title | hide_title | status |
---|---|---|
Quickstart - Deploying a Classifier |
true |
stable |
In this example, we try to predict incomes from the Adult Census dataset. Then we will use Spark serving to deploy it as a realtime web service. First, we import needed packages:
Now let's read the data and split it to train and test sets:
data = spark.read.parquet(
"wasbs://[email protected]/AdultCensusIncome.parquet"
)
data = data.select(["education", "marital-status", "hours-per-week", "income"])
train, test = data.randomSplit([0.75, 0.25], seed=123)
train.limit(10).toPandas()
TrainClassifier
can be used to initialize and fit a model, it wraps SparkML classifiers.
You can use help(synapse.ml.TrainClassifier)
to view the different parameters.
Note that it implicitly converts the data into the format expected by the algorithm. More specifically it:
tokenizes, hashes strings, one-hot encodes categorical variables, assembles the features into a vector
etc. The parameter numFeatures
controls the number of hashed features.
from synapse.ml.train import TrainClassifier
from pyspark.ml.classification import LogisticRegression
model = TrainClassifier(
model=LogisticRegression(), labelCol="income", numFeatures=256
).fit(train)
After the model is trained, we score it against the test dataset and view metrics.
from synapse.ml.train import ComputeModelStatistics, TrainedClassifierModel
prediction = model.transform(test)
prediction.printSchema()
metrics = ComputeModelStatistics().transform(prediction)
metrics.limit(10).toPandas()
First, we will define the webservice input/output. For more information, you can visit the documentation for Spark Serving
from pyspark.sql.types import *
from synapse.ml.io import *
import uuid
serving_inputs = (
spark.readStream.server()
.address("localhost", 8898, "my_api")
.option("name", "my_api")
.load()
.parseRequest("my_api", test.schema)
)
serving_outputs = model.transform(serving_inputs).makeReply("prediction")
server = (
serving_outputs.writeStream.server()
.replyTo("my_api")
.queryName("my_query")
.option("checkpointLocation", "file:///tmp/checkpoints-{}".format(uuid.uuid1()))
.start()
)
Test the webservice
import requests
data = '{"education":" 10th","marital-status":"Divorced","hours-per-week":40.0}'
r = requests.post(data=data, url="http://localhost:8898/my_api")
print("Response {}".format(r.text))
import requests
data = '{"education":" Masters","marital-status":"Married-civ-spouse","hours-per-week":40.0}'
r = requests.post(data=data, url="http://localhost:8898/my_api")
print("Response {}".format(r.text))
import time
time.sleep(20) # wait for server to finish setting up (just to be safe)
server.stop()