-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
engine.py
744 lines (674 loc) · 32.7 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
# coding: utf-8
"""Library with training routines of LightGBM."""
import collections
import copy
import json
from operator import attrgetter
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from . import callback
from .basic import (Booster, Dataset, LightGBMError, _choose_param_value, _ConfigAliases, _InnerPredictor,
_LGBM_CustomObjectiveFunction, _log_warning)
from .compat import SKLEARN_INSTALLED, _LGBMBaseCrossValidator, _LGBMGroupKFold, _LGBMStratifiedKFold
_LGBM_CustomMetricFunction = Callable[
[np.ndarray, Dataset],
Tuple[str, float, bool]
]
_LGBM_PreprocFunction = Callable[
[Dataset, Dataset, Dict[str, Any]],
Tuple[Dataset, Dataset, Dict[str, Any]]
]
def train(
params: Dict[str, Any],
train_set: Dataset,
num_boost_round: int = 100,
valid_sets: Optional[List[Dataset]] = None,
valid_names: Optional[List[str]] = None,
feval: Optional[Union[_LGBM_CustomMetricFunction, List[_LGBM_CustomMetricFunction]]] = None,
init_model: Optional[Union[str, Path, Booster]] = None,
feature_name: Union[List[str], str] = 'auto',
categorical_feature: Union[List[str], List[int], str] = 'auto',
keep_training_booster: bool = False,
callbacks: Optional[List[Callable]] = None
) -> Booster:
"""Perform the training with given parameters.
Parameters
----------
params : dict
Parameters for training. Values passed through ``params`` take precedence over those
supplied via arguments.
train_set : Dataset
Data to be trained on.
num_boost_round : int, optional (default=100)
Number of boosting iterations.
valid_sets : list of Dataset, or None, optional (default=None)
List of data to be evaluated on during training.
valid_names : list of str, or None, optional (default=None)
Names of ``valid_sets``.
feval : callable, list of callable, or None, optional (default=None)
Customized evaluation function.
Each evaluation function should accept two parameters: preds, eval_data,
and return (eval_name, eval_result, is_higher_better) or list of such tuples.
preds : numpy 1-D array or numpy 2-D array (for multi-class task)
The predicted values.
For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes].
If custom objective function is used, predicted values are returned before any transformation,
e.g. they are raw margin instead of probability of positive class for binary task in this case.
eval_data : Dataset
A ``Dataset`` to evaluate.
eval_name : str
The name of evaluation function (without whitespaces).
eval_result : float
The eval result.
is_higher_better : bool
Is eval result higher better, e.g. AUC is ``is_higher_better``.
To ignore the default metric corresponding to the used objective,
set the ``metric`` parameter to the string ``"None"`` in ``params``.
init_model : str, pathlib.Path, Booster or None, optional (default=None)
Filename of LightGBM model or Booster instance used for continue training.
feature_name : list of str, or 'auto', optional (default="auto")
Feature names.
If 'auto' and data is pandas DataFrame, data columns names are used.
categorical_feature : list of str or int, or 'auto', optional (default="auto")
Categorical features.
If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify ``feature_name`` as well).
If 'auto' and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32 max value (2147483647).
Large values could be memory consuming. Consider using consecutive integers starting from zero.
All negative values in categorical features will be treated as missing values.
The output cannot be monotonically constrained with respect to a categorical feature.
Floating point numbers in categorical features will be rounded towards 0.
keep_training_booster : bool, optional (default=False)
Whether the returned Booster will be used to keep training.
If False, the returned value will be converted into _InnerPredictor before returning.
This means you won't be able to use ``eval``, ``eval_train`` or ``eval_valid`` methods of the returned Booster.
When your model is very large and cause the memory error,
you can try to set this param to ``True`` to avoid the model conversion performed during the internal call of ``model_to_string``.
You can still use _InnerPredictor as ``init_model`` for future continue training.
callbacks : list of callable, or None, optional (default=None)
List of callback functions that are applied at each iteration.
See Callbacks in Python API for more information.
Note
----
A custom objective function can be provided for the ``objective`` parameter.
It should accept two parameters: preds, train_data and return (grad, hess).
preds : numpy 1-D array or numpy 2-D array (for multi-class task)
The predicted values.
Predicted values are returned before any transformation,
e.g. they are raw margin instead of probability of positive class for binary task.
train_data : Dataset
The training dataset.
grad : numpy 1-D array or numpy 2-D array (for multi-class task)
The value of the first order derivative (gradient) of the loss
with respect to the elements of preds for each sample point.
hess : numpy 1-D array or numpy 2-D array (for multi-class task)
The value of the second order derivative (Hessian) of the loss
with respect to the elements of preds for each sample point.
