diff --git a/python-package/lightgbm/sklearn.py b/python-package/lightgbm/sklearn.py index 3e64303a999f..a950a00375cf 100644 --- a/python-package/lightgbm/sklearn.py +++ b/python-package/lightgbm/sklearn.py @@ -6,7 +6,7 @@ import numpy as np -from .basic import Dataset, LightGBMError, _ArrayLike, _choose_param_value, _ConfigAliases, _log_warning +from .basic import Booster, Dataset, LightGBMError, _ArrayLike, _choose_param_value, _ConfigAliases, _log_warning from .callback import log_evaluation, record_evaluation from .compat import (SKLEARN_INSTALLED, LGBMNotFittedError, _LGBMAssertAllFinite, _LGBMCheckArray, _LGBMCheckClassificationTargets, _LGBMCheckSampleWeight, _LGBMCheckXY, _LGBMClassifierBase, @@ -514,11 +514,11 @@ def __init__( self.random_state = random_state self.n_jobs = n_jobs self.importance_type = importance_type - self._Booster = None + self._Booster: Optional[Booster] = None self._evals_result = None self._best_score = None self._best_iteration = None - self._other_params = {} + self._other_params: Dict[str, Any] = {} self._objective = objective self.class_weight = class_weight self._class_weight = None @@ -893,7 +893,7 @@ def n_estimators_(self) -> int: """ if not self.__sklearn_is_fitted__(): raise LGBMNotFittedError('No n_estimators found. Need to call fit beforehand.') - return self._Booster.current_iteration() + return self._Booster.current_iteration() # type: ignore @property def n_iter_(self) -> int: @@ -904,7 +904,7 @@ def n_iter_(self) -> int: """ if not self.__sklearn_is_fitted__(): raise LGBMNotFittedError('No n_iter found. Need to call fit beforehand.') - return self._Booster.current_iteration() + return self._Booster.current_iteration() # type: ignore @property def booster_(self): @@ -958,7 +958,7 @@ def fit(self, X, y, categorical_feature=categorical_feature, callbacks=callbacks, init_model=init_model) return self - _base_doc = LGBMModel.fit.__doc__.replace("self : LGBMModel", "self : LGBMRegressor") + _base_doc = LGBMModel.fit.__doc__.replace("self : LGBMModel", "self : LGBMRegressor") # type: ignore _base_doc = (_base_doc[:_base_doc.find('group :')] # type: ignore + _base_doc[_base_doc.find('eval_set :'):]) # type: ignore _base_doc = (_base_doc[:_base_doc.find('eval_class_weight :')] @@ -1025,7 +1025,7 @@ def fit(self, X, y, callbacks=callbacks, init_model=init_model) return self - _base_doc = LGBMModel.fit.__doc__.replace("self : LGBMModel", "self : LGBMClassifier") + _base_doc = LGBMModel.fit.__doc__.replace("self : LGBMModel", "self : LGBMClassifier") # type: ignore _base_doc = (_base_doc[:_base_doc.find('group :')] # type: ignore + _base_doc[_base_doc.find('eval_set :'):]) # type: ignore fit.__doc__ = (_base_doc[:_base_doc.find('eval_group :')] @@ -1124,7 +1124,7 @@ def fit(self, X, y, categorical_feature=categorical_feature, callbacks=callbacks, init_model=init_model) return self - _base_doc = LGBMModel.fit.__doc__.replace("self : LGBMModel", "self : LGBMRanker") + _base_doc = LGBMModel.fit.__doc__.replace("self : LGBMModel", "self : LGBMRanker") # type: ignore fit.__doc__ = (_base_doc[:_base_doc.find('eval_class_weight :')] # type: ignore + _base_doc[_base_doc.find('eval_init_score :'):]) # type: ignore _base_doc = fit.__doc__