-
Notifications
You must be signed in to change notification settings - Fork 4.2k
/
Copy pathreplace_module.py
719 lines (616 loc) · 32 KB
/
replace_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import torch
import tqdm
import deepspeed
import deepspeed.ops.transformer as transformer_inference
from deepspeed.ops.transformer.inference.diffusers_attention import DeepSpeedDiffusersAttention
from deepspeed.ops.transformer.inference.diffusers_transformer_block import DeepSpeedDiffusersTransformerBlock
from deepspeed.ops.transformer.inference.diffusers_2d_transformer import Diffusers2DTransformerConfig
from deepspeed.accelerator import get_accelerator
from .replace_policy import replace_policies, generic_policies
from .auto_tp import AutoTP, ReplaceWithTensorSlicing, Loading
from .layers import TensorParallelOcShardConv2d, TensorParallelIcShardConv2d
from deepspeed import comm as dist
from deepspeed.module_inject.tp_shard import set_num_kv_heads, set_n_embd, set_num_attention_heads, set_tp_grain_size
from .load_checkpoint import load_model_with_checkpoint
import time
from .utils import policy_to_ds_container
import gc
def get_transformer_name(replaced_module):
from .containers import supported_models
from torch.nn import ModuleList
transformer_name = ''
for n, c in replaced_module.named_children():
if c.__class__ in supported_models:
transformer_name += n + '.'
for name, child in c.named_children():
if child.__class__ is ModuleList:
transformer_name += name
break
break
return transformer_name
class GroupQuantizer:
def __init__(self, q_int8=True, group_size=1, num_bits=8, num_groups=0):
self.group_size = group_size
self.num_bits = num_bits
self.q_int8 = q_int8
self.num_groups = num_groups
def quantize(self, inputs, qkv=True, count=1, parallel_dim=0):
if not self.q_int8 or not qkv:
inputs = torch.nn.Parameter(inputs, requires_grad=False)
inputs.scale = torch.empty(1)
return inputs
q_range = 2**self.num_bits
num_groups = self.num_groups if self.num_groups > 0 else inputs.shape[0] // self.group_size
inputs = inputs.to(get_accelerator().current_device_name())
input_flat = inputs.reshape(num_groups, -1).contiguous()
input_min = torch.min(input_flat, dim=1, keepdim=True)[0].float()
input_max = torch.max(input_flat, dim=1, keepdim=True)[0].float()
scale = torch.max(input_min.abs(), input_max.abs()) * 2.0 / (q_range)
input_flat = (input_flat / scale).round().clamp(-q_range // 2, q_range // 2 - 1)
inputs_q = input_flat.reshape(inputs.shape).to(torch.int8).contiguous()
out = torch.nn.Parameter(inputs_q, requires_grad=False)
inputs_split = inputs.split(inputs.shape[parallel_dim] // 2, dim=parallel_dim)
input_flat = [inputs_split[i].reshape(num_groups, -1).contiguous() for i in range(2)]
input_min = [torch.min(input_flat[i], dim=1, keepdim=True)[0].float() for i in range(2)]
input_max = [torch.max(input_flat[i], dim=1, keepdim=True)[0].float() for i in range(2)]
scale1 = [(torch.max(input_min[i].abs(), input_max[i].abs()) * 2.0 / (q_range)).squeeze().unsqueeze(0)
for i in range(2)]
out.scale = torch.cat([scale.squeeze().unsqueeze(0), scale1[0], scale1[1]], dim=0).reshape(num_groups,
-1).contiguous()
return out
def _module_match(module):
for policy in generic_policies:
policy = policy()
if policy.match(module):
return policy
return None
def generic_injection(module, dtype=None, enable_cuda_graph=True):
def replace_attn(child, policy):
policy_attn = policy.attention(child)
if policy_attn is None:
return child
if len(policy_attn) == 5:
qkvw, attn_ow, attn_ob, hidden_size, heads = policy_attn
else:
qw, kw, vw, attn_ow, attn_ob, hidden_size, heads = policy_attn
config = transformer_inference.DeepSpeedInferenceConfig(
hidden_size=hidden_size,
heads=heads,
dtype=dtype,
triangular_masking=False,
max_out_tokens=4096,
)
attn_module = DeepSpeedDiffusersAttention(config)
def transpose(data):
data = data.contiguous()
data.reshape(-1).copy_(data.transpose(-1, -2).contiguous().reshape(-1))