For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes],
and grad and hess should be returned in the same format.
Returns
-------
booster : Booster
The trained Booster model.
"""
# create predictor first
params = copy.deepcopy(params)
params = _choose_param_value(
main_param_name='objective',
params=params,
default_value=None
)
fobj: Optional[_LGBM_CustomObjectiveFunction] = None
if callable(params["objective"]):
fobj = params["objective"]
params["objective"] = 'none'
for alias in _ConfigAliases.get("num_iterations"):
if alias in params:
num_boost_round = params.pop(alias)
_log_warning(f"Found `{alias}` in params. Will use it instead of argument")
params["num_iterations"] = num_boost_round
# setting early stopping via global params should be possible
params = _choose_param_value(
main_param_name="early_stopping_round",
params=params,
default_value=None
)
if params["early_stopping_round"] is None:
params.pop("early_stopping_round")
first_metric_only = params.get('first_metric_only', False)
if num_boost_round <= 0:
raise ValueError("num_boost_round should be greater than zero.")
predictor: Optional[_InnerPredictor] = None
if isinstance(init_model, (str, Path)):
predictor = _InnerPredictor(model_file=init_model, pred_parameter=params)
elif isinstance(init_model, Booster):
predictor = init_model._to_predictor(dict(init_model.params, **params))
init_iteration = predictor.num_total_iteration if predictor is not None else 0
# check dataset
if not isinstance(train_set, Dataset):
raise TypeError("Training only accepts Dataset object")
train_set._update_params(params) \
._set_predictor(predictor) \
.set_feature_name(feature_name) \
.set_categorical_feature(categorical_feature)
is_valid_contain_train = False
train_data_name = "training"
reduced_valid_sets = []
name_valid_sets = []
if valid_sets is not None:
if isinstance(valid_sets, Dataset):
valid_sets = [valid_sets]
if isinstance(valid_names, str):
valid_names = [valid_names]
for i, valid_data in enumerate(valid_sets):
# reduce cost for prediction training data
if valid_data is train_set:
is_valid_contain_train = True
if valid_names is not None:
train_data_name = valid_names[i]
continue
if not isinstance(valid_data, Dataset):
raise TypeError("Training only accepts Dataset object")
reduced_valid_sets.append(valid_data._update_params(params).set_reference(train_set))
if valid_names is not None and len(valid_names) > i:
name_valid_sets.append(valid_names[i])
else:
name_valid_sets.append(f'valid_{i}')
# process callbacks
if callbacks is None:
callbacks_set = set()
else:
for i, cb in enumerate(callbacks):
cb.__dict__.setdefault('order', i - len(callbacks))
callbacks_set = set(callbacks)
if "early_stopping_round" in params:
callbacks_set.add(
callback.early_stopping(
stopping_rounds=params["early_stopping_round"],
first_metric_only=first_metric_only,
verbose=_choose_param_value(
main_param_name="verbosity",
params=params,
default_value=1
).pop("verbosity") > 0
)
)
callbacks_before_iter_set = {cb for cb in callbacks_set if getattr(cb, 'before_iteration', False)}
callbacks_after_iter_set = callbacks_set - callbacks_before_iter_set
callbacks_before_iter = sorted(callbacks_before_iter_set, key=attrgetter('order'))
callbacks_after_iter = sorted(callbacks_after_iter_set, key=attrgetter('order'))
# construct booster
try:
booster = Booster(params=params, train_set=train_set)
if is_valid_contain_train:
booster.set_train_data_name(train_data_name)
for valid_set, name_valid_set in zip(reduced_valid_sets, name_valid_sets):
booster.add_valid(valid_set, name_valid_set)
finally:
train_set._reverse_update_params()
for valid_set in reduced_valid_sets:
valid_set._reverse_update_params()
booster.best_iteration = 0
# start training
for i in range(init_iteration, init_iteration + num_boost_round):
for cb in callbacks_before_iter:
cb(callback.CallbackEnv(model=booster,
params=params,
iteration=i,
begin_iteration=init_iteration,
end_iteration=init_iteration + num_boost_round,
evaluation_result_list=None))
booster.update(fobj=fobj)
evaluation_result_list = []
