\\\\\\nCall it a dynasty; the Chiefs are the first team to win consecutive Super Bowls since 2003-04\\\\\\\\nThe Kansas City Chiefs are Super Bowl champions, again.\\\\\\\"}\\\"]\"\n", + "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33mAssistant\u001b[0m (to user_proxy):\n", + "\u001b[33mAssistant\u001b[0m (to User):\n", "\n", - "TERMINATE\n", + "Observation: The Chiefs won Super Bowl 2024 against the San Francisco 49ers with a score of 25-22 in overtime. This was the Chiefs' third Super Bowl victory in five years, and they became the first team to win consecutive Super Bowls since 2004. The game took place at Allegiant Stadium in Las Vegas. The 49ers were leading initially, but the Chiefs came back and won the game in a thrilling overtime victory.\n", + "Thought: I now know the final answer. \n", + "Final Answer: The Kansas City Chiefs won the Super Bowl 2024 against the San Francisco 49ers with a score of 25-22 in overtime.\n", "\n", "--------------------------------------------------------------------------------\n" ] - }, - { - "data": { - "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': '\\nAnswer the following questions as best you can. You have access to tools provided.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this process can repeat multiple times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\nQuestion: What is the result of super bowl 2024?\\n', 'role': 'assistant'}, {'content': 'Thought: To find the result of Super Bowl 2024, I need to search for the most recent information available since the event is in the future as of my knowledge cutoff, and the result would only be known after the event takes place.\\n\\nAction: Use the provided search function to find the result of Super Bowl 2024.\\nAction Input: { query: \"Super Bowl 2024 result\" }', 'function_call': {'arguments': '{\"query\":\"Super Bowl 2024 result\"}', 'name': 'tavily_search_results_json'}, 'role': 'assistant'}, {'content': '[{\\'url\\': \\'https://www.espn.com/nfl/story/_/id/39480722/49ers-chiefs-live-super-bowl-lviii-updates-moments-highlights\\', \\'content\\': \"With a relentless defense and opportune plays by their star quarterback -- including a pair of gutsy overtime scrambles -- the Chiefs won their third Super Bowl in five years in a 25-22 overtime victory against the San Francisco 49ers in only the second overtime game in Super Bowl history.\\\\n Staff\\\\nTaylor Swift supports Travis Kelce, chugs drink at Super Bowl LVIII10hTory Barron\\\\nAfter posting a losing record in December, the Chiefs embraced an underdog, villain mentality throughout the postseason, upsetting three teams en route to their second consecutive Super Bowl title, becoming the ninth team to repeat as Super Bowl champions and first since the 2004 New England Patriots.\\\\n ESPN\\\\nSuper Bowl 2024 - Highlights from Chiefs\\' win vs. 49ers\\\\nMike Tannenbaum and Tim Hasselbeck react to the Chiefs\\' thrilling overtime victory over the 49ers in the Super Bowl. The 49ers had the ball with 2:51 to go in a tied game, but a signature Steve Spagnuolo blitz on third down late in the fourth quarter forced a 49ers field goal. Led by their captains, most of the Chiefs arrived to Allegiant Stadium in Las Vegas on Sunday in all black, signaling a steely resolve to upset Brock Purdy and the NFC\\'s best offensive ensemble.\\\\n\"}, {\\'url\\': \\'https://www.sportingnews.com/us/nfl/news/super-bowl-2024-live-score-49ers-chiefs-results-highlights/0c440aa7145b809ed174d8ff\\', \\'content\\': \\'Super Bowl start time\\\\nSuper Bowl 58 between the Chiefs and 49ers is set to kick off at 6:30 p.m. ET (3:30 p.m. local time) in Las Vegas, Nev.\\\\n6:30 p.m. ET has become the standard start time for Super Bowls and is preceded by performances of \"Lift Every Voice and Sing,\" \"America the Beautiful,\" and \"The Star-Spangled Banner. Brock Purdy drops a dime to Chris Conley on 3rd & 9 🎯\\\\n📺: #SBLVIII on CBS\\\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/Oa10d7khdl\\\\n7:10 p.m. — The 49ers are relying heavily on McCaffrey, who takes the ball on each of the first three snaps on this drive. 📺: #SBLVIII on CBS\\\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/yUc00MtP84\\\\n7:24 p.m. — The 49ers force a 3rd & 1, but Rashee Rice is easily able to pick up the first and one or two more yards.\\\\n49ers 3, Chiefs 0\\\\n7:19 p.m. MORE SUPER BOWL 58:\\\\n•\\\\xa0 Inside Taylor Swift and Travis Kelce\\\\\\'s whirlwind dating timeline\\\\n•. Ranking the thriving Mike and Kyle Shanahan coaching tree\\\\n•. Tracking every Super Bowl 58 commercial\\\\nWhat channel is the Super Bowl on?\\\\nSuper Bowl 58 will be broadcast nationally on CBS. PURDY TO JENNINGS TO CMC FOR SIX 🔥\\\\n📺: #SBLVIII on CBS\\\\n📱: Stream on #NFLPlus https://t.co/dClcEDViWl pic.twitter.com/ktiTXIiHzS\\\\n7:47 p.m. — L\\\\\\'Jarius Sneed, who was on the other side of this two weeks ago, gets hit with an unsportsmanlike conduct penalty and and gives the 49ers their 11th first down.\\'}, {\\'url\\': \\'https://www.nbcnews.com/news/sports/live-blog/super-bowl-chiefs-49ers-score-live-updates-rcna136833\\', \\'content\\': \"Profile\\\\nSections\\\\ntv\\\\nFeatured\\\\nMore From NBC\\\\nFollow NBC News\\\\nnews Alerts\\\\nThere are no new alerts at this time\\\\nSuper Bowl LVIII\\\\nSuper Bowl 2024 live updates: 49ers vs. Chiefs how to watch, kickoff time, pregame, Taylor Swift arrival\\\\nEverything you need to know about Super Bowl 58:\\\\nJason Abbruzzese\\\\nAnd we\\'re under way. “Despite the 12-hour flight and 17-hour time difference, the Embassy can confidently Speak Now to say that if she departs Tokyo in the evening after her concert, she should comfortably arrive in Las Vegas before the Super Bowl begins.”\\\\nNBC News\\\\nFootball fans across the country were celebrating after they were surprised with tickets to the Super Bowl in Las Vegas. Mahomes warms up\\\\nNBC News\\\\nICYMI: A person tried to climb the Vegas Sphere (and got arrested)\\\\nSaba Hamedy\\\\nLas Vegas police confirmed last Wednesday that a man was arrested after he climbed a structure on the 200 block of Sands Avenue, where the Sphere is located.\\\\n President Biden is skipping a Super Bowl interview\\\\nMonica Alba\\\\nJonathan Allen\\\\nFor the second year in a row, President Joe Biden is passing on the opportunity to sit down for a Super Bowl interview that could reach millions of Americans on Sunday — a move his advisers say is part of their larger communication strategy.\\\\n Can the Niners tie the Patriots and Steelers?\\\\nClaire Cardona\\\\nAllan Smith\\\\nThe Kansas City Chiefs, the reigning Super Bowl champs, could go two in a row if they beat the San Francisco 49ers.\\\\n\"}, {\\'url\\': \\'https://www.cbssports.com/nfl/news/2024-super-bowl-chiefs-vs-49ers-score-patrick-mahomes-leads-ot-comeback-as-k-c-wins-back-to-back-titles/live/\\', \\'content\\': \"The championship-winning drive, which included a fourth-and-1 scramble from Mahomes and a clutch 7-yard catch from tight end Travis Kelce, was a must-score for K.C. The NFL\\'s new playoff overtime rules -- both teams are guaranteed at least one possession in the extra period -- were in effect for the first time, and the Chiefs needed to answer the Niners\\' field goal.\\\\n Held out of the end zone until that point, Kansas City grabbed its first lead of the game at 13-10.\\\\nJennings\\' touchdown receiving (followed by a missed extra point) concluded a 75-yard drive that put the Niners back on top, 16-13, as the wideout joined former Philadelphia Eagles quarterback Nick Foles as the only players to throw and catch a touchdown in a Super Bowl.\\\\n He spread the ball around -- eight pass-catchers had at least two receptions -- slowly but surely overcoming a threatening 49ers defense that knocked him off his spot consistently in the first half.\\\\nMahomes, with his third Super Bowl MVP, now sits alongside Tom Brady (five) and Joe Montana (three) atop the mountain while becoming just the third player to win the award back-to-back, joining Bart Starr (I-II) and Terry Bradshaw (XIII-XIV).\\\\n The muffed punt that bounced off of cornerback Darrell Luter Jr.\\'s ankle was also the big break that the Chiefs needed as they scored on the very next play to take the lead for the first time in the game. College Pick\\'em\\\\nA Daily SportsLine Betting Podcast\\\\nNFL Playoff Time!\\\\n2024 Super Bowl, Chiefs vs. 49ers score: Patrick Mahomes leads OT comeback as K.C. wins back-to-back titles\\\\nCall it a dynasty; the Chiefs are the first team to win consecutive Super Bowls since 2003-04\\\\nThe Kansas City Chiefs are Super Bowl champions, again.\"}, {\\'url\\': \\'https://apnews.com/live/super-bowl-2024-updates\\', \\'content\\': \\'Throw in the fact that Chiefs coach Andy Reid will be in his fifth Super Bowl, the third most in NFL history, and has a chance to win a third ring, and the knowledge on the Kansas City sideline will be an advantage too big for the 49ers to overcome.\\\\n She performed in Japan on Saturday night before a flight across nine time zones and the international date line to reach the U.S.\\\\nRihanna performs during halftime of the NFL Super Bowl 57 football game between the Philadelphia Eagles and the Kansas City Chiefs, Sunday, Feb. 12, 2023, in Glendale, Ariz. (AP Photo/David J. Phillip)\\\\n After the teams take the field, Post Malone will perform “America the Beautiful” and Reba McEntire will sing “The Star-Spangled Banner.”\\\\nSan Francisco 49ers quarterback Brock Purdy (13) warms up before the NFL Super Bowl 58 football game against the Kansas City Chiefs, Sunday, Feb. 11, 2024, in Las Vegas. He was also the referee when the Chiefs beat the 49ers in the Super Bowl four years ago — and when the Rams beat the Saints in the 2019 NFC championship game after an infamous missed call.\\\\n Purdy’s comeback from the injury to his throwing arm suffered in last season’s NFC championship loss to the Philadelphia Eagles has been part of the storybook start to his career that started as Mr. Irrelevant as the 262nd pick in the 2022 draft.\\\\n\\'}]', 'name': 'tavily_search_results_json', 'role': 'function'}, {'content': 'Thought: The search results have provided detailed information on Super Bowl 2024, indicating that the Kansas City Chiefs won the Super Bowl in an overtime victory against the San Francisco 49ers with a final score of 25-22. This marks their third Super Bowl win in five years and their second consecutive title.\\n\\nFinal Answer: The Kansas City Chiefs won Super Bowl 2024 with a 25-22 victory over the San Francisco 49ers in overtime.', 'role': 'user'}, {'content': '', 'role': 'assistant'}, {'content': 'TERMINATE', 'role': 'user'}], summary='', cost=({'total_cost': 0.32121, 'gpt-4': {'cost': 0.32121, 'prompt_tokens': 9987, 'completion_tokens': 360, 'total_tokens': 10347}}, {'total_cost': 0.31053000000000003, 'gpt-4': {'cost': 0.31053000000000003, 'prompt_tokens': 9771, 'completion_tokens': 290, 'total_tokens': 10061}}), human_input=[])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ - "from autogen.agentchat.contrib.capabilities import teachability\n", - "\n", "# Instantiate the Teachability capability. Its parameters are all optional.\n", "teachability = teachability.Teachability(\n", " verbosity=0, # 0 for basic info, 1 to add memory operations, 2 for analyzer messages, 3 for memo lists.\n", @@ -377,11 +346,13 @@ "# Now add the Teachability capability to the agent.\n", "teachability.add_to_agent(assistant)\n", "\n", - "user_proxy.initiate_chat(\n", - " assistant,\n", - " message=react_prompt_message,\n", - " question=\"What is the result of super bowl 2024?\",\n", - ")" + "with Cache.disk(cache_seed=44) as cache:\n", + " user_proxy.initiate_chat(\n", + " assistant,\n", + " message=react_prompt_message,\n", + " question=\"What is the result of super bowl 2024?\",\n", + " cache=cache,\n", + " )" ] }, { @@ -394,7 +365,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 10, "id": "3e820661", "metadata": {}, "outputs": [ @@ -402,7 +373,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[33muser_proxy\u001b[0m (to Assistant):\n", + "\u001b[33mUser\u001b[0m (to Assistant):\n", "\n", "\n", "Answer the following questions as best you can. You have access to tools provided.\n", @@ -422,34 +393,33 @@ "Question: What is the result of super bowl 2024?\n", "\n", "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mAssistant\u001b[0m (to user_proxy):\n", - "\n", - "Thought: The user has given me a memory that directly answers the question about the result of Super Bowl 2024.\n", - "Action: I will recall the information from the memory provided.\n", - "Final Answer: The Kansas City Chiefs won Super Bowl 2024 with a 25-22 overtime victory against the San Francisco 49ers.\n", - "\n", "--------------------------------------------------------------------------------\n" ] }, { - "data": { - "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': '\\nAnswer the following questions as best you can. You have access to tools provided.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this process can repeat multiple times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\nQuestion: What is the result of super bowl 2024?\\n', 'role': 'assistant'}, {'content': 'Thought: The user has given me a memory that directly answers the question about the result of Super Bowl 2024.\\nAction: I will recall the information from the memory provided.\\nFinal Answer: The Kansas City Chiefs won Super Bowl 2024 with a 25-22 overtime victory against the San Francisco 49ers.', 'role': 'user'}], summary='Thought: The user has given me a memory that directly answers the question about the result of Super Bowl 2024.\\nAction: I will recall the information from the memory provided.\\nFinal Answer: The Kansas City Chiefs won Super Bowl 2024 with a 25-22 overtime victory against the San Francisco 49ers.', cost=({'total_cost': 0.37845, 'gpt-4': {'cost': 0.37845, 'prompt_tokens': 11623, 'completion_tokens': 496, 'total_tokens': 12119}}, {'total_cost': 0.34818000000000005, 'gpt-4': {'cost': 0.34818000000000005, 'prompt_tokens': 10886, 'completion_tokens': 360, 'total_tokens': 11246}}), human_input=[])" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mAssistant\u001b[0m (to User):\n", + "\n", + "Thought: The question asks for the result of Super Bowl 2024. No need to use any function tools since the answer is already provided in the memories.\n", + "\n", + "Final Answer: The Chiefs won the Super Bowl 2024 in a 25-22 overtime victory against the San Francisco 49ers. It was their third win in five years. The game took place on Sunday, Feb. 11, 2024, in Las Vegas, Nevada. The Chiefs' Mahomes was awarded his third Super Bowl MVP, drawing him level with Joe Montana, and just behind Tom Brady, who has won it five times.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] } ], "source": [ - "user_proxy.initiate_chat(\n", - " assistant,\n", - " message=react_prompt_message,\n", - " question=\"What is the result of super bowl 2024?\",\n", - " max_turns=1,\n", - ")" + "# Use a different cache_seed.\n", + "with Cache.disk(cache_seed=110) as cache:\n", + " user_proxy.initiate_chat(\n", + " assistant,\n", + " message=react_prompt_message,\n", + " question=\"What is the result of super bowl 2024?\",\n", + " max_turns=1,\n", + " cache=cache,\n", + " )" ] } ], @@ -469,7 +439,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/website/docs/topics/prompting-and-reasoning/reflection.ipynb b/website/docs/topics/prompting-and-reasoning/reflection.ipynb index 24fcb6a0f24..60438904472 100644 --- a/website/docs/topics/prompting-and-reasoning/reflection.ipynb +++ b/website/docs/topics/prompting-and-reasoning/reflection.ipynb @@ -13,22 +13,52 @@ "This example leverages a generic interface [nested chats](/docs/tutorial/conversation-patterns#nested-chats) to implement the reflection using multi-agents." ] }, + { + "cell_type": "markdown", + "id": "5cff1938", + "metadata": {}, + "source": [ + "First make sure the `pyautogen` package is installed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1d94a96a", + "metadata": {}, + "outputs": [], + "source": [ + "! pip install \"pyautogen>=0.2.18\"" + ] + }, + { + "cell_type": "markdown", + "id": "934a2c2b", + "metadata": {}, + "source": [ + "Import the relevant modules and configure the LLM.\n", + "See [LLM Configuration](/docs/topics/llm_configuration) for how to configure LLMs." + ] + }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 1, "id": "dca301a4", "metadata": {}, "outputs": [], "source": [ - "import autogen\n", + "import os\n", "\n", - "config_list = autogen.config_list_from_json(\n", - " \"OAI_CONFIG_LIST\",\n", - ")\n", - "llm_config = {\n", - " \"config_list\": config_list, # Assuming you have this defined elsewhere\n", - " \"timeout\": 120,\n", - "}" + "from autogen import AssistantAgent, UserProxyAgent, config_list_from_json\n", + "from autogen.cache import Cache\n", + "from autogen.coding import DockerCommandLineCodeExecutor, LocalCommandLineCodeExecutor\n", + "\n", + "config_list = [\n", + " {\"model\": \"gpt-4-1106-preview\", \"api_key\": os.environ[\"OPENAI_API_KEY\"]},\n", + " {\"model\": \"gpt-3.5-turbo\", \"api_key\": os.environ[\"OPENAI_API_KEY\"]},\n", + "]\n", + "# You can also use the following method to load the config list from a file or environment variable.\n", + "# config_list = config_list_from_json(env_or_file=\"OAI_CONFIG_LIST\")" ] }, { @@ -42,32 +72,35 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "id": "f8ad9963", "metadata": {}, "outputs": [], "source": [ - "user_proxy = autogen.UserProxyAgent(\n", + "os.makedirs(\"coding\", exist_ok=True)\n", + "# Use DockerCommandLineCodeExecutor if docker is available to run the generated code.\n", + "# Using docker is safer than running the generated code directly.\n", + "# code_executor = DockerCommandLineCodeExecutor(work_dir=\"coding\")\n", + "code_executor = LocalCommandLineCodeExecutor(work_dir=\"coding\")\n", + "\n", + "user_proxy = UserProxyAgent(\n", " name=\"user_proxy\",\n", " is_termination_msg=lambda x: x.get(\"content\", \"\") and x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\"),\n", " human_input_mode=\"TERMINATE\",\n", " max_consecutive_auto_reply=10,\n", - " code_execution_config={\n", - " # \"work_dir\": \"coding\",\n", - " \"use_docker\": False,\n", - " }, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.\n", + " code_execution_config={\"executor\": code_executor},\n", ")\n", "\n", - "writing_assistant = autogen.AssistantAgent(\n", + "writing_assistant = AssistantAgent(\n", " name=\"writing_assistant\",\n", " system_message=\"You are an writing assistant tasked to write engaging blogpost. You try generate the best blogpost possible for the user's request. If the user provides critique, respond with a revised version of your previous attempts.\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", ")\n", "\n", - "reflection_assistant = autogen.AssistantAgent(\n", + "reflection_assistant = AssistantAgent(\n", " name=\"reflection_assistant\",\n", " system_message=\"Generate critique and recommendations on the writing. Provide detailed recommendations, including requests for length, depth, style, etc..\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", ")" ] }, @@ -81,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "id": "80075b71", "metadata": {}, "outputs": [ @@ -93,45 +126,45 @@ "\n", "Write an engaging blogpost on the recent updates in AI. The blogpost should be engaging and understandable for general audience. Should have more than 3 paragraphes but no longer than 1000 words.\n", "\n", - "--------------------------------------------------------------------------------\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\u001b[33mwriting_assistant\u001b[0m (to user_proxy):\n", "\n", - "## Navigating the New Frontiers of Artificial Intelligence: A User-Friendly Update\n", - "\n", - "Artificial Intelligence (AI) is leaping forward at an exhilarating speed, reshaping our world and how we interact with it. With a raft of recent updates, AI is becoming more intuitive, capable, and integrated into our daily lives. If you've ever felt overwhelmed by tech talk and jargon, worry not! Let's break down the latest in AI, making it not only digestible for everyone but also highlighting why it should matter to you.\n", - "\n", - "### AI Gets Creative: GPT-4 and More!\n", + "### The Fascinating World of AI: What's New on the Horizon of Tomorrow?\n", "\n", - "Have you heard of ChatGPT? This AI, which made waves for mimicking human-like conversation, has now evolved into its fourth iteration, GPT-4. Imagine an AI that can draft emails, write poetry, or even develop a simple app—all with a human touch that's becoming increasingly difficult to distinguish from its biological counterparts. This goes beyond novelty; it opens avenues for unprecedented assistance in creative fields and the potential for personalized tutoring on a scale we've never seen before.\n", + "In the exhilarating realm of Artificial Intelligence (AI), the only constant is change. Recently, there have been several groundbreaking updates that are not just transforming the industry but also the way we live. From self-learning algorithms to AI becoming more creative, the future we once dreamed of is gradually materializing before our eyes. Here's a peek into the latest advancements that are reshaping the world of AI.\n", "\n", - "### Goodbye Language Barriers: Real-time Translation\n", + "#### 1. Chatbots Are Getting Chattier!\n", "\n", - "The world is a melting pot of languages and cultures, and AI is stirring the pot with real-time translation improvements. In the past, we'd awkwardly fumble through phrasebooks or struggle with translation apps that couldn't quite capture nuance. Today's AI-driven translators are different. They can interpret not just words but the subtleties of context and slang, rendering conversations with people from other cultures smoother and more natural. The ease of international dialogue that this technology can bring is set to change business, travel, and online communication in unimaginable ways.\n", + "Remember when chatbots could only answer the most basic of queries? Well, kiss those days goodbye! The new generation of chatbots is powered by advanced natural language processing systems that allow them to understand and respond to complex human emotions and subtleties. They're learning from each interaction and are getting better at mimicking human conversation. So, the next time you're chatting with a customer service bot, don't be surprised if it throws a joke or shows empathy – it's the new normal.\n", "\n", - "### Health and AI: A Match Made in Data Heaven\n", + "#### 2. AI Meets Creativity\n", "\n", - "Medicine and healthcare are areas where AI updates have potentially life-changing implications. Algorithms are now more adept at predicting patient outcomes, personalizing treatment plans, and even assisting in complicated surgeries. AI can sift through medical records and massive amounts of research in microseconds, serving as a valuable sidekick to doctors and researchers. These advancements could mean quicker diagnoses, effective treatments, and even better preventive care, shifting our healthcare paradigms towards more personalized medicine.\n", + "One of the hottest topics nowadays is AI's foray into the creative world. We've seen AI systems compose music, create art, and even write poetry that's indistinguishable from human creations. The recent updates have seen AIs take a deeper dive – they're not just replicating styles but infusing their works with what seems like genuine creativity. This opens a pandora's box of ethical considerations, of course. How much credit does an AI deserve? Is it the programmer or the program that's the artist? While the jury's still out, the possibilities are as tantalizing as they are perplexing.\n", "\n", - "### From Monoliths to Morsels: AI Chips in Everything\n", + "#### 3. The Ethical AI Movement\n", "\n", - "AI isn't solely about software. It's also about hardware. Recent updates have seen AI chips becoming smaller, more powerful, and more energy-efficient, allowing them to be embedded into everyday objects. This trend, called the Internet of Things (IoT), means that your refrigerator, car, or even your toothbrush can become 'smart.' These devices can learn your habits and preferences to serve you better. A fridge could monitor your food's expiry dates and suggest recipes based on what you have. Your car could analyze your driving patterns and suggest the most fuel-efficient route. It's convenience at a whole new level, powered by AI.\n", + "With great power comes great responsibility, and the AI community is taking note. There's a growing movement towards 'ethical AI' which insists on transparency, fairness, and accountability in AI systems. As AI intertwines with our daily lives, developers are working hard to ensure that these systems do not propagate bias or inequality. Features like 'explainability' – where an AI can explain the process behind its decision – are making these intelligent systems more accessible and trustworthy to the general public.\n", "\n", - "### Ethical AI: A Movement Towards Responsible Development\n", + "#### 4. Healthcare Gets a Tech Boost\n", "\n", - "A discussion about AI advancements would be incomplete without touching on the topic of ethics. As AI systems become more prevalent, concerns about privacy, bias, and control have sparked a movement towards more ethical development of AI technologies. Initiatives are underway to create AI that respects privacy by design, incorporates diverse data to avoid biases, and has checks and balances to prevent misuse. This indicates a maturing field that's looking inward, ensuring that these technological leaps benefit humanity while minimizing potential harms.\n", + "AI in healthcare is a game-changer, and the recent updates are here to prove it. Thanks to the power of machine learning, AI systems can now analyze complex medical data swiftly and with remarkable accuracy. This means faster diagnoses, personalized treatment plans, and better patient outcomes. Recently, algorithms have been developed to predict patient risks for various diseases, offering the potential for early intervention like never before. Doctors and researchers are just scratching the surface of AI's potential in medicine.\n", "\n", - "### Looking Ahead: AI's Prospect for Society\n", + "#### Embracing the Future\n", "\n", - "So, what do these updates mean for the average person? They suggest a future where AI will be part of the fabric of our existence, making life more accessible, efficient, and personalized. We'll find our digital assistants becoming more helpful, our professional work augmented by intelligent tools, and our homes gradually transforming into interconnected ecosystems that respond to our needs.\n", + "As AI evolves at a breathtaking pace, it's clear that the only limits are those of our imagination. The recent updates are not just about making these systems smarter or more efficient; they're about integrating AI into the fabric of our daily lives in a meaningful, ethical, and human-centered way. Whether it's improving the quality of our conversations with chatbots, pushing the boundaries of creativity, advocating for ethical considerations, or saving lives in healthcare – AI is set on a path that will redefine our reality.\n", "\n", - "However, with every step we take into this brave new world, we must tread with a mix of optimism and caution. We need to be active participants in shaping how AI evolves, demanding technology that works for the benefit of all. It's not just about what AI can do; it's about what it should do.\n", - "\n", - "Staying updated with AI is akin to tuning into the future as it unfolds. And as we move forward, AI's storyline only gets more fascinating, with each new chapter promising a blend of innovation and impact. Stay engaged, stay informed, and let's embrace these AI advancements, ready to leverage them for a brighter, more connected tomorrow.\n", + "So, buckle up and prepare for an exciting ride into the future. AI isn't just a tech trend; it's a revolution that's just getting started. And while it might seem daunting to keep up with the rapid developments, remember – as much as AI is about algorithms and computing, at its core, it's about enhancing human potential and creating a smarter, better world for all.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", - "\u001b[33mReflecting...\u001b[0m\n", + "Reflecting...\n", "\u001b[34m\n", "********************************************************************************\u001b[0m\n", "\u001b[34mStarting a new chat....\n", @@ -139,37 +172,31 @@ "Message:\n", "Reflect and provide critique on the following writing. \n", "\n", - " ## Navigating the New Frontiers of Artificial Intelligence: A User-Friendly Update\n", - "\n", - "Artificial Intelligence (AI) is leaping forward at an exhilarating speed, reshaping our world and how we interact with it. With a raft of recent updates, AI is becoming more intuitive, capable, and integrated into our daily lives. If you've ever felt overwhelmed by tech talk and jargon, worry not! Let's break down the latest in AI, making it not only digestible for everyone but also highlighting why it should matter to you.\n", - "\n", - "### AI Gets Creative: GPT-4 and More!\n", + " ### The Fascinating World of AI: What's New on the Horizon of Tomorrow?\n", "\n", - "Have you heard of ChatGPT? This AI, which made waves for mimicking human-like conversation, has now evolved into its fourth iteration, GPT-4. Imagine an AI that can draft emails, write poetry, or even develop a simple app—all with a human touch that's becoming increasingly difficult to distinguish from its biological counterparts. This goes beyond novelty; it opens avenues for unprecedented assistance in creative fields and the potential for personalized tutoring on a scale we've never seen before.\n", + "In the exhilarating realm of Artificial Intelligence (AI), the only constant is change. Recently, there have been several groundbreaking updates that are not just transforming the industry but also the way we live. From self-learning algorithms to AI becoming more creative, the future we once dreamed of is gradually materializing before our eyes. Here's a peek into the latest advancements that are reshaping the world of AI.\n", "\n", - "### Goodbye Language Barriers: Real-time Translation\n", + "#### 1. Chatbots Are Getting Chattier!\n", "\n", - "The world is a melting pot of languages and cultures, and AI is stirring the pot with real-time translation improvements. In the past, we'd awkwardly fumble through phrasebooks or struggle with translation apps that couldn't quite capture nuance. Today's AI-driven translators are different. They can interpret not just words but the subtleties of context and slang, rendering conversations with people from other cultures smoother and more natural. The ease of international dialogue that this technology can bring is set to change business, travel, and online communication in unimaginable ways.\n", + "Remember when chatbots could only answer the most basic of queries? Well, kiss those days goodbye! The new generation of chatbots is powered by advanced natural language processing systems that allow them to understand and respond to complex human emotions and subtleties. They're learning from each interaction and are getting better at mimicking human conversation. So, the next time you're chatting with a customer service bot, don't be surprised if it throws a joke or shows empathy – it's the new normal.\n", "\n", - "### Health and AI: A Match Made in Data Heaven\n", + "#### 2. AI Meets Creativity\n", "\n", - "Medicine and healthcare are areas where AI updates have potentially life-changing implications. Algorithms are now more adept at predicting patient outcomes, personalizing treatment plans, and even assisting in complicated surgeries. AI can sift through medical records and massive amounts of research in microseconds, serving as a valuable sidekick to doctors and researchers. These advancements could mean quicker diagnoses, effective treatments, and even better preventive care, shifting our healthcare paradigms towards more personalized medicine.\n", + "One of the hottest topics nowadays is AI's foray into the creative world. We've seen AI systems compose music, create art, and even write poetry that's indistinguishable from human creations. The recent updates have seen AIs take a deeper dive – they're not just replicating styles but infusing their works with what seems like genuine creativity. This opens a pandora's box of ethical considerations, of course. How much credit does an AI deserve? Is it the programmer or the program that's the artist? While the jury's still out, the possibilities are as tantalizing as they are perplexing.\n", "\n", - "### From Monoliths to Morsels: AI Chips in Everything\n", + "#### 3. The Ethical AI Movement\n", "\n", - "AI isn't solely about software. It's also about hardware. Recent updates have seen AI chips becoming smaller, more powerful, and more energy-efficient, allowing them to be embedded into everyday objects. This trend, called the Internet of Things (IoT), means that your refrigerator, car, or even your toothbrush can become 'smart.' These devices can learn your habits and preferences to serve you better. A fridge could monitor your food's expiry dates and suggest recipes based on what you have. Your car could analyze your driving patterns and suggest the most fuel-efficient route. It's convenience at a whole new level, powered by AI.\n", + "With great power comes great responsibility, and the AI community is taking note. There's a growing movement towards 'ethical AI' which insists on transparency, fairness, and accountability in AI systems. As AI intertwines with our daily lives, developers are working hard to ensure that these systems do not propagate bias or inequality. Features like 'explainability' – where an AI can explain the process behind its decision – are making these intelligent systems more accessible and trustworthy to the general public.\n", "\n", - "### Ethical AI: A Movement Towards Responsible Development\n", + "#### 4. Healthcare Gets a Tech Boost\n", "\n", - "A discussion about AI advancements would be incomplete without touching on the topic of ethics. As AI systems become more prevalent, concerns about privacy, bias, and control have sparked a movement towards more ethical development of AI technologies. Initiatives are underway to create AI that respects privacy by design, incorporates diverse data to avoid biases, and has checks and balances to prevent misuse. This indicates a maturing field that's looking inward, ensuring that these technological leaps benefit humanity while minimizing potential harms.\n", + "AI in healthcare is a game-changer, and the recent updates are here to prove it. Thanks to the power of machine learning, AI systems can now analyze complex medical data swiftly and with remarkable accuracy. This means faster diagnoses, personalized treatment plans, and better patient outcomes. Recently, algorithms have been developed to predict patient risks for various diseases, offering the potential for early intervention like never before. Doctors and researchers are just scratching the surface of AI's potential in medicine.\n", "\n", - "### Looking Ahead: AI's Prospect for Society\n", + "#### Embracing the Future\n", "\n", - "So, what do these updates mean for the average person? They suggest a future where AI will be part of the fabric of our existence, making life more accessible, efficient, and personalized. We'll find our digital assistants becoming more helpful, our professional work augmented by intelligent tools, and our homes gradually transforming into interconnected ecosystems that respond to our needs.\n", + "As AI evolves at a breathtaking pace, it's clear that the only limits are those of our imagination. The recent updates are not just about making these systems smarter or more efficient; they're about integrating AI into the fabric of our daily lives in a meaningful, ethical, and human-centered way. Whether it's improving the quality of our conversations with chatbots, pushing the boundaries of creativity, advocating for ethical considerations, or saving lives in healthcare – AI is set on a path that will redefine our reality.\n", "\n", - "However, with every step we take into this brave new world, we must tread with a mix of optimism and caution. We need to be active participants in shaping how AI evolves, demanding technology that works for the benefit of all. It's not just about what AI can do; it's about what it should do.\n", - "\n", - "Staying updated with AI is akin to tuning into the future as it unfolds. And as we move forward, AI's storyline only gets more fascinating, with each new chapter promising a blend of innovation and impact. Stay engaged, stay informed, and let's embrace these AI advancements, ready to leverage them for a brighter, more connected tomorrow.\n", + "So, buckle up and prepare for an exciting ride into the future. AI isn't just a tech trend; it's a revolution that's just getting started. And while it might seem daunting to keep up with the rapid developments, remember – as much as AI is about algorithms and computing, at its core, it's about enhancing human potential and creating a smarter, better world for all.\n", "\n", "Carryover: \n", "\u001b[0m\n", @@ -179,172 +206,128 @@ "\n", "Reflect and provide critique on the following writing. \n", "\n", - " ## Navigating the New Frontiers of Artificial Intelligence: A User-Friendly Update\n", - "\n", - "Artificial Intelligence (AI) is leaping forward at an exhilarating speed, reshaping our world and how we interact with it. With a raft of recent updates, AI is becoming more intuitive, capable, and integrated into our daily lives. If you've ever felt overwhelmed by tech talk and jargon, worry not! Let's break down the latest in AI, making it not only digestible for everyone but also highlighting why it should matter to you.\n", - "\n", - "### AI Gets Creative: GPT-4 and More!\n", + " ### The Fascinating World of AI: What's New on the Horizon of Tomorrow?\n", "\n", - "Have you heard of ChatGPT? This AI, which made waves for mimicking human-like conversation, has now evolved into its fourth iteration, GPT-4. Imagine an AI that can draft emails, write poetry, or even develop a simple app—all with a human touch that's becoming increasingly difficult to distinguish from its biological counterparts. This goes beyond novelty; it opens avenues for unprecedented assistance in creative fields and the potential for personalized tutoring on a scale we've never seen before.\n", + "In the exhilarating realm of Artificial Intelligence (AI), the only constant is change. Recently, there have been several groundbreaking updates that are not just transforming the industry but also the way we live. From self-learning algorithms to AI becoming more creative, the future we once dreamed of is gradually materializing before our eyes. Here's a peek into the latest advancements that are reshaping the world of AI.\n", "\n", - "### Goodbye Language Barriers: Real-time Translation\n", + "#### 1. Chatbots Are Getting Chattier!\n", "\n", - "The world is a melting pot of languages and cultures, and AI is stirring the pot with real-time translation improvements. In the past, we'd awkwardly fumble through phrasebooks or struggle with translation apps that couldn't quite capture nuance. Today's AI-driven translators are different. They can interpret not just words but the subtleties of context and slang, rendering conversations with people from other cultures smoother and more natural. The ease of international dialogue that this technology can bring is set to change business, travel, and online communication in unimaginable ways.\n", + "Remember when chatbots could only answer the most basic of queries? Well, kiss those days goodbye! The new generation of chatbots is powered by advanced natural language processing systems that allow them to understand and respond to complex human emotions and subtleties. They're learning from each interaction and are getting better at mimicking human conversation. So, the next time you're chatting with a customer service bot, don't be surprised if it throws a joke or shows empathy – it's the new normal.\n", "\n", - "### Health and AI: A Match Made in Data Heaven\n", + "#### 2. AI Meets Creativity\n", "\n", - "Medicine and healthcare are areas where AI updates have potentially life-changing implications. Algorithms are now more adept at predicting patient outcomes, personalizing treatment plans, and even assisting in complicated surgeries. AI can sift through medical records and massive amounts of research in microseconds, serving as a valuable sidekick to doctors and researchers. These advancements could mean quicker diagnoses, effective treatments, and even better preventive care, shifting our healthcare paradigms towards more personalized medicine.\n", + "One of the hottest topics nowadays is AI's foray into the creative world. We've seen AI systems compose music, create art, and even write poetry that's indistinguishable from human creations. The recent updates have seen AIs take a deeper dive – they're not just replicating styles but infusing their works with what seems like genuine creativity. This opens a pandora's box of ethical considerations, of course. How much credit does an AI deserve? Is it the programmer or the program that's the artist? While the jury's still out, the possibilities are as tantalizing as they are perplexing.\n", "\n", - "### From Monoliths to Morsels: AI Chips in Everything\n", + "#### 3. The Ethical AI Movement\n", "\n", - "AI isn't solely about software. It's also about hardware. Recent updates have seen AI chips becoming smaller, more powerful, and more energy-efficient, allowing them to be embedded into everyday objects. This trend, called the Internet of Things (IoT), means that your refrigerator, car, or even your toothbrush can become 'smart.' These devices can learn your habits and preferences to serve you better. A fridge could monitor your food's expiry dates and suggest recipes based on what you have. Your car could analyze your driving patterns and suggest the most fuel-efficient route. It's convenience at a whole new level, powered by AI.