data = data.reshape(data.shape[-1], data.shape[-2])
data.to(get_accelerator().current_device_name())
return data
if len(policy_attn) == 5:
attn_module.attn_qkvw.data = transpose(qkvw.data)
else:
attn_module.attn_qkvw = None
attn_module.attn_qw.data = transpose(qw.data)
attn_module.attn_kw.data = transpose(kw.data)
attn_module.attn_vw.data = transpose(vw.data)
attn_module.attn_qkvb = None
attn_module.attn_ow.data = transpose(attn_ow.data)
attn_module.attn_ob.data.copy_(attn_ob.data.to(get_accelerator().current_device_name()))
return attn_module
def replace_attn_block(child, policy):
config = Diffusers2DTransformerConfig()
return DeepSpeedDiffusersTransformerBlock(child, config)
if isinstance(module, torch.nn.Module):
pass
else:
if dtype not in [torch.float16, torch.half]:
raise ValueError("Generic injection only supported with FP16")
try:
import diffusers
if hasattr(diffusers.models.attention, 'CrossAttention'):
cross_attention = diffusers.models.attention.CrossAttention
else:
cross_attention = diffusers.models.attention_processor.Attention
attention_block = diffusers.models.attention.BasicTransformerBlock
new_policies = {
cross_attention: replace_attn,
attention_block: replace_attn_block,
}
except ImportError:
new_policies = {}
#replace_transformer_layer(None,
# module.text_encoder,
# training=False,
# replace_with_kernel_inject=True,
# triangular_masking=True,
# max_out_tokens=8192)
from ..model_implementations.transformers.clip_encoder import DSClipEncoder
cg_encoder = DSClipEncoder(module.text_encoder, enable_cuda_graph=enable_cuda_graph)
setattr(module, 'text_encoder', cg_encoder)
for name in module.__dict__.keys():
sub_module = getattr(module, name)
policy = _module_match(sub_module)
if policy is not None:
def _replace_module(module, policy):
for name, child in module.named_children():
_replace_module(child, policy)
if child.__class__ in new_policies:
replaced_module = new_policies[child.__class__](child, policy)
setattr(module, name, replaced_module)
_replace_module(sub_module, policy)
new_module = policy.apply(sub_module, enable_cuda_graph=enable_cuda_graph)
print(f"**** found and replaced {name} w. {type(new_module)}")
setattr(module, name, new_module)
container_g = None
def replace_transformer_layer(orig_layer_impl, model, checkpoint_dict, config, model_config):
""" Replace bert-style transformer layers with DeepSpeed's transformer layer
Arguments:
orig_layer_impl (torch.nn.Module): the original transformer layer implementation to look for,
e.g., transformers.models.bert.modeling_bert.BertLayer or transformers.BertLayer
model (torch.nn.Module): user's nn.module representing their model
checkpoint_dict: Dictionary for checkpoint passed from the Inference Engine
config: top-level DS Inference config defined in inference/config.py
model_config: HuggingFace model config passed from the inference/engine.py
Returns:
Updated nn.module with replaced transformer layers
"""
# defining globals as internally defined functions inherit these everywhere
quantize = (config.dtype == torch.int8)
# todo: Refactor later. In future, let's minimize the style used above and use config.** instead
linear_layer_setting = None
'''
linear_layer_setting (tuple of modules) [Optional]: shows which two classes are used for linear layers and embedding layers
'''
micro_batch_size = -1
seed = -1
local_rank = -1
mp_replace = ReplaceWithTensorSlicing(mp_group=config.tensor_parallel.tp_group,
mp_size=config.tensor_parallel.tp_size) #, out_dim=0, in_dim=1)
def replace_with_policy(child, policy_cls, triangular_masking, inference=False, layer_id=0):
policy = policy_cls(child, inference=inference)
if not policy.cuda_graph_supported:
# policy says cuda graph is not supported raise an error if set
assert not config.enable_cuda_graph, "cuda graph is not supported with this model, please disable"
from deepspeed.moe.layer import MoE
moe = False
if hasattr(child, 'mlp') and isinstance(child.mlp, MoE):