# check evaluation result.
if valid_sets is not None:
if is_valid_contain_train:
evaluation_result_list.extend(booster.eval_train(feval))
evaluation_result_list.extend(booster.eval_valid(feval))
try:
for cb in callbacks_after_iter:
cb(callback.CallbackEnv(model=booster,
params=params,
iteration=i,
begin_iteration=init_iteration,
end_iteration=init_iteration + num_boost_round,
evaluation_result_list=evaluation_result_list))
except callback.EarlyStopException as earlyStopException:
booster.best_iteration = earlyStopException.best_iteration + 1
evaluation_result_list = earlyStopException.best_score
break
booster.best_score = collections.defaultdict(collections.OrderedDict)
for dataset_name, eval_name, score, _ in evaluation_result_list:
booster.best_score[dataset_name][eval_name] = score
if not keep_training_booster:
booster.model_from_string(booster.model_to_string()).free_dataset()
return booster
class CVBooster:
"""CVBooster in LightGBM.
Auxiliary data structure to hold and redirect all boosters of ``cv()`` function.
This class has the same methods as Booster class.
All method calls, except for the following methods, are actually performed for underlying Boosters and
then all returned results are returned in a list.
- ``model_from_string()``
- ``model_to_string()``
- ``save_model()``
Attributes
----------
boosters : list of Booster
The list of underlying fitted models.
best_iteration : int
The best iteration of fitted model.
"""
def __init__(
self,
model_file: Optional[Union[str, Path]] = None
):
"""Initialize the CVBooster.
Parameters
----------
model_file : str, pathlib.Path or None, optional (default=None)
Path to the CVBooster model file.
"""
self.boosters = []
self.best_iteration = -1
if model_file is not None:
with open(model_file, "r") as file:
self._from_dict(json.load(file))
def _append(self, booster: Booster) -> None:
"""Add a booster to CVBooster."""
self.boosters.append(booster)
def _from_dict(self, models: Dict[str, Any]) -> None:
"""Load CVBooster from dict."""
self.best_iteration = models["best_iteration"]
self.boosters = []
for model_str in models["boosters"]:
self._append(Booster(model_str=model_str))
def _to_dict(self, num_iteration: Optional[int], start_iteration: int, importance_type: str) -> Dict[str, Any]:
"""Serialize CVBooster to dict."""
models_str = []
for booster in self.boosters:
models_str.append(booster.model_to_string(num_iteration=num_iteration, start_iteration=start_iteration,
importance_type=importance_type))
return {"boosters": models_str, "best_iteration": self.best_iteration}
def __getattr__(self, name: str) -> Callable[[Any, Any], List[Any]]:
"""Redirect methods call of CVBooster."""
def handler_function(*args: Any, **kwargs: Any) -> List[Any]:
"""Call methods with each booster, and concatenate their results."""
ret = []
for booster in self.boosters:
ret.append(getattr(booster, name)(*args, **kwargs))
return ret
return handler_function
def __getstate__(self) -> Dict[str, Any]:
return vars(self)
def __setstate__(self, state: Dict[str, Any]) -> None:
vars(self).update(state)
def model_from_string(self, model_str: str) -> "CVBooster":
"""Load CVBooster from a string.
Parameters
----------
model_str : str
Model will be loaded from this string.
Returns
-------
self : CVBooster
Loaded CVBooster object.
"""
self._from_dict(json.loads(model_str))
return self
def model_to_string(
self,
num_iteration: Optional[int] = None,
start_iteration: int = 0,
importance_type: str = 'split'
) -> str:
"""Save CVBooster to JSON string.
Parameters
----------
num_iteration : int or None, optional (default=None)
Index of the iteration that should be saved.
If None, if the best iteration exists, it is saved; otherwise, all iterations are saved.
If <= 0, all iterations are saved.
start_iteration : int, optional (default=0)
Start index of the iteration that should be saved.
importance_type : str, optional (default="split")
What type of feature importance should be saved.
If "split", result contains numbers of times the feature is used in a model.
If "gain", result contains total gains of splits which use the feature.
Returns
-------
str_repr : str
JSON string representation of CVBooster.
"""
return json.dumps(self._to_dict(num_iteration, start_iteration, importance_type))
def save_model(
self,
filename: Union[str, Path],
num_iteration: Optional[int] = None,
start_iteration: int = 0,
importance_type: str = 'split'
) -> "CVBooster":
"""Save CVBooster to a file as JSON text.
Parameters
----------
filename : str or pathlib.Path
Filename to save CVBooster.
num_iteration : int or None, optional (default=None)
Index of the iteration that should be saved.