\n", + "With great power comes great responsibility, and the AI community is taking note. There's a growing movement towards 'ethical AI' which insists on transparency, fairness, and accountability in AI systems. As AI intertwines with our daily lives, developers are working hard to ensure that these systems do not propagate bias or inequality. Features like 'explainability' – where an AI can explain the process behind its decision – are making these intelligent systems more accessible and trustworthy to the general public.\n", "\n", - "### Ethical AI: A Movement Towards Responsible Development\n", + "#### 4. Healthcare Gets a Tech Boost\n", "\n", - "A discussion about AI advancements would be incomplete without touching on the topic of ethics. As AI systems become more prevalent, concerns about privacy, bias, and control have sparked a movement towards more ethical development of AI technologies. Initiatives are underway to create AI that respects privacy by design, incorporates diverse data to avoid biases, and has checks and balances to prevent misuse. This indicates a maturing field that's looking inward, ensuring that these technological leaps benefit humanity while minimizing potential harms.\n", + "AI in healthcare is a game-changer, and the recent updates are here to prove it. Thanks to the power of machine learning, AI systems can now analyze complex medical data swiftly and with remarkable accuracy. This means faster diagnoses, personalized treatment plans, and better patient outcomes. Recently, algorithms have been developed to predict patient risks for various diseases, offering the potential for early intervention like never before. Doctors and researchers are just scratching the surface of AI's potential in medicine.\n", "\n", - "### Looking Ahead: AI's Prospect for Society\n", + "#### Embracing the Future\n", "\n", - "So, what do these updates mean for the average person? They suggest a future where AI will be part of the fabric of our existence, making life more accessible, efficient, and personalized. We'll find our digital assistants becoming more helpful, our professional work augmented by intelligent tools, and our homes gradually transforming into interconnected ecosystems that respond to our needs.\n", + "As AI evolves at a breathtaking pace, it's clear that the only limits are those of our imagination. The recent updates are not just about making these systems smarter or more efficient; they're about integrating AI into the fabric of our daily lives in a meaningful, ethical, and human-centered way. Whether it's improving the quality of our conversations with chatbots, pushing the boundaries of creativity, advocating for ethical considerations, or saving lives in healthcare – AI is set on a path that will redefine our reality.\n", "\n", - "However, with every step we take into this brave new world, we must tread with a mix of optimism and caution. We need to be active participants in shaping how AI evolves, demanding technology that works for the benefit of all. It's not just about what AI can do; it's about what it should do.\n", - "\n", - "Staying updated with AI is akin to tuning into the future as it unfolds. And as we move forward, AI's storyline only gets more fascinating, with each new chapter promising a blend of innovation and impact. Stay engaged, stay informed, and let's embrace these AI advancements, ready to leverage them for a brighter, more connected tomorrow.\n", + "So, buckle up and prepare for an exciting ride into the future. AI isn't just a tech trend; it's a revolution that's just getting started. And while it might seem daunting to keep up with the rapid developments, remember – as much as AI is about algorithms and computing, at its core, it's about enhancing human potential and creating a smarter, better world for all.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mreflection_assistant\u001b[0m (to user_proxy):\n", "\n", - "The writing effectively communicates excitement and accessibility regarding the current and future state of artificial intelligence. The structure is logical, it covers a broad range of AI applications, and it does so using a conversational style that is accessible to a general audience. Here are some suggestions and critiques to refine the piece further:\n", - "\n", - "1. Title:\n", - " - The title is catchy and encourages readers to explore the content; it does well in conveying that the update will be user-friendly.\n", - "\n", - "2. Introduction:\n", - " - The opening paragraph accomplishes its goal of setting a non-intimidating tone.\n", - " - Consider adding a brief mention of what specific updates or areas will be covered, to provide the reader with a roadmap of the discussion.\n", - "\n", - "3. AI Gets Creative: GPT-4 and More!\n", - " - The section effectively demystifies a complex topic into an easy-to-understand language.\n", - " - It could benefit from a specific example of GPT-4's capabilities or a short anecdote that highlights its impact.\n", + "This piece on AI developments is generally well-written, engaging, and informative. It achieves its purpose of highlighting recent advancements within the sphere of artificial intelligence. However, there's always room for improvement. Below is a critique with recommendations on how to enhance the effectiveness of the writing:\n", "\n", - "4. Goodbye Language Barriers: Real-time Translation\n", - " - This part succeeds in explaining the significance of translation AI in a relatable manner.\n", - " - Adding stats or comparing old versus new tech in a side-by-side feature list could enhance understanding.\n", + "1. Title and Introduction:\n", + " - The title is certainly catchy and appropriate. It sets the right tone for the article.\n", + " - The introduction is enticing, but it could benefit from a statistic or a specific example to ground the reader in the reality of AI's advancements.\n", "\n", - "5. Health and AI: A Match Made in Data Heaven\n", - " - The section aptly emphasizes the promise of AI in healthcare.\n", - " - It would be valuable to address potential risks or challenges to avoid painting an overly rosy picture. A recommendation here is to briefly discuss data privacy concerns or the need for regulatory oversight.\n", + "2. Depth and Detail:\n", + " - Each section introduces a topic but could be further enriched with more specifics. For example, in the section on chatbots, mention a particular chatbot or technology.\n", + " - The AI creativity segment raises intriguing questions about authorship and artistry but stops short of diving into current debates or referencing notable AI-generated works. It could benefit from a few examples and more insights into the ethical implications.\n", "\n", - "6. From Monoliths to Morsels: AI Chips in Everything\n", - " - This section provides tangible, everyday examples of AI's influence.\n", - " - It could be deepened by discussing the environmental implications of the IoT trend, such as electronic waste or the energy consumption of constantly connected devices.\n", + "3. Style and Tone:\n", + " - The tone is accessible and energizing, appropriate for a general audience. Nevertheless, some readers might appreciate fewer colloquialisms (\"Well, kiss those days goodbye!\") to maintain professional credibility.\n", + " - The frequent use of rhetorical questions is engaging, but their overuse can be distracting. Consider replacing one or two with assertive statements.\n", "\n", - "7. Ethical AI: A Movement Towards Responsible Development\n", - " - This is a critical section that addresses the essential issue of AI ethics.\n", - " - It would be strengthened by mentioning specific initiatives or frameworks being developed for ethical AI and by inviting reader engagement on these issues.\n", + "4. Structure and Organization:\n", + " - The overall structure is logical and easy to follow. However, consider using subheadings that are more descriptive and reflective of the content that follows.\n", "\n", - "8. Looking Ahead: AI's Prospect for Society\n", - " - The conclusion is forward-looking and balances optimism with caution.\n", - " - To encourage active reader participation, the piece could close with questions for reflection or a call to action, such as engaging with policymakers or supporting transparent AI research.\n", + "5. Recommendations:\n", + " - Expand the sections to include more concrete examples, such as mentioning prominent AI tools, like GPT-3 for chatbots or DALL-E for AI-generated art, to illustrate the advancements.\n", + " - Incorporate more data and references to recent studies to substantiate claims, especially regarding AI's impact on healthcare.\n", + " - Provide links or footnotes for readers who may want to delve deeper into specific topics, such as ethical AI guidelines or creative AI projects.\n", + " - Discuss potential downsides or challenges within each AI advancement to present a balanced view. For instance, in healthcare, address data privacy concerns or the risks of over-reliance on AI diagnostics.\n", + " - Conclude with a call to action or a contemplative question to encourage reader engagement with the topic.\n", "\n", - "9. Style & Tone:\n", - " - The conversational tone is maintained well throughout the piece, making complex subjects approachable.\n", - " - Use of active voice is consistent, keeping the writing engaging.\n", - "\n", - "Overall, the piece does well to convey the importance and influence of AI developments in a way that is approachable for non-experts. To enhance the depth and impact of the article, each section could be expanded with more detail, examples, and a balanced view of benefits versus challenges. Invite readers to think critically about AI's role in society and their own lives, leading to a richer, more informative experience.\n", + "In terms of length, an expansion to dig deeper into each point would enhance the richness of the content. Aim for about 150-200 more words per section, which should give ample space to provide the desired level of detail without overwhelming the reader. Furthermore, consider introducing a closing section that briefly discusses possible future developments, as this would provide an even stronger end to the piece.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33muser_proxy\u001b[0m (to writing_assistant):\n", "\n", - "The writing effectively communicates excitement and accessibility regarding the current and future state of artificial intelligence. The structure is logical, it covers a broad range of AI applications, and it does so using a conversational style that is accessible to a general audience. Here are some suggestions and critiques to refine the piece further:\n", - "\n", - "1. Title:\n", - " - The title is catchy and encourages readers to explore the content; it does well in conveying that the update will be user-friendly.\n", - "\n", - "2. Introduction:\n", - " - The opening paragraph accomplishes its goal of setting a non-intimidating tone.\n", - " - Consider adding a brief mention of what specific updates or areas will be covered, to provide the reader with a roadmap of the discussion.\n", + "This piece on AI developments is generally well-written, engaging, and informative. It achieves its purpose of highlighting recent advancements within the sphere of artificial intelligence. However, there's always room for improvement. Below is a critique with recommendations on how to enhance the effectiveness of the writing:\n", "\n", - "3. AI Gets Creative: GPT-4 and More!\n", - " - The section effectively demystifies a complex topic into an easy-to-understand language.\n", - " - It could benefit from a specific example of GPT-4's capabilities or a short anecdote that highlights its impact.\n", + "1. Title and Introduction:\n", + " - The title is certainly catchy and appropriate. It sets the right tone for the article.\n", + " - The introduction is enticing, but it could benefit from a statistic or a specific example to ground the reader in the reality of AI's advancements.\n", "\n", - "4. Goodbye Language Barriers: Real-time Translation\n", - " - This part succeeds in explaining the significance of translation AI in a relatable manner.\n", - " - Adding stats or comparing old versus new tech in a side-by-side feature list could enhance understanding.\n", + "2. Depth and Detail:\n", + " - Each section introduces a topic but could be further enriched with more specifics. For example, in the section on chatbots, mention a particular chatbot or technology.\n", + " - The AI creativity segment raises intriguing questions about authorship and artistry but stops short of diving into current debates or referencing notable AI-generated works. It could benefit from a few examples and more insights into the ethical implications.\n", "\n", - "5. Health and AI: A Match Made in Data Heaven\n", - " - The section aptly emphasizes the promise of AI in healthcare.\n", - " - It would be valuable to address potential risks or challenges to avoid painting an overly rosy picture. A recommendation here is to briefly discuss data privacy concerns or the need for regulatory oversight.\n", + "3. Style and Tone:\n", + " - The tone is accessible and energizing, appropriate for a general audience. Nevertheless, some readers might appreciate fewer colloquialisms (\"Well, kiss those days goodbye!\") to maintain professional credibility.\n", + " - The frequent use of rhetorical questions is engaging, but their overuse can be distracting. Consider replacing one or two with assertive statements.\n", "\n", - "6. From Monoliths to Morsels: AI Chips in Everything\n", - " - This section provides tangible, everyday examples of AI's influence.\n", - " - It could be deepened by discussing the environmental implications of the IoT trend, such as electronic waste or the energy consumption of constantly connected devices.\n", + "4. Structure and Organization:\n", + " - The overall structure is logical and easy to follow. However, consider using subheadings that are more descriptive and reflective of the content that follows.\n", "\n", - "7. Ethical AI: A Movement Towards Responsible Development\n", - " - This is a critical section that addresses the essential issue of AI ethics.\n", - " - It would be strengthened by mentioning specific initiatives or frameworks being developed for ethical AI and by inviting reader engagement on these issues.\n", + "5. Recommendations:\n", + " - Expand the sections to include more concrete examples, such as mentioning prominent AI tools, like GPT-3 for chatbots or DALL-E for AI-generated art, to illustrate the advancements.\n", + " - Incorporate more data and references to recent studies to substantiate claims, especially regarding AI's impact on healthcare.\n", + " - Provide links or footnotes for readers who may want to delve deeper into specific topics, such as ethical AI guidelines or creative AI projects.\n", + " - Discuss potential downsides or challenges within each AI advancement to present a balanced view. For instance, in healthcare, address data privacy concerns or the risks of over-reliance on AI diagnostics.\n", + " - Conclude with a call to action or a contemplative question to encourage reader engagement with the topic.\n", "\n", - "8. Looking Ahead: AI's Prospect for Society\n", - " - The conclusion is forward-looking and balances optimism with caution.\n", - " - To encourage active reader participation, the piece could close with questions for reflection or a call to action, such as engaging with policymakers or supporting transparent AI research.\n", - "\n", - "9. Style & Tone:\n", - " - The conversational tone is maintained well throughout the piece, making complex subjects approachable.\n", - " - Use of active voice is consistent, keeping the writing engaging.\n", - "\n", - "Overall, the piece does well to convey the importance and influence of AI developments in a way that is approachable for non-experts. To enhance the depth and impact of the article, each section could be expanded with more detail, examples, and a balanced view of benefits versus challenges. Invite readers to think critically about AI's role in society and their own lives, leading to a richer, more informative experience.\n", + "In terms of length, an expansion to dig deeper into each point would enhance the richness of the content. Aim for about 150-200 more words per section, which should give ample space to provide the desired level of detail without overwhelming the reader. Furthermore, consider introducing a closing section that briefly discusses possible future developments, as this would provide an even stronger end to the piece.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mwriting_assistant\u001b[0m (to user_proxy):\n", "\n", - "## AI Unveiled: A Peek Into Tomorrow's Tech, Today\n", - "\n", - "Welcome to a whirlwind tour of artificial intelligence's latest marvels, where we unpack the tech magic for everyone. From talking bots to health miracles, get ready to peek under the hood of tomorrow's technology that's knocking on your door today. So, strap in, and let's venture into the world where science fiction becomes science fact!\n", + "### AI Unveiled: The New Frontiers Shaping Our Tomorrow\n", "\n", - "### Creativity Unleashed with GPT-4\n", + "In the enthralling landscape of Artificial Intelligence (AI), each dawn heralds innovations that stretch the fabric of our daily lives. A fascinating statistic from Gartner suggests that by 2025, AI and deep learning will create more value on average across business processes than any other business-analytics combination. Let's delve into specific breakthroughs making this possible and ground ourselves in the tangible strides being made within AI.\n", "\n", - "Imagine a painter who can capture your dream on canvas, or a composer who can turn your hum into a symphony. That's where AI, with its new poster child GPT-4, is heading. Beyond crafting essays and charming chats, GPT-4 can now script your podcast or automate tedious coding jobs. For instance, a young coder recently used GPT-4 to develop an app overnight—a task that generally takes weeks! This is revolutionising creativity, automating the mundane, and freeing human minds for the extraordinary.\n", + "#### Chatbots: Pioneering a New Wave of Digital Conversation\n", "\n", - "### Breaking Walls: The Language Revolution\n", + "Imagine engaging with a chatbot that doesn't just answer your query but understands the subtleties of your tone, the context of your request, and even your emotion. This isn't the future; it's happening right now. Chatbots like GPT-3 are leading the charge, utilizing sophisticated machine learning algorithms that adapt and evolve through every interaction. Their ability to sustain deep, meaningful conversations is revolutionizing customer service, offering a glimpse into a future where digital assistants provide empathy alongside efficiency.\n", "\n", - "The recent updates in translation AI would leave even the Tower of Babel bewildered. Diving into this transformation, let's compare the old and new: Picture a classic translator stumbling on idioms versus the latest AI smoothly sailing through slang, coughing up colloquialisms like a local. Here's a zinger - studies have shown that modern AI can translate some languages with near-human accuracy, shrinking our big, diverse world into a cozy global village.\n", + "#### The Creative Spark: AI as the New Artist on the Block\n", "\n", - "### The AI Doctor Will See You Now\n", + "Take, for instance, the AI program DALL-E, which can generate stunning visual images from textual descriptions, showcasing an 'imagination' that could rival human creatives. This blend of technology and artistry poses provocative questions about the nature of originality and creativity. A certain painting, which an AI generated to resemble the style of classic Dutch masters, recently sold at auction for an impressive sum. Who gets credit for such a piece—the algorithm, its developers, or the data it was trained on? This debate is just beginning, as AI's role in creativity continues to unfold.\n", "\n", - "AI in healthcare is now doing rounds, ready to change lives. It's like a medical Sherlock Holmes, deducing health mysteries at lightning speed. Yet, amidst this awe, we must tread carefully. The sanctity of our personal, medical data hangs in balance, with AI's hunger for information clashing with our right to privacy. As the AI healthcare tide rises, so does the need for strong, empathetic policies that guard our information like the crown jewels.\n", + "#### The Ethical Compass: Guiding AI Towards a Principled Future\n", "\n", - "### A Chip off the Old Block: AI Everywhere\n", + "The ethical AI movement is setting a course for responsible innovation. Initiatives like the AI Ethics Guidelines from the European Union are paving the way to ensure AI systems are developed with fairness, accountability, and transparency at their core. Explainable AI (XAI), where an AI can articulate its decision-making process, is one example of this trend, offering clarity to users and building trust in these systems.\n", "\n", - "AI chips are getting baked into practically everything—yes, even that toothbrush. This Internet of Things is smart, but there's a catch. Every smart device is hungry—for data and energy. Electronic waste and power consumption are very real concerns. We need green solutions as much as we need smart solutions, ensuring our planet doesn't pay the price for our convenience.\n", + "#### AI's Prescription for Healthcare: A Dose of Revolutionary Change\n", "\n", - "### Ethics: The AI Guiding Principle\n", + "AI's application in healthcare is nothing short of transformative. New machine learning algorithms, like DeepMind's AlphaFold which predicts protein structures with unprecedented accuracy, are poised to revolutionize drug discovery and treatment protocols. AI is also being utilized to analyze countless medical images swiftly, improving early cancer detection rates and personalizing patient care like never before.\n", "\n", - "In this acceleration, we've hammered the brakes and looked in the rear-view mirror at ethics. It's not just about AI's might but its morals. There's a crusade for AI with a conscience, led by initiatives like the AI Now Institute, promoting responsible AI that respects our dignity, diversity, and privacy. This is our collective checkpoint, ensuring AI doesn't outsmart its creators' values.\n", + "#### Let's Talk About Tomorrow\n", "\n", - "### The Future in Our Hands\n", + "We stand on the cusp of a future abundantly interwoven with AI. The recent updates explored here are just facets of a larger picture, where AI's integration into society offers profound enhancements to how we communicate, create, work, and heal. AI promises not only technological betterment but socio-economic enrichment, and as we journey through AI's metamorphosis, we must remain vigilant custodians of its ethical evolution.\n", "\n", - "The world of AI is a canvas with splashes of optimism framed by caution. It's a powerful ally and a profound responsibility. Our invitation to you? Become part of the conversation. Question, critique, and engage with tech developers, policymakers, and the wider community. Your voice can shape an AI-assisted world that reflects our collective aspirations and ethical compass.\n", + "As AI continues to redefine our boundaries, remember that at its core lies not a quest for rigid automation, but a passion for amplifying human capability and fostering a smarter, more equitable world. The horizon is laden with promise, and it's our collective responsibility to march towards it with an eye for inclusivity and a heart for progress.\n", "\n", - "In this shared journey, stay informed and stay curious. Our next chapter in the AI saga is being written today—by us all. So dive in, dream big, and let's navigate the waves of AI together, creating a symphony where technology meets humanity.\n", + "So, where do we go from here? Are you ready to be a part of this revolution, to embrace the endless possibilities, and to engage in the conversations that will shape our collective future? The canvas of tomorrow awaits your imprint, and AI is the brush with which we can paint a future where technology serves humanity in ways we are only just beginning to understand.\n", "\n", "--------------------------------------------------------------------------------\n" ] - }, - { - "data": { - "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': 'Write an engaging blogpost on the recent updates in AI. The blogpost should be engaging and understandable for general audience. Should have more than 3 paragraphes but no longer than 1000 words.', 'role': 'assistant'}, {'content': \"## Navigating the New Frontiers of Artificial Intelligence: A User-Friendly Update\\n\\nArtificial Intelligence (AI) is leaping forward at an exhilarating speed, reshaping our world and how we interact with it. With a raft of recent updates, AI is becoming more intuitive, capable, and integrated into our daily lives. If you've ever felt overwhelmed by tech talk and jargon, worry not! Let's break down the latest in AI, making it not only digestible for everyone but also highlighting why it should matter to you.\\n\\n### AI Gets Creative: GPT-4 and More!\\n\\nHave you heard of ChatGPT? This AI, which made waves for mimicking human-like conversation, has now evolved into its fourth iteration, GPT-4. Imagine an AI that can draft emails, write poetry, or even develop a simple app—all with a human touch that's becoming increasingly difficult to distinguish from its biological counterparts. This goes beyond novelty; it opens avenues for unprecedented assistance in creative fields and the potential for personalized tutoring on a scale we've never seen before.\\n\\n### Goodbye Language Barriers: Real-time Translation\\n\\nThe world is a melting pot of languages and cultures, and AI is stirring the pot with real-time translation improvements. In the past, we'd awkwardly fumble through phrasebooks or struggle with translation apps that couldn't quite capture nuance. Today's AI-driven translators are different. They can interpret not just words but the subtleties of context and slang, rendering conversations with people from other cultures smoother and more natural. The ease of international dialogue that this technology can bring is set to change business, travel, and online communication in unimaginable ways.\\n\\n### Health and AI: A Match Made in Data Heaven\\n\\nMedicine and healthcare are areas where AI updates have potentially life-changing implications. Algorithms are now more adept at predicting patient outcomes, personalizing treatment plans, and even assisting in complicated surgeries. AI can sift through medical records and massive amounts of research in microseconds, serving as a valuable sidekick to doctors and researchers. These advancements could mean quicker diagnoses, effective treatments, and even better preventive care, shifting our healthcare paradigms towards more personalized medicine.\\n\\n### From Monoliths to Morsels: AI Chips in Everything\\n\\nAI isn't solely about software. It's also about hardware. Recent updates have seen AI chips becoming smaller, more powerful, and more energy-efficient, allowing them to be embedded into everyday objects. This trend, called the Internet of Things (IoT), means that your refrigerator, car, or even your toothbrush can become 'smart.' These devices can learn your habits and preferences to serve you better. A fridge could monitor your food's expiry dates and suggest recipes based on what you have. Your car could analyze your driving patterns and suggest the most fuel-efficient route. It's convenience at a whole new level, powered by AI.\\n\\n### Ethical AI: A Movement Towards Responsible Development\\n\\nA discussion about AI advancements would be incomplete without touching on the topic of ethics. As AI systems become more prevalent, concerns about privacy, bias, and control have sparked a movement towards more ethical development of AI technologies. Initiatives are underway to create AI that respects privacy by design, incorporates diverse data to avoid biases, and has checks and balances to prevent misuse. This indicates a maturing field that's looking inward, ensuring that these technological leaps benefit humanity while minimizing potential harms.\\n\\n### Looking Ahead: AI's Prospect for Society\\n\\nSo, what do these updates mean for the average person? They suggest a future where AI will be part of the fabric of our existence, making life more accessible, efficient, and personalized. We'll find our digital assistants becoming more helpful, our professional work augmented by intelligent tools, and our homes gradually transforming into interconnected ecosystems that respond to our needs.\\n\\nHowever, with every step we take into this brave new world, we must tread with a mix of optimism and caution. We need to be active participants in shaping how AI evolves, demanding technology that works for the benefit of all. It's not just about what AI can do; it's about what it should do.\\n\\nStaying updated with AI is akin to tuning into the future as it unfolds. And as we move forward, AI's storyline only gets more fascinating, with each new chapter promising a blend of innovation and impact. Stay engaged, stay informed, and let's embrace these AI advancements, ready to leverage them for a brighter, more connected tomorrow.\", 'role': 'user'}, {'content': \"The writing effectively communicates excitement and accessibility regarding the current and future state of artificial intelligence. The structure is logical, it covers a broad range of AI applications, and it does so using a conversational style that is accessible to a general audience. Here are some suggestions and critiques to refine the piece further:\\n\\n1. Title:\\n - The title is catchy and encourages readers to explore the content; it does well in conveying that the update will be user-friendly.\\n\\n2. Introduction:\\n - The opening paragraph accomplishes its goal of setting a non-intimidating tone.\\n - Consider adding a brief mention of what specific updates or areas will be covered, to provide the reader with a roadmap of the discussion.\\n\\n3. AI Gets Creative: GPT-4 and More!\\n - The section effectively demystifies a complex topic into an easy-to-understand language.\\n - It could benefit from a specific example of GPT-4's capabilities or a short anecdote that highlights its impact.\\n\\n4. Goodbye Language Barriers: Real-time Translation\\n - This part succeeds in explaining the significance of translation AI in a relatable manner.\\n - Adding stats or comparing old versus new tech in a side-by-side feature list could enhance understanding.\\n\\n5. Health and AI: A Match Made in Data Heaven\\n - The section aptly emphasizes the promise of AI in healthcare.\\n - It would be valuable to address potential risks or challenges to avoid painting an overly rosy picture. A recommendation here is to briefly discuss data privacy concerns or the need for regulatory oversight.\\n\\n6. From Monoliths to Morsels: AI Chips in Everything\\n - This section provides tangible, everyday examples of AI's influence.\\n - It could be deepened by discussing the environmental implications of the IoT trend, such as electronic waste or the energy consumption of constantly connected devices.\\n\\n7. Ethical AI: A Movement Towards Responsible Development\\n - This is a critical section that addresses the essential issue of AI ethics.\\n - It would be strengthened by mentioning specific initiatives or frameworks being developed for ethical AI and by inviting reader engagement on these issues.\\n\\n8. Looking Ahead: AI's Prospect for Society\\n - The conclusion is forward-looking and balances optimism with caution.\\n - To encourage active reader participation, the piece could close with questions for reflection or a call to action, such as engaging with policymakers or supporting transparent AI research.\\n\\n9. Style & Tone:\\n - The conversational tone is maintained well throughout the piece, making complex subjects approachable.\\n - Use of active voice is consistent, keeping the writing engaging.\\n\\nOverall, the piece does well to convey the importance and influence of AI developments in a way that is approachable for non-experts. To enhance the depth and impact of the article, each section could be expanded with more detail, examples, and a balanced view of benefits versus challenges. Invite readers to think critically about AI's role in society and their own lives, leading to a richer, more informative experience.\", 'role': 'assistant'}, {'content': \"## AI Unveiled: A Peek Into Tomorrow's Tech, Today\\n\\nWelcome to a whirlwind tour of artificial intelligence's latest marvels, where we unpack the tech magic for everyone. From talking bots to health miracles, get ready to peek under the hood of tomorrow's technology that's knocking on your door today. So, strap in, and let's venture into the world where science fiction becomes science fact!\\n\\n### Creativity Unleashed with GPT-4\\n\\nImagine a painter who can capture your dream on canvas, or a composer who can turn your hum into a symphony. That's where AI, with its new poster child GPT-4, is heading. Beyond crafting essays and charming chats, GPT-4 can now script your podcast or automate tedious coding jobs. For instance, a young coder recently used GPT-4 to develop an app overnight—a task that generally takes weeks! This is revolutionising creativity, automating the mundane, and freeing human minds for the extraordinary.\\n\\n### Breaking Walls: The Language Revolution\\n\\nThe recent updates in translation AI would leave even the Tower of Babel bewildered. Diving into this transformation, let's compare the old and new: Picture a classic translator stumbling on idioms versus the latest AI smoothly sailing through slang, coughing up colloquialisms like a local. Here's a zinger - studies have shown that modern AI can translate some languages with near-human accuracy, shrinking our big, diverse world into a cozy global village.\\n\\n### The AI Doctor Will See You Now\\n\\nAI in healthcare is now doing rounds, ready to change lives. It's like a medical Sherlock Holmes, deducing health mysteries at lightning speed. Yet, amidst this awe, we must tread carefully. The sanctity of our personal, medical data hangs in balance, with AI's hunger for information clashing with our right to privacy. As the AI healthcare tide rises, so does the need for strong, empathetic policies that guard our information like the crown jewels.\\n\\n### A Chip off the Old Block: AI Everywhere\\n\\nAI chips are getting baked into practically everything—yes, even that toothbrush. This Internet of Things is smart, but there's a catch. Every smart device is hungry—for data and energy. Electronic waste and power consumption are very real concerns. We need green solutions as much as we need smart solutions, ensuring our planet doesn't pay the price for our convenience.\\n\\n### Ethics: The AI Guiding Principle\\n\\nIn this acceleration, we've hammered the brakes and looked in the rear-view mirror at ethics. It's not just about AI's might but its morals. There's a crusade for AI with a conscience, led by initiatives like the AI Now Institute, promoting responsible AI that respects our dignity, diversity, and privacy. This is our collective checkpoint, ensuring AI doesn't outsmart its creators' values.\\n\\n### The Future in Our Hands\\n\\nThe world of AI is a canvas with splashes of optimism framed by caution. It's a powerful ally and a profound responsibility. Our invitation to you? Become part of the conversation. Question, critique, and engage with tech developers, policymakers, and the wider community. Your voice can shape an AI-assisted world that reflects our collective aspirations and ethical compass.\\n\\nIn this shared journey, stay informed and stay curious. Our next chapter in the AI saga is being written today—by us all. So dive in, dream big, and let's navigate the waves of AI together, creating a symphony where technology meets humanity.\", 'role': 'user'}], summary=\"## AI Unveiled: A Peek Into Tomorrow's Tech, Today\\n\\nWelcome to a whirlwind tour of artificial intelligence's latest marvels, where we unpack the tech magic for everyone. From talking bots to health miracles, get ready to peek under the hood of tomorrow's technology that's knocking on your door today. So, strap in, and let's venture into the world where science fiction becomes science fact!\\n\\n### Creativity Unleashed with GPT-4\\n\\nImagine a painter who can capture your dream on canvas, or a composer who can turn your hum into a symphony. That's where AI, with its new poster child GPT-4, is heading. Beyond crafting essays and charming chats, GPT-4 can now script your podcast or automate tedious coding jobs. For instance, a young coder recently used GPT-4 to develop an app overnight—a task that generally takes weeks! This is revolutionising creativity, automating the mundane, and freeing human minds for the extraordinary.\\n\\n### Breaking Walls: The Language Revolution\\n\\nThe recent updates in translation AI would leave even the Tower of Babel bewildered. Diving into this transformation, let's compare the old and new: Picture a classic translator stumbling on idioms versus the latest AI smoothly sailing through slang, coughing up colloquialisms like a local. Here's a zinger - studies have shown that modern AI can translate some languages with near-human accuracy, shrinking our big, diverse world into a cozy global village.\\n\\n### The AI Doctor Will See You Now\\n\\nAI in healthcare is now doing rounds, ready to change lives. It's like a medical Sherlock Holmes, deducing health mysteries at lightning speed. Yet, amidst this awe, we must tread carefully. The sanctity of our personal, medical data hangs in balance, with AI's hunger for information clashing with our right to privacy. As the AI healthcare tide rises, so does the need for strong, empathetic policies that guard our information like the crown jewels.\\n\\n### A Chip off the Old Block: AI Everywhere\\n\\nAI chips are getting baked into practically everything—yes, even that toothbrush. This Internet of Things is smart, but there's a catch. Every smart device is hungry—for data and energy. Electronic waste and power consumption are very real concerns. We need green solutions as much as we need smart solutions, ensuring our planet doesn't pay the price for our convenience.\\n\\n### Ethics: The AI Guiding Principle\\n\\nIn this acceleration, we've hammered the brakes and looked in the rear-view mirror at ethics. It's not just about AI's might but its morals. There's a crusade for AI with a conscience, led by initiatives like the AI Now Institute, promoting responsible AI that respects our dignity, diversity, and privacy. This is our collective checkpoint, ensuring AI doesn't outsmart its creators' values.\\n\\n### The Future in Our Hands\\n\\nThe world of AI is a canvas with splashes of optimism framed by caution. It's a powerful ally and a profound responsibility. Our invitation to you? Become part of the conversation. Question, critique, and engage with tech developers, policymakers, and the wider community. Your voice can shape an AI-assisted world that reflects our collective aspirations and ethical compass.\\n\\nIn this shared journey, stay informed and stay curious. Our next chapter in the AI saga is being written today—by us all. So dive in, dream big, and let's navigate the waves of AI together, creating a symphony where technology meets humanity.\", cost=({'total_cost': 0.14787, 'gpt-4': {'cost': 0.14787, 'prompt_tokens': 1705, 'completion_tokens': 1612, 'total_tokens': 3317}}, {'total_cost': 0}), human_input=[])" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ "def reflection_message(recipient, messages, sender, config):\n", - " print(\"Reflecting...\", \"yellow\")\n", + " print(\"Reflecting...\")\n", " return f\"Reflect and provide critique on the following writing. \\n\\n {recipient.chat_messages_for_summary(sender)[-1]['content']}\"\n", "\n", "\n", @@ -361,11 +344,17 @@ " # position=4,\n", ")\n", "\n", - "user_proxy.initiate_chat(\n", - " writing_assistant,\n", - " message=\"Write an engaging blogpost on the recent updates in AI. The blogpost should be engaging and understandable for general audience. Should have more than 3 paragraphes but no longer than 1000 words.\",\n", - " max_turns=2,\n", - ")" + "# Use Cache.disk to cache the generated responses.\n", + "# This is useful when the same request to the LLM is made multiple times.\n", + "with Cache.disk(cache_seed=42) as cache:\n", + " user_proxy.initiate_chat(\n", + " writing_assistant,\n", + " message=\"Write an engaging blogpost on the recent updates in AI. \"\n", + " \"The blogpost should be engaging and understandable for general audience. \"\n", + " \"Should have more than 3 paragraphes but no longer than 1000 words.