-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmsvit_retina_fpn_1x.yaml
60 lines (60 loc) · 1.55 KB
/
msvit_retina_fpn_1x.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
MODEL:
META_ARCHITECTURE: "RetinaNet"
WEIGHTS: "msvit_pretrain.pth"
MASK_ON: False
PIXEL_MEAN: [123.675, 116.280, 103.530]
PIXEL_STD: [58.395, 57.120, 57.375]
BACKBONE:
NAME: "build_retinanet_msvit_fpn_backbone"
TRANSFORMER:
DROP: 0.0
DROP_PATH: 0.0
MSVIT:
ARCH: l1,h3,d96,n1,s1,g1,p4,f7,a0_l2,h3,d192,n2,s1,g1,p2,f7,a0_l3,h6,d384,n8,s1,g1,p2,f7,a0_l4,h12,d768,n1,s1,g0,p2,f7,a0
ATTN_TYPE: longformerhand
ONLY_GLOBAL: False
SHARE_KV: True
SHARE_W: True
SW_EXACT: 0
NORM_EMBED: True
OUT_FEATURES: ["layer2", "layer3", "layer4"]
FPN:
IN_FEATURES: ["layer2", "layer3", "layer4"]
ANCHOR_GENERATOR:
SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
RETINANET:
IOU_THRESHOLDS: [0.4, 0.5]
IOU_LABELS: [0, -1, 1]
SMOOTH_L1_LOSS_BETA: 0.0
DATASETS:
TRAIN: ("coco_2017_train",)
TEST: ("coco_2017_val",)
SOLVER:
IMS_PER_BATCH: 16
BASE_LR: 0.0001
STEPS: (60000, 80000)
MAX_ITER: 90000
WARMUP_FACTOR: 0.01
WARMUP_ITERS: 1000
WEIGHT_DECAY: 0.0001
OPTIMIZER: "ADAMW"
LR_MULTIPLIERS:
backbone.bottom_up: 1.0
backbone.bottom_up.patch_embed: 1.0
backbone.bottom_up.x_pos_embed: 1.0
backbone.bottom_up.y_pos_embed: 1.0
CLIP_GRADIENTS:
ENABLED: True
CLIP_TYPE: "full_model"
CLIP_VALUE: 1.0
NORM_TYPE: 2.0
INPUT:
# MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
CROP:
ENABLED: False
TYPE: "absolute_range"
SIZE: (384, 600)
FORMAT: "RGB"
TEST:
EVAL_PERIOD: 7330
VERSION: 2