If None, if the best iteration exists, it is saved; otherwise, all iterations are saved.
If <= 0, all iterations are saved.
start_iteration : int, optional (default=0)
Start index of the iteration that should be saved.
importance_type : str, optional (default="split")
What type of feature importance should be saved.
If "split", result contains numbers of times the feature is used in a model.
If "gain", result contains total gains of splits which use the feature.
Returns
-------
self : CVBooster
Returns self.
"""
with open(filename, "w") as file:
json.dump(self._to_dict(num_iteration, start_iteration, importance_type), file)
return self
def _make_n_folds(
full_data: Dataset,
folds: Optional[Union[Iterable[Tuple[np.ndarray, np.ndarray]], _LGBMBaseCrossValidator]],
nfold: int,
params: Dict[str, Any],
seed: int,
fpreproc: Optional[_LGBM_PreprocFunction] = None,
stratified: bool = True,
shuffle: bool = True,
eval_train_metric: bool = False
) -> CVBooster:
"""Make a n-fold list of Booster from random indices."""
full_data = full_data.construct()
num_data = full_data.num_data()
if folds is not None:
if not hasattr(folds, '__iter__') and not hasattr(folds, 'split'):
raise AttributeError("folds should be a generator or iterator of (train_idx, test_idx) tuples "
"or scikit-learn splitter object with split method")
if hasattr(folds, 'split'):
group_info = full_data.get_group()
if group_info is not None:
group_info = np.array(group_info, dtype=np.int32, copy=False)
flatted_group = np.repeat(range(len(group_info)), repeats=group_info)
else:
flatted_group = np.zeros(num_data, dtype=np.int32)
folds = folds.split(X=np.empty(num_data), y=full_data.get_label(), groups=flatted_group)
else:
if any(params.get(obj_alias, "") in {"lambdarank", "rank_xendcg", "xendcg",
"xe_ndcg", "xe_ndcg_mart", "xendcg_mart"}
for obj_alias in _ConfigAliases.get("objective")):
if not SKLEARN_INSTALLED:
raise LightGBMError('scikit-learn is required for ranking cv')
# ranking task, split according to groups
group_info = np.array(full_data.get_group(), dtype=np.int32, copy=False)
flatted_group = np.repeat(range(len(group_info)), repeats=group_info)
group_kfold = _LGBMGroupKFold(n_splits=nfold)
folds = group_kfold.split(X=np.empty(num_data), groups=flatted_group)
elif stratified:
if not SKLEARN_INSTALLED:
raise LightGBMError('scikit-learn is required for stratified cv')
skf = _LGBMStratifiedKFold(n_splits=nfold, shuffle=shuffle, random_state=seed)
folds = skf.split(X=np.empty(num_data), y=full_data.get_label())
else:
if shuffle:
randidx = np.random.RandomState(seed).permutation(num_data)
else:
randidx = np.arange(num_data)
kstep = int(num_data / nfold)
test_id = [randidx[i: i + kstep] for i in range(0, num_data, kstep)]
train_id = [np.concatenate([test_id[i] for i in range(nfold) if k != i]) for k in range(nfold)]
folds = zip(train_id, test_id)
ret = CVBooster()
for train_idx, test_idx in folds:
train_set = full_data.subset(sorted(train_idx))
valid_set = full_data.subset(sorted(test_idx))
# run preprocessing on the data set if needed
if fpreproc is not None:
train_set, valid_set, tparam = fpreproc(train_set, valid_set, params.copy())
else:
tparam = params
cvbooster = Booster(tparam, train_set)
if eval_train_metric:
cvbooster.add_valid(train_set, 'train')
cvbooster.add_valid(valid_set, 'valid')
ret._append(cvbooster)
return ret
def _agg_cv_result(
raw_results: List[List[Tuple[str, str, float, bool]]]
) -> List[Tuple[str, str, float, bool, float]]:
"""Aggregate cross-validation results."""