\",\n", + " max_turns=2,\n", + " cache=cache,\n", + " )" ] } ], @@ -385,7 +374,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/website/docs/topics/retrieval_augmentation.md b/website/docs/topics/retrieval_augmentation.md index 7de22cce84f..ca7222a404f 100644 --- a/website/docs/topics/retrieval_augmentation.md +++ b/website/docs/topics/retrieval_augmentation.md @@ -53,12 +53,73 @@ ragproxyagent.initiate_chat( ) # search_string is used as an extra filter for the embeddings search, in this case, we only want to search documents that contain "spark". ``` +## Example Setup: RAG with Retrieval Augmented Agents with PGVector +The following is an example setup demonstrating how to create retrieval augmented agents in AutoGen: + +### Step 1. Create an instance of `RetrieveAssistantAgent` and `RetrieveUserProxyAgent`. + +Here `RetrieveUserProxyAgent` instance acts as a proxy agent that retrieves relevant information based on the user's input. + +Specify the connection_string, or the host, port, database, username, and password in the db_config. + +```python +assistant = RetrieveAssistantAgent( + name="assistant", + system_message="You are a helpful assistant.", + llm_config={ + "timeout": 600, + "cache_seed": 42, + "config_list": config_list, + }, +) +ragproxyagent = RetrieveUserProxyAgent( + name="ragproxyagent", + human_input_mode="NEVER", + max_consecutive_auto_reply=3, + retrieve_config={ + "task": "code", + "docs_path": [ + "https://raw.githubusercontent.com/microsoft/FLAML/main/website/docs/Examples/Integrate%20-%20Spark.md", + "https://raw.githubusercontent.com/microsoft/FLAML/main/website/docs/Research.md", + os.path.join(os.path.abspath(""), "..", "website", "docs"), + ], + "vector_db": "pgvector", + "collection_name": "autogen_docs", + "db_config": { + "connection_string": "postgresql://testuser:testpwd@localhost:5432/vectordb", # Optional - connect to an external vector database + # "host": None, # Optional vector database host + # "port": None, # Optional vector database port + # "database": None, # Optional vector database name + # "username": None, # Optional vector database username + # "password": None, # Optional vector database password + }, + "custom_text_types": ["mdx"], + "chunk_token_size": 2000, + "model": config_list[0]["model"], + "get_or_create": True, + }, + code_execution_config=False, +) +``` + +### Step 2. Initiating Agent Chat with Retrieval Augmentation + +Once the retrieval augmented agents are set up, you can initiate a chat with retrieval augmentation using the following code: + +```python +code_problem = "How can I use FLAML to perform a classification task and use spark to do parallel training. Train 30 seconds and force cancel jobs if time limit is reached." +ragproxyagent.initiate_chat( + assistant, message=ragproxyagent.message_generator, problem=code_problem, search_string="spark" +) # search_string is used as an extra filter for the embeddings search, in this case, we only want to search documents that contain "spark". +``` + ## Online Demo [Retrival-Augmented Chat Demo on Huggingface](https://huggingface.co/spaces/thinkall/autogen-demos) ## More Examples and Notebooks For more detailed examples and notebooks showcasing the usage of retrieval augmented agents in AutoGen, refer to the following: - Automated Code Generation and Question Answering with Retrieval Augmented Agents - [View Notebook](/docs/notebooks/agentchat_RetrieveChat) +- Automated Code Generation and Question Answering with [PGVector](https://github.com/pgvector/pgvector) based Retrieval Augmented Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_pgvector_RetrieveChat.ipynb) - Automated Code Generation and Question Answering with [Qdrant](https://qdrant.tech/) based Retrieval Augmented Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_qdrant_RetrieveChat.ipynb) - Chat with OpenAI Assistant with Retrieval Augmentation - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_retrieval.ipynb) - **RAG**: Group Chat with Retrieval Augmented Generation (with 5 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_RAG) diff --git a/website/docs/topics/task_decomposition.ipynb b/website/docs/topics/task_decomposition.ipynb index 333b4599616..8001c37ea30 100644 --- a/website/docs/topics/task_decomposition.ipynb +++ b/website/docs/topics/task_decomposition.ipynb @@ -11,121 +11,205 @@ "On this page, we demonstrate several different ways to achieve task decomposition in AutoGen." ] }, + { + "cell_type": "markdown", + "id": "a6c436c9", + "metadata": {}, + "source": [ + "First make sure the `pyautogen` package is installed." + ] + }, { "cell_type": "code", - "execution_count": 1, - "id": "dca301a4", + "execution_count": null, + "id": "659cd58d", "metadata": {}, "outputs": [], "source": [ - "import autogen\n", - "\n", - "config_list = autogen.config_list_from_json(\n", - " \"OAI_CONFIG_LIST\",\n", - ")\n", - "\n", - "llm_config = {\n", - " \"cache_seed\": 42, # change the cache_seed for different trials\n", - " \"config_list\": config_list,\n", - " \"timeout\": 120,\n", - "}" + "! pip install \"pyautogen>=0.2.18\"" ] }, { "cell_type": "markdown", - "id": "11489237", + "id": "8c28364c", "metadata": {}, "source": [ - "The task to be solved to write a blog post about the stock price performance of Nvidia in the past month." + "Import the relevant modules and configure the LLM.\n", + "See [LLM Configuration](./llm_configuration) for how to configure LLMs." ] }, { "cell_type": "code", - "execution_count": 2, - "id": "6ecbc602", + "execution_count": 89, + "id": "dca301a4", "metadata": {}, "outputs": [], "source": [ - "task = \"Write a blogpost about the stock price performance of Nvidia in the past month.\"" + "import os\n", + "from datetime import datetime\n", + "from typing import Callable, Dict, Literal, Optional, Union\n", + "\n", + "from typing_extensions import Annotated\n", + "\n", + "from autogen import (\n", + " Agent,\n", + " AssistantAgent,\n", + " ConversableAgent,\n", + " GroupChat,\n", + " GroupChatManager,\n", + " UserProxyAgent,\n", + " config_list_from_json,\n", + " register_function,\n", + ")\n", + "from autogen.agentchat.contrib import agent_builder\n", + "from autogen.cache import Cache\n", + "from autogen.coding import DockerCommandLineCodeExecutor, LocalCommandLineCodeExecutor\n", + "\n", + "config_list = [\n", + " {\"model\": \"gpt-4-1106-preview\", \"api_key\": os.environ[\"OPENAI_API_KEY\"]},\n", + " {\"model\": \"gpt-3.5-turbo\", \"api_key\": os.environ[\"OPENAI_API_KEY\"]},\n", + "]\n", + "# You can also use the following method to load the config list from a file or environment variable.\n", + "# config_list = config_list_from_json(env_or_file=\"OAI_CONFIG_LIST\")" ] }, { - "attachments": {}, "cell_type": "markdown", - "id": "2b9526e7", + "id": "11489237", "metadata": {}, "source": [ - "## Approach 1. Two-agent chat with function call for task decomposition" + "The task to be solved to write a blog post about the stock price performance of Nvidia in the past month." ] }, { "cell_type": "code", - "execution_count": 48, - "id": "9fb85afb", + "execution_count": 90, + "id": "6ecbc602", "metadata": {}, "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "The return type of the function 'task_decomposition' is not annotated. Although annotating it is optional, the function should return either a string, a subclass of 'pydantic.BaseModel'.\n" + "Today is 2024-03-18. Write a blogpost about the stock price performance of Nvidia in the past month.\n" ] } ], "source": [ - "from typing_extensions import Annotated\n", + "task = (\n", + " f\"Today is {datetime.now().date()}. Write a blogpost about the stock price performance of Nvidia in the past month.\"\n", + ")\n", + "print(task)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "2b9526e7", + "metadata": {}, + "source": [ + "## Approach 1. Two-agent chat with function call for task decomposition\n", "\n", - "planner = autogen.AssistantAgent(\n", + "In this approach, we use a planner agent for coming up a plan.\n", + "The planner agent is wrapped inside a function to be used as a tool." + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "id": "54823657", + "metadata": {}, + "outputs": [], + "source": [ + "# Create planner agent.\n", + "planner = AssistantAgent(\n", " name=\"planner\",\n", - " llm_config=llm_config,\n", - " system_message=\"You are a helpful AI assistant. You suggest a feasible plan for finishing a complex task by decomposing it into 3-5 sub-tasks. If the plan is not good, suggest a better plan. If the execution is wrong, analyze the error and suggest a fix.\",\n", + " llm_config={\n", + " \"config_list\": config_list,\n", + " \"cache_seed\": None, # Disable legacy cache.\n", + " },\n", + " system_message=\"You are a helpful AI assistant. You suggest a feasible plan \"\n", + " \"for finishing a complex task by decomposing it into 3-5 sub-tasks. \"\n", + " \"If the plan is not good, suggest a better plan. \"\n", + " \"If the execution is wrong, analyze the error and suggest a fix.\",\n", ")\n", "\n", - "planner_user = autogen.UserProxyAgent(\n", + "# Create a planner user agent used to interact with the planner.\n", + "planner_user = UserProxyAgent(\n", " name=\"planner_user\",\n", " human_input_mode=\"NEVER\",\n", - " code_execution_config={\n", - " \"use_docker\": False\n", - " }, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.\n", + " code_execution_config=False,\n", ")\n", "\n", - "# create an AssistantAgent instance named \"assistant\"\n", - "assistant = autogen.AssistantAgent(\n", + "# The function for asking the planner.\n", + "\n", + "\n", + "def task_planner(question: Annotated[str, \"Question to ask the planner.\"]) -> str:\n", + " with Cache.disk(cache_seed=4) as cache:\n", + " planner_user.initiate_chat(planner, message=question, max_turns=1, cache=cache)\n", + " # return the last message received from the planner\n", + " return planner_user.last_message()[\"content\"]" + ] + }, + { + "cell_type": "markdown", + "id": "11a024e2", + "metadata": {}, + "source": [ + "Next, we create an assistant agent to execute the plan, using the planner agent as a tool." + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "id": "9fb85afb", + "metadata": {}, + "outputs": [], + "source": [ + "# Create assistant agent.\n", + "assistant = AssistantAgent(\n", " name=\"assistant\",\n", - " system_message=\"You are a helpful AI assistant. You follow the plan suggested to finish tasks. Give the user a final solution at the end. Return TERMINATE if everything is done.\",\n", - " llm_config=llm_config,\n", + " system_message=\"You are a helpful AI assistant. \"\n", + " \"You can use the task planner to decompose a complex task into sub-tasks. \"\n", + " \"Make sure your follow through the sub-tasks. \"\n", + " \"When needed, write Python code in markdown blocks, and I will execute them.\"\n", + " \"Give the user a final solution at the end. \"\n", + " \"Return TERMINATE only if the sub-tasks are completed.\",\n", + " llm_config={\n", + " \"config_list\": config_list,\n", + " \"cache_seed\": None, # Disable legacy cache.\n", + " },\n", ")\n", "\n", - "# create a UserProxyAgent instance named \"user_proxy\"\n", - "user_proxy = autogen.UserProxyAgent(\n", + "# Setting up code executor.\n", + "os.makedirs(\"planning\", exist_ok=True)\n", + "# Use DockerCommandLineCodeExecutor to run code in a docker container.\n", + "# code_executor = DockerCommandLineCodeExecutor(work_dir=\"planning\")\n", + "code_executor = LocalCommandLineCodeExecutor(work_dir=\"planning\")\n", + "\n", + "# Create user proxy agent used to interact with the assistant.\n", + "user_proxy = UserProxyAgent(\n", " name=\"user_proxy\",\n", - " human_input_mode=\"NEVER\",\n", + " human_input_mode=\"ALWAYS\",\n", " is_termination_msg=lambda x: \"content\" in x\n", " and x[\"content\"] is not None\n", " and x[\"content\"].rstrip().endswith(\"TERMINATE\"),\n", - " code_execution_config={\n", - " \"work_dir\": \"planning\",\n", - " \"use_docker\": False,\n", - " }, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.\n", + " code_execution_config={\"executor\": code_executor},\n", ")\n", "\n", - "# register the function task_decomposition for execution\n", - "\n", - "\n", - "@user_proxy.register_for_execution()\n", - "@assistant.register_for_llm(\n", - " name=\"task_decomposition\",\n", - " description=\"Ask planner to: 1. decompose a complex task into sub-tasks, 2. verify the execution result of the sub-tasks and potentially suggest new plan.\",\n", - ")\n", - "def task_decomposition(message: Annotated[str, \"Message to ask the planner for task decomposition.\"]):\n", - " planner_user.initiate_chat(planner, message=message, max_turns=1)\n", - " # return the last message received from the planner\n", - " return planner_user.last_message()[\"content\"]" + "# Register the function to the agent pair.\n", + "register_function(\n", + " task_planner,\n", + " caller=assistant,\n", + " executor=user_proxy,\n", + " name=\"task_planner\",\n", + " description=\"A task planner than can help you with decomposing a complex task into sub-tasks.\",\n", + ")" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 135, "id": "7b44e096", "metadata": {}, "outputs": [ @@ -135,452 +219,629 @@ "text": [ "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", - "Write a blogpost about the stock price performance of Nvidia in the past month.\n", + "Today is 2024-03-18. Write a blogpost about the stock price performance of Nvidia in the past month.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "\u001b[32m***** Suggested tool Call (call_88vq0VFR7VWybBGPOld6RUMP): task_decomposition *****\u001b[0m\n", + "\u001b[32m***** Suggested tool Call (call_rXxGJbMNXdD5PYueBc2BACez): task_planner *****\u001b[0m\n", "Arguments: \n", - "{\"message\":\"I need to write a blog post about Nvidia's stock price performance over the past month. Can you help me break down this task into sub-tasks?\"}\n", - "\u001b[32m***********************************************************************************\u001b[0m\n", + "{\"question\":\"What are the steps to write a blog post about the stock price performance of Nvidia for the past month?\"}\n", + "\u001b[32m*****************************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", "\u001b[35m\n", - ">>>>>>>> EXECUTING FUNCTION task_decomposition...\u001b[0m\n", + ">>>>>>>> EXECUTING FUNCTION task_planner...\u001b[0m\n", "\u001b[33mplanner_user\u001b[0m (to planner):\n", "\n", - "I need to write a blog post about Nvidia's stock price performance over the past month. Can you help me break down this task into sub-tasks?\n", + "What are the steps to write a blog post about the stock price performance of Nvidia for the past month?\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mplanner\u001b[0m (to planner_user):\n", "\n", - "Certainly! Writing a blog post about Nvidia's stock price performance over the past month involves several steps that can be grouped into manageable sub-tasks. Here is a feasible plan for you:\n", + "Writing a blog post about Nvidia's stock price performance over the past month involves several steps, which can be broken down into the following sub-tasks:\n", "\n", - "### Sub-Task 1: Research\n", - "1. **Gather Historical Data**: Source historical stock price information for Nvidia over the past month from financial websites like Yahoo Finance, Google Finance, or directly from financial reports on Nvidia's investor relations page.\n", - "2. **Identify Key Events**: Look for any events or news in the past month that could have affected Nvidia’s stock, such as earning reports, announcements, industry news, or changes in regulatory policies.\n", - "3. **Competitor Comparison**: Optionally, compare Nvidia's performance against competitors’ performance and the broader market to provide context.\n", + "1. **Research:**\n", + " - Gather data on Nvidia's stock price over the past month from reliable financial information sources like Bloomberg, Yahoo Finance, or the Nasdaq website.\n", + " - Look into any recent news articles, press releases, or earnings reports that could help explain the stock price movements.\n", + " - Research market trends, economic factors, and industry-related developments that may have influenced Nvidia's performance.\n", "\n", - "### Sub-Task 2: Analysis\n", - "1. **Trend Analysis**: Analyze the stock price data to identify any trends or patterns. Use basic statistical tools or software to help identify these trends.\n", - "2. **Impact Assessment**: Relate the key events you found with the stock price movements to understand the causality or correlation.\n", - "3. **Expert Opinions**: Research market analyst opinions, ratings, or price targets for Nvidia from credible financial institutions or expert commentators for additional insights.\n", + "2. **Analysis:**\n", + " - Examine the data collected to identify patterns or significant changes in the stock price.\n", + " - Investigate the correlation between stock price movements and specific events or news (e.g., product launches, earnings reports, or changes in the semiconductor industry).\n", + " - Summarize key findings and consider creating graphs or charts to visually represent the stock performance over time.\n", "\n", - "### Sub-Task 3: Drafting the Blog Post\n", - "1. **Outline**: Create an outline for your blog post, arranging the information in a logical structure: introduction, body (historical data, event impact, analysis, comparison), and conclusion.\n", - "2. **Writing Content**:\n", - " - Introduction: State what the blog post will be about and provide a brief background on Nvidia.\n", - " - Historical Data: Present the stock performance data, ideally with charts or graphs.\n", - " - Analysis: Discuss the trends you've found and link them to the key events.\n", - " - Expert Opinions: Include insights from market analysts to add depth to your analysis.\n", - "3. **Visual Elements**: Include charts, graphs, or images to make the data more digestible and visually appealing.\n", + "3. **Outline and Structuring:**\n", + " - Outline the blog post, starting with an introduction that provides context on Nvidia and its relevance in the market.\n", + " - Create sections for your blog post: Introduction, Background (optional), Monthly Performance Analysis, Contributing Factors, and Conclusion.\n", + " - Decide where you will include visuals like charts or infographics in your post.\n", "\n", - "### Sub-Task 4: Revision and Editing\n", - "1. **Proofread for Errors**: Check your draft for any spelling, grammar, or factual errors.\n", - "2. **Tighten the Prose**: Ensure the writing is clear, concise, and engaging for your audience.\n", - "3. **Fact-checking**: Verify that all information, data, and statistics in your post are accurate and properly cited.\n", + "4. **Writing:**\n", + " - Write the introduction, setting the stage for your analysis and highlighting what the reader can expect to learn from the post.\n", + " - Detail the monthly performance in the main body, integrating your analysis and the data visualizations you've prepared.\n", + " - Discuss the identified contributing factors to Nvidia's stock performance, linking them with the analysis.\n", + " - Conclude with a summary of the key points made in the post and any thoughts on future performance or upcoming events that investors should watch.\n", "\n", - "### Sub-Task 5: Publishing\n", - "1. **Formatting**: Format the blog post to fit your website's style, including any necessary SEO optimizations like meta descriptions, tags, and keywords.\n", - "2. **Social Media Teasers**: Prepare short, engaging copy or graphics to promote the blog post on social media platforms.\n", - "3. **Publishing**: Upload the post to your blog platform and publish it.\n", - "4. **Promotion**: Share your post via email newsletters, and social media channels to reach your audience and drive traffic to your new content.\n", + "5. **Editing and Publishing:**\n", + " - Review the post for clarity, grammar, and accuracy. Ensure that all data presented is correct and that sources are properly cited.\n", + " - Optimize the post for search engines by including relevant keywords, meta descriptions, and title tags.\n", + " - Publish the blog post on your platform and share it through social media or other marketing channels to reach your audience.\n", + " - Engage with comments or feedback received to foster a community and show responsiveness.\n", "\n", - "Remember to schedule enough time for each sub-task and allocate additional time for contingencies that may arise. Good luck with your blog post!\n", + "Remember to comply with all financial regulations concerning stock commentary, including disclaimers where applicable, to avoid misconstruing your analysis as investment advice.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", - "\u001b[32m***** Response from calling tool \"call_88vq0VFR7VWybBGPOld6RUMP\" *****\u001b[0m\n", - "Certainly! Writing a blog post about Nvidia's stock price performance over the past month involves several steps that can be grouped into manageable sub-tasks. Here is a feasible plan for you:\n", - "\n", - "### Sub-Task 1: Research\n", - "1. **Gather Historical Data**: Source historical stock price information for Nvidia over the past month from financial websites like Yahoo Finance, Google Finance, or directly from financial reports on Nvidia's investor relations page.\n", - "2. **Identify Key Events**: Look for any events or news in the past month that could have affected Nvidia’s stock, such as earning reports, announcements, industry news, or changes in regulatory policies.\n", - "3. **Competitor Comparison**: Optionally, compare Nvidia's performance against competitors’ performance and the broader market to provide context.\n", - "\n", - "### Sub-Task 2: Analysis\n", - "1. **Trend Analysis**: Analyze the stock price data to identify any trends or patterns. Use basic statistical tools or software to help identify these trends.\n", - "2. **Impact Assessment**: Relate the key events you found with the stock price movements to understand the causality or correlation.\n", - "3. **Expert Opinions**: Research market analyst opinions, ratings, or price targets for Nvidia from credible financial institutions or expert commentators for additional insights.\n", - "\n", - "### Sub-Task 3: Drafting the Blog Post\n", - "1. **Outline**: Create an outline for your blog post, arranging the information in a logical structure: introduction, body (historical data, event impact, analysis, comparison), and conclusion.\n", - "2. **Writing Content**:\n", - " - Introduction: State what the blog post will be about and provide a brief background on Nvidia.\n", - " - Historical Data: Present the stock performance data, ideally with charts or graphs.\n", - " - Analysis: Discuss the trends you've found and link them to the key events.\n", - " - Expert Opinions: Include insights from market analysts to add depth to your analysis.\n", - "3. **Visual Elements**: Include charts, graphs, or images to make the data more digestible and visually appealing.\n", - "\n", - "### Sub-Task 4: Revision and Editing\n", - "1. **Proofread for Errors**: Check your draft for any spelling, grammar, or factual errors.\n", - "2. **Tighten the Prose**: Ensure the writing is clear, concise, and engaging for your audience.\n", - "3. **Fact-checking**: Verify that all information, data, and statistics in your post are accurate and properly cited.\n", - "\n", - "### Sub-Task 5: Publishing\n", - "1. **Formatting**: Format the blog post to fit your website's style, including any necessary SEO optimizations like meta descriptions, tags, and keywords.\n", - "2. **Social Media Teasers**: Prepare short, engaging copy or graphics to promote the blog post on social media platforms.\n", - "3. **Publishing**: Upload the post to your blog platform and publish it.\n", - "4. **Promotion**: Share your post via email newsletters, and social media channels to reach your audience and drive traffic to your new content.\n", - "\n", - "Remember to schedule enough time for each sub-task and allocate additional time for contingencies that may arise. Good luck with your blog post!\n", + "\u001b[32m***** Response from calling tool \"call_rXxGJbMNXdD5PYueBc2BACez\" *****\u001b[0m\n", + "Writing a blog post about Nvidia's stock price performance over the past month involves several steps, which can be broken down into the following sub-tasks:\n", + "\n", + "1. **Research:**\n", + " - Gather data on Nvidia's stock price over the past month from reliable financial information sources like Bloomberg, Yahoo Finance, or the Nasdaq website.\n", + " - Look into any recent news articles, press releases, or earnings reports that could help explain the stock price movements.\n", + " - Research market trends, economic factors, and industry-related developments that may have influenced Nvidia's performance.\n", + "\n", + "2. **Analysis:**\n", + " - Examine the data collected to identify patterns or significant changes in the stock price.\n", + " - Investigate the correlation between stock price movements and specific events or news (e.g., product launches, earnings reports, or changes in the semiconductor industry).\n", + " - Summarize key findings and consider creating graphs or charts to visually represent the stock performance over time.\n", + "\n", + "3. **Outline and Structuring:**\n", + " - Outline the blog post, starting with an introduction that provides context on Nvidia and its relevance in the market.\n", + " - Create sections for your blog post: Introduction, Background (optional), Monthly Performance Analysis, Contributing Factors, and Conclusion.\n", + " - Decide where you will include visuals like charts or infographics in your post.\n", + "\n", + "4. **Writing:**\n", + " - Write the introduction, setting the stage for your analysis and highlighting what the reader can expect to learn from the post.\n", + " - Detail the monthly performance in the main body, integrating your analysis and the data visualizations you've prepared.\n", + " - Discuss the identified contributing factors to Nvidia's stock performance, linking them with the analysis.\n", + " - Conclude with a summary of the key points made in the post and any thoughts on future performance or upcoming events that investors should watch.\n", + "\n", + "5. **Editing and Publishing:**\n", + " - Review the post for clarity, grammar, and accuracy. Ensure that all data presented is correct and that sources are properly cited.\n", + " - Optimize the post for search engines by including relevant keywords, meta descriptions, and title tags.\n", + " - Publish the blog post on your platform and share it through social media or other marketing channels to reach your audience.\n", + " - Engage with comments or feedback received to foster a community and show responsiveness.\n", + "\n", + "Remember to comply with all financial regulations concerning stock commentary, including disclaimers where applicable, to avoid misconstruing your analysis as investment advice.\n", "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "\u001b[32m***** Suggested tool Call (call_xghy40OXFJaQ9HWHzzu9bSge): task_decomposition *****\u001b[0m\n", + "\u001b[32m***** Suggested tool Call (call_BAmTqvguaSkwQFq846qZxRxt): task_planner *****\u001b[0m\n", "Arguments: \n", - "{\"message\": \"Gather historical stock price information for Nvidia over the past month.\"}\n", - "\u001b[32m***********************************************************************************\u001b[0m\n", - "\u001b[32m***** Suggested tool Call (call_BvAIXc6Mqsz4sbKTJxtvhVW1): task_decomposition *****\u001b[0m\n", + "{\"question\": \"How to gather data on Nvidia's stock price over the past month?\"}\n", + "\u001b[32m*****************************************************************************\u001b[0m\n", + "\u001b[32m***** Suggested tool Call (call_zQYeJEyx5gGzIxqirslGUgQi): task_planner *****\u001b[0m\n", "Arguments: \n", - "{\"message\": \"Look for any events or news in the past month that could have affected Nvidia's stock.\"}\n", - "\u001b[32m***********************************************************************************\u001b[0m\n", - "\u001b[32m***** Suggested tool Call (call_dnK9EponjRpk6Swz157lDyDB): task_decomposition *****\u001b[0m\n", + "{\"question\": \"How to research recent news articles, press releases, or earnings reports that could explain Nvidia's stock price movements?\"}\n", + "\u001b[32m*****************************************************************************\u001b[0m\n", + "\u001b[32m***** Suggested tool Call (call_Yb7uzCbJOFo7irlNPVzL8dem): task_planner *****\u001b[0m\n", "Arguments: \n", - "{\"message\": \"Optionally, compare Nvidia's performance against competitors' performance and the broader market to provide context.\"}\n", - "\u001b[32m***********************************************************************************\u001b[0m\n", + "{\"question\": \"How to research market trends, economic factors, and industry-related developments that may have influenced Nvidia's performance?\"}\n", + "\u001b[32m*****************************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", + "\u001b[31m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", "\u001b[35m\n", - ">>>>>>>> EXECUTING FUNCTION task_decomposition...\u001b[0m\n", + ">>>>>>>> EXECUTING FUNCTION task_planner...\u001b[0m\n", "\u001b[33mplanner_user\u001b[0m (to planner):\n", "\n", - "Gather historical stock price information for Nvidia over the past month.\n", + "How to gather data on Nvidia's stock price over the past month?\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mplanner\u001b[0m (to planner_user):\n", "\n", - "To gather historical stock price information for Nvidia (ticker symbol: NVDA) over the past month, you can follow these steps as sub-tasks:\n", + "To gather data on Nvidia's stock price over the past month, you can decompose the task into the following sub-tasks:\n", + "\n", + "1. **Define Your Source:**\n", + " - Decide where you will obtain the data (e.g., financial websites like Yahoo Finance, Google Finance, Bloomberg, or utilizing APIs from services like Alpha Vantage, IEX Cloud, or Quandl).\n", + "\n", + "2. **Data Collection:**\n", + " - If you have chosen a financial website, you can usually download historical stock price data directly. Look for a \"Download Data\" or similar option on the webpage that shows Nvidia's stock history.\n", + " - If using an API, write a script or use a tool to access the API, request the historical stock prices for the past month, and handle the response. This will typically involve some programming knowledge, for instance in Python, using libraries like `requests` or `pandas-datareader`.\n", "\n", - "### Sub-task 1: Identify a Data Source\n", - "- **Financial Websites:** Websites such as Yahoo Finance, Google Finance, or MarketWatch often provide historical stock price data.\n", - "- **Financial Services API:** Consider using financial data APIs like Alpha Vantage, Quandl, or EOD Historical Data for programmatic access.\n", + "3. **Data Parsing and Cleaning:**\n", + " - After you obtain the data, you may need to parse or clean it. This means checking for any inaccuracies or missing values and formatting the data in a way that is useful for your analysis. For instance, you might want to convert the date formats or adjust for any splits or dividends if you're looking at adjusted closing prices.\n", "\n", - "### Sub-task 2: Collect Data\n", - "- **Manual Download:** If using a financial website, navigate to the Nvidia stock page and locate the historical data section to download the data for the required time frame (past month).\n", - "- **API Request:** If using an API, write a script or use a tool that can make requests to the API endpoint to retrieve the historical data for Nvidia. Ensure you respect the API's rate limits and terms of service.\n", + "4. **Analysis:**\n", + " - Analyze the stock price data to observe trends, calculate statistics like the average closing price over the month, or perform other analyses that meet your objectives.\n", + " \n", + "5. **Visualization (Optional):**\n", + " - For better understanding and representation, visualize the data using charting tools or libraries (e.g., Excel, Google Sheets, or programming libraries like Matplotlib or Plotly in Python).\n", "\n", - "### Sub-task 3: Clean and Organize the Data\n", - "- Once the data is collected, it may require cleaning or formatting to remove unnecessary information or to align it with your needs.\n", - "- Useful data points might include the date, opening price, closing price, high, low, and volume.\n", + "Here's a more detailed breakdown of the steps if you choose to use an API and write a script in Python:\n", "\n", - "### Sub-task 4: Analysis or Storage\n", - "- **Analysis:** Analyze the data if that's the end goal. You can calculate metrics like average closing price, monthly high and low, percent changes, or volatility.\n", - "- **Storage:** If the data will be used later, store it in a suitable format like CSV, JSON, or in a database.\n", + "**Step 1: Choosing an API**\n", + " - Sign up for an API service like Alpha Vantage and obtain the required API key.\n", "\n", - "### Sub-task 5: Review and Verify\n", - "- Double-check the data for accuracy and completeness.\n", - "- If you used a script, examine the output to ensure there's no error or missing data. Make sure the data covers the entire past month without any gaps.\n", + "**Step 2: Writing the Script**\n", + " - Install any necessary Python libraries (e.g., `requests`, `pandas`, `matplotlib`).\n", + " - Write a Python script that uses the `requests` library to make an API call with the correct endpoint and parameters (symbol for Nvidia, your API key, and the time frame for the data).\n", + " - Parse the JSON or CSV response and convert it into a Pandas DataFrame for ease of manipulation.\n", "\n", - "### A Better Plan:\n", - "If you know programming, particularly Python, you could create a more efficient automated process using tools such as `pandas` for data manipulation and `matplotlib` for data visualization:\n", + "**Step 3: Data Parsing and Cleaning**\n", + " - In your Python script, clean the data if necessary by removing any unnecessary columns, filling in missing values, or converting data types.\n", "\n", - "1. Choose a Python-compatible API or data source.\n", - "2. Develop a Python script using libraries like `requests` or `pandas_datareader` to pull data from the selected API.\n", - "3. Use `pandas` in Python to clean and organize the fetched data.\n", - "4. Optionally, visualize the data using `matplotlib` or `seaborn`.\n", - "5. Review the data and plots to ensure they match your requirements.\n", + "**Step 4: Analysis and Visualization**\n", + " - Use Pandas to perform any desired calculations, such as moving averages.\n", + " - Use a library like Matplotlib or Plotly to create charts from the DataFrame, such as line graphs of the closing prices over the past month.\n", "\n", - "Whether choosing the manual or automated approach largely depends on your expertise and the intended use of the data. Remember to account for the terms of service for the data you're accessing, as most financial data providers have restrictions on how their data can be used.\n", + "**Note:**\n", + " - It's important to respect the terms of service of the data provider and to be aware of any rate limits on API calls to avoid being blocked.\n", + " - Be aware of stock market holidays and weekends when the market is closed, as these days will not have trading data.\n", + "\n", + "If you encounter any difficulties in any of these sub-tasks, the error will likely fall into one of the following categories: issues with data access or download, errors in the script/code, or data quality issues. In each case, you would need to troubleshoot by checking access permissions, debugging the script, or examining the data for integrity, respectively.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[35m\n", - ">>>>>>>> EXECUTING FUNCTION task_decomposition...\u001b[0m\n", + ">>>>>>>> EXECUTING FUNCTION task_planner...\u001b[0m\n", "\u001b[33mplanner_user\u001b[0m (to planner):\n", "\n", - "Look for any events or news in the past month that could have affected Nvidia's stock.\n", + "How to research recent news articles, press releases, or earnings reports that could explain Nvidia's stock price movements?\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mplanner\u001b[0m (to planner_user):\n", "\n", - "As an AI, I don't have real-time access to market events or news updates. However, I can guide you on how to research recent events that may have impacted Nvidia's stock. Here is a plan you can follow:\n", + "To research recent news articles, press releases, or earnings reports that could explain Nvidia's stock price movements, you'll need to systematically approach the task by breaking it down into the following sub-tasks:\n", "\n", - "1. **Company Announcements and Results:**\n", - " - Visit Nvidia's official investor relations website to look for any recent press releases, quarterly earnings reports, or announcements that could affect the company's stock price. Key announcements can include changes in leadership, new product launches, or updates on existing products.\n", + "1. **Identify Reliable Sources:**\n", + " - Determine the most credible financial news websites, databases, and platforms that could have the information you’re seeking (e.g., Bloomberg, Reuters, CNBC, Nasdaq, and the official Nvidia investor relations page).\n", + " - Consider specialized financial data platforms like Yahoo Finance, MarketWatch, or Seeking Alpha for more detailed analyses and reports.\n", + " - Explore other reliable technology news outlets (e.g., TechCrunch, The Verge) that could have relevant information.\n", "\n", - "2. **Financial News Outlets:**\n", - " - Check financial news websites such as Bloomberg, Reuters, CNBC, or The Wall Street Journal for any articles related to Nvidia. Look for news about the semiconductor industry, changes in trade policies, or other economic factors that could impact Nvidia's business.\n", + "2. **Gather Key Data:**\n", + " - Search for Nvidia’s latest earnings reports on their Investor Relations page, as these documents provide crucial information on the company’s financial health and outlook.\n", + " - Look for recent press releases on Nvidia's official website or through a news aggregator service by setting up alerts for \"Nvidia press release\" to get real-time updates.\n", + " - Use financial news platforms to search for Nvidia-specific news articles, filtering for the most recent ones. Include search terms like \"Nvidia stock movement,\" \"Nvidia earnings,\" or \"Nvidia financial news.\" \n", "\n", - "3. **Stock Analysis and Forums:**\n", - " - Visit stock market analysis platforms such as Seeking Alpha, Motley Fool, or Yahoo Finance for expert analysis and commentary. Additionally, forums such as Reddit’s r/investing or r/stocks can sometimes have timely discussions on market-moving events.\n", + "3. **Analyze Information:**\n", + " - Read through the gathered documents and articles to identify any events or information that could have a direct impact on Nvidia's stock, such as product launches, partnerships, or changes in leadership.\n", + " - Pay special attention to the numbers and forward-looking statements in earnings reports that may have influenced investor sentiment and stock prices (e.g., revenue, profit margin, sales forecasts, market share, guidance).\n", + " - Look for any external factors that could affect the tech or semiconductor industry as a whole, such as new regulations, supply chain disruptions, or significant competitor announcements.\n", "\n", - "4. **Market Data Providers:**\n", - " - Use a market data provider like Google Finance, Yahoo Finance, or E*TRADE to check Nvidia's recent stock performance. Look for any unusual spikes or dips in the stock price that might correlate with specific events or news.\n", + "4. **Compare Information with Stock Price Movements:**\n", + " - Overlay the dates of key events, announcements, or financial reporting with Nvidia's stock price chart to draw correlations between specific events and price fluctuations.\n", + " - Cross-reference the news with trading volumes to see if significant news led to increased trading activity.\n", "\n", - "5. **Social Media Sentiment:**\n", - " - Explore social media platforms such as Twitter by searching for the $NVDA ticker symbol to see real-time comments and sentiment. This can be particularly useful for catching up on the latest opinions and rumors that could affect stock performance.\n", + "5. **Synthesize Findings:**\n", + " - Compile your research into a timeline or a summary document that correlates specific news items with stock price changes.\n", + " - Where possible, include expert analysis from your research to support your findings on why the stock moved in a particular way.\n", + " - Be critical of the information sources and mindful of the potential bias that can skew the perceived impact of news on stock prices.\n", "\n", - "By performing these sub-tasks, you should be able to get a comprehensive understanding of any recent events or news that might have affected Nvidia's stock in the past month. Remember that stock movements can also be influenced by broader market trends and economic indicators, so it's important to look at the overall context as well.\n", + "Remember to keep track of your sources and to cross-verify information to ensure accuracy. The stock market is influenced by numerous factors, some of which may not be immediately apparent, so it's also important to consider broader market trends and economic indicators in your analysis.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[35m\n", - ">>>>>>>> EXECUTING FUNCTION task_decomposition...\u001b[0m\n", + ">>>>>>>> EXECUTING FUNCTION task_planner...\u001b[0m\n", "\u001b[33mplanner_user\u001b[0m (to planner):\n", "\n", - "Optionally, compare Nvidia's performance against competitors' performance and the broader market to provide context.\n", + "How to research market trends, economic factors, and industry-related developments that may have influenced Nvidia's performance?\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mplanner\u001b[0m (to planner_user):\n", "\n", - "To comprehensively evaluate Nvidia's financial performance against its competitors and the broader market, you can decompose this task into the following sub-tasks:\n", + "Researching market trends, economic factors, and industry-related developments to assess their influence on Nvidia's performance involves a systematic approach. Here's a plan that can help in fulfilling this research task:\n", "\n", - "1. **Collect Financial Data**:\n", - " - Gather Nvidia's latest financial statements, including income statements, balance sheets, and cash flow statements.\n", - " - Obtain the financial data of key competitors such as AMD, Intel, and others relevant to Nvidia's market segments (e.g., GPUs, AI, data centers).\n", - " - Acquire market indices data or sector performance data that represent the broader market, such as the S&P 500, NASDAQ Composite, or PHLX Semiconductor Sector Index (SOX).\n", + "1. **Define Objective and Scope**:\n", + " - Identify the specific aspects of Nvidia's performance you are interested in (e.g., revenue growth, stock price fluctuation, product demand).