-
Notifications
You must be signed in to change notification settings - Fork 13
/
ms_marco_eval.py
211 lines (188 loc) · 9.19 KB
/
ms_marco_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
This module computes evaluation metrics for MSMARCO dataset on the ranking task. Intenral hard coded eval files version. DO NOT PUBLISH!
Command line:
python msmarco_eval_ranking.py <path_to_candidate_file>
Creation Date : 06/12/2018
Last Modified : 08/06/2020
Authors : Daniel Campos <[email protected]>, Rutger van Haasteren <[email protected]>
"""
import sys
import os
import statistics
from collections import Counter
MaxMRRRank = 100
def load_reference_from_stream(f):
"""Load Reference reference relevant document
Args:f (stream): stream to load.
Returns:qids_to_relevant_documentids (dict): dictionary mapping from query_id (int) to relevant document (list of ints).
"""
qids_to_relevant_documentids = {}
for l in f:
try:
l = l.strip().split('\t')
qid = int(l[0])
if qid in qids_to_relevant_documentids:
pass
else:
qids_to_relevant_documentids[qid] = []
qids_to_relevant_documentids[qid].append(l[2])
except:
raise IOError('\"%s\" is not valid format' % l)
return qids_to_relevant_documentids
def load_reference(path_to_reference):
"""Load Reference reference relevant document
Args:path_to_reference (str): path to a file to load.
Returns:qids_to_relevant_documentids (dict): dictionary mapping from query_id (int) to relevant documents (list of ints).
"""
with open(path_to_reference,'r') as f:
qids_to_relevant_documentids = load_reference_from_stream(f)
return qids_to_relevant_documentids
def validate_candidate_has_enough_ranking(qid_to_ranked_candidate_documents):
for qid in qid_to_ranked_candidate_documents:
if len(qid_to_ranked_candidate_documents[qid]) > MaxMRRRank:
print('Too many documents ranked. Please Provide top 100 documents for qid:{}'.format(qid))
def load_candidate_from_stream(f):
"""Load candidate data from a stream.
Args:f (stream): stream to load.
Returns:qid_to_ranked_candidate_documents (dict): dictionary mapping from query_id (int) to a list of 1000 document ids(int) ranked by relevance and importance
"""
qid_to_ranked_candidate_documents = {}
for l in f:
try:
l = l.strip().split('\t')
qid = int(l[0])
did = l[1]
rank = int(l[2])
if qid in qid_to_ranked_candidate_documents:
pass
else:
# By default, all PIDs in the list of 1000 are 0. Only override those that are given
qid_to_ranked_candidate_documents[qid] = []
qid_to_ranked_candidate_documents[qid].append((did,rank))
except:
raise IOError('\"%s\" is not valid format' % l)
validate_candidate_has_enough_ranking(qid_to_ranked_candidate_documents)
print('Quantity of Documents ranked for each query is as expected. Evaluating')
return {qid: sorted(qid_to_ranked_candidate_documents[qid], key=lambda x:(x[1], x[0]), reverse=False) for qid in qid_to_ranked_candidate_documents}
def load_candidate(path_to_candidate):
"""Load candidate data from a file.
Args:path_to_candidate (str): path to file to load.