num_experts = child.mlp.num_experts
moe = True
# 1. Create a model-specific container object using the policy object.
_container = policy_to_ds_container(policy=policy,
config=config,
model_config=model_config,
layer_id=layer_id,
child=child)
_container.set_moe(moe)
# 2. Set the tensor parallelism config
_container.set_tensor_parallel_config(config.tensor_parallel.tp_size, config.tensor_parallel.tp_group)
# 3. Initialize tensors
_container.initialize_tensors()
# 4. deal with data types -- needs refactor to use dtype instead of fp16
if config.dtype in [torch.float16, torch.bfloat16, torch.int8]:
_container.convert_to_required_dtype()
# 5. Set the quantization config
quantizer = GroupQuantizer(q_int8=quantize)
_container.set_quantization_config(quantizer)
# 6. create a DS Inference config object
_container.create_ds_model_config()
# 7. use the config and create the module
_container.create_module()
# 8. transpose the weights and bias if needed
_container.transpose()
# 9. deal with tensor parallelism.
_container.apply_tensor_parallelism(mp_replace)
# 10. copy the tensors from the model-specific container to the new module
_container.copy_data_to_new_module()
# 11. set global for generic checkpoint loading
global container_g
if container_g is None:
container_g = _container
return _container.module
def replace_wo_policy(module, all_reduce_linears, prefix="", state_dict=None):
#mp_replace = ReplaceWithTensorSlicing(mp_group=config.tensor_parallel.tp_group)
# 1. Create AutoTP object
_autotp = AutoTP(module, all_reduce_linears, prefix, state_dict, linear_layer_setting, orig_layer_impl,
config.keep_module_on_host)
# 2. Set the tensor parallelism config
_autotp.set_tensor_parallel_config(config.tensor_parallel.tp_size, config.tensor_parallel.tp_group)
# 3. Try to get num_key_heads from model_config.num_key_value_heads
if hasattr(model_config, "vision_config"):
if "MllamaVisionEncoderLayer" in str(module):
num_kv_heads = _autotp.get_model_num_kv_heads(model_config.vision_config)
elif hasattr(model_config, "text_config"):
num_kv_heads = _autotp.get_model_num_kv_heads(model_config.text_config)
else:
num_kv_heads = _autotp.get_model_num_kv_heads(model_config)
else:
num_kv_heads = _autotp.get_model_num_kv_heads(model_config)
# 4. When we have num_kv_heads defined, uneven division is possible, otherwise enforce even division
set_num_kv_heads(num_kv_heads)
# 4.1 Get n_embd
n_embd = None
multi_query_n_embd_names = ['n_embd', 'hidden_size']
for name in multi_query_n_embd_names:
if hasattr(model_config, name):
n_embd = getattr(model_config, name)
if n_embd != None:
break
# 4.2 set n_embd
set_n_embd(n_embd)
# 4.3 set attention_heads
if hasattr(model_config, 'num_attention_heads'):
set_num_attention_heads(getattr(model_config, 'num_attention_heads'))
# 4.4 set tp_grain_size
set_tp_grain_size(config.tensor_parallel.tp_grain_size)