\n", + " - Determine the time frame for your research (e.g., last 5 years, last 10 years, or around specific events).\n", "\n", - "2. **Perform Financial Analysis**:\n", - " - Conduct a quantitative analysis which includes calculating financial ratios like P/E ratio, return on equity (ROE), profit margins, etc.\n", - " - Carry out a trend analysis for Nvidia and its competitors to see how their performance has evolved over recent quarters or years.\n", + "2. **Gather Historical Data and Performance Metrics**:\n", + " - Collect historical performance data for Nvidia, including sales figures, earnings reports, stock price history, and market share information.\n", + " - Obtain relevant financial documents, such as annual reports, 10-K filings, and investor presentations.\n", + " - Look for performance benchmarks or metrics within Nvidia's sector, such as GPU market penetration, competitive analysis, etc.\n", "\n", - "3. **Benchmark Nvidia Against Competitors**:\n", - " - Compare Nvidia's financial ratios and growth figures against those of its competitors.\n", - " - Look at market share changes, revenue growth rates, profitability, and innovation/product release timelines.\n", - " - Analyze operational efficiency through comparison of cost structures and expense ratios.\n", + "3. **Analyze Market Trends and Economic Factors**:\n", + " - Research broad market trends and economic conditions that can impact Nvidia's industry (Semiconductors and Technology Sector), including technology adoption rates, consumer spending trends, trade policies, and global economic indicators.\n", + " - Use economic databases, government publications, financial news outlets, and market research reports for comprehensive information.\n", + " - Explore the impact of specific events (e.g., chip shortages, tariffs, pandemic) on the technology sector and Nvidia's market.\n", "\n", - "4. **Analyze Relative Performance to the Market**:\n", - " - Compare Nvidia's stock performance (e.g., price changes, total return) with the broader market indices and the semiconductor sector performance.\n", - " - Account for macroeconomic factors or industry-wide developments that could impact all companies under consideration, not just Nvidia.\n", + "4. **Industry-Specific Developments**:\n", + " - Study developments within the GPU industry and technology sector that can influence Nvidia's position, such as advancements in competing technologies, regulatory changes, or patent filings.\n", + " - Look into industry reports, whitepapers, tech journals, and conference proceedings for a deep dive into industry-specific insights.\n", + " - Monitor tech news platforms and forums that discuss developer sentiments, product reviews, and consumer feedback on products and technologies related to Nvidia’s offerings.\n", "\n", - "5. **Synthesize Findings and Make Recommendations**:\n", - " - Prepare a summary report or presentation delivering an integrated view of Nvidia's performance vis-à-vis its competition and the market.\n", - " - Highlight strengths, weaknesses, and potential areas for investment or concern.\n", - " - Based on the analysis, suggest strategic considerations or investment decisions if applicable.\n", + "5. **Synthesize Findings and Report**:\n", + " - Integrate insights from your comprehensive research to draw conclusions about how market trends, economic factors, and industry developments have influenced Nvidia's performance.\n", + " - Create a report or presentation with a narrative tying together Nvidia's performance data with the external factors you've identified. Use charts, graphs, and other visual aids to support your analysis.\n", + " - Formulate recommendations or insights for investors, stakeholders, or decision-makers based on your findings.\n", "\n", - "If the executed plan misses critical data points or uses outdated information, be sure to update the data and reanalyze. Additionally, if the financial metrics chosen do not adequately capture the company's performance or industry-specific variables, adjust the metrics accordingly. For example, if focusing on tech companies heavily reliant on R&D, consider including R&D spending as a percentage of revenue in the comparison.\n", + "Tools you might use for this task include financial analysis software, market research databases, economic analysis tools, and various data visualization platforms. Always ensure that the sources you use for your research are reliable and up to date.\n", "\n", - "Lastly, ensure that the conclusions drawn are based on sound analysis and that any recommendations are aligned with the strategic objective of the analysis, whether it's for investment decision-making, competitive strategy formulation, or another purpose.\n", + "If the research is not yielding meaningful insights or the task seems too broad, refocusing on more specific aspects of Nvidia's performance and looking into direct cause-effect relationships in market changes and Nvidia's financial outcomes can improve the plan. Additionally, consider engaging with experts in the field or leveraging advanced analytics and predictive modeling to enhance the depth of your research.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", - "\u001b[32m***** Response from calling tool \"call_xghy40OXFJaQ9HWHzzu9bSge\" *****\u001b[0m\n", - "To gather historical stock price information for Nvidia (ticker symbol: NVDA) over the past month, you can follow these steps as sub-tasks:\n", + "\u001b[32m***** Response from calling tool \"call_BAmTqvguaSkwQFq846qZxRxt\" *****\u001b[0m\n", + "To gather data on Nvidia's stock price over the past month, you can decompose the task into the following sub-tasks:\n", + "\n", + "1. **Define Your Source:**\n", + " - Decide where you will obtain the data (e.g., financial websites like Yahoo Finance, Google Finance, Bloomberg, or utilizing APIs from services like Alpha Vantage, IEX Cloud, or Quandl).\n", + "\n", + "2. **Data Collection:**\n", + " - If you have chosen a financial website, you can usually download historical stock price data directly. Look for a \"Download Data\" or similar option on the webpage that shows Nvidia's stock history.\n", + " - If using an API, write a script or use a tool to access the API, request the historical stock prices for the past month, and handle the response. This will typically involve some programming knowledge, for instance in Python, using libraries like `requests` or `pandas-datareader`.\n", + "\n", + "3. **Data Parsing and Cleaning:**\n", + " - After you obtain the data, you may need to parse or clean it. This means checking for any inaccuracies or missing values and formatting the data in a way that is useful for your analysis. For instance, you might want to convert the date formats or adjust for any splits or dividends if you're looking at adjusted closing prices.\n", "\n", - "### Sub-task 1: Identify a Data Source\n", - "- **Financial Websites:** Websites such as Yahoo Finance, Google Finance, or MarketWatch often provide historical stock price data.\n", - "- **Financial Services API:** Consider using financial data APIs like Alpha Vantage, Quandl, or EOD Historical Data for programmatic access.\n", + "4. **Analysis:**\n", + " - Analyze the stock price data to observe trends, calculate statistics like the average closing price over the month, or perform other analyses that meet your objectives.\n", + " \n", + "5. **Visualization (Optional):**\n", + " - For better understanding and representation, visualize the data using charting tools or libraries (e.g., Excel, Google Sheets, or programming libraries like Matplotlib or Plotly in Python).\n", "\n", - "### Sub-task 2: Collect Data\n", - "- **Manual Download:** If using a financial website, navigate to the Nvidia stock page and locate the historical data section to download the data for the required time frame (past month).\n", - "- **API Request:** If using an API, write a script or use a tool that can make requests to the API endpoint to retrieve the historical data for Nvidia. Ensure you respect the API's rate limits and terms of service.\n", + "Here's a more detailed breakdown of the steps if you choose to use an API and write a script in Python:\n", "\n", - "### Sub-task 3: Clean and Organize the Data\n", - "- Once the data is collected, it may require cleaning or formatting to remove unnecessary information or to align it with your needs.\n", - "- Useful data points might include the date, opening price, closing price, high, low, and volume.\n", + "**Step 1: Choosing an API**\n", + " - Sign up for an API service like Alpha Vantage and obtain the required API key.\n", "\n", - "### Sub-task 4: Analysis or Storage\n", - "- **Analysis:** Analyze the data if that's the end goal. You can calculate metrics like average closing price, monthly high and low, percent changes, or volatility.\n", - "- **Storage:** If the data will be used later, store it in a suitable format like CSV, JSON, or in a database.\n", + "**Step 2: Writing the Script**\n", + " - Install any necessary Python libraries (e.g., `requests`, `pandas`, `matplotlib`).\n", + " - Write a Python script that uses the `requests` library to make an API call with the correct endpoint and parameters (symbol for Nvidia, your API key, and the time frame for the data).\n", + " - Parse the JSON or CSV response and convert it into a Pandas DataFrame for ease of manipulation.\n", "\n", - "### Sub-task 5: Review and Verify\n", - "- Double-check the data for accuracy and completeness.\n", - "- If you used a script, examine the output to ensure there's no error or missing data. Make sure the data covers the entire past month without any gaps.\n", + "**Step 3: Data Parsing and Cleaning**\n", + " - In your Python script, clean the data if necessary by removing any unnecessary columns, filling in missing values, or converting data types.\n", "\n", - "### A Better Plan:\n", - "If you know programming, particularly Python, you could create a more efficient automated process using tools such as `pandas` for data manipulation and `matplotlib` for data visualization:\n", + "**Step 4: Analysis and Visualization**\n", + " - Use Pandas to perform any desired calculations, such as moving averages.\n", + " - Use a library like Matplotlib or Plotly to create charts from the DataFrame, such as line graphs of the closing prices over the past month.\n", "\n", - "1. Choose a Python-compatible API or data source.\n", - "2. Develop a Python script using libraries like `requests` or `pandas_datareader` to pull data from the selected API.\n", - "3. Use `pandas` in Python to clean and organize the fetched data.\n", - "4. Optionally, visualize the data using `matplotlib` or `seaborn`.\n", - "5. Review the data and plots to ensure they match your requirements.\n", + "**Note:**\n", + " - It's important to respect the terms of service of the data provider and to be aware of any rate limits on API calls to avoid being blocked.\n", + " - Be aware of stock market holidays and weekends when the market is closed, as these days will not have trading data.\n", "\n", - "Whether choosing the manual or automated approach largely depends on your expertise and the intended use of the data. Remember to account for the terms of service for the data you're accessing, as most financial data providers have restrictions on how their data can be used.\n", + "If you encounter any difficulties in any of these sub-tasks, the error will likely fall into one of the following categories: issues with data access or download, errors in the script/code, or data quality issues. In each case, you would need to troubleshoot by checking access permissions, debugging the script, or examining the data for integrity, respectively.\n", "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", - "\u001b[32m***** Response from calling tool \"call_BvAIXc6Mqsz4sbKTJxtvhVW1\" *****\u001b[0m\n", - "As an AI, I don't have real-time access to market events or news updates. However, I can guide you on how to research recent events that may have impacted Nvidia's stock. Here is a plan you can follow:\n", + "\u001b[32m***** Response from calling tool \"call_zQYeJEyx5gGzIxqirslGUgQi\" *****\u001b[0m\n", + "To research recent news articles, press releases, or earnings reports that could explain Nvidia's stock price movements, you'll need to systematically approach the task by breaking it down into the following sub-tasks:\n", "\n", - "1. **Company Announcements and Results:**\n", - " - Visit Nvidia's official investor relations website to look for any recent press releases, quarterly earnings reports, or announcements that could affect the company's stock price. Key announcements can include changes in leadership, new product launches, or updates on existing products.\n", + "1. **Identify Reliable Sources:**\n", + " - Determine the most credible financial news websites, databases, and platforms that could have the information you’re seeking (e.g., Bloomberg, Reuters, CNBC, Nasdaq, and the official Nvidia investor relations page).\n", + " - Consider specialized financial data platforms like Yahoo Finance, MarketWatch, or Seeking Alpha for more detailed analyses and reports.\n", + " - Explore other reliable technology news outlets (e.g., TechCrunch, The Verge) that could have relevant information.\n", "\n", - "2. **Financial News Outlets:**\n", - " - Check financial news websites such as Bloomberg, Reuters, CNBC, or The Wall Street Journal for any articles related to Nvidia. Look for news about the semiconductor industry, changes in trade policies, or other economic factors that could impact Nvidia's business.\n", + "2. **Gather Key Data:**\n", + " - Search for Nvidia’s latest earnings reports on their Investor Relations page, as these documents provide crucial information on the company’s financial health and outlook.\n", + " - Look for recent press releases on Nvidia's official website or through a news aggregator service by setting up alerts for \"Nvidia press release\" to get real-time updates.\n", + " - Use financial news platforms to search for Nvidia-specific news articles, filtering for the most recent ones. Include search terms like \"Nvidia stock movement,\" \"Nvidia earnings,\" or \"Nvidia financial news.\" \n", "\n", - "3. **Stock Analysis and Forums:**\n", - " - Visit stock market analysis platforms such as Seeking Alpha, Motley Fool, or Yahoo Finance for expert analysis and commentary. Additionally, forums such as Reddit’s r/investing or r/stocks can sometimes have timely discussions on market-moving events.\n", + "3. **Analyze Information:**\n", + " - Read through the gathered documents and articles to identify any events or information that could have a direct impact on Nvidia's stock, such as product launches, partnerships, or changes in leadership.\n", + " - Pay special attention to the numbers and forward-looking statements in earnings reports that may have influenced investor sentiment and stock prices (e.g., revenue, profit margin, sales forecasts, market share, guidance).\n", + " - Look for any external factors that could affect the tech or semiconductor industry as a whole, such as new regulations, supply chain disruptions, or significant competitor announcements.\n", "\n", - "4. **Market Data Providers:**\n", - " - Use a market data provider like Google Finance, Yahoo Finance, or E*TRADE to check Nvidia's recent stock performance. Look for any unusual spikes or dips in the stock price that might correlate with specific events or news.\n", + "4. **Compare Information with Stock Price Movements:**\n", + " - Overlay the dates of key events, announcements, or financial reporting with Nvidia's stock price chart to draw correlations between specific events and price fluctuations.\n", + " - Cross-reference the news with trading volumes to see if significant news led to increased trading activity.\n", "\n", - "5. **Social Media Sentiment:**\n", - " - Explore social media platforms such as Twitter by searching for the $NVDA ticker symbol to see real-time comments and sentiment. This can be particularly useful for catching up on the latest opinions and rumors that could affect stock performance.\n", + "5. **Synthesize Findings:**\n", + " - Compile your research into a timeline or a summary document that correlates specific news items with stock price changes.\n", + " - Where possible, include expert analysis from your research to support your findings on why the stock moved in a particular way.\n", + " - Be critical of the information sources and mindful of the potential bias that can skew the perceived impact of news on stock prices.\n", "\n", - "By performing these sub-tasks, you should be able to get a comprehensive understanding of any recent events or news that might have affected Nvidia's stock in the past month. Remember that stock movements can also be influenced by broader market trends and economic indicators, so it's important to look at the overall context as well.\n", + "Remember to keep track of your sources and to cross-verify information to ensure accuracy. The stock market is influenced by numerous factors, some of which may not be immediately apparent, so it's also important to consider broader market trends and economic indicators in your analysis.\n", "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", - "\u001b[32m***** Response from calling tool \"call_dnK9EponjRpk6Swz157lDyDB\" *****\u001b[0m\n", - "To comprehensively evaluate Nvidia's financial performance against its competitors and the broader market, you can decompose this task into the following sub-tasks:\n", + "\u001b[32m***** Response from calling tool \"call_Yb7uzCbJOFo7irlNPVzL8dem\" *****\u001b[0m\n", + "Researching market trends, economic factors, and industry-related developments to assess their influence on Nvidia's performance involves a systematic approach. Here's a plan that can help in fulfilling this research task:\n", "\n", - "1. **Collect Financial Data**:\n", - " - Gather Nvidia's latest financial statements, including income statements, balance sheets, and cash flow statements.\n", - " - Obtain the financial data of key competitors such as AMD, Intel, and others relevant to Nvidia's market segments (e.g., GPUs, AI, data centers).\n", - " - Acquire market indices data or sector performance data that represent the broader market, such as the S&P 500, NASDAQ Composite, or PHLX Semiconductor Sector Index (SOX).\n", + "1. **Define Objective and Scope**:\n", + " - Identify the specific aspects of Nvidia's performance you are interested in (e.g., revenue growth, stock price fluctuation, product demand).\n", + " - Determine the time frame for your research (e.g., last 5 years, last 10 years, or around specific events).\n", "\n", - "2. **Perform Financial Analysis**:\n", - " - Conduct a quantitative analysis which includes calculating financial ratios like P/E ratio, return on equity (ROE), profit margins, etc.\n", - " - Carry out a trend analysis for Nvidia and its competitors to see how their performance has evolved over recent quarters or years.\n", + "2. **Gather Historical Data and Performance Metrics**:\n", + " - Collect historical performance data for Nvidia, including sales figures, earnings reports, stock price history, and market share information.\n", + " - Obtain relevant financial documents, such as annual reports, 10-K filings, and investor presentations.\n", + " - Look for performance benchmarks or metrics within Nvidia's sector, such as GPU market penetration, competitive analysis, etc.\n", "\n", - "3. **Benchmark Nvidia Against Competitors**:\n", - " - Compare Nvidia's financial ratios and growth figures against those of its competitors.\n", - " - Look at market share changes, revenue growth rates, profitability, and innovation/product release timelines.\n", - " - Analyze operational efficiency through comparison of cost structures and expense ratios.\n", + "3. **Analyze Market Trends and Economic Factors**:\n", + " - Research broad market trends and economic conditions that can impact Nvidia's industry (Semiconductors and Technology Sector), including technology adoption rates, consumer spending trends, trade policies, and global economic indicators.\n", + " - Use economic databases, government publications, financial news outlets, and market research reports for comprehensive information.\n", + " - Explore the impact of specific events (e.g., chip shortages, tariffs, pandemic) on the technology sector and Nvidia's market.\n", "\n", - "4. **Analyze Relative Performance to the Market**:\n", - " - Compare Nvidia's stock performance (e.g., price changes, total return) with the broader market indices and the semiconductor sector performance.\n", - " - Account for macroeconomic factors or industry-wide developments that could impact all companies under consideration, not just Nvidia.\n", + "4. **Industry-Specific Developments**:\n", + " - Study developments within the GPU industry and technology sector that can influence Nvidia's position, such as advancements in competing technologies, regulatory changes, or patent filings.\n", + " - Look into industry reports, whitepapers, tech journals, and conference proceedings for a deep dive into industry-specific insights.\n", + " - Monitor tech news platforms and forums that discuss developer sentiments, product reviews, and consumer feedback on products and technologies related to Nvidia’s offerings.\n", "\n", - "5. **Synthesize Findings and Make Recommendations**:\n", - " - Prepare a summary report or presentation delivering an integrated view of Nvidia's performance vis-à-vis its competition and the market.\n", - " - Highlight strengths, weaknesses, and potential areas for investment or concern.\n", - " - Based on the analysis, suggest strategic considerations or investment decisions if applicable.\n", + "5. **Synthesize Findings and Report**:\n", + " - Integrate insights from your comprehensive research to draw conclusions about how market trends, economic factors, and industry developments have influenced Nvidia's performance.\n", + " - Create a report or presentation with a narrative tying together Nvidia's performance data with the external factors you've identified. Use charts, graphs, and other visual aids to support your analysis.\n", + " - Formulate recommendations or insights for investors, stakeholders, or decision-makers based on your findings.\n", "\n", - "If the executed plan misses critical data points or uses outdated information, be sure to update the data and reanalyze. Additionally, if the financial metrics chosen do not adequately capture the company's performance or industry-specific variables, adjust the metrics accordingly. For example, if focusing on tech companies heavily reliant on R&D, consider including R&D spending as a percentage of revenue in the comparison.\n", + "Tools you might use for this task include financial analysis software, market research databases, economic analysis tools, and various data visualization platforms. Always ensure that the sources you use for your research are reliable and up to date.\n", "\n", - "Lastly, ensure that the conclusions drawn are based on sound analysis and that any recommendations are aligned with the strategic objective of the analysis, whether it's for investment decision-making, competitive strategy formulation, or another purpose.\n", + "If the research is not yielding meaningful insights or the task seems too broad, refocusing on more specific aspects of Nvidia's performance and looking into direct cause-effect relationships in market changes and Nvidia's financial outcomes can improve the plan. Additionally, consider engaging with experts in the field or leveraging advanced analytics and predictive modeling to enhance the depth of your research.\n", "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "To write the blog post about Nvidia's stock price performance over the past month, we need to complete several tasks, including gathering historical stock price data, identifying key events that may have impacted the stock, and comparing Nvidia's performance to competitors and the overall market. Let's begin with the first two tasks: gathering historical price data and identifying key events.\n", + "The process of writing a blog post about Nvidia's stock price performance over the past month can now progress to the data-gathering phase. Let's focus on the following three tasks:\n", + "\n", + "1. **Gathering data on Nvidia's stock price over the past month:**\n", + " - A Python script can be written to use an API service like Alpha Vantage to obtain the stock price data.\n", + "\n", + "2. **Research recent news articles, press releases, or earnings reports that could explain Nvidia's stock price movements:**\n", + " - Important information will be sought from reliable financial news sites and Nvidia's official channels.\n", + "\n", + "3. **Research market trends, economic factors, and industry-related developments that may have influenced Nvidia's performance:**\n", + " - Using economic databases, financial news outlets, and market research reports, a comprehensive analysis will be conducted on the factors impacting the industry and Nvidia's market position.\n", "\n", - "For the first sub-task, I will provide a Python script to fetch the historical stock price data for Nvidia over the past month. Following that, I will outline how to research recent events that might have impacted Nvidia's stock.\n", + "Let's begin by focusing on creating a Python script to get the stock price data. We'll need to perform the following steps:\n", + "\n", + "1. Choose an API to retrieve the data.\n", + "2. Write a script using the chosen API and make necessary API calls.\n", + "3. Parse the JSON or CSV response and organize it into a useful format.\n", + "4. Clean the data if necessary.\n", + "5. Perform preliminary analysis and visualize the data.\n", + "\n", + "Please note that accessing an API service like Alpha Vantage might require an API key, which could involve signing up for the service and may be subject to their terms of service, including request limits.\n", + "\n", + "Shall I proceed with writing the Python script to retrieve Nvidia's stock price data over the past month?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", - "Let's start with the Python script to fetch historical stock price data:\n", + "Write script using yfinance package instead. \n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to user_proxy):\n", + "\n", + "To gather historical stock price information for Nvidia (NVDA) for the past month using the `yfinance` package, follow these steps:\n", + "\n", + "1. **Install the Package**: If you haven't already installed `yfinance`, do so by running `pip install yfinance` in your Python environment.\n", + "\n", + "2. **Import the Package**: Import `yfinance` into your script.\n", + "\n", + "3. **Request Stock Data**: Use the `yfinance` package to download the closing price data for Nvidia for the past month.\n", + "\n", + "4. **Plot the Data**: It can be useful to plot the data to visualize the stock's performance over the past month.\n", + "\n", + "Below is the Python script that encompasses these steps:\n", "\n", "```python\n", - "# filename: nvidia_stock_data.py\n", - "import pandas as pd\n", "import yfinance as yf\n", - "from datetime import datetime, timedelta\n", + "import matplotlib.pyplot as plt\n", "\n", - "# Calculate the date one month ago from today\n", - "end_date = datetime.now()\n", - "start_date = end_date - timedelta(days=30)\n", + "# Define the ticker symbol for Nvidia\n", + "ticker_symbol = 'NVDA'\n", "\n", - "# Fetch historical data for Nvidia\n", - "nvidia_ticker = 'NVDA'\n", - "nvidia_data = yf.download(nvidia_ticker, start=start_date, end=end_date)\n", + "# Set the date range for the past month: assuming today is 2024-03-18\n", + "start_date = '2024-02-18'\n", + "end_date = '2024-03-18'\n", "\n", - "# Save data to a CSV file\n", - "nvidia_data.to_csv('nvidia_stock_data.csv')\n", + "# Download the data from yfinance\n", + "nvda_data = yf.download(ticker_symbol, start=start_date, end=end_date)\n", "\n", - "# Print the first few rows to confirm\n", - "print(nvidia_data.head())\n", + "# Select only the 'Close' column for plotting\n", + "closing_prices = nvda_data['Close']\n", + "\n", + "# Plot the closing prices\n", + "plt.figure(figsize=(14, 7))\n", + "plt.plot(closing_prices, label='NVDA Closing Prices')\n", + "plt.title('NVDA Stock Closing Prices Over the Past Month')\n", + "plt.xlabel('Date')\n", + "plt.ylabel('Price (USD)')\n", + "plt.legend()\n", + "plt.show()\n", "```\n", "\n", - "For this script to run, you will need to have Python installed on your machine, as well as the `pandas`, `yfinance`, and `datetime` libraries. After running the script, it will download the stock data for the past month and save it to a CSV file named 'nvidia_stock_data.csv'. Additionally, it will print out the first few rows of the data to confirm that the operation was successful.\n", + "Here, `yfinance` downloads the data from Yahoo Finance for Nvidia between the desired dates (`start_date` and `end_date`). The script then uses `matplotlib` to create a simple line plot of the closing prices over this period.\n", + "\n", + "Would you like me to run this script and generate the plot for you?\n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33muser_proxy\u001b[0m (to assistant):\n", + "\n", + "Include code for saving the dataset. Also include code for displaying the table. \n", + "\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to user_proxy):\n", + "\n", + "To save the dataset of Nvidia's stock prices and display the table along with plotting, you can update the script as follows:\n", + "\n", + "1. **Install Necessary Packages**: You must have `yfinance`, `matplotlib`, and `pandas` installed in your Python environment.\n", + "2. **Import Packages**: Import the `yfinance`, `matplotlib.pyplot`, and `pandas` packages into your script.\n", + "3. **Request Stock Data**: Use `yfinance` to download Nvidia's stock price data for the designated period.\n", + "4. **Save the Dataset**: Save the downloaded data to a CSV file.\n", + "5. **Display the Table**: Use Pandas DataFrame's capabilities to display the table before plotting.\n", + "6. **Plot the Data**: Visualize the Nvidia's closing stock prices using `matplotlib`.\n", + "\n", + "Here is the Python script updated with these steps:\n", + "\n", + "```python\n", + "import yfinance as yf\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "\n", + "# Define the ticker symbol for Nvidia\n", + "ticker_symbol = 'NVDA'\n", + "\n", + "# Set the date range for the past month: assuming today is 2024-03-18\n", + "start_date = '2024-02-18'\n", + "end_date = '2024-03-18'\n", + "\n", + "# Download the data from yfinance\n", + "nvda_data = yf.download(ticker_symbol, start=start_date, end=end_date)\n", "\n", - "As for the recent events and news affecting Nvidia's stock:\n", + "# Save the data to a CSV file\n", + "nvda_data.to_csv('NVDA_stock_data.csv')\n", "\n", - "1. Visit Nvidia's official investor relations website to look for recent announcements or earnings reports.\n", - "2. Check financial news websites such as Bloomberg, Reuters, CNBC, or The Wall Street Journal for articles related to Nvidia or the semiconductor industry.\n", - "3. Explore stock market analysis platforms like Seeking Alpha or Yahoo Finance for expert analysis and commentary.\n", - "4. Use market data providers to look for any significant changes in the stock's performance.\n", - "5. Investigate social media sentiment by searching for the $NVDA ticker symbol on Twitter.\n", + "# Display the data table\n", + "print(nvda_data)\n", "\n", - "After both tasks are completed, we can move on to analyzing the data, writing the blog post, and eventually publishing it. If you're ready, please run the provided Python script to fetch the historical stock price data for Nvidia. Once that's done, we can continue with the analysis and writing parts of the task.\n", + "# Select only the 'Close' column for plotting\n", + "closing_prices = nvda_data['Close']\n", + "\n", + "# Plot the closing prices\n", + "plt.figure(figsize=(14, 7))\n", + "plt.plot(closing_prices, label='NVDA Closing Prices')\n", + "plt.title('NVDA Stock Closing Prices Over the Past Month')\n", + "plt.xlabel('Date')\n", + "plt.ylabel('Price (USD)')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()\n", + "```\n", + "\n", + "This script will download the data, save it as a CSV file named 'NVDA_stock_data.csv', print the data as a table to the console, and plot the closing prices.\n", + "\n", + "Let me know if you want me to run this code or if there are any other modifications you would like to make before execution.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n", "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", "exitcode: 0 (execution succeeded)\n", - "Code output: \n", - " Open High ... Adj Close Volume\n", - "Date ... \n", - "2024-02-12 726.000000 746.109985 ... 722.446106 61371000\n", - "2024-02-13 704.000000 734.500000 ... 721.246216 60258000\n", - "2024-02-14 732.020020 742.359985 ... 738.965332 50491700\n", - "2024-02-15 738.690002 739.750000 ... 726.545959 42012200\n", - "2024-02-16 741.000000 744.020020 ... 726.095947 49391800\n", + "Code output: /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", "\n", - "[5 rows x 6 columns]\n", + "[*********************100%%**********************] 1 of 1 completed\n", + " Open High ... Adj Close Volume\n", + "Date ... \n", + "2024-02-20 719.469971 719.559998 ... 694.487427 70483300\n", + "2024-02-21 680.059998 688.880005 ... 674.688293 69029800\n", + "2024-02-22 750.250000 785.750000 ... 785.343140 86510000\n", + "2024-02-23 807.900024 823.940002 ... 788.132996 82938800\n", + "2024-02-26 797.000000 806.460022 ... 790.882874 50397300\n", + "2024-02-27 793.809998 794.799988 ... 786.973083 39170500\n", + "2024-02-28 776.200012 789.330017 ... 776.593567 39311000\n", + "2024-02-29 790.940002 799.900024 ... 791.082886 50728900\n", + "2024-03-01 800.000000 823.000000 ... 822.751404 47677700\n", + "2024-03-04 841.299988 876.950012 ... 852.330017 61561600\n", + "2024-03-05 852.700012 860.969971 ... 859.640015 52063900\n", + "2024-03-06 880.219971 897.239990 ... 887.000000 58252000\n", + "2024-03-07 901.580017 927.669983 ... 926.690002 60811900\n", + "2024-03-08 951.380005 974.000000 ... 875.280029 113299600\n", + "2024-03-11 864.289978 887.969971 ... 857.739990 67836400\n", + "2024-03-12 880.489990 919.599976 ... 919.130005 66807500\n", + "2024-03-13 910.549988 915.039978 ... 908.880005 63571300\n", + "2024-03-14 895.770020 906.460022 ... 879.440002 60231800\n", + "2024-03-15 869.299988 895.460022 ... 878.369995 64019300\n", + "\n", + "[19 rows x 6 columns]\n", + "Figure(1400x700)\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "The script executed successfully, and we've obtained the historical stock price data for Nvidia over the past month. I will now proceed to outline the structure for the blog post based on the data and events we've gathered.\n", + "The script execution was successful. The historical stock price data for Nvidia (NVDA) between 2024-02-18 and 2024-03-18 has been downloaded, saved to a CSV file named 'NVDA_stock_data.csv', and the dataset has been displayed in the console output.\n", "\n", - "### Blog Post Outline\n", + "Here is a preview of the dataset:\n", "\n", - "#### Title: Nvidia's Stock Price Performance - A Month in Review\n", + "| Date | Open | High | Low | Close | Adj Close | Volume |\n", + "|------------|-------------|-------------|-------------|-------------|-------------|------------|\n", + "| 2024-02-20 | 719.469971 | 719.559998 | ... | ... | 694.487427 | 70483300 |\n", + "| 2024-02-21 | 680.059998 | 688.880005 | ... | ... | 674.688293 | 69029800 |\n", + "| 2024-02-22 | 750.250000 | 785.750000 | ... | ... | 785.343140 | 86510000 |\n", + "| 2024-02-23 | 807.900024 | 823.940002 | ... | ... | 788.132996 | 82938800 |\n", + "| ... | ... | ... | ... | ... | ... | ... |\n", + "| 2024-03-14 | 895.770020 | 906.460022 | ... | ... | 879.440002 | 60231800 |\n", + "| 2024-03-15 | 869.299988 | 895.460022 | ... | ... | 878.369995 | 64019300 |\n", "\n", - "#### Introduction\n", - "- Brief introduction about Nvidia, its business, and importance in the tech sector.\n", - "- Overview of the stock market performance in general over the past month.\n", + "(Note: Some columns have been truncated for display purposes.)\n", "\n", - "#### Historical Stock Data Analysis\n", - "- Summary of Nvidia's stock price trends over the past month.\n", - " - Highlight opening and closing prices, and any significant highs and lows.\n", - " - Discussion of the stock's volatility and trading volume trends.\n", - "- Include visuals like line graphs or candlestick charts for reader engagement.\n", + "Additionally, a plot showing the closing prices of Nvidia stock over the past month was generated:\n", "\n", - "#### Key Events Impacting Stock Performance\n", - "- Presentation of major announcements or earnings reports from Nvidia.\n", - "- Overview of industry-related news that might have had an impact on the stock.\n", - "- Discussion of any broader market or economic factors affecting tech stocks.\n", + "![NVDA Stock Closing Prices Over the Past Month](attachment:nvda_closing_prices.png)\n", "\n", - "#### Nvidia vs. Competitors and Market\n", - "- Comparison of Nvidia's stock performance to key competitors and industry benchmarks.\n", - "- Analysis of how Nvidia's stock has fared against market indices like the S&P 500 and the PHLX Semiconductor Sector Index (SOX).\n", - "- Insights about Nvidia's market position and investor sentiment based on this comparison.\n", + "The plot is not displayed in the output but would be visible if the script were run in a local Python environment that supports rendering matplotlib figures. \n", "\n", - "#### Conclusion\n", - "- Summary of findings from the historical data and event analysis.\n", - "- Reflection on what this might mean for Nvidia's future performance.\n", - "- Final thoughts on Nvidia's outlook and possibly analyst recommendations.\n", + "You can use the saved CSV file and the dataset summary as a basis for writing your blog post on the performance of the Nvidia stock. Remember to integrate your analysis and discuss any potential factors influencing the stock price that you find in news articles and market research.\n", "\n", - "#### Final Steps\n", - "- After finalizing the content and visuals, the blog post will be proofread and edited.\n", - "- The post will be formatted according to the blog's style guidelines and prepared for publishing.\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33muser_proxy\u001b[0m (to assistant):\n", "\n", - "With the stock data and a structured outline ready, the next phase is to start drafting the blog post. We'll transform the data into narrative form, incorporating the key events and performance analysis while ensuring the content is engaging and informative for the readers.\n", + "write the blog post\n", "\n", - "As the actual writing and the interpretation of events require human expertise and creativity, which are beyond my capabilities for execution, I will now provide you with the necessary guidance and information to help you write the blog post. Once your draft is ready, you can proceed with proofreading, editing, formatting, and eventually publishing it on your platform.\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33massistant\u001b[0m (to user_proxy):\n", "\n", - "This concludes my assistance with the task. If you have any other questions or need further support in the future, feel free to reach out. Good luck with your blog post!\n", + "# Nvidia's Stock Price Performance Review: February - March 2024\n", "\n", - "TERMINATE\n", + "March 18, 2024\n", + "\n", + "In the ever-evolving landscape of technology and finance, keeping a keen eye on industry leaders such as Nvidia Corp (NVDA) provides valuable insights into market trends and investor confidence. Over the past month, Nvidia's stock price has experienced significant movements, prompting investors and analysts to closely monitor the factors driving this volatility. In this blog post, we'll dive into the stock price performance of Nvidia from February 18 to March 18, 2024, and examine the key contributors to its fluctuations.\n", + "\n", + "## A Glimpse Into Nvidia's Stock Price Movement\n", + "\n", + "Analysing the stock performance over the past month reveals a dynamic and eventful period for Nvidia. Starting on February 20, 2024, the stock opened at \\$719.47 and experienced a degree of instability, touching a monthly low of \\$674.68 on February 21 before surging to a stellar high of \\$785.34 on February 22. This upward momentum continued robustly until March 7, peaking at an admirable \\$926.69. However, this ascent was followed by a substantial correction, with prices adjusting to \\$878.37 by March 15, marking the end of our analysis period.\n", + "\n", + "This turbulent period for Nvidia reflects a broader narrative of rapid adjustments and market reactions to a series of impactful events within the company and across the broader economic and technological ecosystems.\n", + "\n", + "## Unpacking the Influences on Nvidia's Stock Performance\n", + "\n", + "As we sift through the economic news, earnings reports, and industry developments, a pattern of interrelated influences on the semiconductor giant's stock price becomes evident.\n", + "\n", + "### Product Launches and Technological Advancements\n", + "\n", + "Nvidia's continued commitment to innovation is a significant driver of investor interest. The company's latest product releases and advancements in graphics processing units (GPU) often correlate with spikes in stock value. Given the company's historical patterns, it is plausible that Nvidia's announcements of enhanced GPU technologies for gaming and professional markets may have contributed positively to the observed stock price appreciation.\n", + "\n", + "### Economic and Industry Factors\n", + "\n", + "Nvidia does not operate in a vacuum; it is influenced by the health of the global economy, trade policies, and tech industry dynamics. The semiconductor industry, in particular, is sensitive to supply chain disruptions and shifts in consumer demand for technology. Any news suggesting an easing of chip shortages or an uptick in demand for Nvidia's GPUs for data centers or automotive applications could be contributing factors to the company's stock trajectory.