-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
test_dask.py
512 lines (420 loc) · 16.5 KB
/
test_dask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# coding: utf-8
"""Tests for lightgbm.dask module"""
import itertools
import os
import socket
import sys
import pytest
if not sys.platform.startswith('linux'):
pytest.skip('lightgbm.dask is currently supported in Linux environments', allow_module_level=True)
import dask.array as da
import dask.dataframe as dd
import numpy as np
import pandas as pd
from scipy.stats import spearmanr
import scipy.sparse
from dask.array.utils import assert_eq
from dask_ml.metrics import accuracy_score, r2_score
from distributed.utils_test import client, cluster_fixture, gen_cluster, loop
from sklearn.datasets import make_blobs, make_regression
from sklearn.utils import check_random_state
import lightgbm
import lightgbm.dask as dlgbm
from .utils import make_ranking
data_output = ['array', 'scipy_csr_matrix', 'dataframe']
data_centers = [[[-4, -4], [4, 4]], [[-4, -4], [4, 4], [-4, 4]]]
group_sizes = [5, 5, 5, 10, 10, 10, 20, 20, 20, 50, 50]
pytestmark = [
pytest.mark.skipif(os.getenv('TASK', '') == 'mpi', reason='Fails to run with MPI interface'),
pytest.mark.skipif(os.getenv('TASK', '') == 'gpu', reason='Fails to run with GPU interface')
]
@pytest.fixture()
def listen_port():
listen_port.port += 10
return listen_port.port
listen_port.port = 13000
def _create_ranking_data(n_samples=100, output='array', chunk_size=50, **kwargs):
X, y, g = make_ranking(n_samples=n_samples, random_state=42, **kwargs)
rnd = np.random.RandomState(42)
w = rnd.rand(X.shape[0]) * 0.01
g_rle = np.array([len(list(grp)) for _, grp in itertools.groupby(g)])
if output == 'dataframe':
# add target, weight, and group to DataFrame so that partitions abide by group boundaries.
X_df = pd.DataFrame(X, columns=[f'feature_{i}' for i in range(X.shape[1])])
X = X_df.copy()
X_df = X_df.assign(y=y, g=g, w=w)
# set_index ensures partitions are based on group id.
# See https://stackoverflow.com/questions/49532824/dask-dataframe-split-partitions-based-on-a-column-or-function.
X_df.set_index('g', inplace=True)
dX = dd.from_pandas(X_df, chunksize=chunk_size)
# separate target, weight from features.
dy = dX['y']
dw = dX['w']
dX = dX.drop(columns=['y', 'w'])
dg = dX.index.to_series()
# encode group identifiers into run-length encoding, the format LightGBMRanker is expecting
# so that within each partition, sum(g) = n_samples.
dg = dg.map_partitions(lambda p: p.groupby('g', sort=False).apply(lambda z: z.shape[0]))
elif output == 'array':
# ranking arrays: one chunk per group. Each chunk must include all columns.
p = X.shape[1]
dX, dy, dw, dg = [], [], [], []
for g_idx, rhs in enumerate(np.cumsum(g_rle)):
lhs = rhs - g_rle[g_idx]
dX.append(da.from_array(X[lhs:rhs, :], chunks=(rhs - lhs, p)))
dy.append(da.from_array(y[lhs:rhs]))
dw.append(da.from_array(w[lhs:rhs]))
dg.append(da.from_array(np.array([g_rle[g_idx]])))
dX = da.concatenate(dX, axis=0)
dy = da.concatenate(dy, axis=0)
dw = da.concatenate(dw, axis=0)
dg = da.concatenate(dg, axis=0)
else:
raise ValueError('Ranking data creation only supported for Dask arrays and dataframes')