# 5. Set linear policies
_autotp.update_linear_policies()
# 6. Replace modules
if "lm_head" in all_reduce_linears or "embed_out" in all_reduce_linears:
return _autotp._replace_last_linear_module(module)
return _autotp._replace_module(module)
def replace_fn(child, _policy, layer_id=0, prefix="", state_dict=None):
training = False # todo: refactor this part to go in the config
if training:
# copy relevant state from child -> new module
new_module = replace_with_policy(child, _policy, config.triangular_masking)
else:
# copy relevant state from child -> new module
if config.replace_with_kernel_inject:
new_module = replace_with_policy(child,
_policy,
config.triangular_masking,
inference=True,
layer_id=layer_id)
else:
new_module = replace_wo_policy(child, _policy, prefix=prefix, state_dict=state_dict)
return new_module
def set_lm_head(module):
embedding_weight = None
for n, p in module.named_parameters():
if "word_embeddings." in n or "embed_tokens." in n or "wte." in n:
embedding_weight = p
if embedding_weight is not None and hasattr(module, "lm_head") and hasattr(
module.lm_head, "weight") and module.lm_head.weight.is_meta:
module.lm_head.weight = embedding_weight
# enable tensor parallel for the last linear
if hasattr(module, "lm_head") and hasattr(module.lm_head, "weight") and isinstance(
module.lm_head, torch.nn.Linear):
module = replace_wo_policy(module, ("lm_head", ), 0, "lm_head")
elif hasattr(module, "embed_out") and hasattr(module.embed_out, "weight") and isinstance(
module.embed_out, torch.nn.Linear):
module = replace_wo_policy(module, ("embed_out", ), 0, "embed_out")
elif hasattr(module, "language_model") and hasattr(module.language_model, "lm_head"):
module = replace_wo_policy(module.language_model, ("lm_head", ), 0, "lm_head")
return module
def conv2d_parallel_shard_weights(model, rank, world_size):
# add conv policy
shard_oc_name = ["conv1"]
shard_ic_name = ["conv2"]
for name, sub_m in model.named_children():
for l_name, l_sub_m in sub_m.named_children():
if l_name in shard_oc_name:
TPConv2d = TensorParallelOcShardConv2d(
l_sub_m,
rank,
world_size,
)
setattr(sub_m, l_name, TPConv2d)
if l_name in shard_ic_name:
TPConv2d = TensorParallelIcShardConv2d(
l_sub_m,
rank,
world_size,
)
setattr(sub_m, l_name, TPConv2d)
conv2d_parallel_shard_weights(sub_m, rank, world_size)
if checkpoint_dict is not None and not config.replace_with_kernel_inject:
# AutoTP shard loading
checkpoint = checkpoint_dict["checkpoints"]
pbar = tqdm.tqdm(total=len(checkpoint), desc=f"Loading {len(checkpoint)} checkpoint shards")
for i in range(len(checkpoint)):
checkpoint_file = os.path.join(config.base_dir, checkpoint[i])
replaced_module = replace_module(model=model,
orig_class=orig_layer_impl,
replace_fn=replace_fn,
_replace_policy=config.injection_policy_tuple,
checkpoint=checkpoint_file)
pbar.update(1)
gc.collect()