\n", + "\n", + "### Market Sentiment and Investor Confidence\n", + "\n", + "Investor sentiment and confidence play crucial roles in stock performance. Nvidia's earnings reports often serve as a pulse check for shareholders, detailing the company's financial health and forecasts. A positive earnings report during this period may have reinforced confidence and catalysed further investments, propelling the stock prices to new heights.\n", + "\n", + "Conversely, market corrections and profit-taking activities could also explain subsequent price adjustments, reminding us of the stock market's cyclical nature and investors' propensity to secure gains after a considerable run-up.\n", + "\n", + "## Conclusion\n", + "\n", + "Nvidia's stock price journey between February and March 2024 exemplifies the intricate interplay between company-specific innovations, broader economic forces, and the investing community's sentiment. As with any investment, due diligence and a comprehensive understanding of market conditions are crucial to navigating the ebbs and flows.\n", + "\n", + "Looking ahead, Nvidia's future performance is likely to be swayed by its ability to maintain technological leadership, the unfolding economic climate, and its agility in adapting to industry challenges. Investors and enthusiasts alike would do well to watch the company's upcoming product revelations, quarterly reports, and industry trends for a clearer picture of what the future may hold for this semiconductor standard-bearer.\n", + "\n", + "*Disclaimer: The information provided in this analysis is for educational and entertainment purposes only and does not constitute financial advice.*\n", + "\n", + "---\n", + "\n", + "And there you have it—a draft blog post summarizing Nvidia's stock performance over the past month and considering various factors that could have influenced its stock price. Your audience should find this overview informative and insightful. Please note that real-life data may contain fluctuations and patterns that can change the analysis considerably, so additional research and verification are always recommended before finalizing the content.\n", "\n", "--------------------------------------------------------------------------------\n" ] - }, - { - "data": { - "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': 'Write a blogpost about the stock price performance of Nvidia in the past month.', 'role': 'assistant'}, {'tool_calls': [{'id': 'call_88vq0VFR7VWybBGPOld6RUMP', 'function': {'arguments': '{\"message\":\"I need to write a blog post about Nvidia\\'s stock price performance over the past month. Can you help me break down this task into sub-tasks?\"}', 'name': 'task_decomposition'}, 'type': 'function'}], 'content': None, 'role': 'assistant'}, {'content': \"Certainly! Writing a blog post about Nvidia's stock price performance over the past month involves several steps that can be grouped into manageable sub-tasks. Here is a feasible plan for you:\\n\\n### Sub-Task 1: Research\\n1. **Gather Historical Data**: Source historical stock price information for Nvidia over the past month from financial websites like Yahoo Finance, Google Finance, or directly from financial reports on Nvidia's investor relations page.\\n2. **Identify Key Events**: Look for any events or news in the past month that could have affected Nvidia’s stock, such as earning reports, announcements, industry news, or changes in regulatory policies.\\n3. **Competitor Comparison**: Optionally, compare Nvidia's performance against competitors’ performance and the broader market to provide context.\\n\\n### Sub-Task 2: Analysis\\n1. **Trend Analysis**: Analyze the stock price data to identify any trends or patterns. Use basic statistical tools or software to help identify these trends.\\n2. **Impact Assessment**: Relate the key events you found with the stock price movements to understand the causality or correlation.\\n3. **Expert Opinions**: Research market analyst opinions, ratings, or price targets for Nvidia from credible financial institutions or expert commentators for additional insights.\\n\\n### Sub-Task 3: Drafting the Blog Post\\n1. **Outline**: Create an outline for your blog post, arranging the information in a logical structure: introduction, body (historical data, event impact, analysis, comparison), and conclusion.\\n2. **Writing Content**:\\n - Introduction: State what the blog post will be about and provide a brief background on Nvidia.\\n - Historical Data: Present the stock performance data, ideally with charts or graphs.\\n - Analysis: Discuss the trends you've found and link them to the key events.\\n - Expert Opinions: Include insights from market analysts to add depth to your analysis.\\n3. **Visual Elements**: Include charts, graphs, or images to make the data more digestible and visually appealing.\\n\\n### Sub-Task 4: Revision and Editing\\n1. **Proofread for Errors**: Check your draft for any spelling, grammar, or factual errors.\\n2. **Tighten the Prose**: Ensure the writing is clear, concise, and engaging for your audience.\\n3. **Fact-checking**: Verify that all information, data, and statistics in your post are accurate and properly cited.\\n\\n### Sub-Task 5: Publishing\\n1. **Formatting**: Format the blog post to fit your website's style, including any necessary SEO optimizations like meta descriptions, tags, and keywords.\\n2. **Social Media Teasers**: Prepare short, engaging copy or graphics to promote the blog post on social media platforms.\\n3. **Publishing**: Upload the post to your blog platform and publish it.\\n4. **Promotion**: Share your post via email newsletters, and social media channels to reach your audience and drive traffic to your new content.\\n\\nRemember to schedule enough time for each sub-task and allocate additional time for contingencies that may arise. Good luck with your blog post!\", 'tool_responses': [{'tool_call_id': 'call_88vq0VFR7VWybBGPOld6RUMP', 'role': 'tool', 'content': \"Certainly! Writing a blog post about Nvidia's stock price performance over the past month involves several steps that can be grouped into manageable sub-tasks. Here is a feasible plan for you:\\n\\n### Sub-Task 1: Research\\n1. **Gather Historical Data**: Source historical stock price information for Nvidia over the past month from financial websites like Yahoo Finance, Google Finance, or directly from financial reports on Nvidia's investor relations page.\\n2. **Identify Key Events**: Look for any events or news in the past month that could have affected Nvidia’s stock, such as earning reports, announcements, industry news, or changes in regulatory policies.\\n3. **Competitor Comparison**: Optionally, compare Nvidia's performance against competitors’ performance and the broader market to provide context.\\n\\n### Sub-Task 2: Analysis\\n1. **Trend Analysis**: Analyze the stock price data to identify any trends or patterns. Use basic statistical tools or software to help identify these trends.\\n2. **Impact Assessment**: Relate the key events you found with the stock price movements to understand the causality or correlation.\\n3. **Expert Opinions**: Research market analyst opinions, ratings, or price targets for Nvidia from credible financial institutions or expert commentators for additional insights.\\n\\n### Sub-Task 3: Drafting the Blog Post\\n1. **Outline**: Create an outline for your blog post, arranging the information in a logical structure: introduction, body (historical data, event impact, analysis, comparison), and conclusion.\\n2. **Writing Content**:\\n - Introduction: State what the blog post will be about and provide a brief background on Nvidia.\\n - Historical Data: Present the stock performance data, ideally with charts or graphs.\\n - Analysis: Discuss the trends you've found and link them to the key events.\\n - Expert Opinions: Include insights from market analysts to add depth to your analysis.\\n3. **Visual Elements**: Include charts, graphs, or images to make the data more digestible and visually appealing.\\n\\n### Sub-Task 4: Revision and Editing\\n1. **Proofread for Errors**: Check your draft for any spelling, grammar, or factual errors.\\n2. **Tighten the Prose**: Ensure the writing is clear, concise, and engaging for your audience.\\n3. **Fact-checking**: Verify that all information, data, and statistics in your post are accurate and properly cited.\\n\\n### Sub-Task 5: Publishing\\n1. **Formatting**: Format the blog post to fit your website's style, including any necessary SEO optimizations like meta descriptions, tags, and keywords.\\n2. **Social Media Teasers**: Prepare short, engaging copy or graphics to promote the blog post on social media platforms.\\n3. **Publishing**: Upload the post to your blog platform and publish it.\\n4. **Promotion**: Share your post via email newsletters, and social media channels to reach your audience and drive traffic to your new content.\\n\\nRemember to schedule enough time for each sub-task and allocate additional time for contingencies that may arise. Good luck with your blog post!\"}], 'role': 'tool'}, {'tool_calls': [{'id': 'call_xghy40OXFJaQ9HWHzzu9bSge', 'function': {'arguments': '{\"message\": \"Gather historical stock price information for Nvidia over the past month.\"}', 'name': 'task_decomposition'}, 'type': 'function'}, {'id': 'call_BvAIXc6Mqsz4sbKTJxtvhVW1', 'function': {'arguments': '{\"message\": \"Look for any events or news in the past month that could have affected Nvidia\\'s stock.\"}', 'name': 'task_decomposition'}, 'type': 'function'}, {'id': 'call_dnK9EponjRpk6Swz157lDyDB', 'function': {'arguments': '{\"message\": \"Optionally, compare Nvidia\\'s performance against competitors\\' performance and the broader market to provide context.\"}', 'name': 'task_decomposition'}, 'type': 'function'}], 'content': None, 'role': 'assistant'}, {'content': \"To gather historical stock price information for Nvidia (ticker symbol: NVDA) over the past month, you can follow these steps as sub-tasks:\\n\\n### Sub-task 1: Identify a Data Source\\n- **Financial Websites:** Websites such as Yahoo Finance, Google Finance, or MarketWatch often provide historical stock price data.\\n- **Financial Services API:** Consider using financial data APIs like Alpha Vantage, Quandl, or EOD Historical Data for programmatic access.\\n\\n### Sub-task 2: Collect Data\\n- **Manual Download:** If using a financial website, navigate to the Nvidia stock page and locate the historical data section to download the data for the required time frame (past month).\\n- **API Request:** If using an API, write a script or use a tool that can make requests to the API endpoint to retrieve the historical data for Nvidia. Ensure you respect the API's rate limits and terms of service.\\n\\n### Sub-task 3: Clean and Organize the Data\\n- Once the data is collected, it may require cleaning or formatting to remove unnecessary information or to align it with your needs.\\n- Useful data points might include the date, opening price, closing price, high, low, and volume.\\n\\n### Sub-task 4: Analysis or Storage\\n- **Analysis:** Analyze the data if that's the end goal. You can calculate metrics like average closing price, monthly high and low, percent changes, or volatility.\\n- **Storage:** If the data will be used later, store it in a suitable format like CSV, JSON, or in a database.\\n\\n### Sub-task 5: Review and Verify\\n- Double-check the data for accuracy and completeness.\\n- If you used a script, examine the output to ensure there's no error or missing data. Make sure the data covers the entire past month without any gaps.\\n\\n### A Better Plan:\\nIf you know programming, particularly Python, you could create a more efficient automated process using tools such as `pandas` for data manipulation and `matplotlib` for data visualization:\\n\\n1. Choose a Python-compatible API or data source.\\n2. Develop a Python script using libraries like `requests` or `pandas_datareader` to pull data from the selected API.\\n3. Use `pandas` in Python to clean and organize the fetched data.\\n4. Optionally, visualize the data using `matplotlib` or `seaborn`.\\n5. Review the data and plots to ensure they match your requirements.\\n\\nWhether choosing the manual or automated approach largely depends on your expertise and the intended use of the data. Remember to account for the terms of service for the data you're accessing, as most financial data providers have restrictions on how their data can be used.\\n\\nAs an AI, I don't have real-time access to market events or news updates. However, I can guide you on how to research recent events that may have impacted Nvidia's stock. Here is a plan you can follow:\\n\\n1. **Company Announcements and Results:**\\n - Visit Nvidia's official investor relations website to look for any recent press releases, quarterly earnings reports, or announcements that could affect the company's stock price. Key announcements can include changes in leadership, new product launches, or updates on existing products.\\n\\n2. **Financial News Outlets:**\\n - Check financial news websites such as Bloomberg, Reuters, CNBC, or The Wall Street Journal for any articles related to Nvidia. Look for news about the semiconductor industry, changes in trade policies, or other economic factors that could impact Nvidia's business.\\n\\n3. **Stock Analysis and Forums:**\\n - Visit stock market analysis platforms such as Seeking Alpha, Motley Fool, or Yahoo Finance for expert analysis and commentary. Additionally, forums such as Reddit’s r/investing or r/stocks can sometimes have timely discussions on market-moving events.\\n\\n4. **Market Data Providers:**\\n - Use a market data provider like Google Finance, Yahoo Finance, or E*TRADE to check Nvidia's recent stock performance. Look for any unusual spikes or dips in the stock price that might correlate with specific events or news.\\n\\n5. **Social Media Sentiment:**\\n - Explore social media platforms such as Twitter by searching for the $NVDA ticker symbol to see real-time comments and sentiment. This can be particularly useful for catching up on the latest opinions and rumors that could affect stock performance.\\n\\nBy performing these sub-tasks, you should be able to get a comprehensive understanding of any recent events or news that might have affected Nvidia's stock in the past month. Remember that stock movements can also be influenced by broader market trends and economic indicators, so it's important to look at the overall context as well.\\n\\nTo comprehensively evaluate Nvidia's financial performance against its competitors and the broader market, you can decompose this task into the following sub-tasks:\\n\\n1. **Collect Financial Data**:\\n - Gather Nvidia's latest financial statements, including income statements, balance sheets, and cash flow statements.\\n - Obtain the financial data of key competitors such as AMD, Intel, and others relevant to Nvidia's market segments (e.g., GPUs, AI, data centers).\\n - Acquire market indices data or sector performance data that represent the broader market, such as the S&P 500, NASDAQ Composite, or PHLX Semiconductor Sector Index (SOX).\\n\\n2. **Perform Financial Analysis**:\\n - Conduct a quantitative analysis which includes calculating financial ratios like P/E ratio, return on equity (ROE), profit margins, etc.\\n - Carry out a trend analysis for Nvidia and its competitors to see how their performance has evolved over recent quarters or years.\\n\\n3. **Benchmark Nvidia Against Competitors**:\\n - Compare Nvidia's financial ratios and growth figures against those of its competitors.\\n - Look at market share changes, revenue growth rates, profitability, and innovation/product release timelines.\\n - Analyze operational efficiency through comparison of cost structures and expense ratios.\\n\\n4. **Analyze Relative Performance to the Market**:\\n - Compare Nvidia's stock performance (e.g., price changes, total return) with the broader market indices and the semiconductor sector performance.\\n - Account for macroeconomic factors or industry-wide developments that could impact all companies under consideration, not just Nvidia.\\n\\n5. **Synthesize Findings and Make Recommendations**:\\n - Prepare a summary report or presentation delivering an integrated view of Nvidia's performance vis-à-vis its competition and the market.\\n - Highlight strengths, weaknesses, and potential areas for investment or concern.\\n - Based on the analysis, suggest strategic considerations or investment decisions if applicable.\\n\\nIf the executed plan misses critical data points or uses outdated information, be sure to update the data and reanalyze. Additionally, if the financial metrics chosen do not adequately capture the company's performance or industry-specific variables, adjust the metrics accordingly. For example, if focusing on tech companies heavily reliant on R&D, consider including R&D spending as a percentage of revenue in the comparison.\\n\\nLastly, ensure that the conclusions drawn are based on sound analysis and that any recommendations are aligned with the strategic objective of the analysis, whether it's for investment decision-making, competitive strategy formulation, or another purpose.\", 'tool_responses': [{'tool_call_id': 'call_xghy40OXFJaQ9HWHzzu9bSge', 'role': 'tool', 'content': \"To gather historical stock price information for Nvidia (ticker symbol: NVDA) over the past month, you can follow these steps as sub-tasks:\\n\\n### Sub-task 1: Identify a Data Source\\n- **Financial Websites:** Websites such as Yahoo Finance, Google Finance, or MarketWatch often provide historical stock price data.\\n- **Financial Services API:** Consider using financial data APIs like Alpha Vantage, Quandl, or EOD Historical Data for programmatic access.\\n\\n### Sub-task 2: Collect Data\\n- **Manual Download:** If using a financial website, navigate to the Nvidia stock page and locate the historical data section to download the data for the required time frame (past month).\\n- **API Request:** If using an API, write a script or use a tool that can make requests to the API endpoint to retrieve the historical data for Nvidia. Ensure you respect the API's rate limits and terms of service.\\n\\n### Sub-task 3: Clean and Organize the Data\\n- Once the data is collected, it may require cleaning or formatting to remove unnecessary information or to align it with your needs.\\n- Useful data points might include the date, opening price, closing price, high, low, and volume.\\n\\n### Sub-task 4: Analysis or Storage\\n- **Analysis:** Analyze the data if that's the end goal. You can calculate metrics like average closing price, monthly high and low, percent changes, or volatility.\\n- **Storage:** If the data will be used later, store it in a suitable format like CSV, JSON, or in a database.\\n\\n### Sub-task 5: Review and Verify\\n- Double-check the data for accuracy and completeness.\\n- If you used a script, examine the output to ensure there's no error or missing data. Make sure the data covers the entire past month without any gaps.\\n\\n### A Better Plan:\\nIf you know programming, particularly Python, you could create a more efficient automated process using tools such as `pandas` for data manipulation and `matplotlib` for data visualization:\\n\\n1. Choose a Python-compatible API or data source.\\n2. Develop a Python script using libraries like `requests` or `pandas_datareader` to pull data from the selected API.\\n3. Use `pandas` in Python to clean and organize the fetched data.\\n4. Optionally, visualize the data using `matplotlib` or `seaborn`.\\n5. Review the data and plots to ensure they match your requirements.\\n\\nWhether choosing the manual or automated approach largely depends on your expertise and the intended use of the data. Remember to account for the terms of service for the data you're accessing, as most financial data providers have restrictions on how their data can be used.\"}, {'tool_call_id': 'call_BvAIXc6Mqsz4sbKTJxtvhVW1', 'role': 'tool', 'content': \"As an AI, I don't have real-time access to market events or news updates. However, I can guide you on how to research recent events that may have impacted Nvidia's stock. Here is a plan you can follow:\\n\\n1. **Company Announcements and Results:**\\n - Visit Nvidia's official investor relations website to look for any recent press releases, quarterly earnings reports, or announcements that could affect the company's stock price. Key announcements can include changes in leadership, new product launches, or updates on existing products.\\n\\n2. **Financial News Outlets:**\\n - Check financial news websites such as Bloomberg, Reuters, CNBC, or The Wall Street Journal for any articles related to Nvidia. Look for news about the semiconductor industry, changes in trade policies, or other economic factors that could impact Nvidia's business.\\n\\n3. **Stock Analysis and Forums:**\\n - Visit stock market analysis platforms such as Seeking Alpha, Motley Fool, or Yahoo Finance for expert analysis and commentary. Additionally, forums such as Reddit’s r/investing or r/stocks can sometimes have timely discussions on market-moving events.\\n\\n4. **Market Data Providers:**\\n - Use a market data provider like Google Finance, Yahoo Finance, or E*TRADE to check Nvidia's recent stock performance. Look for any unusual spikes or dips in the stock price that might correlate with specific events or news.\\n\\n5. **Social Media Sentiment:**\\n - Explore social media platforms such as Twitter by searching for the $NVDA ticker symbol to see real-time comments and sentiment. This can be particularly useful for catching up on the latest opinions and rumors that could affect stock performance.\\n\\nBy performing these sub-tasks, you should be able to get a comprehensive understanding of any recent events or news that might have affected Nvidia's stock in the past month. Remember that stock movements can also be influenced by broader market trends and economic indicators, so it's important to look at the overall context as well.\"}, {'tool_call_id': 'call_dnK9EponjRpk6Swz157lDyDB', 'role': 'tool', 'content': \"To comprehensively evaluate Nvidia's financial performance against its competitors and the broader market, you can decompose this task into the following sub-tasks:\\n\\n1. **Collect Financial Data**:\\n - Gather Nvidia's latest financial statements, including income statements, balance sheets, and cash flow statements.\\n - Obtain the financial data of key competitors such as AMD, Intel, and others relevant to Nvidia's market segments (e.g., GPUs, AI, data centers).\\n - Acquire market indices data or sector performance data that represent the broader market, such as the S&P 500, NASDAQ Composite, or PHLX Semiconductor Sector Index (SOX).\\n\\n2. **Perform Financial Analysis**:\\n - Conduct a quantitative analysis which includes calculating financial ratios like P/E ratio, return on equity (ROE), profit margins, etc.\\n - Carry out a trend analysis for Nvidia and its competitors to see how their performance has evolved over recent quarters or years.\\n\\n3. **Benchmark Nvidia Against Competitors**:\\n - Compare Nvidia's financial ratios and growth figures against those of its competitors.\\n - Look at market share changes, revenue growth rates, profitability, and innovation/product release timelines.\\n - Analyze operational efficiency through comparison of cost structures and expense ratios.\\n\\n4. **Analyze Relative Performance to the Market**:\\n - Compare Nvidia's stock performance (e.g., price changes, total return) with the broader market indices and the semiconductor sector performance.\\n - Account for macroeconomic factors or industry-wide developments that could impact all companies under consideration, not just Nvidia.\\n\\n5. **Synthesize Findings and Make Recommendations**:\\n - Prepare a summary report or presentation delivering an integrated view of Nvidia's performance vis-à-vis its competition and the market.\\n - Highlight strengths, weaknesses, and potential areas for investment or concern.\\n - Based on the analysis, suggest strategic considerations or investment decisions if applicable.\\n\\nIf the executed plan misses critical data points or uses outdated information, be sure to update the data and reanalyze. Additionally, if the financial metrics chosen do not adequately capture the company's performance or industry-specific variables, adjust the metrics accordingly. For example, if focusing on tech companies heavily reliant on R&D, consider including R&D spending as a percentage of revenue in the comparison.\\n\\nLastly, ensure that the conclusions drawn are based on sound analysis and that any recommendations are aligned with the strategic objective of the analysis, whether it's for investment decision-making, competitive strategy formulation, or another purpose.\"}], 'role': 'tool'}, {'content': \"To write the blog post about Nvidia's stock price performance over the past month, we need to complete several tasks, including gathering historical stock price data, identifying key events that may have impacted the stock, and comparing Nvidia's performance to competitors and the overall market. Let's begin with the first two tasks: gathering historical price data and identifying key events.\\n\\nFor the first sub-task, I will provide a Python script to fetch the historical stock price data for Nvidia over the past month. Following that, I will outline how to research recent events that might have impacted Nvidia's stock.\\n\\nLet's start with the Python script to fetch historical stock price data:\\n\\n```python\\n# filename: nvidia_stock_data.py\\nimport pandas as pd\\nimport yfinance as yf\\nfrom datetime import datetime, timedelta\\n\\n# Calculate the date one month ago from today\\nend_date = datetime.now()\\nstart_date = end_date - timedelta(days=30)\\n\\n# Fetch historical data for Nvidia\\nnvidia_ticker = 'NVDA'\\nnvidia_data = yf.download(nvidia_ticker, start=start_date, end=end_date)\\n\\n# Save data to a CSV file\\nnvidia_data.to_csv('nvidia_stock_data.csv')\\n\\n# Print the first few rows to confirm\\nprint(nvidia_data.head())\\n```\\n\\nFor this script to run, you will need to have Python installed on your machine, as well as the `pandas`, `yfinance`, and `datetime` libraries. After running the script, it will download the stock data for the past month and save it to a CSV file named 'nvidia_stock_data.csv'. Additionally, it will print out the first few rows of the data to confirm that the operation was successful.\\n\\nAs for the recent events and news affecting Nvidia's stock:\\n\\n1. Visit Nvidia's official investor relations website to look for recent announcements or earnings reports.\\n2. Check financial news websites such as Bloomberg, Reuters, CNBC, or The Wall Street Journal for articles related to Nvidia or the semiconductor industry.\\n3. Explore stock market analysis platforms like Seeking Alpha or Yahoo Finance for expert analysis and commentary.\\n4. Use market data providers to look for any significant changes in the stock's performance.\\n5. Investigate social media sentiment by searching for the $NVDA ticker symbol on Twitter.\\n\\nAfter both tasks are completed, we can move on to analyzing the data, writing the blog post, and eventually publishing it. If you're ready, please run the provided Python script to fetch the historical stock price data for Nvidia. Once that's done, we can continue with the analysis and writing parts of the task.\", 'role': 'user'}, {'content': 'exitcode: 0 (execution succeeded)\\nCode output: \\n Open High ... Adj Close Volume\\nDate ... \\n2024-02-12 726.000000 746.109985 ... 722.446106 61371000\\n2024-02-13 704.000000 734.500000 ... 721.246216 60258000\\n2024-02-14 732.020020 742.359985 ... 738.965332 50491700\\n2024-02-15 738.690002 739.750000 ... 726.545959 42012200\\n2024-02-16 741.000000 744.020020 ... 726.095947 49391800\\n\\n[5 rows x 6 columns]\\n', 'role': 'assistant'}, {'content': \"The script executed successfully, and we've obtained the historical stock price data for Nvidia over the past month. I will now proceed to outline the structure for the blog post based on the data and events we've gathered.\\n\\n### Blog Post Outline\\n\\n#### Title: Nvidia's Stock Price Performance - A Month in Review\\n\\n#### Introduction\\n- Brief introduction about Nvidia, its business, and importance in the tech sector.\\n- Overview of the stock market performance in general over the past month.\\n\\n#### Historical Stock Data Analysis\\n- Summary of Nvidia's stock price trends over the past month.\\n - Highlight opening and closing prices, and any significant highs and lows.\\n - Discussion of the stock's volatility and trading volume trends.\\n- Include visuals like line graphs or candlestick charts for reader engagement.\\n\\n#### Key Events Impacting Stock Performance\\n- Presentation of major announcements or earnings reports from Nvidia.\\n- Overview of industry-related news that might have had an impact on the stock.\\n- Discussion of any broader market or economic factors affecting tech stocks.\\n\\n#### Nvidia vs. Competitors and Market\\n- Comparison of Nvidia's stock performance to key competitors and industry benchmarks.\\n- Analysis of how Nvidia's stock has fared against market indices like the S&P 500 and the PHLX Semiconductor Sector Index (SOX).\\n- Insights about Nvidia's market position and investor sentiment based on this comparison.\\n\\n#### Conclusion\\n- Summary of findings from the historical data and event analysis.\\n- Reflection on what this might mean for Nvidia's future performance.\\n- Final thoughts on Nvidia's outlook and possibly analyst recommendations.\\n\\n#### Final Steps\\n- After finalizing the content and visuals, the blog post will be proofread and edited.\\n- The post will be formatted according to the blog's style guidelines and prepared for publishing.\\n\\nWith the stock data and a structured outline ready, the next phase is to start drafting the blog post. We'll transform the data into narrative form, incorporating the key events and performance analysis while ensuring the content is engaging and informative for the readers.\\n\\nAs the actual writing and the interpretation of events require human expertise and creativity, which are beyond my capabilities for execution, I will now provide you with the necessary guidance and information to help you write the blog post. Once your draft is ready, you can proceed with proofreading, editing, formatting, and eventually publishing it on your platform.\\n\\nThis concludes my assistance with the task. If you have any other questions or need further support in the future, feel free to reach out. Good luck with your blog post!\\n\\nTERMINATE\", 'role': 'user'}], summary=\"The script executed successfully, and we've obtained the historical stock price data for Nvidia over the past month. I will now proceed to outline the structure for the blog post based on the data and events we've gathered.\\n\\n### Blog Post Outline\\n\\n#### Title: Nvidia's Stock Price Performance - A Month in Review\\n\\n#### Introduction\\n- Brief introduction about Nvidia, its business, and importance in the tech sector.\\n- Overview of the stock market performance in general over the past month.\\n\\n#### Historical Stock Data Analysis\\n- Summary of Nvidia's stock price trends over the past month.\\n - Highlight opening and closing prices, and any significant highs and lows.\\n - Discussion of the stock's volatility and trading volume trends.\\n- Include visuals like line graphs or candlestick charts for reader engagement.\\n\\n#### Key Events Impacting Stock Performance\\n- Presentation of major announcements or earnings reports from Nvidia.\\n- Overview of industry-related news that might have had an impact on the stock.\\n- Discussion of any broader market or economic factors affecting tech stocks.\\n\\n#### Nvidia vs. Competitors and Market\\n- Comparison of Nvidia's stock performance to key competitors and industry benchmarks.\\n- Analysis of how Nvidia's stock has fared against market indices like the S&P 500 and the PHLX Semiconductor Sector Index (SOX).\\n- Insights about Nvidia's market position and investor sentiment based on this comparison.\\n\\n#### Conclusion\\n- Summary of findings from the historical data and event analysis.\\n- Reflection on what this might mean for Nvidia's future performance.\\n- Final thoughts on Nvidia's outlook and possibly analyst recommendations.\\n\\n#### Final Steps\\n- After finalizing the content and visuals, the blog post will be proofread and edited.\\n- The post will be formatted according to the blog's style guidelines and prepared for publishing.\\n\\nWith the stock data and a structured outline ready, the next phase is to start drafting the blog post. We'll transform the data into narrative form, incorporating the key events and performance analysis while ensuring the content is engaging and informative for the readers.\\n\\nAs the actual writing and the interpretation of events require human expertise and creativity, which are beyond my capabilities for execution, I will now provide you with the necessary guidance and information to help you write the blog post. Once your draft is ready, you can proceed with proofreading, editing, formatting, and eventually publishing it on your platform.\\n\\nThis concludes my assistance with the task. If you have any other questions or need further support in the future, feel free to reach out. Good luck with your blog post!\\n\\n\", cost=({'total_cost': 0.32043, 'gpt-4': {'cost': 0.32043, 'prompt_tokens': 8307, 'completion_tokens': 1187, 'total_tokens': 9494}}, {'total_cost': 0.30086999999999997, 'gpt-4': {'cost': 0.30086999999999997, 'prompt_tokens': 7745, 'completion_tokens': 1142, 'total_tokens': 8887}}), human_input=[])" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ - "# the assistant receives a message from the user, which contains the task description\n", - "user_proxy.initiate_chat(\n", - " assistant,\n", - " message=task,\n", - ")" + "# Use Cache.disk to cache LLM responses. Change cache_seed for different responses.\n", + "with Cache.disk(cache_seed=1) as cache:\n", + " # the assistant receives a message from the user, which contains the task description\n", + " user_proxy.initiate_chat(\n", + " assistant,\n", + " message=task,\n", + " cache=cache,\n", + " )" ] }, { @@ -596,7 +857,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 116, "id": "74a54645", "metadata": {}, "outputs": [ @@ -606,241 +867,213 @@ "text": [ "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", "\n", - "Write a blogpost about the stock price performance of Nvidia in the past month. Today's date is 2024-03-11.\n", + "Today is 2024-03-18. Write a blogpost about the stock price performance of Nvidia in the past month.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mPlanner\u001b[0m (to chat_manager):\n", "\n", - "To complete this task, you will need the following information:\n", + "To write a blog post about Nvidia's stock price performance in the past month using Python code, you would need to gather and process the following information:\n", "\n", - "1. Historical stock price data for Nvidia: This can be obtained from various sources such as financial APIs (e.g., Alpha Vantage, Yahoo Finance) or by web scraping stock market websites.\n", - "2. Today's date: You provided this information as 2024-03-11.\n", - "3. Calculation of the past month's date range: You will need to calculate the start and end dates for the past month, which will be 30 days prior to the provided date (2024-03-11).\n", - "4. Nvidia stock ticker symbol: To retrieve the stock price data specifically for Nvidia, you will need the company's stock ticker symbol, which is \"NVDA\".\n", + "1. Stock Price Data:\n", + " - Historical daily closing prices of Nvidia stock (NVDA) for the past month.\n", + " - Volume of shares traded each day over the past month.\n", + " - Historical high and low prices for the past month.\n", "\n", - "Using the above information, you can retrieve the historical stock price data for Nvidia in the past month and analyze its performance in your blog post.\n", + "2. Company News and Events:\n", + " - Any Nvidia-specific news that might have affected the stock price.\n", + " - Relevant market news or technology sector news.\n", + " - Details of any earnings reports, product launches, partnerships, acquisitions, or other announcements made by Nvidia in the past month.\n", "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "3. Market Context:\n", + " - Overall stock market performance over the past month, especially comparing tech sector indices such as NASDAQ or S&P 500 Information Technology Sector.\n", + " - Performance of Nvidia's competitors' stocks.\n", + " - Any relevant macroeconomic indicators or events that might have affected the market.\n", "\n", - "To retrieve the stock price performance of Nvidia in the past month, we can use the Yahoo Finance API to get the historical stock price data. \n", + "4. Technical Analysis Data (optional for a more in-depth analysis):\n", + " - Technical indicators like moving averages, RSI (Relative Strength Index), MACD (Moving Average Convergence Divergence), etc.\n", + " - Candlestick chart patterns for visual analysis and trend identification.\n", "\n", - "Here is an example code in Python using the `yfinance` library to fetch stock price data for Nvidia (ticker symbol: NVDA):\n", + "5. Statistical Analysis:\n", + " - Percent change in Nvidia's stock price over the past month.\n", + " - Volatility measures such as standard deviation or average true range.\n", "\n", - "```python\n", - "import yfinance as yf\n", - "import datetime\n", + "To retrieve this data using Python, you could use:\n", "\n", - "# Define the ticker symbol for Nvidia\n", - "symbol = \"NVDA\"\n", + "- Financial and stock market APIs (such as Yahoo Finance, Alpha Vantage, or IEX Cloud) to get historical stock price data and technical indicators.\n", + "- Python libraries like `requests` for making API calls to news aggregator services for company news and market context.\n", + "- Libraries like `pandas` and `numpy` for data manipulation and statistical analysis.\n", + "- Visualization libraries such as `matplotlib` or `seaborn` for plotting stock price data and technical indicators if visual representation is desired in the blog post.\n", "\n", - "# Get today's date\n", - "today = datetime.date.today()\n", + "Once you've gathered the data, you'd analyze and organize it to tell the story of Nvidia's stock performance in the past month, including any notable ups and downs, and the contextual reasons why these movements may have occurred.\n", "\n", - "# Calculate the start date for the past month\n", - "start_date = today - datetime.timedelta(days=30)\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", "\n", - "# Fetch the historical stock price data\n", - "data = yf.download(symbol, start=start_date, end=today)\n", + "To create a blog post about the stock performance of Nvidia in the past month, I'll need to leverage financial APIs to retrieve historical stock price data and aggregate any relevant news for analysis. One popular library to achieve this is `yfinance`, which allows Python developers to download historical market data from Yahoo Finance.\n", "\n", - "# Calculate the price change percentage for the past month\n", - "price_change_percentage = (data['Close'][-1] - data['Close'][0]) / data['Close'][0] * 100\n", + "Unfortunately, as a language model developed by OpenAI, I can't directly perform web scraping or API calls to retrieve live data. However, I can provide you with a Python script that you can run on your own machine. This script will use `yfinance` to download the historical data for Nvidia (NVDA) and perform some basic analysis on it.\n", "\n", - "# Print the stock price data and performance for the past month\n", - "print(f\"Nvidia Stock Price Performance in the past month ({start_date} to {today}):\")\n", - "print(data)\n", - "print(f\"Price change percentage: {price_change_percentage:.2f}%\")\n", - "```\n", + "Here's a Python script to retrieve Nvidia's historical stock price data for the past month and calculate some basic performance indicators:\n", "\n", - "Please note that you need to have the `yfinance` library installed in your Python environment. You can install it using pip:\n", + "```python\n", + "import yfinance as yf\n", + "import pandas as pd\n", "\n", - "```\n", - "pip install yfinance\n", + "# Define the ticker symbol for Nvidia, and the start and end dates\n", + "ticker_symbol = 'NVDA'\n", + "start_date = '2023-02-18'\n", + "end_date = '2023-03-18'\n", + "\n", + "# Download historical stock price data for Nvidia\n", + "data = yf.download(ticker_symbol, start=start_date, end=end_date)\n", + "\n", + "# Calculate percentage change in closing price from the start date to the end date\n", + "percentage_change = ((data['Close'].iloc[-1] - data['Close'].iloc[0]) / data['Close'].iloc[0]) * 100\n", + "\n", + "# Calculate the highest and lowest closing price in the past month\n", + "highest_price = data['High'].max()\n", + "lowest_price = data['Low'].min()\n", + "\n", + "# Output summary statistics\n", + "print(\"Summary for NVDA from\", start_date, \"to\", end_date)\n", + "print(\"Closing price on\", start_date, \":\", data['Close'].iloc[0])\n", + "print(\"Closing price on\", end_date, \":\", data['Close'].iloc[-1])\n", + "print(\"Percentage change in the past month:\", round(percentage_change, 2), '%')\n", + "print(\"Highest closing price in the past month:\", round(highest_price, 2))\n", + "print(\"Lowest closing price in the past month:\", round(lowest_price, 2))\n", + "\n", + "# Note: You will need to install the yfinance and pandas packages if you haven't already.\n", + "# You can install them using pip:\n", + "# pip install yfinance pandas\n", "```\n", "\n", - "You can adjust the code as necessary to fit it into your blog post and to present the stock price performance of Nvidia in a visually appealing manner.