return X, y, w, g_rle, dX, dy, dw, dg
def _create_data(objective, n_samples=100, centers=2, output='array', chunk_size=50):
if objective == 'classification':
X, y = make_blobs(n_samples=n_samples, centers=centers, random_state=42)
elif objective == 'regression':
X, y = make_regression(n_samples=n_samples, random_state=42)
else:
raise ValueError("Unknown objective '%s'" % objective)
rnd = np.random.RandomState(42)
weights = rnd.random(X.shape[0]) * 0.01
if output == 'array':
dX = da.from_array(X, (chunk_size, X.shape[1]))
dy = da.from_array(y, chunk_size)
dw = da.from_array(weights, chunk_size)
elif output == 'dataframe':
X_df = pd.DataFrame(X, columns=['feature_%d' % i for i in range(X.shape[1])])
y_df = pd.Series(y, name='target')
dX = dd.from_pandas(X_df, chunksize=chunk_size)
dy = dd.from_pandas(y_df, chunksize=chunk_size)
dw = dd.from_array(weights, chunksize=chunk_size)
elif output == 'scipy_csr_matrix':
dX = da.from_array(X, chunks=(chunk_size, X.shape[1])).map_blocks(scipy.sparse.csr_matrix)
dy = da.from_array(y, chunks=chunk_size)
dw = da.from_array(weights, chunk_size)
else:
raise ValueError("Unknown output type '%s'" % output)
return X, y, weights, dX, dy, dw
@pytest.mark.parametrize('output', data_output)
@pytest.mark.parametrize('centers', data_centers)
def test_classifier(output, centers, client, listen_port):
X, y, w, dX, dy, dw = _create_data(
objective='classification',
output=output,
centers=centers
)
params = {
"n_estimators": 10,
"num_leaves": 10
}
dask_classifier = dlgbm.DaskLGBMClassifier(
time_out=5,
local_listen_port=listen_port,
**params
)
dask_classifier = dask_classifier.fit(dX, dy, sample_weight=dw, client=client)
p1 = dask_classifier.predict(dX)
p1_proba = dask_classifier.predict_proba(dX).compute()
s1 = accuracy_score(dy, p1)
p1 = p1.compute()
local_classifier = lightgbm.LGBMClassifier(**params)
local_classifier.fit(X, y, sample_weight=w)
p2 = local_classifier.predict(X)
p2_proba = local_classifier.predict_proba(X)
s2 = local_classifier.score(X, y)
assert_eq(s1, s2)
assert_eq(p1, p2)
assert_eq(y, p1)
assert_eq(y, p2)
assert_eq(p1_proba, p2_proba, atol=0.3)
client.close()
@pytest.mark.parametrize('output', data_output)
@pytest.mark.parametrize('centers', data_centers)
def test_classifier_pred_contrib(output, centers, client, listen_port):
X, y, w, dX, dy, dw = _create_data(
objective='classification',
output=output,
centers=centers
)
params = {
"n_estimators": 10,
"num_leaves": 10
}
dask_classifier = dlgbm.DaskLGBMClassifier(
time_out=5,
local_listen_port=listen_port,
tree_learner='data',
**params
)
dask_classifier = dask_classifier.fit(dX, dy, sample_weight=dw, client=client)
preds_with_contrib = dask_classifier.predict(dX, pred_contrib=True).compute()
local_classifier = lightgbm.LGBMClassifier(**params)
local_classifier.fit(X, y, sample_weight=w)
local_preds_with_contrib = local_classifier.predict(X, pred_contrib=True)
if output == 'scipy_csr_matrix':
preds_with_contrib = np.array(preds_with_contrib.todense())
# shape depends on whether it is binary or multiclass classification
num_features = dask_classifier.n_features_
num_classes = dask_classifier.n_classes_
if num_classes == 2:
expected_num_cols = num_features + 1
else:
