-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
utils.R
285 lines (231 loc) · 7.54 KB
/
utils.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
lgb.is.Booster <- function(x) {
return(all(c("R6", "lgb.Booster") %in% class(x)))
}
lgb.is.Dataset <- function(x) {
return(all(c("R6", "lgb.Dataset") %in% class(x)))
}
lgb.is.Predictor <- function(x) {
return(all(c("R6", "lgb.Predictor") %in% class(x)))
}
lgb.is.null.handle <- function(x) {
if (is.null(x)) {
return(TRUE)
}
return(
isTRUE(.Call(LGBM_HandleIsNull_R, x))
)
}
lgb.params2str <- function(params) {
if (!identical(class(params), "list")) {
stop("params must be a list")
}
# Split parameter names
names(params) <- gsub("\\.", "_", names(params))
ret <- list()
# Perform key value join
for (key in names(params)) {
# If a parameter has multiple values, join those values together with commas.
# trimws() is necessary because format() will pad to make strings the same width
val <- paste0(
trimws(
format(
x = params[[key]]
, scientific = FALSE
)
)
, collapse = ","
)
if (nchar(val) <= 0L) next # Skip join
# Join key value
pair <- paste0(c(key, val), collapse = "=")
ret <- c(ret, pair)
}
if (length(ret) == 0L) {
return("")
}
return(paste0(ret, collapse = " "))
}
lgb.check_interaction_constraints <- function(interaction_constraints, column_names) {
# Convert interaction constraints to feature numbers
string_constraints <- list()
if (!is.null(interaction_constraints)) {
if (!methods::is(interaction_constraints, "list")) {
stop("interaction_constraints must be a list")
}
if (!all(sapply(interaction_constraints, function(x) {is.character(x) || is.numeric(x)}))) {
stop("every element in interaction_constraints must be a character vector or numeric vector")
}
for (constraint in interaction_constraints) {
# Check for character name
if (is.character(constraint)) {
constraint_indices <- as.integer(match(constraint, column_names) - 1L)
# Provided indices, but some indices are not existing?
if (sum(is.na(constraint_indices)) > 0L) {
stop(
"supplied an unknown feature in interaction_constraints "
, sQuote(constraint[is.na(constraint_indices)])
)
}
} else {
# Check that constraint indices are at most number of features
if (max(constraint) > length(column_names)) {
stop(
"supplied a too large value in interaction_constraints: "
, max(constraint)
, " but only "
, length(column_names)
, " features"
)
}
# Store indices as [0, n-1] indexed instead of [1, n] indexed
constraint_indices <- as.integer(constraint - 1L)
}
# Convert constraint to string
constraint_string <- paste0("[", paste0(constraint_indices, collapse = ","), "]")
string_constraints <- append(string_constraints, constraint_string)
}
}
return(string_constraints)
}
lgb.check.obj <- function(params, obj) {
# List known objectives in a vector
OBJECTIVES <- c(
"regression"
, "regression_l1"
, "regression_l2"
, "mean_squared_error"
, "mse"
, "l2_root"
, "root_mean_squared_error"
, "rmse"
, "mean_absolute_error"
, "mae"
, "quantile"
, "huber"
, "fair"
, "poisson"
, "binary"
, "lambdarank"
, "multiclass"
, "softmax"
, "multiclassova"
, "multiclass_ova"
, "ova"
, "ovr"
, "xentropy"
, "cross_entropy"
, "xentlambda"
, "cross_entropy_lambda"
, "mean_absolute_percentage_error"
, "mape"
, "gamma"
, "tweedie"
, "rank_xendcg"
, "xendcg"
, "xe_ndcg"
, "xe_ndcg_mart"
, "xendcg_mart"
)
# Check whether the objective is empty or not, and take it from params if needed
if (!is.null(obj)) {
params$objective <- obj
}
# Check whether the objective is a character
if (is.character(params$objective)) {
# If the objective is a character, check if it is a known objective
if (!(params$objective %in% OBJECTIVES)) {
stop("lgb.check.obj: objective name error should be one of (", paste0(OBJECTIVES, collapse = ", "), ")")
}
} else if (!is.function(params$objective)) {
stop("lgb.check.obj: objective should be a character or a function")
}
return(params)
}
# [description]
# Take any character values from eval and store them in params$metric.
# This has to account for the fact that `eval` could be a character vector,
# a function, a list of functions, or a list with a mix of strings and
# functions
lgb.check.eval <- function(params, eval) {
if (is.null(params$metric)) {
params$metric <- list()
} else if (is.character(params$metric)) {
params$metric <- as.list(params$metric)
}
# if 'eval' is a character vector or list, find the character
# elements and add them to 'metric'
if (!is.function(eval)) {
for (i in seq_along(eval)) {
element <- eval[[i]]
if (is.character(element)) {
params$metric <- append(params$metric, element)
}
}
}
# If more than one character metric was given, then "None" should
# not be included
if (length(params$metric) > 1L) {
params$metric <- Filter(
f = function(metric) {
!(metric %in% .NO_METRIC_STRINGS())
}
, x = params$metric
)
}
# duplicate metrics should be filtered out
params$metric <- as.list(unique(unlist(params$metric)))
return(params)
}
# [description]
#
# Resolve differences between passed-in keyword arguments, parameters,
# and parameter aliases. This function exists because some functions in the
# package take in parameters through their own keyword arguments other than
# the `params` list.
#
# If the same underlying parameter is provided multiple
# ways, the first item in this list is used:
#
# 1. the main (non-alias) parameter found in `params`
# 2. the first alias of that parameter found in `params`
# 3. the keyword argument passed in
#
# For example, "num_iterations" can also be provided to lgb.train()
# via keyword "nrounds". lgb.train() will choose one value for this parameter
# based on the first match in this list:
#
# 1. params[["num_iterations]]
# 2. the first alias of "num_iterations" found in params
# 3. the nrounds keyword argument
#
# If multiple aliases are found in `params` for the same parameter, they are
# all removed before returning `params`.
#
# [return]
# params with num_iterations set to the chosen value, and other aliases
# of num_iterations removed
lgb.check.wrapper_param <- function(main_param_name, params, alternative_kwarg_value) {
aliases <- .PARAMETER_ALIASES()[[main_param_name]]
aliases_provided <- names(params)[names(params) %in% aliases]
aliases_provided <- aliases_provided[aliases_provided != main_param_name]
# prefer the main parameter
if (!is.null(params[[main_param_name]])) {
for (param in aliases_provided) {
params[[param]] <- NULL
}
return(params)
}
# if the main parameter wasn't provided, prefer the first alias
if (length(aliases_provided) > 0L) {
first_param <- aliases_provided[1L]
params[[main_param_name]] <- params[[first_param]]
for (param in aliases_provided) {
params[[param]] <- NULL
}
return(params)
}
# if not provided in params at all, use the alternative value provided
# through a keyword argument from lgb.train(), lgb.cv(), etc.
params[[main_param_name]] <- alternative_kwarg_value
return(params)
}