\n", + "Please note that to run this code, you'll need to have Python installed on your system, along with `yfinance` and `pandas` packages. This script will give you a basic analysis of Nvidia's stock performance over the specified time frame. However, this script does not include any contextual analysis or news aggregation. To create a comprehensive blog post, you would also include analysis and commentary on events that may have influenced the stock's performance.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 1 (inferred language is sh)...\u001b[0m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n", "\u001b[33mExecutor\u001b[0m (to chat_manager):\n", "\n", "exitcode: 0 (execution succeeded)\n", - "Code output: \n", - "Nvidia Stock Price Performance in the past month (2024-02-10 to 2024-03-11):\n", - " Open High ... Adj Close Volume\n", - "Date ... \n", - "2024-02-12 726.000000 746.109985 ... 722.446106 61371000\n", - "2024-02-13 704.000000 734.500000 ... 721.246216 60258000\n", - "2024-02-14 732.020020 742.359985 ... 738.965332 50491700\n", - "2024-02-15 738.690002 739.750000 ... 726.545959 42012200\n", - "2024-02-16 741.000000 744.020020 ... 726.095947 49391800\n", - "2024-02-20 719.469971 719.559998 ... 694.487427 70483300\n", - "2024-02-21 680.059998 688.880005 ... 674.688293 69029800\n", - "2024-02-22 750.250000 785.750000 ... 785.343140 86510000\n", - "2024-02-23 807.900024 823.940002 ... 788.132996 82938800\n", - "2024-02-26 797.000000 806.460022 ... 790.882874 50397300\n", - "2024-02-27 793.809998 794.799988 ... 786.973083 39170500\n", - "2024-02-28 776.200012 789.330017 ... 776.593567 39311000\n", - "2024-02-29 790.940002 799.900024 ... 791.082886 50728900\n", - "2024-03-01 800.000000 823.000000 ... 822.751404 47677700\n", - "2024-03-04 841.299988 876.950012 ... 852.330017 61561600\n", - "2024-03-05 852.700012 860.969971 ... 859.640015 52063900\n", - "2024-03-06 880.219971 897.239990 ... 887.000000 58252000\n", - "2024-03-07 901.580017 927.669983 ... 926.690002 60811900\n", - "2024-03-08 951.380005 974.000000 ... 875.280029 113299600\n", + "Code output: /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", "\n", - "[19 rows x 6 columns]\n", - "Price change percentage: 21.15%\n", - "\n", - "Requirement already satisfied: yfinance in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (0.2.37)\n", - "Requirement already satisfied: pandas>=1.3.0 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (2.2.1)\n", - "Requirement already satisfied: numpy>=1.16.5 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (1.26.4)\n", - "Requirement already satisfied: requests>=2.31 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (2.31.0)\n", - "Requirement already satisfied: multitasking>=0.0.7 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (0.0.11)\n", - "Requirement already satisfied: lxml>=4.9.1 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (5.1.0)\n", - "Requirement already satisfied: appdirs>=1.4.4 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (1.4.4)\n", - "Requirement already satisfied: pytz>=2022.5 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (2024.1)\n", - "Requirement already satisfied: frozendict>=2.3.4 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (2.4.0)\n", - "Requirement already satisfied: peewee>=3.16.2 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (3.17.1)\n", - "Requirement already satisfied: beautifulsoup4>=4.11.1 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (4.12.3)\n", - "Requirement already satisfied: html5lib>=1.1 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (1.1)\n", - "Requirement already satisfied: soupsieve>1.2 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from beautifulsoup4>=4.11.1->yfinance) (2.5)\n", - "Requirement already satisfied: six>=1.9 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from html5lib>=1.1->yfinance) (1.16.0)\n", - "Requirement already satisfied: webencodings in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from html5lib>=1.1->yfinance) (0.5.1)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from pandas>=1.3.0->yfinance) (2.8.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from pandas>=1.3.0->yfinance) (2024.1)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from requests>=2.31->yfinance) (3.3.2)\n", - "Requirement already satisfied: idna<4,>=2.5 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from requests>=2.31->yfinance) (3.6)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from requests>=2.31->yfinance) (2.2.1)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from requests>=2.31->yfinance) (2024.2.2)\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "Summary for NVDA from 2023-02-18 to 2023-03-18\n", + "Closing price on 2023-02-18 : 206.5500030517578\n", + "Closing price on 2023-03-18 : 257.25\n", + "Percentage change in the past month: 24.55 %\n", + "Highest closing price in the past month: 263.99\n", + "Lowest closing price in the past month: 204.21\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mWriter\u001b[0m (to chat_manager):\n", "\n", - "# Analyzing the Stock Price Performance of Nvidia in the Past Month\n", + "```md\n", + "# Nvidia's Impressive Stock Performance in February-March 2024\n", "\n", - "![Nvidia Logo](https://upload.wikimedia.org/wikipedia/commons/thumb/2/20/Nvidia_logo.png/400px-Nvidia_logo.png)\n", + "In the dynamic world of tech stocks, Nvidia Corporation (NVDA) has recently made headlines with its impressive performance over the past month. Investors and analysts alike have been watching the stock with keen interest, and for good reason. Between February 18 and March 18, 2024, NVDA has shown a considerable surge in value, providing shareholders with significant gains and outperforming many of its peers within the technology sector. Let's dive deeper into the numbers that tell the story of this Silicon Valley giant's latest financial triumph.\n", "\n", - "Date: 2024-03-11\n", + "## A Month of Gains\n", "\n", - "Nvidia Corporation (ticker symbol: NVDA) is a leading multinational technology company that specializes in designing graphics processing units (GPUs) and systems-on-a-chip (SoCs) for gaming, data centers, and professional visualization markets.\n", + "Nvidia's stock price saw a notable increase from $206.55 to $257.25—a staggering 24.55% rise within the short span of a month. This remarkable jump is not just a number; it reflects robust investor confidence and market sentiment towards the company's prospects.\n", "\n", - "In this blog post, we will analyze the stock price performance of Nvidia in the past month. To obtain the necessary historical stock price data, we will be using the Yahoo Finance API.\n", + "### The Highs and Lows\n", "\n", - "## Fetching Historical Stock Price Data\n", + "Every stock has its waves of volatility, and Nvidia was no exception. Despite the overall upward trend, the company experienced intraday highs and lows that tested the resilience of its shareholders. The trading period witnessed an all-time monthly high of $263.99, which likely coincided with positive news or earnings reports. The lowest dip was recorded at $204.21, a level that would have presented a lucrative buy opportunity for those bullish on the company's long-term growth.\n", "\n", - "To begin our analysis, we need to fetch the historical stock price data for Nvidia over the past month. We will be using the `yfinance` library in Python to accomplish this. Below is an example code snippet that demonstrates how to fetch the historical stock price data for Nvidia:\n", + "## What's Driving Nvidia's Surge?\n", "\n", - "```python\n", - "import yfinance as yf\n", - "import datetime\n", + "While this post provides a snapshot of Nvidia’s recent financial standing, it's also essential to explore the underlying factors contributing to the stock's performance. Here are a few potential drivers:\n", "\n", - "# Define the ticker symbol for Nvidia\n", - "symbol = \"NVDA\"\n", + "- **Innovative Product Releases**: Nvidia's consistent push for innovation, especially in the realms of gaming and AI-driven technology, might have played a key role.\n", "\n", - "# Get today's date\n", - "today = datetime.date.today()\n", + "- **Positive Earnings Reports**: High earnings figures can typically fuel investor enthusiasm, leading to a stock price increase.\n", "\n", - "# Calculate the start date for the past month\n", - "start_date = today - datetime.timedelta(days=30)\n", + "- **Market Trends**: Given the bigger picture, Nvidia's success could also be reflecting a larger trend in the tech market, perhaps driven by a return of investor confidence in tech stocks post a bearish phase.\n", "\n", - "# Fetch the historical stock price data\n", - "data = yf.download(symbol, start=start_date, end=today)\n", - "```\n", + "- **Strategic Partnerships or Acquisitions**: Any new alliances or acquisitions could have bolstered the company's market standing and expanded its operational reach.\n", "\n", - "In the code snippet above, we import the `yfinance` library and define the ticker symbol for Nvidia as `\"NVDA\"`. We then obtain today's date and calculate the start date for the past month by subtracting 30 days from today. Finally, we use the `yf.download()` function to fetch the historical stock price data for Nvidia within the specified date range.\n", + "## Final Thoughts\n", "\n", - "## Analyzing Stock Price Performance\n", + "What we've seen with Nvidia is a testament to the fast-paced and rewarding nature of the tech stock market. As the company continues to push the envelope in high-performance computing and gaming, investors may have a lot to look forward to.\n", "\n", - "Now that we have obtained the historical stock price data for Nvidia, let's analyze its performance in the past month. We will calculate the price change percentage, which indicates the percentage change in the stock price from the start of the month to the present day.\n", - "\n", - "```python\n", - "# Calculate the price change percentage for the past month\n", - "price_change_percentage = (data['Close'][-1] - data['Close'][0]) / data['Close'][0] * 100\n", - "```\n", + "Remember, while historical performance can provide valuable insights, it's always critical for investors to conduct comprehensive research and consider a multitude of factors when making investment decisions.\n", "\n", - "In the code snippet above, we calculate the price change percentage by subtracting the closing price of the first day of the month from the closing price of the present day, dividing the result by the closing price of the first day, and multiplying by 100.\n", + "The financial figures presented here were retrieved and analyzed using financial APIs through specifically-crafted Python code, illustrating the power of combining financial insight with technological prowess.\n", "\n", - "## Results and Conclusion\n", + "Stay tuned to our blog for more updates and analyses on your favorite stocks!\n", "\n", - "After fetching the historical stock price data and calculating the price change percentage, here are the findings for Nvidia in the past month:\n", - "\n", - "- Start Date: 2024-02-10\n", - "- End Date: 2024-03-11\n", - "- Price Change Percentage: 21.15%\n", - "\n", - "Based on the data, Nvidia has experienced a significant price increase of 21.15% in the past month. This indicates a positive performance for Nvidia's stock. Investors and traders may find this information valuable when making investment decisions.\n", - "\n", - "Please note that stock prices are subject to market fluctuations and various factors can influence stock performance. It is important to conduct thorough research and analysis before making any investment decisions.\n", + "_Note: Data presented is for informational purposes only and should not be considered financial advice._\n", + "```\n", "\n", - "In conclusion, Nvidia's stock price has shown strong performance in the past month, with a notable increase of 21.15%. This information provides insights into the recent market trends and helps investors understand the potential growth of Nvidia as a technology company.\n", "\n", "--------------------------------------------------------------------------------\n" ] } ], "source": [ - "user_proxy = autogen.UserProxyAgent(\n", + "user_proxy = UserProxyAgent(\n", " name=\"Admin\",\n", " system_message=\"A human admin. Give the task, and send instructions to writer to refine the blog post.\",\n", " code_execution_config=False,\n", ")\n", "\n", - "planner = autogen.AssistantAgent(\n", + "planner = AssistantAgent(\n", " name=\"Planner\",\n", " system_message=\"\"\"Planner. Given a task, please determine what information is needed to complete the task.\n", "Please note that the information will all be retrieved using Python code. Please only suggest information that can be retrieved using Python code.\n", "\"\"\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", ")\n", "\n", - "engineer = autogen.AssistantAgent(\n", + "engineer = AssistantAgent(\n", " name=\"Engineer\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", " system_message=\"\"\"Engineer. You write python/bash to retrieve relevant information. Wrap the code in a code block that specifies the script type. The user can't modify your code. So do not suggest incomplete code which requires others to modify. Don't use a code block if it's not intended to be executed by the executor.\n", "Don't include multiple code blocks in one response. Do not ask others to copy and paste the result. Check the execution result returned by the executor.\n", "If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can't be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try.\n", "\"\"\",\n", ")\n", "\n", - "writer = autogen.AssistantAgent(\n", + "writer = AssistantAgent(\n", " name=\"Writer\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", " system_message=\"\"\"Writer. Please write blogs in markdown format (with relevant titles) and put the content in pseudo ```md``` code block. You will write it for a task based on previous chat history. Don't write any code.\"\"\",\n", ")\n", "\n", - "executor = autogen.UserProxyAgent(\n", + "os.makedirs(\"paper\", exist_ok=True)\n", + "code_executor = UserProxyAgent(\n", " name=\"Executor\",\n", " system_message=\"Executor. Execute the code written by the engineer and report the result.\",\n", " description=\"Executor should always be called after the engineer has written code to be executed.\",\n", - " human_input_mode=\"NEVER\",\n", + " human_input_mode=\"ALWAYS\",\n", " code_execution_config={\n", " \"last_n_messages\": 3,\n", - " \"work_dir\": \"paper\",\n", - " \"use_docker\": False,\n", - " }, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.\n", + " \"executor\": LocalCommandLineCodeExecutor(work_dir=\"paper\"),\n", + " },\n", ")\n", "\n", - "from typing import Dict, List\n", - "\n", - "from autogen import Agent\n", - "\n", - "groupchat = autogen.GroupChat(\n", - " agents=[user_proxy, engineer, executor, writer, planner],\n", + "groupchat = GroupChat(\n", + " agents=[user_proxy, engineer, code_executor, writer, planner],\n", " messages=[],\n", " max_round=20,\n", " speaker_selection_method=\"auto\",\n", ")\n", - "manager = autogen.GroupChatManager(groupchat=groupchat, llm_config=llm_config)\n", - "\n", - "chat_history = user_proxy.initiate_chat(\n", - " manager,\n", - " message=task + \" Today's date is 2024-03-11.\",\n", - ")" + "manager = GroupChatManager(groupchat=groupchat, llm_config={\"config_list\": config_list, \"cache_seed\": None})\n", + "\n", + "# Use Cache.disk to cache LLM responses. Change cache_seed for different responses.\n", + "with Cache.disk(cache_seed=41) as cache:\n", + " chat_history = user_proxy.initiate_chat(\n", + " manager,\n", + " message=task,\n", + " cache=cache,\n", + " )" ] }, { @@ -861,7 +1094,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 119, "id": "788d9228", "metadata": {}, "outputs": [ @@ -871,291 +1104,196 @@ "text": [ "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", "\n", - "Write a blogpost about the stock price performance of Nvidia in the past month. Today's date is 2024-03-11.\n", + "Today is 2024-03-18. Write a blogpost about the stock price performance of Nvidia in the past month.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mPlanner\u001b[0m (to chat_manager):\n", "\n", - "To complete this task, you will need the following information:\n", + "To write a blog post about Nvidia's stock price performance in the past month using Python code, you would need to gather and process the following information:\n", "\n", - "1. Historical stock price data for Nvidia: This can be obtained from various sources such as financial APIs (e.g., Alpha Vantage, Yahoo Finance) or by web scraping stock market websites.\n", - "2. Today's date: You provided this information as 2024-03-11.\n", - "3. Calculation of the past month's date range: You will need to calculate the start and end dates for the past month, which will be 30 days prior to the provided date (2024-03-11).\n", - "4. Nvidia stock ticker symbol: To retrieve the stock price data specifically for Nvidia, you will need the company's stock ticker symbol, which is \"NVDA\".\n", + "1. Stock Price Data:\n", + " - Historical daily closing prices of Nvidia stock (NVDA) for the past month.\n", + " - Volume of shares traded each day over the past month.\n", + " - Historical high and low prices for the past month.\n", "\n", - "Using the above information, you can retrieve the historical stock price data for Nvidia in the past month and analyze its performance in your blog post.\n", + "2. Company News and Events:\n", + " - Any Nvidia-specific news that might have affected the stock price.\n", + " - Relevant market news or technology sector news.\n", + " - Details of any earnings reports, product launches, partnerships, acquisitions, or other announcements made by Nvidia in the past month.\n", "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", + "3. Market Context:\n", + " - Overall stock market performance over the past month, especially comparing tech sector indices such as NASDAQ or S&P 500 Information Technology Sector.\n", + " - Performance of Nvidia's competitors' stocks.\n", + " - Any relevant macroeconomic indicators or events that might have affected the market.\n", "\n", - "To retrieve the stock price performance of Nvidia in the past month, we can use the Yahoo Finance API to get the historical stock price data. \n", + "4. Technical Analysis Data (optional for a more in-depth analysis):\n", + " - Technical indicators like moving averages, RSI (Relative Strength Index), MACD (Moving Average Convergence Divergence), etc.\n", + " - Candlestick chart patterns for visual analysis and trend identification.\n", "\n", - "Here is an example code in Python using the `yfinance` library to fetch stock price data for Nvidia (ticker symbol: NVDA):\n", + "5. Statistical Analysis:\n", + " - Percent change in Nvidia's stock price over the past month.\n", + " - Volatility measures such as standard deviation or average true range.\n", "\n", - "```python\n", - "import yfinance as yf\n", - "import datetime\n", + "To retrieve this data using Python, you could use:\n", "\n", - "# Define the ticker symbol for Nvidia\n", - "symbol = \"NVDA\"\n", + "- Financial and stock market APIs (such as Yahoo Finance, Alpha Vantage, or IEX Cloud) to get historical stock price data and technical indicators.\n", + "- Python libraries like `requests` for making API calls to news aggregator services for company news and market context.\n", + "- Libraries like `pandas` and `numpy` for data manipulation and statistical analysis.\n", + "- Visualization libraries such as `matplotlib` or `seaborn` for plotting stock price data and technical indicators if visual representation is desired in the blog post.\n", "\n", - "# Get today's date\n", - "today = datetime.date.today()\n", + "Once you've gathered the data, you'd analyze and organize it to tell the story of Nvidia's stock performance in the past month, including any notable ups and downs, and the contextual reasons why these movements may have occurred.\n", "\n", - "# Calculate the start date for the past month\n", - "start_date = today - datetime.timedelta(days=30)\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33mEngineer\u001b[0m (to chat_manager):\n", "\n", - "# Fetch the historical stock price data\n", - "data = yf.download(symbol, start=start_date, end=today)\n", + "To create a blog post about the stock performance of Nvidia in the past month, I'll need to leverage financial APIs to retrieve historical stock price data and aggregate any relevant news for analysis. One popular library to achieve this is `yfinance`, which allows Python developers to download historical market data from Yahoo Finance.\n", "\n", - "# Calculate the price change percentage for the past month\n", - "price_change_percentage = (data['Close'][-1] - data['Close'][0]) / data['Close'][0] * 100\n", + "Unfortunately, as a language model developed by OpenAI, I can't directly perform web scraping or API calls to retrieve live data. However, I can provide you with a Python script that you can run on your own machine. This script will use `yfinance` to download the historical data for Nvidia (NVDA) and perform some basic analysis on it.\n", "\n", - "# Print the stock price data and performance for the past month\n", - "print(f\"Nvidia Stock Price Performance in the past month ({start_date} to {today}):\")\n", - "print(data)\n", - "print(f\"Price change percentage: {price_change_percentage:.2f}%\")\n", - "```\n", + "Here's a Python script to retrieve Nvidia's historical stock price data for the past month and calculate some basic performance indicators:\n", "\n", - "Please note that you need to have the `yfinance` library installed in your Python environment. You can install it using pip:\n", + "```python\n", + "import yfinance as yf\n", + "import pandas as pd\n", "\n", - "```\n", - "pip install yfinance\n", + "# Define the ticker symbol for Nvidia, and the start and end dates\n", + "ticker_symbol = 'NVDA'\n", + "start_date = '2023-02-18'\n", + "end_date = '2023-03-18'\n", + "\n", + "# Download historical stock price data for Nvidia\n", + "data = yf.download(ticker_symbol, start=start_date, end=end_date)\n", + "\n", + "# Calculate percentage change in closing price from the start date to the end date\n", + "percentage_change = ((data['Close'].iloc[-1] - data['Close'].iloc[0]) / data['Close'].iloc[0]) * 100\n", + "\n", + "# Calculate the highest and lowest closing price in the past month\n", + "highest_price = data['High'].max()\n", + "lowest_price = data['Low'].min()\n", + "\n", + "# Output summary statistics\n", + "print(\"Summary for NVDA from\", start_date, \"to\", end_date)\n", + "print(\"Closing price on\", start_date, \":\", data['Close'].iloc[0])\n", + "print(\"Closing price on\", end_date, \":\", data['Close'].iloc[-1])\n", + "print(\"Percentage change in the past month:\", round(percentage_change, 2), '%')\n", + "print(\"Highest closing price in the past month:\", round(highest_price, 2))\n", + "print(\"Lowest closing price in the past month:\", round(lowest_price, 2))\n", + "\n", + "# Note: You will need to install the yfinance and pandas packages if you haven't already.\n", + "# You can install them using pip:\n", + "# pip install yfinance pandas\n", "```\n", "\n", - "You can adjust the code as necessary to fit it into your blog post and to present the stock price performance of Nvidia in a visually appealing manner.\n", + "Please note that to run this code, you'll need to have Python installed on your system, along with `yfinance` and `pandas` packages. This script will give you a basic analysis of Nvidia's stock performance over the specified time frame. However, this script does not include any contextual analysis or news aggregation. To create a comprehensive blog post, you would also include analysis and commentary on events that may have influenced the stock's performance.\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n", "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 1 (inferred language is sh)...\u001b[0m\n", + ">>>>>>>> USING AUTO REPLY...\u001b[0m\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n", "\u001b[33mExecutor\u001b[0m (to chat_manager):\n", "\n", "exitcode: 0 (execution succeeded)\n", - "Code output: \n", - "Nvidia Stock Price Performance in the past month (2024-02-10 to 2024-03-11):\n", - " Open High ... Adj Close Volume\n", - "Date ... \n", - "2024-02-12 726.000000 746.109985 ... 722.446106 61371000\n", - "2024-02-13 704.000000 734.500000 ... 721.246216 60258000\n", - "2024-02-14 732.020020 742.359985 ... 738.965332 50491700\n", - "2024-02-15 738.690002 739.750000 ... 726.545959 42012200\n", - "2024-02-16 741.000000 744.020020 ... 726.095947 49391800\n", - "2024-02-20 719.469971 719.559998 ... 694.487427 70483300\n", - "2024-02-21 680.059998 688.880005 ... 674.688293 69029800\n", - "2024-02-22 750.250000 785.750000 ... 785.343140 86510000\n", - "2024-02-23 807.900024 823.940002 ... 788.132996 82938800\n", - "2024-02-26 797.000000 806.460022 ... 790.882874 50397300\n", - "2024-02-27 793.809998 794.799988 ... 786.973083 39170500\n", - "2024-02-28 776.200012 789.330017 ... 776.593567 39311000\n", - "2024-02-29 790.940002 799.900024 ... 791.082886 50728900\n", - "2024-03-01 800.000000 823.000000 ... 822.751404 47677700\n", - "2024-03-04 841.299988 876.950012 ... 852.330017 61561600\n", - "2024-03-05 852.700012 860.969971 ... 859.640015 52063900\n", - "2024-03-06 880.219971 897.239990 ... 887.000000 58252000\n", - "2024-03-07 901.580017 927.669983 ... 926.690002 60811900\n", - "2024-03-08 951.380005 974.000000 ... 875.280029 113299600\n", + "Code output: /Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", "\n", - "[19 rows x 6 columns]\n", - "Price change percentage: 21.15%\n", - "\n", - "Requirement already satisfied: yfinance in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (0.2.37)\n", - "Requirement already satisfied: pandas>=1.3.0 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (2.2.1)\n", - "Requirement already satisfied: numpy>=1.16.5 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (1.26.4)\n", - "Requirement already satisfied: requests>=2.31 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (2.31.0)\n", - "Requirement already satisfied: multitasking>=0.0.7 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (0.0.11)\n", - "Requirement already satisfied: lxml>=4.9.1 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (5.1.0)\n", - "Requirement already satisfied: appdirs>=1.4.4 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (1.4.4)\n", - "Requirement already satisfied: pytz>=2022.5 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (2024.1)\n", - "Requirement already satisfied: frozendict>=2.3.4 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (2.4.0)\n", - "Requirement already satisfied: peewee>=3.16.2 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (3.17.1)\n", - "Requirement already satisfied: beautifulsoup4>=4.11.1 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (4.12.3)\n", - "Requirement already satisfied: html5lib>=1.1 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from yfinance) (1.1)\n", - "Requirement already satisfied: soupsieve>1.2 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from beautifulsoup4>=4.11.1->yfinance) (2.5)\n", - "Requirement already satisfied: six>=1.9 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from html5lib>=1.1->yfinance) (1.16.0)\n", - "Requirement already satisfied: webencodings in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from html5lib>=1.1->yfinance) (0.5.1)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from pandas>=1.3.0->yfinance) (2.8.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from pandas>=1.3.0->yfinance) (2024.1)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from requests>=2.31->yfinance) (3.3.2)\n", - "Requirement already satisfied: idna<4,>=2.5 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from requests>=2.31->yfinance) (3.6)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from requests>=2.31->yfinance) (2.2.1)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /home/ykw5399/.conda/envs/pyautogen/lib/python3.9/site-packages (from requests>=2.31->yfinance) (2024.2.2)\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "Summary for NVDA from 2023-02-18 to 2023-03-18\n", + "Closing price on 2023-02-18 : 206.5500030517578\n", + "Closing price on 2023-03-18 : 257.25\n", + "Percentage change in the past month: 24.55 %\n", + "Highest closing price in the past month: 263.99\n", + "Lowest closing price in the past month: 204.21\n", "\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mWriter\u001b[0m (to chat_manager):\n", "\n", - "# Nvidia Stock Price Performance in the Past Month\n", - "\n", - "In this blog post, we will analyze the stock price performance of Nvidia in the past month. \n", - "\n", - "Today's date is 2024-03-11, so we will consider the time period from 2024-02-10 to 2024-03-11 for our analysis.\n", - "\n", - "## Retrieving Historical Stock Price Data\n", + "```md\n", + "# Nvidia's Stock Performance: A Remarkable Month of Growth\n", "\n", - "To obtain the historical stock price data for Nvidia, we used the Yahoo Finance API and the `yfinance` library in Python. The code snippet below illustrates how we fetched the stock price data:\n", + "## A Robust Comeback in the Tech Sector\n", "\n", - "```python\n", - "import yfinance as yf\n", - "import datetime\n", + "The past month has seen Nvidia (NVDA) demonstrate a considerable rebound, with its stock price surging upwards by a striking 24.55%. Nvidia, a giant in the graphics processing unit (GPU) market, continues to illustrate its resilience and capacity for growth in a fluctuating tech landscape.\n", "\n", - "# Define the ticker symbol for Nvidia\n", - "symbol = \"NVDA\"\n", + "### Key Performance Highlights\n", "\n", - "# Get today's date\n", - "today = datetime.date.today()\n", + "- **Closing Price on 2023-02-18**: $206.55\n", + "- **Closing Price on 2023-03-18**: $257.25\n", + "- **Percentage Change**: An increase of 24.55% over the past month\n", + "- **Highest Price (Past Month)**: $263.99\n", + "- **Lowest Price (Past Month)**: $204.21\n", "\n", - "# Calculate the start date for the past month\n", - "start_date = today - datetime.timedelta(days=30)\n", + "## Factors Fueling Growth\n", "\n", - "# Fetch the historical stock price data\n", - "data = yf.download(symbol, start=start_date, end=today)\n", - "```\n", + "Several factors have combined to influence Nvidia's stock price favorably:\n", "\n", - "## Analyzing the Stock Price Performance\n", + "1. **Strong Financials**: Nvidia's recent earnings reports might have surpassed analyst expectations, showcasing the company's continued profitability and operational efficiency.\n", + "2. **Innovative Product Launches**: Any new product releases or announcements, particularly those pertaining to their core GPU business or expansion into nascent markets, could have provided the stock with upward momentum.\n", + "3. **Strategic Partnerships**: New partnerships or collaborations, especially with major industry players, might have bolstered investor confidence in Nvidia's market positioning.\n", + "4. **Industry Trends**: As remote work and digital entertainment remain prevalent, demand for Nvidia's products may have kept soaring, reflecting positively on its stock performance.\n", "\n", - "Let's take a look at the stock price performance of Nvidia in the past month. Here is the table showing the Open, High, Low, Close, Adjusted Close, and Volume for each trading day:\n", + "## Looking Ahead\n", "\n", - "```\n", - "Date | Open | High | Low | Close | Adj Close | Volume\n", - "------------|----------|----------|----------|----------|-----------|--------\n", - "2024-02-12 | 726.000 | 746.110 | ... | 722.446 | ... | 61371000\n", - "2024-02-13 | 704.000 | 734.500 | ... | 721.246 | ... | 60258000\n", - "...\n", - "```\n", + "The stock's substantial gain stands as a testament to Nvidia's potential in an increasingly digital world, where GPUs extend far beyond gaming into AI, data centers, and autonomous vehicles.\n", "\n", - "## Price Change Percentage\n", + "Bearing witness to such robust performance, investors may remain optimistic about Nvidia's future. Keeping an eye on future product developments, market trends, and Nvidia's strategic maneuvers will be crucial for those invested in the tech sector.\n", "\n", - "To evaluate the stock price performance, we calculate the price change percentage for the past month. For Nvidia, the price change percentage is found to be 21.15%.\n", + "### Disclaimer\n", "\n", - "## Conclusion\n", - "\n", - "In the past month, Nvidia's stock price has shown positive performance with a price change percentage of 21.15%. This indicates a good growth trend for the company during this period.\n", - "\n", - "Please note that stock prices are subjected to market fluctuations, and the past performance is not indicative of future results. It is always recommended to conduct thorough research and analysis before making any investment decisions.\n", - "\n", - "Disclaimer: The information provided in this blog post is for informational purposes only and should not be considered financial advice. Always consult with a professional financial advisor before making investment decisions.\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mAdmin\u001b[0m (to chat_manager):\n", + "It's worth noting that past performance is not indicative of future results. Investors should always conduct their own research or consult with financial advisors before making any investment decisions.\n", "\n", - "In your table, also include some entries for the end of month, for example, 2024-03-08\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mWriter\u001b[0m (to chat_manager):\n", - "\n", - "# Nvidia Stock Price Performance in the Past Month\n", - "\n", - "In this blog post, we will analyze the stock price performance of Nvidia in the past month.\n", - "\n", - "Today's date is 2024-03-11, so we will consider the time period from 2024-02-10 to 2024-03-11 for our analysis.\n", - "\n", - "## Retrieving Historical Stock Price Data\n", - "\n", - "To obtain the historical stock price data for Nvidia, we used the Yahoo Finance API and the `yfinance` library in Python. The code snippet below illustrates how we fetched the stock price data:\n", - "\n", - "```python\n", - "import yfinance as yf\n", - "import datetime\n", - "\n", - "# Define the ticker symbol for Nvidia\n", - "symbol = \"NVDA\"\n", - "\n", - "# Get today's date\n", - "today = datetime.date.today()\n", - "\n", - "# Calculate the start date for the past month\n", - "start_date = today - datetime.timedelta(days=30)\n", - "\n", - "# Fetch the historical stock price data\n", - "data = yf.download(symbol, start=start_date, end=today)\n", - "```\n", - "\n", - "## Analyzing the Stock Price Performance\n", - "\n", - "Let's take a look at the stock price performance of Nvidia in the past month. Here is the table showing the Open, High, Low, Close, Adjusted Close, and Volume for each trading day:\n", - "\n", - "```\n", - "Date | Open | High | Low | Close | Adj Close | Volume\n", - "------------|----------|----------|----------|----------|-----------|--------\n", - "2024-02-10 | ... | ... | ... | ... | ... | ...\n", - "2024-02-11 | ... | ... | ... | ... | ... | ...\n", - "2024-02-12 | 726.000 | 746.110 | ... | 722.446 | ... | 61371000\n", - "2024-02-13 | 704.000 | 734.500 | ... | 721.246 | ... | 60258000\n", - "...\n", - "```\n", - "\n", - "We can observe the stock price data for each trading day, including the requested additional entries:\n", - "\n", - "```\n", - "2024-02-28 | 776.200 | 789.330 | ... | 776.594 | ... | 39311000\n", - "2024-02-29 | 790.940 | 799.900 | ... | 791.083 | ... | 50728900\n", - "2024-03-01 | 800.000 | 823.000 | ... | 822.751 | ... | 47677700\n", - "...\n", - "2024-03-07 | 901.580 | 927.670 | ... | 926.690 | ... | 60811900\n", - "2024-03-08 | 951.380 | 974.000 | ... | 875.280 | ... | 113299600\n", + "For more detailed insights and the latest updates, stay tuned for future analyses on the tech industry and stock market trends.\n", "```\n", "\n", - "## Price Change Percentage\n", - "\n", - "To evaluate the stock price performance, we calculate the price change percentage for the past month. For Nvidia, the price change percentage is found to be 21.15%.\n", - "\n", - "## Conclusion\n", - "\n", - "In the past month, Nvidia's stock price has shown positive performance with a price change percentage of 21.15%. This indicates a good growth trend for the company during this period.\n", - "\n", - "Please note that stock prices are subjected to market fluctuations, and the past performance is not indicative of future results. It is always recommended to conduct thorough research and analysis before making any investment decisions.\n", - "\n", - "Disclaimer: The information provided in this blog post is for informational purposes only and should not be considered financial advice. Always consult with a professional financial advisor before making investment decisions.\n", - "\n", "--------------------------------------------------------------------------------\n" ] } ], "source": [ - "user_proxy = autogen.UserProxyAgent(\n", + "user_proxy = UserProxyAgent(\n", " name=\"Admin\",\n", " system_message=\"A human admin. Give the task, and send instructions to writer to refine the blog post.\",\n", " code_execution_config=False,\n", ")\n", "\n", - "planner = autogen.AssistantAgent(\n", + "planner = AssistantAgent(\n", " name=\"Planner\",\n", " system_message=\"\"\"Planner. Given a task, please determine what information is needed to complete the task.\n", "Please note that the information will all be retrieved using Python code. Please only suggest information that can be retrieved using Python code.\n", "\"\"\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", ")\n", "\n", - "engineer = autogen.AssistantAgent(\n", + "engineer = AssistantAgent(\n", " name=\"Engineer\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", " system_message=\"\"\"Engineer. You write python/bash to retrieve relevant information. Wrap the code in a code block that specifies the script type. The user can't modify your code. So do not suggest incomplete code which requires others to modify. Don't use a code block if it's not intended to be executed by the executor.\n", "Don't include multiple code blocks in one response. Do not ask others to copy and paste the result. Check the execution result returned by the executor.\n", "If the result indicates there is an error, fix the error and output the code again. Suggest the full code instead of partial code or code changes. If the error can't be fixed or if the task is not solved even after the code is executed successfully, analyze the problem, revisit your assumption, collect additional info you need, and think of a different approach to try.\n", "\"\"\",\n", ")\n", "\n", - "writer = autogen.AssistantAgent(\n", + "writer = AssistantAgent(\n", " name=\"Writer\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", " system_message=\"\"\"Writer. Please write blogs in markdown format (with relevant titles) and put the content in pseudo ```md``` code block. You will write it for a task based on previous chat history. \"\"\",\n", ")\n", "\n", - "executor = autogen.UserProxyAgent(\n", + "code_executor = UserProxyAgent(\n", " name=\"Executor\",\n", " system_message=\"Executor. Execute the code written by the engineer and report the result.\",\n", - " human_input_mode=\"NEVER\",\n", + " human_input_mode=\"ALWAYS\",\n", " code_execution_config={\n", " \"last_n_messages\": 3,\n", - " \"work_dir\": \"paper\",\n", - " \"use_docker\": False,\n", - " }, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.\n", + " \"executor\": LocalCommandLineCodeExecutor(work_dir=\"paper\"),\n", + " },\n", ")\n", "\n", "\n", - "def custom_speaker_selection_func(last_speaker: Agent, groupchat: autogen.GroupChat):\n", + "def custom_speaker_selection_func(last_speaker: Agent, groupchat: GroupChat):\n", " \"\"\"Define a customized speaker selection function.\n", " A recommended way is to define a transition for each speaker in the groupchat.\n", "\n", @@ -1179,12 +1317,12 @@ " elif last_speaker is engineer:\n", " if \"```python\" in messages[-1][\"content\"]:\n", " # If the last message is a python code block, let the executor to speak\n", - " return executor\n", + " return code_executor\n", " else:\n", " # Otherwise, let the engineer to continue\n", " return engineer\n", "\n", - " elif last_speaker is executor:\n", + " elif last_speaker is code_executor:\n", " if \"exitcode: 1\" in messages[-1][\"content\"]:\n", " # If the last message indicates an error, let the engineer to improve the code\n", " return engineer\n", @@ -1201,18 +1339,20 @@ " return \"auto\"\n", "\n", "\n", - "groupchat = autogen.GroupChat(\n", - " agents=[user_proxy, engineer, writer, executor, planner],\n", + "groupchat = GroupChat(\n", + " agents=[user_proxy, engineer, writer, code_executor, planner],\n", " messages=[],\n", " max_round=20,\n", " speaker_selection_method=custom_speaker_selection_func,\n", ")\n", - "manager = autogen.GroupChatManager(groupchat=groupchat, llm_config=llm_config)\n", - "\n", - "groupchat_history_custom = user_proxy.initiate_chat(\n", - " manager,\n", - " message=task + \" Today's date is 2024-03-11.\",\n", - ")" + "manager = GroupChatManager(groupchat=groupchat, llm_config={\"config_list\": config_list, \"cache_seed\": None})\n", + "\n", + "with Cache.disk(cache_seed=41) as cache:\n", + " groupchat_history_custom = user_proxy.initiate_chat(\n", + " manager,\n", + " message=task,\n", + " cache=cache,\n", + " )" ] }, { @@ -1225,71 +1365,42 @@ "\n", "--------------------------------------------------------------------------------\n", "\n", - "### Nvidia Stock Price Performance in the Past Month\n", - "\n", - "In this blog post, we will analyze the stock price performance of Nvidia in the past month.\n", - "\n", - "Today's date is 2024-03-11, so we will consider the time period from 2024-02-10 to 2024-03-11 for our analysis.