expected_num_cols = (num_features + 1) * num_classes
# * shape depends on whether it is binary or multiclass classification
# * matrix for binary classification is of the form [feature_contrib, base_value],
# for multi-class it's [feat_contrib_class1, base_value_class1, feat_contrib_class2, base_value_class2, etc.]
# * contrib outputs for distributed training are different than from local training, so we can just test
# that the output has the right shape and base values are in the right position
assert preds_with_contrib.shape[1] == expected_num_cols
assert preds_with_contrib.shape == local_preds_with_contrib.shape
if num_classes == 2:
assert len(np.unique(preds_with_contrib[:, num_features]) == 1)
else:
for i in range(num_classes):
base_value_col = num_features * (i + 1) + i
assert len(np.unique(preds_with_contrib[:, base_value_col]) == 1)
def test_training_does_not_fail_on_port_conflicts(client):
_, _, _, dX, dy, dw = _create_data('classification', output='array')
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(('127.0.0.1', 12400))
dask_classifier = dlgbm.DaskLGBMClassifier(
time_out=5,
local_listen_port=12400,
n_estimators=5,
num_leaves=5
)
for _ in range(5):
dask_classifier.fit(
X=dX,
y=dy,
sample_weight=dw,
client=client
)
assert dask_classifier.booster_
client.close()
def test_classifier_local_predict(client, listen_port):
X, y, w, dX, dy, dw = _create_data(
objective='classification',
output='array'
)
params = {
"n_estimators": 10,
"num_leaves": 10
}
dask_classifier = dlgbm.DaskLGBMClassifier(
time_out=5,
local_port=listen_port,
**params
)
dask_classifier = dask_classifier.fit(dX, dy, sample_weight=dw, client=client)
p1 = dask_classifier.to_local().predict(dX)
local_classifier = lightgbm.LGBMClassifier(**params)
local_classifier.fit(X, y, sample_weight=w)
p2 = local_classifier.predict(X)
assert_eq(p1, p2)
assert_eq(y, p1)
assert_eq(y, p2)
client.close()
@pytest.mark.parametrize('output', data_output)
def test_regressor(output, client, listen_port):
X, y, w, dX, dy, dw = _create_data(
objective='regression',
output=output
)
params = {
"random_state": 42,
"num_leaves": 10
}
dask_regressor = dlgbm.DaskLGBMRegressor(
time_out=5,
local_listen_port=listen_port,
tree='data',
**params
)
dask_regressor = dask_regressor.fit(dX, dy, client=client, sample_weight=dw)
p1 = dask_regressor.predict(dX)
if output != 'dataframe':
s1 = r2_score(dy, p1)
p1 = p1.compute()
local_regressor = lightgbm.LGBMRegressor(**params)
local_regressor.fit(X, y, sample_weight=w)
s2 = local_regressor.score(X, y)
p2 = local_regressor.predict(X)
# Scores should be the same
if output != 'dataframe':
assert_eq(s1, s2, atol=.01)
# Predictions should be roughly the same
assert_eq(y, p1, rtol=1., atol=100.)
assert_eq(y, p2, rtol=1., atol=50.)
client.close()
@pytest.mark.parametrize('output', data_output)
def test_regressor_pred_contrib(output, client, listen_port):
X, y, w, dX, dy, dw = _create_data(
objective='regression',
output=output
)
params = {
"n_estimators": 10,
"num_leaves": 10
}
dask_regressor = dlgbm.DaskLGBMRegressor(
time_out=5,
local_listen_port=listen_port,
tree_learner='data',
**params
)
dask_regressor = dask_regressor.fit(dX, dy, sample_weight=dw, client=client)
preds_with_contrib = dask_regressor.predict(dX, pred_contrib=True).compute()
local_regressor = lightgbm.LGBMRegressor(**params)
local_regressor.fit(X, y, sample_weight=w)
local_preds_with_contrib = local_regressor.predict(X, pred_contrib=True)
if output == "scipy_csr_matrix":
preds_with_contrib = np.array(preds_with_contrib.todense())
# contrib outputs for distributed training are different than from local training, so we can just test
# that the output has the right shape and base values are in the right position
num_features = dX.shape[1]
assert preds_with_contrib.shape[1] == num_features + 1
assert preds_with_contrib.shape == local_preds_with_contrib.shape
@pytest.mark.parametrize('output', data_output)
@pytest.mark.parametrize('alpha', [.1, .5, .9])
def test_regressor_quantile(output, client, listen_port, alpha):
X, y, w, dX, dy, dw = _create_data(
objective='regression',
output=output
)
params = {