cvmap = collections.OrderedDict()
metric_type = {}
for one_result in raw_results:
for one_line in one_result:
key = f"{one_line[0]} {one_line[1]}"
metric_type[key] = one_line[3]
cvmap.setdefault(key, [])
cvmap[key].append(one_line[2])
return [('cv_agg', k, np.mean(v), metric_type[k], np.std(v)) for k, v in cvmap.items()]
def cv(
params: Dict[str, Any],
train_set: Dataset,
num_boost_round: int = 100,
folds: Optional[Union[Iterable[Tuple[np.ndarray, np.ndarray]], _LGBMBaseCrossValidator]] = None,
nfold: int = 5,
stratified: bool = True,
shuffle: bool = True,
metrics: Optional[Union[str, List[str]]] = None,
feval: Optional[Union[_LGBM_CustomMetricFunction, List[_LGBM_CustomMetricFunction]]] = None,
init_model: Optional[Union[str, Path, Booster]] = None,
feature_name: Union[str, List[str]] = 'auto',
categorical_feature: Union[str, List[str], List[int]] = 'auto',
fpreproc: Optional[_LGBM_PreprocFunction] = None,
seed: int = 0,
callbacks: Optional[List[Callable]] = None,
eval_train_metric: bool = False,
return_cvbooster: bool = False
) -> Dict[str, Any]:
"""Perform the cross-validation with given parameters.
Parameters
----------
params : dict
Parameters for training. Values passed through ``params`` take precedence over those
supplied via arguments.
train_set : Dataset
Data to be trained on.
num_boost_round : int, optional (default=100)
Number of boosting iterations.
folds : generator or iterator of (train_idx, test_idx) tuples, scikit-learn splitter object or None, optional (default=None)
If generator or iterator, it should yield the train and test indices for each fold.
If object, it should be one of the scikit-learn splitter classes
(https://scikit-learn.org/stable/modules/classes.html#splitter-classes)
and have ``split`` method.
This argument has highest priority over other data split arguments.
nfold : int, optional (default=5)
Number of folds in CV.
stratified : bool, optional (default=True)
Whether to perform stratified sampling.
shuffle : bool, optional (default=True)
Whether to shuffle before splitting data.
metrics : str, list of str, or None, optional (default=None)
Evaluation metrics to be monitored while CV.
If not None, the metric in ``params`` will be overridden.
feval : callable, list of callable, or None, optional (default=None)
Customized evaluation function.
Each evaluation function should accept two parameters: preds, eval_data,
and return (eval_name, eval_result, is_higher_better) or list of such tuples.
preds : numpy 1-D array or numpy 2-D array (for multi-class task)
The predicted values.
For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes].
If custom objective function is used, predicted values are returned before any transformation,
e.g. they are raw margin instead of probability of positive class for binary task in this case.
eval_data : Dataset
A ``Dataset`` to evaluate.
eval_name : str
The name of evaluation function (without whitespace).
eval_result : float
The eval result.
is_higher_better : bool
Is eval result higher better, e.g. AUC is ``is_higher_better``.
To ignore the default metric corresponding to the used objective,
set ``metrics`` to the string ``"None"``.
init_model : str, pathlib.Path, Booster or None, optional (default=None)
Filename of LightGBM model or Booster instance used for continue training.
feature_name : list of str, or 'auto', optional (default="auto")
Feature names.
If 'auto' and data is pandas DataFrame, data columns names are used.
categorical_feature : list of str or int, or 'auto', optional (default="auto")
Categorical features.
If list of int, interpreted as indices.
If list of str, interpreted as feature names (need to specify ``feature_name`` as well).
If 'auto' and data is pandas DataFrame, pandas unordered categorical columns are used.
All values in categorical features will be cast to int32 and thus should be less than int32 max value (2147483647).
Large values could be memory consuming. Consider using consecutive integers starting from zero.
All negative values in categorical features will be treated as missing values.
The output cannot be monotonically constrained with respect to a categorical feature.
Floating point numbers in categorical features will be rounded towards 0.
fpreproc : callable or None, optional (default=None)
Preprocessing function that takes (dtrain, dtest, params)
and returns transformed versions of those.
seed : int, optional (default=0)
Seed used to generate the folds (passed to numpy.random.seed).
callbacks : list of callable, or None, optional (default=None)
List of callback functions that are applied at each iteration.
See Callbacks in Python API for more information.
eval_train_metric : bool, optional (default=False)
Whether to display the train metric in progress.
The score of the metric is calculated again after each training step, so there is some impact on performance.
return_cvbooster : bool, optional (default=False)
Whether to return Booster models trained on each fold through ``CVBooster``.
Note
----
A custom objective function can be provided for the ``objective`` parameter.
It should accept two parameters: preds, train_data and return (grad, hess).
preds : numpy 1-D array or numpy 2-D array (for multi-class task)
The predicted values.