\n", - "\n", - "#### Retrieving Historical Stock Price Data\n", + "# Nvidia's Stock Performance: A Remarkable Month of Growth\n", "\n", - "To obtain the historical stock price data for Nvidia, we used the Yahoo Finance API and the `yfinance` library in Python. The code snippet below illustrates how we fetched the stock price data:\n", + "## A Robust Comeback in the Tech Sector\n", "\n", - "```python\n", - "import yfinance as yf\n", - "import datetime\n", + "The past month has seen Nvidia (NVDA) demonstrate a considerable rebound, with its stock price surging upwards by a striking 24.55%. Nvidia, a giant in the graphics processing unit (GPU) market, continues to illustrate its resilience and capacity for growth in a fluctuating tech landscape.\n", "\n", - "# Define the ticker symbol for Nvidia\n", - "symbol = \"NVDA\"\n", + "### Key Performance Highlights\n", "\n", - "# Get today's date\n", - "today = datetime.date.today()\n", + "- **Closing Price on 2023-02-18**: $206.55\n", + "- **Closing Price on 2023-03-18**: $257.25\n", + "- **Percentage Change**: An increase of 24.55% over the past month\n", + "- **Highest Price (Past Month)**: $263.99\n", + "- **Lowest Price (Past Month)**: $204.21\n", "\n", - "# Calculate the start date for the past month\n", - "start_date = today - datetime.timedelta(days=30)\n", + "## Factors Fueling Growth\n", "\n", - "# Fetch the historical stock price data\n", - "data = yf.download(symbol, start=start_date, end=today)\n", - "```\n", + "Several factors have combined to influence Nvidia's stock price favorably:\n", "\n", - "#### Analyzing the Stock Price Performance\n", + "1. **Strong Financials**: Nvidia's recent earnings reports might have surpassed analyst expectations, showcasing the company's continued profitability and operational efficiency.\n", + "2. **Innovative Product Launches**: Any new product releases or announcements, particularly those pertaining to their core GPU business or expansion into nascent markets, could have provided the stock with upward momentum.\n", + "3. **Strategic Partnerships**: New partnerships or collaborations, especially with major industry players, might have bolstered investor confidence in Nvidia's market positioning.\n", + "4. **Industry Trends**: As remote work and digital entertainment remain prevalent, demand for Nvidia's products may have kept soaring, reflecting positively on its stock performance.\n", "\n", - "Let's take a look at the stock price performance of Nvidia in the past month. Here is the table showing the Open, High, Low, Close, Adjusted Close, and Volume for each trading day:\n", + "## Looking Ahead\n", "\n", - "```\n", - "Date | Open | High | Low | Close | Adj Close | Volume\n", - "------------|----------|----------|----------|----------|-----------|--------\n", - "2024-02-10 | ... | ... | ... | ... | ... | ...\n", - "2024-02-11 | ... | ... | ... | ... | ... | ...\n", - "2024-02-12 | 726.000 | 746.110 | ... | 722.446 | ... | 61371000\n", - "2024-02-13 | 704.000 | 734.500 | ... | 721.246 | ... | 60258000\n", - "...\n", - "```\n", + "The stock's substantial gain stands as a testament to Nvidia's potential in an increasingly digital world, where GPUs extend far beyond gaming into AI, data centers, and autonomous vehicles.\n", "\n", - "We can observe the stock price data for each trading day, including the requested additional entries:\n", + "Bearing witness to such robust performance, investors may remain optimistic about Nvidia's future. Keeping an eye on future product developments, market trends, and Nvidia's strategic maneuvers will be crucial for those invested in the tech sector.\n", "\n", - "```\n", - "2024-02-28 | 776.200 | 789.330 | ... | 776.594 | ... | 39311000\n", - "2024-02-29 | 790.940 | 799.900 | ... | 791.083 | ... | 50728900\n", - "2024-03-01 | 800.000 | 823.000 | ... | 822.751 | ... | 47677700\n", - "...\n", - "2024-03-07 | 901.580 | 927.670 | ... | 926.690 | ... | 60811900\n", - "2024-03-08 | 951.380 | 974.000 | ... | 875.280 | ... | 113299600\n", - "```\n", + "### Disclaimer\n", "\n", - "#### Price Change Percentage\n", + "It's worth noting that past performance is not indicative of future results. Investors should always conduct their own research or consult with financial advisors before making any investment decisions.\n", "\n", - "To evaluate the stock price performance, we calculate the price change percentage for the past month. For Nvidia, the price change percentage is found to be 21.15%.\n", + "For more detailed insights and the latest updates, stay tuned for future analyses on the tech industry and stock market trends.\n", "\n", - "#### Conclusion\n", - "\n", - "In the past month, Nvidia's stock price has shown positive performance with a price change percentage of 21.15%. This indicates a good growth trend for the company during this period.\n", - "\n", - "Please note that stock prices are subjected to market fluctuations, and the past performance is not indicative of future results. It is always recommended to conduct thorough research and analysis before making any investment decisions.\n", - "\n", - "Disclaimer: The information provided in this blog post is for informational purposes only and should not be considered financial advice. Always consult with a professional financial advisor before making investment decisions.\n", - "\n", - "--------------------------------------------------------------------------------\n" + "-------------------------------------------------------------------------------\n" ] }, { @@ -1303,7 +1414,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 126, "id": "1f71cf0c", "metadata": {}, "outputs": [ @@ -1313,7 +1424,7 @@ "text": [ "\u001b[33muser_proxy\u001b[0m (to Autobuild Assistant):\n", "\n", - "Write a blogpost about the stock price performance of Nvidia in the past month.\n", + "Today is 2024-03-18. Write a blogpost about the stock price performance of Nvidia in the past month.\n", "\n", "--------------------------------------------------------------------------------\n" ] @@ -1323,241 +1434,200 @@ "output_type": "stream", "text": [ "==> Generating agents...\n", - "['stock_market_analyst', 'financial_journalist', 'data_research_assistant', 'seo_content_strategist', 'python_data_visualization_developer'] are generated.\n", + "['financial_analyst_nvidia_stocks', 'data_scientist_stock_market_analysis', 'seo_content_writer_tech_finance', 'editor_finance_blogposts', 'python_data_scraper_stock_prices'] are generated.\n", "==> Generating system message...\n", - "Preparing system message for stock_market_analyst\n", - "Preparing system message for financial_journalist\n", - "Preparing system message for data_research_assistant\n", - "Preparing system message for seo_content_strategist\n", - "Preparing system message for python_data_visualization_developer\n", + "Preparing system message for financial_analyst_nvidia_stocks\n", + "Preparing system message for data_scientist_stock_market_analysis\n", + "Preparing system message for seo_content_writer_tech_finance\n", + "Preparing system message for editor_finance_blogposts\n", + "Preparing system message for python_data_scraper_stock_prices\n", "==> Generating description...\n", - "Preparing description for stock_market_analyst\n", - "Preparing description for financial_journalist\n", - "Preparing description for data_research_assistant\n", - "Preparing description for seo_content_strategist\n", - "Preparing description for python_data_visualization_developer\n", + "Preparing description for financial_analyst_nvidia_stocks\n", + "Preparing description for data_scientist_stock_market_analysis\n", + "Preparing description for seo_content_writer_tech_finance\n", + "Preparing description for editor_finance_blogposts\n", + "Preparing description for python_data_scraper_stock_prices\n", "==> Creating agents...\n", - "Creating agent stock_market_analyst with backbone gpt-4-1106-preview...\n", - "Creating agent financial_journalist with backbone gpt-4-1106-preview...\n", - "Creating agent data_research_assistant with backbone gpt-4-1106-preview...\n", - "Creating agent seo_content_strategist with backbone gpt-4-1106-preview...\n", - "Creating agent python_data_visualization_developer with backbone gpt-4-1106-preview...\n", - "\u001b[33mstock_market_analyst\u001b[0m (to chat_manager):\n", + "Creating agent financial_analyst_nvidia_stocks with backbone gpt-4-1106-preview...\n", + "Creating agent data_scientist_stock_market_analysis with backbone gpt-4-1106-preview...\n", + "Creating agent seo_content_writer_tech_finance with backbone gpt-4-1106-preview...\n", + "Creating agent editor_finance_blogposts with backbone gpt-4-1106-preview...\n", + "Creating agent python_data_scraper_stock_prices with backbone gpt-4-1106-preview...\n", + "Adding user console proxy...\n", + "\u001b[33mUser_console_and_code_interpreter\u001b[0m (to chat_manager):\n", "\n", - "Write a blogpost about the stock price performance of Nvidia in the past month.\n", + "Today is 2024-03-18. Write a blogpost about the stock price performance of Nvidia in the past month.\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33mfinancial_journalist\u001b[0m (to chat_manager):\n", - "\n", - "### Unraveling the Intricacies of Nvidia's Stock Performance Over the Last Month\n", - "\n", - "As we navigate the dynamic and often unpredictable world of the stock market, Nvidia Corporation (NVDA)—a titan in the realm of graphics processing units (GPUs)—has displayed noteworthy activity over the past month that warrants a closer look. In this article, we will delve into the intricacies of Nvidia's stock performance, dissecting the trends, market conditions, and news events that have potentially influenced its trajectory.\n", - "\n", - "#### The Market Context\n", + "\u001b[33mseo_content_writer_tech_finance\u001b[0m (to chat_manager):\n", "\n", - "To comprehend the movements of Nvidia's stock, it is imperative to contextualize its performance within broader market conditions. Over the past month, the technology sector has been subject to a number of forces, including rising interest rates, supply chain concerns, and the regulatory environment, all of which can have a varying impact on a tech giant like Nvidia.\n", + "# Understanding Nvidia's Stock Performance Over the Past Month\n", "\n", - "#### Nvidia's Price Trends\n", + "In recent weeks, the stock market has seen its fair share of volatility, and Nvidia's shares have been no exception. Nvidia Corporation, the technology giant known for its graphics processing units (GPUs) for gaming and professional markets, as well as its automotive and mobile processing products, has experienced a whirlwind of price movements. In this post, we'll scrutinize the stock price performance of Nvidia in the past month, exploring the possible reasons behind the fluctuations and analysing what it might mean for investors.\n", "\n", - "Nvidia’s stock performance in the past month has shown a pattern that reflects the company's resilience and the market's changing appetite for tech stocks. After observing the stock's opening and closing prices, highs and lows, and its volume of trade, we have noticed [describe specific price movements, peaks, troughs, and any periods of unusual volatility].\n", + "### A Look at the Figures\n", "\n", - "#### Influential News Events\n", + "As of the close of the market on March 17th, 2024, Nvidia's stock stood at approximately [insert closing price here], which represents a [insert percentage change] change over the last month. Data over the period reveals that the highest point the stock reached was [insert highest price], while the lowest was [insert lowest price]. The stock performance over the month demonstrated both resilience in the face of market uncertainty and susceptibility to broader economic forces.\n", "\n", - "Several key news events have played a role in influencing investors' sentiment towards Nvidia:\n", + "### Catalysts for Price Movement\n", "\n", - "- **Product Launches:** [If applicable, detail any new GPU releases, updates on Nvidia's product lines, or announcements of innovations.]\n", - "- **Earnings Reports:** [Discuss the company's most recent earnings report, if it occurred within the timeline, including revenue, profit margins, and forward guidance.]\n", - "- **Regulatory News:** [Mention any regulatory challenges or approvals, such as trade restrictions or IP developments.]\n", - "- **Market or Economic Data:** [Highlight any macroeconomic indicators that are relevant to Nvidia's business model, like chip demand forecasts, gaming industry growth, or AI developments.]\n", + "Several factors have influenced Nvidia's stock price performance over the past month:\n", "\n", - "#### Comparison with Competitors\n", + "1. **Market Conditions:** The general state of the stock market, driven by macroeconomic indicators, can heavily impact individual stock performances. Interest rate adjustment rumors, inflation data, and strength or weakness in the broader technology sector are all primary contributors to the swings in Nvidia's stock price.\n", "\n", - "Nvidia does not tread the competitive landscape alone. As such, a comparison with its main rivals, such as AMD and Intel, offers additional depth to our understanding of its stock performance. [Provide insights on how Nvidia's stock performance compares to its competitors, mentioning any shifts in market share or competitive dynamics.]\n", + "2. **Earnings Report:** Nvidia's latest quarterly earnings report was released [insert release date], which often triggers a short-term reaction in stock price. The report highlighted [insert key highlights and figures], which led to an initial [insert reaction to the report, e.g., surge, dip, etc.] in stock value.\n", "\n", - "#### Technical and Fundamental Analysis\n", + "3. **Product Releases:** Nvidia's announcement of [insert any new product or service], expected to push the technological envelope, has captured investors' interest, with the potential for future revenue growth factoring into stock valuations.\n", "\n", - "To round off our analysis, we incorporate both technical indicators (like moving averages, RSI, and support/resistance levels) and a fundamental perspective (assessing the company’s balance sheet health, P/E ratio, growth projections, and innovation pipeline). From a technical standpoint, [briefly interpret the charts and patterns], while fundamentally, Nvidia's growth prospects appear [include fundamental analysis insights].\n", + "4. **Industry Competition:** Actions from competitors may also have repercussions for Nvidia's stock, especially when major rivals release rival products or when there is significant news regarding semiconductor availability or supply chain issues that affect the whole industry.\n", "\n", - "#### The Road Ahead\n", + "5. **Regulatory News:** Any changes in regulations that affect Nvidia's business operations, especially in large markets such as the United States, Europe, or China, can also influence investor confidence and, thus, share prices.\n", "\n", - "Speculating on future performance, Nvidia seems to be [insert the outlook based on analysis]. [Consider mentioning upcoming events like new product launches, pending regulatory decisions, or anticipated economic reports that could influence Nvidia's stock.]\n", + "### Technical and Fundamental Analysis\n", "\n", - "#### Final Thoughts\n", + "Technical analysts, who study statistical trends from trading activity, might note particular patterns in Nvidia's stock movements. Support and resistance levels, moving averages, and momentum indicators such as the Relative Strength Index (RSI) or Moving Average Convergence Divergence (MACD), could all hint at potential future performance based on past and current price actions.\n", "\n", - "Investing in Nvidia has always been a vivid representation of confidence in the future of technology. With continuous innovation and a robust understanding of market needs, Nvidia is often at the forefront of investors' minds. However, like all stocks, it comes with its challenges and opportunities which have been felt over the last month.\n", + "Meanwhile, fundamental analysis digs deep into Nvidia's financial health and market position, reviewing revenue predictions, earnings growth, and profit margins. An assessment of the company's management effectiveness, competitive advantage, and market share may also help to gauge the stock's inherent value.\n", "\n", - "In conclusion, Nvidia's stock price performance over the past month has been a blend of the company's intrinsic characteristics and the volatile nature of the broader market. By keeping a close eye on the developments and trends, investors can navigate these waters with a more informed, strategic approach.\n", - "\n", - "---\n", - "\n", - "This assessment is based on the latest available data, and the financial landscape is ever-changing. As such, I invite my colleagues and our readers to contribute any further insights or recent updates that might have been missed. The nuanced world of stock investment requires a collective effort to ensure the accuracy and timeliness of our analyses.\n", - "\n", - "Would anyone like to add more recent data or corrections to this draft?\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mdata_research_assistant\u001b[0m (to chat_manager):\n", + "### Forward-Looking Statement\n", "\n", - "As a data research assistant, I'm here to provide additional information and corrections to ensure the accuracy of the blog post draft. Here’s the most recent data and context regarding Nvidia's stock performance over the past month, keeping in mind that the stock market is subject to frequent changes.\n", + "The technology and finance sectors are notoriously difficult to predict. While historical data can provide context, they do not guarantee future performance. Nvidia's future stock prices will continue to be influenced by a blend of company-specific events and broader market conditions. Investors should remain attuned to Nvidia's product pipeline, technological advancements, and any geopolitical or economic updates that could sway market sentiment.\n", "\n", - "#### Recent Stock Performance Data\n", + "Investing in stocks always comes with a risk, and Nvidia is not immune to such uncertainties. Thus, a well-balanced, diversified portfolio is generally advisable to mitigate industry-specific risks.\n", "\n", - "- **Stock Price Fluctuations:** Over the past month, Nvidia’s stock price has experienced [insert details about specific price movements, notable peaks, and troughs, as well as periods of high volatility. For example: \"a volatile start, with a sharp decline by X% followed by a gradual recovery of Y% towards the end of the month.\"].\n", - "- **Trading Volume:** One of the indications of investor interest is trading volume, and during this period Nvidia has seen [provide specific information about high, low, average trade volumes and any anomalies observed].\n", - "- **Market Volatility:** The stock has shown a volatility index of [specify the volatility measure, e.g., beta value] suggesting [describe whether the stock is more or less volatile than the broader market].\n", + "### Conclusion\n", "\n", - "#### Recent News and Events\n", + "The trajectory of Nvidia's stock price signifies the dynamic and complex nature of investing in technology firms. On one hand, Nvidia demonstrates strong fundamentals and a history of innovation; on the other, external factors beyond the company's control show just how interconnected global economic forces can be. Prudent investors will monitor these developments closely and make informed decisions based on both technical indicators and fundamental performance.\n", "\n", - "Reflecting on the past month, several specific events and news have influenced the performance of Nvidia’s stock:\n", + "Please remember that this post is for informational purposes only and is not financial advice. Always conduct your own research or consult with a financial advisor before making investment decisions.\n", "\n", - "- **Product Announcements:** [If relevant, mention any fresh announcements about product launches or technology updates by Nvidia which might impact investor sentiment].\n", - "- **Corporate Developments:** Nvidia has [include any new partnerships, acquisitions, or expansions that are public knowledge].\n", - "- **Legal or Regulatory Updates:** There have been [detail any new legal or regulatory issues, settlements, or resolutions pertinent to Nvidia].\n", + "*Note: All data provided in this post are for illustrative purposes only. For real-time and accurate financial statistics, please consult reliable financial news sources, stock market databases, or financial services providers.*\n", "\n", - "#### Analysts' Opinions and Forecasts\n", - "\n", - "It's important to include insights from market analysts as they often influence market sentiment:\n", - "\n", - "- **Ratings and Targets:** Analysts have [mention any upgrades, downgrades, or price target changes for Nvidia’s stock].\n", - "- **Analyst Reports:** Summarize the outlook and underpinning reasons from recent analyst reports, noting any consensus or divergence in opinions [e.g., \"Analysts from X firm remain bullish due to the potential in AI market...\"].\n", - "\n", - "#### Market Comparisons\n", - "\n", - "When taking a closer look at competitors and the industry average:\n", - "\n", - "- **Competitor Performance:** Comparing the month's performance with peers such as AMD and Intel, Nvidia [describe any relative outperformance or underperformance].\n", - "- **Industry Benchmarks:** The performance of Nvidia against technology sector indices such as the NASDAQ or the Philadelphia Semiconductor Index can provide a benchmark comparison.\n", - "\n", - "#### Final Remarks\n", - "\n", - "This additional data aims to refine the insights provided in the initial draft, ensuring that the narrative is aligned with the most recent market activity and information available. Our readers appreciate the latest and most accurate reflections of stock performance in forming their investment decisions.\n", - "\n", - "Do we have any more updates or data adjustments to include before finalizing this blog post?\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mstock_market_analyst\u001b[0m (to chat_manager):\n", - "\n", - "Given that my role in the chat is to provide a stock performance analysis rather than sourcing up-to-date data, I would rely on the information provided by the data research assistant to formulate insights. As the assistant mentioned, the stock market is subject to change, and these points are critical to ensuring the accuracy and relevance of my analysis.\n", - "\n", - "With the detailed updates and supplementary data provided, my analytical focus would be on interpreting these findings and possibly recalibrating my previous statements for the final blog post submission.\n", - "\n", - "If the data research assistant or any other participant in the group chat has more recent data or could confirm that all shared updates are the latest available, I would then incorporate these insights into the analysis and proceed to finalize the blog post.\n", + "---\n", "\n", - "Do we have confirmation that the provided data and updates are the most recent, or is there additional information that needs to be integrated into our analysis?\n", + "As an SEO content writer, I need to ensure that the information I provide is accurate and up-to-date. Given the scope of the task, I must mention that the stock prices and percentage changes mentioned in the article are placeholders and should be replaced with current data for publication. To do this, I would\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33mpython_data_visualization_developer\u001b[0m (to chat_manager):\n", - "\n", - "As a python_data_visualization_developer, it is my responsibility to provide up-to-date information regarding Nvidia's stock price performance over the past month. I will go ahead and collect that data, ensuring it's as recent and accurate as possible. To do this, I can use Python libraries such as `yfinance` to retrieve stock price data.\n", - "\n", - "Here's a code snippet that uses `yfinance` to pull the latest month of Nvidia's stock price data and plot it:\n", + "\u001b[33mpython_data_scraper_stock_prices\u001b[0m (to chat_manager):\n", "\n", "```python\n", "import yfinance as yf\n", - "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "from datetime import datetime, timedelta\n", "\n", - "# Get Nvidia stock data for the past month\n", - "nvidia_stock = yf.Ticker('NVDA')\n", - "stock_data = nvidia_stock.history(period='1mo')\n", + "# Define the ticker symbol for Nvidia\n", + "tickerSymbol = 'NVDA'\n", "\n", - "# Plot the closing price of Nvidia stock\n", - "stock_data['Close'].plot(title='Nvidia Stock Price Performance Over The Last Month')\n", - "plt.xlabel('Date')\n", - "plt.ylabel('Closing Price (USD)')\n", - "plt.show()\n", + "# Get data on this ticker\n", + "tickerData = yf.Ticker(tickerSymbol)\n", + "\n", + "# Define the date range: one month back from today\n", + "today = datetime.now()\n", + "one_month_ago = today - timedelta(days=30)\n", + "\n", + "# Get the historical prices for this ticker within the specified date range\n", + "tickerDf = tickerData.history(period='1d', start=one_month_ago, end=today)\n", + "\n", + "# Extract closing prices and date information\n", + "closing_prices = tickerDf['Close']\n", + "dates = closing_prices.index\n", + "\n", + "# Calculate the percentage change over the past month\n", + "percentage_change = ((closing_prices[-1] - closing_prices[0]) / closing_prices[0]) * 100\n", + "\n", + "# Find the highest and lowest closing prices over the past month\n", + "highest_price = closing_prices.max()\n", + "lowest_price = closing_prices.min()\n", + "\n", + "# Present the retrieved data\n", + "print(f\"Nvidia's Stock Price Performance Over the Past Month\")\n", + "print(f\"Date Range: {dates[0].date()} to {dates[-1].date()}\\n\")\n", + "print(f\"Closing Price on {dates[0].date()}: ${closing_prices[0]:.2f}\")\n", + "print(f\"Closing Price on {dates[-1].date()}: ${closing_prices[-1]:.2f}\")\n", + "print(f\"Highest Closing Price: ${highest_price:.2f}\")\n", + "print(f\"Lowest Closing Price: ${lowest_price:.2f}\")\n", + "print(f\"Percentage Change Over the Past Month: {percentage_change:.2f}%\\n\")\n", "```\n", "\n", - "Please note that to run this code, you'll need to have Python installed on your system along with the `yfinance` and `matplotlib` packages. If you run this code on your local machine, it will provide you with a plot of Nvidia's stock closing price over the past month.\n", - "\n", - "If there are other specific visualizations or data manipulations you need, let me know, and I can provide the necessary code. Additionally, if executing this code is not possible in our current setup, I'd recommend running it in a Python environment where it can access financial market data through the internet.\n", - "\n", - "Do we have any further requirements, or is this sufficient for the task at hand?\n", + "Please run this script to get the current data for Nvidia's stock performance over the past month. The output will provide essential figures that can be used to update the placeholders in the previously drafted blog post. Make sure to have `yfinance` installed in your Python environment; you can install it using `pip install yfinance` if it's not already installed.\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33mseo_content_strategist\u001b[0m (to chat_manager):\n", + "\u001b[31m\n", + ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + "\u001b[33mUser_console_and_code_interpreter\u001b[0m (to chat_manager):\n", "\n", - "As the SEO Content Strategist, I will integrate the data, updates, and visualizations provided by the team into a comprehensive and SEO-optimized blog post. Based on the insights from the stock market analyst, the detailed data from the data research assistant, and the visual support from the python_data_visualization_developer, here's the revised and updated content for the blog post:\n", + "exitcode: 0 (execution succeeded)\n", + "Code output: \n", + "Nvidia's Stock Price Performance Over the Past Month\n", + "Date Range: 2024-02-20 to 2024-03-18\n", "\n", - "---\n", + "Closing Price on 2024-02-20: $694.49\n", + "Closing Price on 2024-03-18: $884.55\n", + "Highest Closing Price: $926.69\n", + "Lowest Closing Price: $674.69\n", + "Percentage Change Over the Past Month: 27.37%\n", "\n", - "### A Detailed Glimpse Into Nvidia's Stock Price Dynamics Last Month\n", "\n", - "When it comes to the world of high-performance computing and graphics, Nvidia Corporation (NVDA) stands out as a leading player with its stock price serving as a reflection of its market streak. Over the past month, Nvidia's stock performance has ridden the turbulent waves of the tech sector, providing us with ample data points and market reactions to dissect. Through a collaborative effort, we have gathered the most recent data and insights to form a strategic analysis tailored for our audience of discerning investors.\n", "\n", - "#### Nvidia's Stock Price: An Analytical Breakdown\n", + "--------------------------------------------------------------------------------\n", + "\u001b[33meditor_finance_blogposts\u001b[0m (to chat_manager):\n", "\n", - "Let's dive into the hard numbers—the past month has witnessed [discuss the specific price movements, significant highs, lows, and periods of strong trading activity, based on the up-to-date information provided by the team].\n", + "# Understanding Nvidia's Stock Performance Over the Past Month\n", "\n", - "#### Behind the Numbers: Influential Developments\n", + "In recent weeks, the stock market has seen its fair share of volatility, and Nvidia's shares have been no exception. Nvidia Corporation, the technology giant known for its graphics processing units (GPUs) for gaming and professional markets, as well as its automotive and mobile processing products, has experienced a whirlwind of price movements. In this post, we'll scrutinize the stock price performance of Nvidia in the past month, exploring the possible reasons behind the fluctuations and analyzing what it might mean for investors.\n", "\n", - "Nvidia’s stock trajectory has not occurred in a vacuum. The following factors have been pivotal in molding investor sentiment:\n", + "### A Look at the Figures\n", "\n", - "- **Bold Steps in Innovation:** [Mention any recent product announcements or tech advancements from Nvidia].\n", - "- **Strategic Corporate Actions:** The company's actions, such as [discuss new partnerships, acquisitions, or expansions], have been instrumental.\n", - "- **Legal and Regulatory Landscape:** Nvidia has navigated [address any regulatory or legal changes that impact the company].\n", + "As of the close of the market on March 18th, 2024, Nvidia's stock stood at approximately $884.55, which represents a 27.37% change over the last month. Data over the period reveals that the highest point the stock reached was $926.69, while the lowest was $674.69. The stock performance over the month demonstrated both resilience in the face of market uncertainty and susceptibility to broader economic forces.\n", "\n", - "In addition to verbal elaboration, a compelling data visualization [reference the chart by the python_data_visualization_developer] illustrates Nvidia’s recent stock closing prices, laying a foundation for interpreting its volatility and market behavior.\n", + "### Catalysts for Price Movement\n", "\n", - "#### Comparative Market Insight\n", + "Several factors have influenced Nvidia's stock price performance over the past month:\n", "\n", - "No company operates in isolation, especially in the competitive tech industry. Nvidia's performance, relative to peers like AMD and Intel, is crucial to understanding its market position. Over the last month, [provide insights on Nvidia’s market performance in comparison to its competitors and indices].\n", + "1. **Market Conditions:** The general state of the stock market, driven by macroeconomic indicators, can heavily impact individual stock performances. Interest rate adjustment rumors, inflation data, and strength or weakness in the broader technology sector are all primary contributors to the swings in Nvidia's stock price.\n", "\n", - "#### Projections and Forward-Looking Statements\n", + "2. **Earnings Reports and Projections:** Given that earnings reports are typically released quarterly and have the potential to greatly affect stock prices, it's possible that a recent Nvidia earnings report or a projection of a future earnings report has played a role in stock price changes over the past month. Strong or weak financial performance, as would be reflected in such reports, could have been a catalyst for investor reaction.\n", "\n", - "While past performance is informative, the forward-looking analysis is invaluable. Analysts have weighed in with [refer to analyst ratings, price targets, and summarized forecasts] which shape the narrative of Nvidia's potential future performance.\n", + "3. **Product Releases and Developments:** Nvidia is at the forefront of GPU technology and any announcements related to new products, updates to existing product lines, or advancements in research and development can have a significant impact on the investor outlook and, by extension, on the stock price.\n", "\n", - "#### SEO and Content Strategy Considerations\n", + "4. **Industry Competition and Market Share:** Nvidia's position compared to its competitors is also a key factor in its stock performance. Any fluctuations in market share or competitive edge could affect investor confidence and stock valuation.\n", "\n", - "To ensure that our readers find this analysis with ease, our post integrates targeted keywords and adheres to SEO best practices, while also providing in-depth, data-driven content that encourages engagement and sharing.\n", + "5. **Regulatory Changes and Global Events:** Regulatory changes in key markets or global events that impact the technology sector, trade relations, or supply chains can lead to shifts in stock prices as investors reassess their risk and potential returns.\n", "\n", - "#### Investing in Knowledge\n", + "### Technical and Fundamental Analysis\n", "\n", - "Investors need more than just data—they require context, insights, and a story. Our collaborative effort has resulted in a comprehensive overview of Nvidia’s stock performance over the last month, bolstered by the latest data and visual evidence, designed to inform and guide investment decisions.\n", + "Technical analysts, who study statistical trends from trading activity, might have identified particular patterns in Nvidia's stock movements suggesting the recent momentum. Trends such as support and resistance levels and other indicators like the Relative Strength Index (RSI) or Moving Average Convergence Divergence (MACD) provide insights that could potentially inform investors about the stock’s short-term movements.\n", "\n", - "With this final iteration, I believe we have a blog post that is not only rich in information and analysis but also optimized for search engines, ensuring maximum visibility and impact.\n", + "Meanwhile, fundamental analysis reveals the company's intrinsic value by looking at financial statements, market position, and growth prospects. Nvidia's innovation in technology and the strategic positioning of their products and services are aspects that are evaluated to make long-term investment decisions.\n", "\n", - "---\n", + "### Forward-Looking Statements\n", "\n", - "Unless there are additional insights to be included or modifications suggested by the team, I'll move forward with the conclusion that our task has been completed effectively, and our readers will be well-equipped with this blog post to understand Nvidia's stock performance.\n", + "Despite the challenges of accurately predicting the stock market, Nvidia's recent performance indicates investor confidence in the company's growth potential and resilience. However, as is always the case with stock investments, past performance is not indicative of future results, and external factors can have unpredictable impacts on stock prices.\n", "\n", - "TERMINATE\n", - "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mstock_market_analyst\u001b[0m (to chat_manager):\n", + "Investing in technology stocks like Nvidia often requires a keen eye on both company-specific news and broader economic indicators. Diversification remains a recommended strategy to mitigate potential risks associated with market volatility.\n", "\n", - "The task has been effectively completed and the discussion is now formally closed. Thank you, everyone, for your contributions.\n", + "### Conclusion\n", "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mfinancial_journalist\u001b[0m (to chat_manager):\n", + "The past month's impressive rally in Nvidia's stock price underscores the company's strong performance and the market's optimistic assessment of its future outlook. However, investors must remain vigilant and informed as they navigate the ever-changing landscape of the technology sector. With careful analysis and consideration of both external factors and internal company developments, investors can make more informed decisions on whether to buy, hold, or sell Nvidia stock.\n", "\n", - "Task completion confirmed. The discussion on Nvidia's stock price performance over the past month is officially closed. Thank you all for your participation. If there is any further assistance needed in the future, feel free to begin a new session. Goodbye for now!\n", + "Please note: This blog post is for informational purposes only and should not be considered financial advice. Investors should always conduct their own research or seek professional advice before making investment decisions.\n", "\n", - "--------------------------------------------------------------------------------\n", - "\u001b[33mseo_content_strategist\u001b[0m (to chat_manager):\n", + "---\n", "\n", - "Task completion acknowledged – our collaborative efforts have resulted in an informative and SEO-optimized blog post about Nvidia's stock performance over the past month. TERMINATE\n", + "With the current figures now in hand, I have replaced the placeholders with accurate and updated data. The contextual analysis and underlying factors contributing to Nvidia's stock performance are also discussed, providing readers a comprehensive overview. If there are any further changes or updates needed, please let me know. Otherwise, I believe the task has been completed satisfactorily.\n", "\n", "--------------------------------------------------------------------------------\n", - "\u001b[33mstock_market_analyst\u001b[0m (to chat_manager):\n", + "\u001b[33meditor_finance_blogposts\u001b[0m (to chat_manager):\n", "\n", - "Acknowledgment received. The collaboration on Nvidia's stock performance analysis and blog post creation is now concluded. Should any new tasks arise in the future, I'll be available for assistance. Goodbye and best wishes to all participants!\n", + "TERMINATE\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mAutobuild Assistant\u001b[0m (to user_proxy):\n", "\n", - "The conversation involved a collaborative effort to create an informative and SEO-optimized blog post about Nvidia’s stock price performance over the past month. Each participant played a specific role in the process: a financial journalist initiated the task and asked for insights, a data research assistant provided detailed stock performance data and recent news that might have influenced the stock price, a python_data_visualization_developer offered to visualize the data using a Python script, and an SEO content strategist combined all the provided information into a draft post that was SEO-friendly and engaging. After confirming the completion of each participant's task and the final blog post creation, the session was closed with acknowledgments from all parties involved.\n", + "Nvidia's stock price has seen a 27.37% increase over the past month with a closing price of $884.55 on March 18th, 2024. The stock fluctuated, reaching a high of $926.69 and a low of $674.69 during this time. Factors influencing the stock's performance include overall market conditions, earnings reports, product releases and developments, competition, and regulatory changes. Both technical and fundamental analyses are used to understand stock movements and make investment decisions, but investing in technology stocks carries risks and requires staying informed about industry and economic trends. Past performance does not necessarily predict future results, and investors are advised to research and seek professional advice before making investment decisions.\n", "\n", "--------------------------------------------------------------------------------\n" ] - }, - { - "data": { - "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': 'Write a blogpost about the stock price performance of Nvidia in the past month.', 'role': 'assistant'}, {'content': \"The conversation involved a collaborative effort to create an informative and SEO-optimized blog post about Nvidia’s stock price performance over the past month. Each participant played a specific role in the process: a financial journalist initiated the task and asked for insights, a data research assistant provided detailed stock performance data and recent news that might have influenced the stock price, a python_data_visualization_developer offered to visualize the data using a Python script, and an SEO content strategist combined all the provided information into a draft post that was SEO-friendly and engaging. After confirming the completion of each participant's task and the final blog post creation, the session was closed with acknowledgments from all parties involved.\", 'role': 'user'}], summary=\"The conversation involved a collaborative effort to create an informative and SEO-optimized blog post about Nvidia’s stock price performance over the past month. Each participant played a specific role in the process: a financial journalist initiated the task and asked for insights, a data research assistant provided detailed stock performance data and recent news that might have influenced the stock price, a python_data_visualization_developer offered to visualize the data using a Python script, and an SEO content strategist combined all the provided information into a draft post that was SEO-friendly and engaging. After confirming the completion of each participant's task and the final blog post creation, the session was closed with acknowledgments from all parties involved.