"objective": "quantile",
"alpha": alpha,
"random_state": 42,
"n_estimators": 10,
"num_leaves": 10
}
dask_regressor = dlgbm.DaskLGBMRegressor(
local_listen_port=listen_port,
tree_learner_type='data_parallel',
**params
)
dask_regressor = dask_regressor.fit(dX, dy, client=client, sample_weight=dw)
p1 = dask_regressor.predict(dX).compute()
q1 = np.count_nonzero(y < p1) / y.shape[0]
local_regressor = lightgbm.LGBMRegressor(**params)
local_regressor.fit(X, y, sample_weight=w)
p2 = local_regressor.predict(X)
q2 = np.count_nonzero(y < p2) / y.shape[0]
# Quantiles should be right
np.testing.assert_allclose(q1, alpha, atol=0.2)
np.testing.assert_allclose(q2, alpha, atol=0.2)
client.close()
def test_regressor_local_predict(client, listen_port):
X, y, _, dX, dy, dw = _create_data('regression', output='array')
dask_regressor = dlgbm.DaskLGBMRegressor(
local_listen_port=listen_port,
random_state=42,
n_estimators=10,
num_leaves=10,
tree_type='data'
)
dask_regressor = dask_regressor.fit(dX, dy, sample_weight=dw, client=client)
p1 = dask_regressor.predict(dX)
p2 = dask_regressor.to_local().predict(X)
s1 = r2_score(dy, p1)
p1 = p1.compute()
s2 = dask_regressor.to_local().score(X, y)
# Predictions and scores should be the same
assert_eq(p1, p2)
assert_eq(s1, s2)
client.close()
@pytest.mark.parametrize('output', ['array', 'dataframe'])
@pytest.mark.parametrize('group', [None, group_sizes])
def test_ranker(output, client, listen_port, group):
X, y, w, g, dX, dy, dw, dg = _create_ranking_data(
output=output,
group=group
)
# use many trees + leaves to overfit, help ensure that dask data-parallel strategy matches that of
# serial learner. See https://github.com/microsoft/LightGBM/issues/3292#issuecomment-671288210.
params = {
"random_state": 42,
"n_estimators": 50,
"num_leaves": 20,
"min_child_samples": 1
}
dask_ranker = dlgbm.DaskLGBMRanker(
time_out=5,
local_listen_port=listen_port,
tree_learner_type='data_parallel',
**params
)
dask_ranker = dask_ranker.fit(dX, dy, sample_weight=dw, group=dg, client=client)
rnkvec_dask = dask_ranker.predict(dX)
rnkvec_dask = rnkvec_dask.compute()
local_ranker = lightgbm.LGBMRanker(**params)
local_ranker.fit(X, y, sample_weight=w, group=g)
rnkvec_local = local_ranker.predict(X)
# distributed ranker should be able to rank decently well and should
# have high rank correlation with scores from serial ranker.
dcor = spearmanr(rnkvec_dask, y).correlation
assert dcor > 0.6
assert spearmanr(rnkvec_dask, rnkvec_local).correlation > 0.75
client.close()
@pytest.mark.parametrize('output', ['array', 'dataframe'])
@pytest.mark.parametrize('group', [None, group_sizes])
def test_ranker_local_predict(output, client, listen_port, group):
X, y, w, g, dX, dy, dw, dg = _create_ranking_data(
output=output,
group=group
)
dask_ranker = dlgbm.DaskLGBMRanker(
time_out=5,
local_listen_port=listen_port,
tree_learner='data',
n_estimators=10,
num_leaves=10,
random_state=42,
min_child_samples=1
)
dask_ranker = dask_ranker.fit(dX, dy, group=dg, client=client)
rnkvec_dask = dask_ranker.predict(dX)
rnkvec_dask = rnkvec_dask.compute()
rnkvec_local = dask_ranker.to_local().predict(X)
# distributed and to-local scores should be the same.
assert_eq(rnkvec_dask, rnkvec_local)
client.close()
def test_find_open_port_works():
worker_ip = '127.0.0.1'
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((worker_ip, 12400))
new_port = dlgbm._find_open_port(
worker_ip=worker_ip,
local_listen_port=12400,
ports_to_skip=set()
)
assert new_port == 12401
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s_1:
s_1.bind((worker_ip, 12400))
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s_2:
s_2.bind((worker_ip, 12401))
new_port = dlgbm._find_open_port(
worker_ip=worker_ip,
local_listen_port=12400,
ports_to_skip=set()
)
assert new_port == 12402
@gen_cluster(client=True, timeout=None)
def test_errors(c, s, a, b):
def f(part):
raise Exception('foo')
df = dd.demo.make_timeseries()
df = df.map_partitions(f, meta=df._meta)
with pytest.raises(Exception) as info:
yield dlgbm._train(
client=c,
data=df,
label=df.x,
params={},
model_factory=lightgbm.LGBMClassifier
)
assert 'foo' in str(info.value)