Predicted values are returned before any transformation,
e.g. they are raw margin instead of probability of positive class for binary task.
train_data : Dataset
The training dataset.
grad : numpy 1-D array or numpy 2-D array (for multi-class task)
The value of the first order derivative (gradient) of the loss
with respect to the elements of preds for each sample point.
hess : numpy 1-D array or numpy 2-D array (for multi-class task)
The value of the second order derivative (Hessian) of the loss
with respect to the elements of preds for each sample point.
For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes],
and grad and hess should be returned in the same format.
Returns
-------
eval_hist : dict
Evaluation history.
The dictionary has the following format:
{'metric1-mean': [values], 'metric1-stdv': [values],
'metric2-mean': [values], 'metric2-stdv': [values],
...}.
If ``return_cvbooster=True``, also returns trained boosters via ``cvbooster`` key.
"""
if not isinstance(train_set, Dataset):
raise TypeError("Training only accepts Dataset object")
params = copy.deepcopy(params)
params = _choose_param_value(
main_param_name='objective',
params=params,
default_value=None
)
fobj: Optional[_LGBM_CustomObjectiveFunction] = None
if callable(params["objective"]):
fobj = params["objective"]
params["objective"] = 'none'
for alias in _ConfigAliases.get("num_iterations"):
if alias in params:
_log_warning(f"Found '{alias}' in params. Will use it instead of 'num_boost_round' argument")
num_boost_round = params.pop(alias)
params["num_iterations"] = num_boost_round
# setting early stopping via global params should be possible
params = _choose_param_value(
main_param_name="early_stopping_round",
params=params,
default_value=None
)
if params["early_stopping_round"] is None:
params.pop("early_stopping_round")
first_metric_only = params.get('first_metric_only', False)
if num_boost_round <= 0:
raise ValueError("num_boost_round should be greater than zero.")
if isinstance(init_model, (str, Path)):
predictor = _InnerPredictor(model_file=init_model, pred_parameter=params)
elif isinstance(init_model, Booster):
predictor = init_model._to_predictor(dict(init_model.params, **params))
else:
predictor = None
if metrics is not None:
for metric_alias in _ConfigAliases.get("metric"):
params.pop(metric_alias, None)
params['metric'] = metrics
train_set._update_params(params) \
._set_predictor(predictor) \
.set_feature_name(feature_name) \
.set_categorical_feature(categorical_feature)
results = collections.defaultdict(list)
cvfolds = _make_n_folds(train_set, folds=folds, nfold=nfold,
params=params, seed=seed, fpreproc=fpreproc,
stratified=stratified, shuffle=shuffle,
eval_train_metric=eval_train_metric)
# setup callbacks
if callbacks is None:
callbacks = set()
else:
for i, cb in enumerate(callbacks):
cb.__dict__.setdefault('order', i - len(callbacks))
callbacks = set(callbacks)
if "early_stopping_round" in params:
callbacks.add(
callback.early_stopping(
stopping_rounds=params["early_stopping_round"],
first_metric_only=first_metric_only,
verbose=_choose_param_value(
main_param_name="verbosity",
params=params,
default_value=1
).pop("verbosity") > 0
)
)
callbacks_before_iter = {cb for cb in callbacks if getattr(cb, 'before_iteration', False)}
callbacks_after_iter = callbacks - callbacks_before_iter
callbacks_before_iter = sorted(callbacks_before_iter, key=attrgetter('order'))
callbacks_after_iter = sorted(callbacks_after_iter, key=attrgetter('order'))
for i in range(num_boost_round):
for cb in callbacks_before_iter:
cb(callback.CallbackEnv(model=cvfolds,
params=params,
iteration=i,
begin_iteration=0,
end_iteration=num_boost_round,
evaluation_result_list=None))
cvfolds.update(fobj=fobj)
res = _agg_cv_result(cvfolds.eval_valid(feval))
for _, key, mean, _, std in res:
results[f'{key}-mean'].append(mean)
results[f'{key}-stdv'].append(std)
try:
for cb in callbacks_after_iter:
cb(callback.CallbackEnv(model=cvfolds,
params=params,
iteration=i,
begin_iteration=0,
end_iteration=num_boost_round,
evaluation_result_list=res))
except callback.EarlyStopException as earlyStopException:
cvfolds.best_iteration = earlyStopException.best_iteration + 1
for bst in cvfolds.boosters:
bst.best_iteration = cvfolds.best_iteration
for k in results:
results[k] = results[k][:cvfolds.best_iteration]
break
if return_cvbooster:
results['cvbooster'] = cvfolds
return dict(results)