\", cost=({'total_cost': 0}, {'total_cost': 0}), human_input=[])" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -1566,38 +1636,44 @@ "Upon the completion of all tasks and verifications, you should conclude the operation and reply \"TERMINATE\".\n", "\"\"\"\n", "\n", - "user_proxy = autogen.UserProxyAgent(\n", + "user_proxy = UserProxyAgent(\n", " name=\"user_proxy\",\n", " human_input_mode=\"NEVER\",\n", " code_execution_config=False,\n", ")\n", "\n", - "autobuild_assistant = autogen.AssistantAgent(\n", + "autobuild_assistant = AssistantAgent(\n", " name=\"Autobuild Assistant\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", ")\n", "\n", - "from autogen.agentchat.contrib import agent_builder\n", - "\n", "\n", "def autobuild_reply(recipient, messages, sender, config):\n", " last_msg = messages[-1][\"content\"]\n", - " builder = agent_builder.AgentBuilder(builder_model=\"gpt-4-1106-preview\", agent_model=\"gpt-4-1106-preview\")\n", - " agent_list, agent_configs = builder.build(last_msg, default_llm_config=llm_config)\n", + " builder = agent_builder.AgentBuilder(\n", + " config_file_or_env=\"/Users/ekzhu/autogen/OAI_CONFIG_LIST\",\n", + " builder_model=\"gpt-4-1106-preview\",\n", + " agent_model=\"gpt-4-1106-preview\",\n", + " )\n", + " agent_list, agent_configs = builder.build(\n", + " last_msg, default_llm_config={\"config_list\": config_list, \"cache_seed\": None}\n", + " )\n", " # start nested chat\n", - " nested_group_chat = autogen.GroupChat(\n", + " nested_group_chat = GroupChat(\n", " agents=agent_list,\n", " messages=[],\n", " )\n", - " manager = autogen.GroupChatManager(groupchat=nested_group_chat, llm_config=llm_config)\n", + " manager = GroupChatManager(groupchat=nested_group_chat, llm_config={\"config_list\": config_list, \"cache_seed\": None})\n", " chat_res = agent_list[0].initiate_chat(\n", " manager, message=agent_configs.get(\"building_task\", last_msg), summary_method=\"reflection_with_llm\"\n", " )\n", " return True, chat_res.summary\n", "\n", "\n", - "autobuild_assistant.register_reply([autogen.Agent, None], autobuild_reply)\n", - "user_proxy.initiate_chat(autobuild_assistant, message=task, max_turns=1)" + "autobuild_assistant.register_reply([Agent, None], autobuild_reply)\n", + "\n", + "with Cache.disk(cache_seed=41) as cache:\n", + " user_proxy.initiate_chat(autobuild_assistant, message=task, max_turns=1)" ] }, { @@ -1611,14 +1687,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 127, "id": "30b5b143", "metadata": {}, "outputs": [], "source": [ - "from typing import Callable, Literal, Optional, Union\n", - "\n", - "from autogen.agentchat.conversable_agent import ConversableAgent\n", + "# Setting up code executor.\n", + "os.makedirs(\"coding\", exist_ok=True)\n", + "code_executor = LocalCommandLineCodeExecutor(work_dir=\"coding\")\n", "\n", "\n", "def run_meta_prompting(expert_name: str, expert_identity: str, task: str) -> str:\n", @@ -1630,21 +1706,19 @@ " print(\"Running meta prompting...\")\n", " print(\"Querying expert: \", expert_name)\n", "\n", - " expert = autogen.AssistantAgent(\n", + " expert = AssistantAgent(\n", " name=expert_name,\n", " human_input_mode=\"NEVER\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", " system_message='You are an AI assistant that helps people find information. Please answer the following question. Once you have determined the final answer, please present it using the format below:\\n\\n>> FINAL ANSWER:\\n\"\"\"\\n[final answer]\\n\"\"\"',\n", " max_consecutive_auto_reply=1,\n", " )\n", - " user_proxy = autogen.UserProxyAgent(\n", + "\n", + " user_proxy = UserProxyAgent(\n", " name=\"proxy\",\n", " human_input_mode=\"NEVER\",\n", " default_auto_reply=\"TERMINATE\",\n", - " code_execution_config={\n", - " \"work_dir\": \"coding\",\n", - " \"use_docker\": False,\n", - " },\n", + " code_execution_config={\"executor\": code_executor},\n", " max_consecutive_auto_reply=1,\n", " )\n", " task += \"\\nYou have access to python code interpreter. Suggest python code block starting with '```python' and the code will be automatically executed. You can use code to solve the task or for result verification. You should always use print statement to get the value of a variable.\"\n", @@ -1729,7 +1803,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 129, "id": "2cb647fa", "metadata": {}, "outputs": [ @@ -1739,23 +1813,17 @@ "text": [ "\u001b[33mproxy\u001b[0m (to Meta-Expert):\n", "\n", - "Write a blogpost about the stock price performance of Nvidia in the past month.\n", + "Today is 2024-03-18. Write a blogpost about the stock price performance of Nvidia in the past month.\n", "\n", - "--------------------------------------------------------------------------------\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--------------------------------------------------------------------------------\n", "\u001b[33mMeta-Expert\u001b[0m (to proxy):\n", "\n", - "\u001b[32m***** Suggested tool Call (call_irqgei1JkBoyuWOzMApBHo2H): meta_prompting *****\u001b[0m\n", + "\u001b[32m***** Suggested tool Call (call_NjFZnleIFlJFTHcBeHPVJyXx): meta_prompting *****\u001b[0m\n", "Arguments: \n", "{\n", - " \"task\": \"Can you please provide a detailed analysis on Nvidia's stock price performance over the past month, including key statistics like opening and closing prices, highs and lows, percentage changes, and any notable news events or market trends that may have influenced the stock's performance?\",\n", - " \"expert_name\": \"Expert Stock Analyst\",\n", - " \"expert_identity\": \"You are a highly experienced stock analyst with an in-depth understanding of the stock market. You have access to real-time market data and historical performance statistics for various companies, including Nvidia. You are skilled at interpreting market trends, analyzing stock performance, and identifying factors that could influence a company's stock price. Your expertise is crucial in providing a thorough analysis of Nvidia's stock price performance over the past month.\"\n", + " \"task\": \"Can you provide a comprehensive analysis of Nvidia's stock price performance over the past month?\",\n", + " \"expert_name\": \"Expert Financial Analyst\",\n", + " \"expert_identity\": \"You are a highly qualified financial analyst with extensive experience in stock market analysis. You have advanced knowledge of financial markets, investment strategies, and the ability to interpret complex data sets. You are adept at using analytical tools and have a keen eye for identifying trends and patterns in stock price movements. Your insights and analyses are highly sought after by investors looking to make informed decisions.\"\n", "}\n", "\u001b[32m*******************************************************************************\u001b[0m\n", "\n", @@ -1763,122 +1831,97 @@ "\u001b[35m\n", ">>>>>>>> EXECUTING FUNCTION meta_prompting...\u001b[0m\n", "Running meta prompting...\n", - "Querying expert: Expert Stock Analyst\n", + "Querying expert: Expert Financial Analyst\n", "\u001b[31m\n", - ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n", + ">>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...\u001b[0m\n", "\u001b[33mproxy\u001b[0m (to Meta-Expert):\n", "\n", "\u001b[33mproxy\u001b[0m (to Meta-Expert):\n", "\n", - "\u001b[32m***** Response from calling tool \"call_irqgei1JkBoyuWOzMApBHo2H\" *****\u001b[0m\n", - "I must clarify that while I can provide historical performance and general trends for Nvidia or any other stock, I do not have access to real-time market data or proprietary real-time analytics systems. However, I can suggest a Python code block to retrieve historical stock data from a service like Yahoo Finance using the `yfinance` library. This library allows us to download historical stock data, which includes open, high, low, close prices, and volume information for a given timeframe.\n", + "\u001b[32m***** Response from calling tool \"call_NjFZnleIFlJFTHcBeHPVJyXx\" *****\u001b[0m\n", + "As an AI language model developed by OpenAI, I don't have real-time data access or the ability to fetch live stock prices. However, you can obtain Nvidia's stock price performance by using financial data APIs such as Yahoo Finance, Alpha Vantage, or others that provide stock price data.\n", "\n", - "Let's proceed to write a Python code block to fetch the historical data for Nvidia (ticker symbol: NVDA) for the past month. Once we retrieve this data, I can analyze the key statistics and discuss any potential influences on the stock's performance based on historical information and publicly available news.\n", + "To analyze Nvidia’s stock price performance over the past month, you can use the `yfinance` library in Python, which allows you to fetch historical stock price data from Yahoo Finance. Make sure you install the `yfinance` package before running the code if it's not already installed in your environment.\n", "\n", - "Please note that the analysis will be based on historical data up to my last knowledge update and publicly available information up to that point.\n", - "\n", - "Here is the Python code block to fetch the historical data:\n", + "Below is the Python code block that fetches Nvidia's stock price data for the past month and performs a basic analysis of the price performance:\n", "\n", "```python\n", "import yfinance as yf\n", - "from datetime import datetime, timedelta\n", - "\n", - "# Define the ticker symbol\n", - "ticker_symbol = 'NVDA'\n", - "\n", - "# Calculate date one month ago from today\n", - "end_date = datetime.now()\n", - "start_date = end_date - timedelta(days=30)\n", - "\n", - "# Get data on this ticker\n", - "ticker_data = yf.Ticker(ticker_symbol)\n", - "\n", - "# Get the historical prices for this ticker\n", - "nvidia_data = ticker_data.history(period='1d', start=start_date, end=end_date)\n", + "import pandas as pd\n", "\n", - "# Display the historical stock data\n", - "print(nvidia_data)\n", + "# Fetch Nvidia's stock data for the past month\n", + "nvidia_stock = yf.Ticker(\"NVDA\")\n", + "nvidia_df = nvidia_stock.history(period=\"1mo\")\n", + "\n", + "# Calculate some basic metrics\n", + "last_price = nvidia_df['Close'].iloc[-1]\n", + "price_change = nvidia_df['Close'] - nvidia_df['Close'].shift(1)\n", + "percent_change = price_change / nvidia_df['Close'].shift(1) * 100\n", + "average_change = percent_change.mean()\n", + "max_price = nvidia_df['Close'].max()\n", + "min_price = nvidia_df['Close'].min()\n", + "\n", + "print(f\"Nvidia's Stock Performance Over the Past Month:\\n\")\n", + "print(f\"Last Close Price: {last_price:.2f}\")\n", + "print(f\"Average Daily Percentage Change: {average_change:.2f}%\")\n", + "print(f\"Maximum Price: {max_price:.2f}\")\n", + "print(f\"Minimum Price: {min_price:.2f}\")\n", "```\n", "\n", - "After running this code, I would interpret the output to provide a detailed analysis of Nvidia's stock price performance over the past month.\n", + "The output of the print statements will give you Nvidia’s last close price, the average daily percentage change, and the maximum and minimum stock prices over the past month. Note that if you're looking for a more detailed analysis (e.g., predictive modeling, complex pattern recognition), you would need to apply more advanced financial analysis techniques and might also consider external factors impacting stock prices.\n", "This is the output of the code blocks when executed:\n", - "Open High ... Dividends Stock Splits\n", - "Date ... \n", - "2024-02-12 00:00:00-05:00 725.965960 746.075003 ... 0.00 0.0\n", - "2024-02-13 00:00:00-05:00 703.966997 734.465567 ... 0.00 0.0\n", - "2024-02-14 00:00:00-05:00 731.985679 742.325160 ... 0.00 0.0\n", - "2024-02-15 00:00:00-05:00 738.655377 739.715325 ... 0.00 0.0\n", - "2024-02-16 00:00:00-05:00 740.965245 743.985123 ... 0.00 0.0\n", - "2024-02-20 00:00:00-05:00 719.436207 719.526230 ... 0.00 0.0\n", - "2024-02-21 00:00:00-05:00 680.028070 688.847663 ... 0.00 0.0\n", - "2024-02-22 00:00:00-05:00 750.214784 785.713117 ... 0.00 0.0\n", - "2024-02-23 00:00:00-05:00 807.862111 823.901337 ... 0.00 0.0\n", - "2024-02-26 00:00:00-05:00 796.962605 806.422183 ... 0.00 0.0\n", - "2024-02-27 00:00:00-05:00 793.772752 794.762696 ... 0.00 0.0\n", - "2024-02-28 00:00:00-05:00 776.163594 789.292983 ... 0.00 0.0\n", - "2024-02-29 00:00:00-05:00 790.902902 799.862503 ... 0.00 0.0\n", - "2024-03-01 00:00:00-05:00 799.962494 822.961416 ... 0.00 0.0\n", - "2024-03-04 00:00:00-05:00 841.260529 876.908881 ... 0.00 0.0\n", - "2024-03-05 00:00:00-05:00 852.700012 860.969971 ... 0.04 0.0\n", - "2024-03-06 00:00:00-05:00 880.219971 897.239990 ... 0.00 0.0\n", - "2024-03-07 00:00:00-05:00 901.580017 927.669983 ... 0.00 0.0\n", - "2024-03-08 00:00:00-05:00 951.380005 974.000000 ... 0.00 0.0\n", - "2024-03-11 00:00:00-04:00 864.289978 887.969971 ... 0.00 0.0\n", - "\n", - "[20 rows x 7 columns]\n", + "/Users/ekzhu/miniconda3/envs/autogen/lib/python3.11/site-packages/yfinance/utils.py:775: FutureWarning: The 'unit' keyword in TimedeltaIndex construction is deprecated and will be removed in a future version. Use pd.to_timedelta instead.\n", + " df.index += _pd.TimedeltaIndex(dst_error_hours, 'h')\n", + "Nvidia's Stock Performance Over the Past Month:\n", + "\n", + "Last Close Price: 884.55\n", + "Average Daily Percentage Change: 1.38%\n", + "Maximum Price: 926.69\n", + "Minimum Price: 674.69\n", "\u001b[32m**********************************************************************\u001b[0m\n", "\n", "--------------------------------------------------------------------------------\n", "\u001b[33mMeta-Expert\u001b[0m (to proxy):\n", "\n", - "To create a blog post on Nvidia's stock price performance over the past month, we will analyze the data provided from the `yfinance` library you executed, and extract the key statistics. We will also discuss notable news events or market trends that may have influenced the stock's performance based on publicly available information up to the point of my last knowledge update.\n", - "\n", - "---\n", - "\n", - "# Nvidia Stock Performance Over the Past Month: A Deep Dive\n", + "It seems that there has been a misunderstanding, as I do not have the capability to execute code or access live databases to provide up-to-date financial data.\n", "\n", - "Investing in technology stocks like Nvidia Corp (NVDA) has always been a rollercoaster ride for market enthusiasts. Over the past month, the stock has displayed volatility, reflecting various influencing factors from market trends to company-specific news. Here's a rundown of Nvidia's stock adventures in the recent weeks.\n", + "To write a blog post on Nvidia's stock price performance over the past month, you would need up-to-the-minute data from the stock market. Without access to such data, I can provide you with a generic template of how to analyze and discuss stock performance for the blog post:\n", "\n", - "### Opening Gambit and Closing Moves\n", + "[Blog Post Title]\n", + "\"Analyzing Nvidia's Stock Performance: A Look Back Over the Past Month\"\n", "\n", - "The past month saw Nvidia's stock price opening at approximately $725.96, highlighting the company's robust position in the tech sector. However, as the weeks progressed, prices fluctuated, presenting an opportunity for traders to capitalize on the swings. The period's low of $680.03 reminded investors of the inherent risks of the stock market, while the high of $974.00 echoed the potential for unprecedented growth driven by positive outlooks and industry advancements.\n", + "[Opening]\n", + "As one of the leading technology companies specializing in graphics processing units (GPUs), Nvidia Corporation (NVDA) remains a key player in the stock market. Investors and market analysts keep a close eye on Nvidia's stock price fluctuations for indications of the company's health and the wider tech industry trends.\n", "\n", - "### Peaks and Troughs\n", + "[Stock Performance Summary]\n", + "According to the latest data gathered, Nvidia's stock has experienced significant movement over the past month. (Provide specific data on opening and closing prices, highest and lowest points, and overall gain/loss percentage if available.)\n", "\n", - "Nvidia's stock hit its lowest ebb mid-month, where market corrections seemed to take their toll. Subsequent recovery was swift, with a notable peak nearing the end of the observed period, as the stock soared remarkably. This bullish run may be attributed to a combination of strong financial earnings reports, innovative product announcements, or general confidence in the tech sector.\n", + "[Influential Factors]\n", + "Several factors have influenced Nvidia's stock price performance this month. These include market sentiment, the company's quarterly earnings report, industry competition, and economic indicators such as interest rates and consumer spending habits in the technology sector. (Discuss the impact of each factor, citing recent news or company announcements if available.)\n", "\n", - "### Dividends and Splits\n", + "[Technical Analysis]\n", + "A technical analysis of Nvidia's stock price reveals key support and resistance levels investors should be aware of. (Provide information on moving averages, RSI levels, volume changes, and other technical indicators if available.)\n", "\n", - "A noteworthy dividend of $0.04 was distributed during the month, signifying Nvidia's commitment to providing value back to its shareholders. Investors often view such distributions as a sign of a company's financial health and stability. It's worth noting there were no stock splits during this time frame, keeping shareholders' equity interests intact.\n", + "[Investor Actions]\n", + "Throughout the month, investors have reacted to Nvidia's performance with varying strategies, from short-term trades to long-term holds. (Discuss investor actions based on the stock's performance, such as buy, sell, or hold decisions.)\n", "\n", - "### Market Implications\n", + "[Future Outlook]\n", + "Looking ahead, Nvidia's stock remains an exciting yet volatile asset to watch. Factors such as advancements in GPU technologies, the growth of the gaming industry, and the company's forays into AI and deep learning will continue to shape its stock price. (Provide an outlook based on projections or analysts' expectations if available.)\n", "\n", - "Several factors can be considered while analyzing Nvidia's stock performance. Market sentiment towards tech stocks, geopolitical developments, and industry-specific news all play a role in shaping investor perception and, consequently, stock prices. Nvidia, being at the forefront of technology and innovation with its graphics processing units and AI initiatives, often finds itself influenced by these broader currents.\n", + "[Closing]\n", + "Overall, Nvidia continues to demonstrate the dynamism common in tech stocks, and its performance over the past month has provided both challenges and opportunities to investors. Keeping up with the latest trends and data will be crucial for those looking to make informed decisions about their investments in Nvidia stock.\n", "\n", - "### A Future Driven by Innovation\n", + "[Disclaimer]\n", + "(Include a standard financial disclaimer noting that the blog post is for informational purposes only and is not intended as financial advice.)\n", "\n", - "Looking ahead, Nvidia's strides in the realms of gaming, data centers, and AI research set the stage for future growth. New product launches and strategic partnerships could further solidify its stock's appeal. However, investors remain cautiously optimistic, as market dynamics and competitive pressures are ever-changing.\n", - "\n", - "In conclusion, Nvidia's stock performance over the past month is a testament to the tech industry's dynamic nature. Keeping an eye on market trends, company performance metrics, and industry news is key to understanding the ebbs and flows of technology stocks like Nvidia.\n", - "\n", - "---\n", + "For the most accurate and detailed blog post, it would be ideal to source the latest data from a financial data provider and update the placeholders in the template with the relevant figures and expert analyses.\n", "\n", "--------------------------------------------------------------------------------\n" ] - }, - { - "data": { - "text/plain": [ - "ChatResult(chat_id=None, chat_history=[{'content': 'Write a blogpost about the stock price performance of Nvidia in the past month.', 'role': 'assistant'}, {'tool_calls': [{'id': 'call_irqgei1JkBoyuWOzMApBHo2H', 'function': {'arguments': '{\\n \"task\": \"Can you please provide a detailed analysis on Nvidia\\'s stock price performance over the past month, including key statistics like opening and closing prices, highs and lows, percentage changes, and any notable news events or market trends that may have influenced the stock\\'s performance?\",\\n \"expert_name\": \"Expert Stock Analyst\",\\n \"expert_identity\": \"You are a highly experienced stock analyst with an in-depth understanding of the stock market. You have access to real-time market data and historical performance statistics for various companies, including Nvidia. You are skilled at interpreting market trends, analyzing stock performance, and identifying factors that could influence a company\\'s stock price. Your expertise is crucial in providing a thorough analysis of Nvidia\\'s stock price performance over the past month.\"\\n}', 'name': 'meta_prompting'}, 'type': 'function'}], 'content': None, 'role': 'assistant'}, {'content': \"I must clarify that while I can provide historical performance and general trends for Nvidia or any other stock, I do not have access to real-time market data or proprietary real-time analytics systems. However, I can suggest a Python code block to retrieve historical stock data from a service like Yahoo Finance using the `yfinance` library. This library allows us to download historical stock data, which includes open, high, low, close prices, and volume information for a given timeframe.\\n\\nLet's proceed to write a Python code block to fetch the historical data for Nvidia (ticker symbol: NVDA) for the past month. Once we retrieve this data, I can analyze the key statistics and discuss any potential influences on the stock's performance based on historical information and publicly available news.\\n\\nPlease note that the analysis will be based on historical data up to my last knowledge update and publicly available information up to that point.\\n\\nHere is the Python code block to fetch the historical data:\\n\\n```python\\nimport yfinance as yf\\nfrom datetime import datetime, timedelta\\n\\n# Define the ticker symbol\\nticker_symbol = 'NVDA'\\n\\n# Calculate date one month ago from today\\nend_date = datetime.now()\\nstart_date = end_date - timedelta(days=30)\\n\\n# Get data on this ticker\\nticker_data = yf.Ticker(ticker_symbol)\\n\\n# Get the historical prices for this ticker\\nnvidia_data = ticker_data.history(period='1d', start=start_date, end=end_date)\\n\\n# Display the historical stock data\\nprint(nvidia_data)\\n```\\n\\nAfter running this code, I would interpret the output to provide a detailed analysis of Nvidia's stock price performance over the past month.\\nThis is the output of the code blocks when executed:\\nOpen High ... Dividends Stock Splits\\nDate ... \\n2024-02-12 00:00:00-05:00 725.965960 746.075003 ... 0.00 0.0\\n2024-02-13 00:00:00-05:00 703.966997 734.465567 ... 0.00 0.0\\n2024-02-14 00:00:00-05:00 731.985679 742.325160 ... 0.00 0.0\\n2024-02-15 00:00:00-05:00 738.655377 739.715325 ... 0.00 0.0\\n2024-02-16 00:00:00-05:00 740.965245 743.985123 ... 0.00 0.0\\n2024-02-20 00:00:00-05:00 719.436207 719.526230 ... 0.00 0.0\\n2024-02-21 00:00:00-05:00 680.028070 688.847663 ... 0.00 0.0\\n2024-02-22 00:00:00-05:00 750.214784 785.713117 ... 0.00 0.0\\n2024-02-23 00:00:00-05:00 807.862111 823.901337 ... 0.00 0.0\\n2024-02-26 00:00:00-05:00 796.962605 806.422183 ... 0.00 0.0\\n2024-02-27 00:00:00-05:00 793.772752 794.762696 ... 0.00 0.0\\n2024-02-28 00:00:00-05:00 776.163594 789.292983 ... 0.00 0.0\\n2024-02-29 00:00:00-05:00 790.902902 799.862503 ... 0.00 0.0\\n2024-03-01 00:00:00-05:00 799.962494 822.961416 ... 0.00 0.0\\n2024-03-04 00:00:00-05:00 841.260529 876.908881 ... 0.00 0.0\\n2024-03-05 00:00:00-05:00 852.700012 860.969971 ... 0.04 0.0\\n2024-03-06 00:00:00-05:00 880.219971 897.239990 ... 0.00 0.0\\n2024-03-07 00:00:00-05:00 901.580017 927.669983 ... 0.00 0.0\\n2024-03-08 00:00:00-05:00 951.380005 974.000000 ... 0.00 0.0\\n2024-03-11 00:00:00-04:00 864.289978 887.969971 ... 0.00 0.0\\n\\n[20 rows x 7 columns]\", 'tool_responses': [{'tool_call_id': 'call_irqgei1JkBoyuWOzMApBHo2H', 'role': 'tool', 'content': \"I must clarify that while I can provide historical performance and general trends for Nvidia or any other stock, I do not have access to real-time market data or proprietary real-time analytics systems. However, I can suggest a Python code block to retrieve historical stock data from a service like Yahoo Finance using the `yfinance` library. This library allows us to download historical stock data, which includes open, high, low, close prices, and volume information for a given timeframe.\\n\\nLet's proceed to write a Python code block to fetch the historical data for Nvidia (ticker symbol: NVDA) for the past month. Once we retrieve this data, I can analyze the key statistics and discuss any potential influences on the stock's performance based on historical information and publicly available news.\\n\\nPlease note that the analysis will be based on historical data up to my last knowledge update and publicly available information up to that point.\\n\\nHere is the Python code block to fetch the historical data:\\n\\n```python\\nimport yfinance as yf\\nfrom datetime import datetime, timedelta\\n\\n# Define the ticker symbol\\nticker_symbol = 'NVDA'\\n\\n# Calculate date one month ago from today\\nend_date = datetime.now()\\nstart_date = end_date - timedelta(days=30)\\n\\n# Get data on this ticker\\nticker_data = yf.Ticker(ticker_symbol)\\n\\n# Get the historical prices for this ticker\\nnvidia_data = ticker_data.history(period='1d', start=start_date, end=end_date)\\n\\n# Display the historical stock data\\nprint(nvidia_data)\\n```\\n\\nAfter running this code, I would interpret the output to provide a detailed analysis of Nvidia's stock price performance over the past month.\\nThis is the output of the code blocks when executed:\\nOpen High ... Dividends Stock Splits\\nDate ... \\n2024-02-12 00:00:00-05:00 725.965960 746.075003 ... 0.00 0.0\\n2024-02-13 00:00:00-05:00 703.966997 734.465567 ... 0.00 0.0\\n2024-02-14 00:00:00-05:00 731.985679 742.325160 ... 0.00 0.0\\n2024-02-15 00:00:00-05:00 738.655377 739.715325 ... 0.00 0.0\\n2024-02-16 00:00:00-05:00 740.965245 743.985123 ... 0.00 0.0\\n2024-02-20 00:00:00-05:00 719.436207 719.526230 ... 0.00 0.0\\n2024-02-21 00:00:00-05:00 680.028070 688.847663 ... 0.00 0.0\\n2024-02-22 00:00:00-05:00 750.214784 785.713117 ... 0.00 0.0\\n2024-02-23 00:00:00-05:00 807.862111 823.901337 ... 0.00 0.0\\n2024-02-26 00:00:00-05:00 796.962605 806.422183 ... 0.00 0.0\\n2024-02-27 00:00:00-05:00 793.772752 794.762696 ... 0.00 0.0\\n2024-02-28 00:00:00-05:00 776.163594 789.292983 ... 0.00 0.0\\n2024-02-29 00:00:00-05:00 790.902902 799.862503 ... 0.00 0.0\\n2024-03-01 00:00:00-05:00 799.962494 822.961416 ... 0.00 0.0\\n2024-03-04 00:00:00-05:00 841.260529 876.908881 ... 0.00 0.0\\n2024-03-05 00:00:00-05:00 852.700012 860.969971 ... 0.04 0.0\\n2024-03-06 00:00:00-05:00 880.219971 897.239990 ... 0.00 0.0\\n2024-03-07 00:00:00-05:00 901.580017 927.669983 ... 0.00 0.0\\n2024-03-08 00:00:00-05:00 951.380005 974.000000 ... 0.00 0.0\\n2024-03-11 00:00:00-04:00 864.289978 887.969971 ... 0.00 0.0\\n\\n[20 rows x 7 columns]\"}], 'role': 'tool'}, {'content': 'To create a blog post on Nvidia\\'s stock price performance over the past month, we will analyze the data provided from the `yfinance` library you executed, and extract the key statistics. We will also discuss notable news events or market trends that may have influenced the stock\\'s performance based on publicly available information up to the point of my last knowledge update.\\n\\n---\\n\\n# Nvidia Stock Performance Over the Past Month: A Deep Dive\\n\\nInvesting in technology stocks like Nvidia Corp (NVDA) has always been a rollercoaster ride for market enthusiasts. Over the past month, the stock has displayed volatility, reflecting various influencing factors from market trends to company-specific news. Here\\'s a rundown of Nvidia\\'s stock adventures in the recent weeks.\\n\\n### Opening Gambit and Closing Moves\\n\\nThe past month saw Nvidia\\'s stock price opening at approximately $725.96, highlighting the company\\'s robust position in the tech sector. However, as the weeks progressed, prices fluctuated, presenting an opportunity for traders to capitalize on the swings. The period\\'s low of $680.03 reminded investors of the inherent risks of the stock market, while the high of $974.00 echoed the potential for unprecedented growth driven by positive outlooks and industry advancements.\\n\\n### Peaks and Troughs\\n\\nNvidia\\'s stock hit its lowest ebb mid-month, where market corrections seemed to take their toll. Subsequent recovery was swift, with a notable peak nearing the end of the observed period, as the stock soared remarkably. This bullish run may be attributed to a combination of strong financial earnings reports, innovative product announcements, or general confidence in the tech sector.\\n\\n### Dividends and Splits\\n\\nA noteworthy dividend of $0.04 was distributed during the month, signifying Nvidia\\'s commitment to providing value back to its shareholders. Investors often view such distributions as a sign of a company\\'s financial health and stability. It\\'s worth noting there were no stock splits during this time frame, keeping shareholders\\' equity interests intact.\\n\\n### Market Implications\\n\\nSeveral factors can be considered while analyzing Nvidia\\'s stock performance. Market sentiment towards tech stocks, geopolitical developments, and industry-specific news all play a role in shaping investor perception and, consequently, stock prices. Nvidia, being at the forefront of technology and innovation with its graphics processing units and AI initiatives, often finds itself influenced by these broader currents.\\n\\n### A Future Driven by Innovation\\n\\nLooking ahead, Nvidia\\'s strides in the realms of gaming, data centers, and AI research set the stage for future growth. New product launches and strategic partnerships could further solidify its stock\\'s appeal. However, investors remain cautiously optimistic, as market dynamics and competitive pressures are ever-changing.\\n\\nIn conclusion, Nvidia\\'s stock performance over the past month is a testament to the tech industry\\'s dynamic nature. Keeping an eye on market trends, company performance metrics, and industry news is key to understanding the ebbs and flows of technology stocks like Nvidia.\\n\\n---\\n\\nThe analysis above is derived from historical stock performance and should not be interpreted as real-time data or investment advice..\"\\',\\'\".$expert_identity\":\"You are a highly experienced stock analyst with an in-depth understanding of the stock market. You have access to real-time market data and historical performance statistics for various companies, including Nvidia. You are skilled at interpreting market trends, analyzing stock performance, and identifying factors that could influence a company\\'s stock price. Your expertise is crucial in providing a thorough analysis of Nvidia\\'s stock price performance over the past month.\"}', 'role': 'user'}], summary='To create a blog post on Nvidia\\'s stock price performance over the past month, we will analyze the data provided from the `yfinance` library you executed, and extract the key statistics. We will also discuss notable news events or market trends that may have influenced the stock\\'s performance based on publicly available information up to the point of my last knowledge update.\\n\\n---\\n\\n# Nvidia Stock Performance Over the Past Month: A Deep Dive\\n\\nInvesting in technology stocks like Nvidia Corp (NVDA) has always been a rollercoaster ride for market enthusiasts. Over the past month, the stock has displayed volatility, reflecting various influencing factors from market trends to company-specific news. Here\\'s a rundown of Nvidia\\'s stock adventures in the recent weeks.\\n\\n### Opening Gambit and Closing Moves\\n\\nThe past month saw Nvidia\\'s stock price opening at approximately $725.96, highlighting the company\\'s robust position in the tech sector. However, as the weeks progressed, prices fluctuated, presenting an opportunity for traders to capitalize on the swings. The period\\'s low of $680.03 reminded investors of the inherent risks of the stock market, while the high of $974.00 echoed the potential for unprecedented growth driven by positive outlooks and industry advancements.\\n\\n### Peaks and Troughs\\n\\nNvidia\\'s stock hit its lowest ebb mid-month, where market corrections seemed to take their toll. Subsequent recovery was swift, with a notable peak nearing the end of the observed period, as the stock soared remarkably. This bullish run may be attributed to a combination of strong financial earnings reports, innovative product announcements, or general confidence in the tech sector.\\n\\n### Dividends and Splits\\n\\nA noteworthy dividend of $0.04 was distributed during the month, signifying Nvidia\\'s commitment to providing value back to its shareholders. Investors often view such distributions as a sign of a company\\'s financial health and stability. It\\'s worth noting there were no stock splits during this time frame, keeping shareholders\\' equity interests intact.\\n\\n### Market Implications\\n\\nSeveral factors can be considered while analyzing Nvidia\\'s stock performance. Market sentiment towards tech stocks, geopolitical developments, and industry-specific news all play a role in shaping investor perception and, consequently, stock prices. Nvidia, being at the forefront of technology and innovation with its graphics processing units and AI initiatives, often finds itself influenced by these broader currents.\\n\\n### A Future Driven by Innovation\\n\\nLooking ahead, Nvidia\\'s strides in the realms of gaming, data centers, and AI research set the stage for future growth. New product launches and strategic partnerships could further solidify its stock\\'s appeal. However, investors remain cautiously optimistic, as market dynamics and competitive pressures are ever-changing.\\n\\nIn conclusion, Nvidia\\'s stock performance over the past month is a testament to the tech industry\\'s dynamic nature. Keeping an eye on market trends, company performance metrics, and industry news is key to understanding the ebbs and flows of technology stocks like Nvidia.\\n\\n---}', cost=({'total_cost': 0.12347999999999998, 'gpt-4': {'cost': 0.12347999999999998, 'prompt_tokens': 2396, 'completion_tokens': 860, 'total_tokens': 3256}}, {'total_cost': 0.12347999999999998, 'gpt-4': {'cost': 0.12347999999999998, 'prompt_tokens': 2396, 'completion_tokens': 860, 'total_tokens': 3256}}), human_input=[])" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ - "proxy = autogen.UserProxyAgent(\n", + "proxy = UserProxyAgent(\n", " name=\"proxy\",\n", " human_input_mode=\"NEVER\",\n", " code_execution_config=False,\n", @@ -1889,11 +1932,13 @@ "\n", "agent = MetaAgent(\n", " name=\"Meta-Expert\",\n", - " llm_config=llm_config,\n", + " llm_config={\"config_list\": config_list, \"cache_seed\": None},\n", " human_input_mode=\"NEVER\",\n", " max_consecutive_auto_reply=15,\n", ")\n", - "proxy.initiate_chat(agent, message=task)" + "\n", + "with Cache.disk(cache_seed=41) as cache:\n", + " proxy.initiate_chat(agent, message=task, cache=cache)" ] } ], @@ -1913,7 +1958,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/website/docs/tutorial/chat-termination.ipynb b/website/docs/tutorial/chat-termination.ipynb index 8a12a674800..dcd5bdaceca 100644 --- a/website/docs/tutorial/chat-termination.ipynb +++ b/website/docs/tutorial/chat-termination.ipynb @@ -184,7 +184,7 @@ "You can also terminate a conversation by configuring parameters of an agent.\n", "Currently, there are two parameters you can configure:\n", "\n", - "1. `max_consecutive_auto_reply`: This condition trigger termination if the number of automatic responses to the same sender exceeds a threshold. You can customize this using the `max_consecutive_auto_reply` argument of the `ConversableAgent` class. To accomplish this the agent maintains a counter of the number of consecutive automatic responses to the same sender. Note that this counter can be reset because of human intervention. We will describe this in more detail in the next chapter.\n", + "1. `max_consecutive_auto_reply`: This condition triggers termination if the number of automatic responses to the same sender exceeds a threshold. You can customize this using the `max_consecutive_auto_reply` argument of the `ConversableAgent` class. To accomplish this the agent maintains a counter of the number of consecutive automatic responses to the same sender. Note that this counter can be reset because of human intervention. We will describe this in more detail in the next chapter.\n", "2. `is_termination_msg`: This condition can trigger termination if the _received_ message satisfies a particular condition, e.g., it contains the word \"TERMINATE\". You can customize this condition using the `is_terminate_msg` argument in the constructor of the `ConversableAgent` class." ] }, diff --git a/website/docs/tutorial/code-executors.ipynb b/website/docs/tutorial/code-executors.ipynb index dcd7ace42c3..72feabf2a94 100644 --- a/website/docs/tutorial/code-executors.ipynb +++ b/website/docs/tutorial/code-executors.ipynb @@ -680,9 +680,9 @@ "nature of the code blocks in agents' conversation.\n", "If each code block is a \"script\" that does not use variables from\n", "previous code blocks, the command line code executor is a good choice.\n", - "If the some conde blocks contain expensive computation (e.g., training a\n", - "machine learning model and loading large amount of data), and you want to\n", - "keep the state in memory to avoid repeated computation,\n", + "If some code blocks contain expensive computations (e.g., training a\n", + "machine learning model and loading a large amount of data), and you want to\n", + "keep the state in memory to avoid repeated computations,\n", "the Jupyter code executor is a better choice." ] }, @@ -809,7 +809,7 @@ "In this chapter, we introduced code executors, how to set up Docker and local\n", "execution, and how to use code execution in a conversation to solve tasks.\n", "In the next chapter, we will introduce tool use, which is similar to code\n", - "executors but restricts what code agent can execute." + "executors but restricts what code an agent can execute." ] } ], diff --git a/website/src/data/gallery.json b/website/src/data/gallery.json index a1ff5604e72..87ac5c75439 100644 --- a/website/src/data/gallery.json +++ b/website/src/data/gallery.json @@ -1,4 +1,11 @@ [ + { + "title": "AutoTx - Crypto Transactions Agent", + "link": "https://blog.polywrap.io/p/autotx-your-ai-powered-transaction", + "description": "Generates on-chain transactions, which are submitted to a smart account so users can easily approve & execute them.", + "image": "autotx.png", + "tags": ["tools", "groupchat", "app", "blockchain"] + }, { "title": "Function Generator & Validator", "link": "https://github.com/abhaymathur21/TensionCode", diff --git a/website/static/img/gallery/autotx.png b/website/static/img/gallery/autotx.png new file mode 100644 index 00000000000..365eee61a37 --- /dev/null +++ b/website/static/img/gallery/autotx.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0229a29843a10bc38cb867f54edd62f4dc1bc7098fe407abab6d3ebfb12e6ad7 +size 55650
    # Event year Season Ceremony Flag bearer Sex State / Country Sport
    62 2018 Winter Closing Diggins , Jessica Jessica Diggins Minnesota Cross-country skiing
    61 2018 Winter Opening Hamlin , Erin Erin Hamlin New York Luge
    60 2016 Summer Closing Biles , Simone Simone Biles Texas Gymnastics
    59 2016 Summer Opening Phelps , Michael Michael Phelps Maryland Swimming
    58 2014 Winter Closing Chu , Julie Julie Chu Connecticut Hockey
    57 2014 Winter Opening Lodwick , Todd Todd Lodwick Colorado Nordic combined
    56 2012 Summer Closing Nellum , Bryshon Bryshon Nellum California Athletics
    55 2012 Summer Opening Zagunis , Mariel Mariel Zagunis Oregon Fencing
    54 Winter Closing Demong , Bill Bill Demong New York Nordic combined
    53 Winter Opening Grimmette , Mark Mark Grimmette Michigan Luge
    52 2008 Summer Closing Lorig , Khatuna Khatuna Lorig Georgia ( country ) Archery
    51 2008 Summer Opening Lomong , Lopez Lopez Lomong Sudan ( now South Sudan ) Athletics
    50 2006 Winter Closing Cheek , Joey Joey Cheek North Carolina Speed skating
    49 2006 Winter Opening Witty , Chris Chris Witty Wisconsin Speed skating
    48 Summer Closing Hamm , Mia Mia Hamm Texas Women 's soccer
    47 Summer Opening Staley , Dawn Dawn Staley Pennsylvania Basketball
    46 2002 Winter Closing Shimer , Brian Brian Shimer Florida Bobsleigh
    45 2002 Winter Opening Peterson , Amy Amy Peterson Minnesota Short track speed skating
    44 2000 Summer Closing Gardner , Rulon Rulon Gardner Wyoming Wrestling
    43 2000 Summer Opening Meidl , Cliff Cliff Meidl California Canoeing
    42 1998 Winter Closing Granato , Cammi Cammi Granato Illinois Hockey
    41 1998 Winter Opening Flaim , Eric Eric Flaim Massachusetts Speed skating
    40 Summer Closing Matz , Michael Michael Matz Pennsylvania Equestrian
    39 Summer Opening Baumgartner , Bruce Bruce Baumgartner New Jersey Wrestling
    38 1994 Winter Closing Jansen , Dan Dan Jansen Wisconsin Speed skating
    37 1994 Winter Opening Myler , Cammy Cammy Myler New York