Returns:qid_to_ranked_candidate_documents (dict): dictionary mapping from query_id (int) to a list of 1000 document ids(int) ranked by relevance and importance
"""
with open(path_to_candidate,'r') as f:
qid_to_ranked_candidate_documents = load_candidate_from_stream(f)
return qid_to_ranked_candidate_documents
def quality_checks_qids(qids_to_relevant_documentids, qids_to_ranked_candidate_documents):
"""Perform quality checks on the dictionaries
Args:
p_qids_to_relevant_documentids (dict): dictionary of query-document mapping
Dict as read in with load_reference or load_reference_from_stream
p_qids_to_ranked_candidate_documents (dict): dictionary of query-document candidates
Returns:
bool,str: Boolean whether allowed, message to be shown in case of a problem
"""
message = ''
allowed = True
# Create sets of the QIDs for the submitted and reference queries
candidate_set = set(qids_to_ranked_candidate_documents.keys())
ref_set = set(qids_to_relevant_documentids.keys())
# Check that we do not have multiple documents per query
for qid in qids_to_ranked_candidate_documents:
# Remove all zeros from the candidates
duplicate_pids = set([item for item, count in Counter(qids_to_ranked_candidate_documents[qid]).items() if count > 1])
if len(duplicate_pids-set([0])) > 0:
message = "Cannot rank a document multiple times for a single query. QID={qid}, PID={pid}".format(
qid=qid, pid=list(duplicate_pids)[0])
allowed = False
return allowed, message
def compute_metrics(qids_to_relevant_documentids, qids_to_ranked_candidate_documents, exclude_qids):
"""Compute MRR metric
Args:
p_qids_to_relevant_documentids (dict): dictionary of query-document mapping
Dict as read in with load_reference or load_reference_from_stream
p_qids_to_ranked_candidate_documents (dict): dictionary of query-document candidates
Returns:
dict: dictionary of metrics {'MRR': <MRR Score>}
"""
all_scores = {}
MRR = 0
qids_with_relevant_documents = 0
ranking = []
for qid in qids_to_ranked_candidate_documents:
if qid in qids_to_relevant_documentids and qid not in exclude_qids:
ranking.append(0)
target_pid = qids_to_relevant_documentids[qid]
candidate_pid = qids_to_ranked_candidate_documents[qid]
for i in range(0,len(candidate_pid)):
if candidate_pid[i][0] in target_pid:
MRR += 1/(i + 1)
ranking.pop()
ranking.append(i+1)
break
if len(ranking) == 0:
raise IOError("No matching QIDs found. Are you sure you are scoring the evaluation set?")
MRR = MRR/len(qids_to_relevant_documentids)
all_scores['MRR @100'] = MRR
all_scores['QueriesRanked'] = len(set(qids_to_ranked_candidate_documents)-exclude_qids)
return all_scores
def compute_metrics_from_files(path_to_reference, path_to_candidate, exclude_qids, perform_checks=True):
"""Compute MRR metric
Args:
p_path_to_reference_file (str): path to reference file.
Reference file should contain lines in the following format:
QUERYID\tdocumentID
Where documentID is a relevant document for a query. Note QUERYID can repeat on different lines with different documentIDs
p_path_to_candidate_file (str): path to candidate file.
Candidate file sould contain lines in the following format:
QUERYID\tdocumentID1\tRank
If a user wishes to use the TREC format please run the script with a -t flag at the end. If this flag is used the expected format is
QUERYID\tITER\tDOCNO\tRANK\tSIM\tRUNID
Where the values are separated by tabs and ranked in order of relevance
Returns:
dict: dictionary of metrics {'MRR': <MRR Score>}
"""
qids_to_relevant_documentids = load_reference(path_to_reference)
qids_to_ranked_candidate_documents = load_candidate(path_to_candidate)
if perform_checks:
allowed, message = quality_checks_qids(qids_to_relevant_documentids, qids_to_ranked_candidate_documents)
if message != '': print(message)
return compute_metrics(qids_to_relevant_documentids, qids_to_ranked_candidate_documents, exclude_qids)
def load_exclude(path_to_exclude_folder):
"""Load QIDS for queries to exclude
Args:
path_to_exclude_folder (str): path to folder where exclude files are located
Returns:
set: a set with all qid's to exclude
"""
qids = set()
# List all files in a directory using os.listdir
for a_file in os.listdir(path_to_exclude_folder):
if os.path.isfile(os.path.join(path_to_exclude_folder, a_file)):
with open(os.path.join(path_to_exclude_folder, a_file), 'r') as f:
f.readline() #header
for l in f:
qids.add(int(l.split('\t')[0]))
print("{} excluded qids loaded".format(len(qids)))
return qids
def main():
"""Command line:
python document_ranking.py <path_to_candidate_file> <path_to_reference_file> <queries_to_exclude>
"""
if len(sys.argv) == 1:
#print("Usage: document_ranking.py <path_to_candidate_file> <path_to_reference_file> <queries_to_exclude>") for public version
print("Usage: document_ranking.py <path_to_candidate_file> ")
else:
if len(sys.argv) == 3:
exclude_qids = set()
elif len(sys.argv) == 1:
exclude_qids = load_exclude(sys.argv[3]) #Public implementation
exclude_qids = load_exclude('exclude/')
path_to_candidate = sys.argv[1]
path_to_reference = 'docleaderboard-qrels.tsv'
metrics = compute_metrics_from_files(path_to_reference, path_to_candidate, exclude_qids)
print('#####################')
for metric in sorted(metrics):
print('{}: {}'.format(metric, metrics[metric]))
print('#####################')
if __name__ == '__main__':
main()