# conv2d tp module replace
# Now is for yuan model. Add model list and conv policy to decide whether to replace conv.
if 'Yuan' in str(replaced_module):
conv2d_parallel_shard_weights(replaced_module, dist.get_rank(), dist.get_world_size())
else:
replaced_module = replace_module(model=model,
orig_class=orig_layer_impl,
replace_fn=replace_fn,
_replace_policy=config.injection_policy_tuple)
# AutoTP default set lm_head tp
if not config.replace_with_kernel_inject:
replaced_module = set_lm_head(replaced_module)
quantizer = GroupQuantizer(q_int8=quantize)
world_size = dist.get_world_size() if dist.is_initialized() else 1
rank = dist.get_rank() if dist.is_initialized() else 0
if checkpoint_dict is not None and config.replace_with_kernel_inject:
assert container_g.ckpt_load_enabled, \
f"Meta Tensor checkpoint loading not supported in {container_g.__class__.__name__} container"
start_time = time.time()
checkpoint = checkpoint_dict['checkpoints']
ckpt_list = checkpoint["tp"] if type(checkpoint) is dict else checkpoint
ckpt_type = checkpoint_dict.get('parallelization', 'pp')
ckpt_mp_size = checkpoint_dict.get('tp_size', len(ckpt_list))
ckpt_mp_size = checkpoint_dict.get('mp_size', ckpt_mp_size)
base_dir1 = checkpoint_dict.get('base_dir', config.base_dir)
if ckpt_type == 'pp' and type(checkpoint) is list:
pbar = tqdm.tqdm(total=len(checkpoint), desc=f"Loading {len(checkpoint)} checkpoint shards")
for i in range(len(checkpoint)):
sd = [torch.load(os.path.join(base_dir1, checkpoint[i]), map_location='cpu', weights_only=False)]
load_model_with_checkpoint(replaced_module,
sd,
mp_replace,
ckpt_type,
ckpt_mp_size,
quantizer,
container=container_g)
pbar.update(1)
else:
num_checkpoints = len(ckpt_list) // ckpt_mp_size
tp_split_size = (world_size / ckpt_mp_size)
sd_offset = int(rank / tp_split_size)
sd_count = int((rank + max(1, tp_split_size)) / tp_split_size) - sd_offset
pbar = tqdm.tqdm(total=num_checkpoints, desc=f"Loading {num_checkpoints} checkpoint shards")
for i in range(num_checkpoints):
pbar.update(1)
ckpt_index = i * ckpt_mp_size + sd_offset
ckpt_files = [
os.path.join(base_dir1, ckpt_list[ckpt_index + j]) if base_dir1 else ckpt_list[ckpt_index + j]
for j in range(sd_count)
]
sds = [torch.load(ckpt_file, map_location='cpu', weights_only=False) for ckpt_file in ckpt_files]
load_model_with_checkpoint(replaced_module,
sds,
mp_replace,
ckpt_type,
ckpt_mp_size,
quantizer,
int(rank % tp_split_size),
container=container_g)
sds = [None for _ in sds]
gc.collect()
if "non_tp" in checkpoint:
pbar = tqdm.tqdm(total=len(checkpoint["non_tp"]),
desc=f"Loading {len(checkpoint['non_tp'])} checkpoint shards")
for i in range(len(checkpoint["non_tp"])):
pbar.update(1)
ckpt_file = os.path.join(base_dir1,
checkpoint["non_tp"][i]) if base_dir1 else checkpoint["non_tp"][i]
sds = [torch.load(ckpt_file, map_location='cpu', weights_only=False)]
load_model_with_checkpoint(replaced_module,
sds,
mp_replace,
ckpt_type,
ckpt_mp_size,
quantizer,
int(rank % tp_split_size),
container=container_g)
sds = [None for _ in sds]
gc.collect()
set_lm_head(replaced_module)
print(f"checkpoint loading time at rank {rank}: {time.time()-start_time} sec")
if config.save_mp_checkpoint_path is not None:
from collections import OrderedDict
import json
num_partitions = 8
if checkpoint_dict is None:
ckpt_name = "ds_model"
try:
from transformers.models.bloom.modeling_bloom import BloomForCausalLM
if isinstance(model, BloomForCausalLM):
ckpt_name = "bloom"
except ImportError:
ckpt_name = "ds_model"
else:
ckpt_name = checkpoint_dict['type']
if dist.is_initialized():
dist.barrier()
transformer_name = get_transformer_name(replaced_module)
non_tp_ckpt_name = f'non-tp.pt'
ckpt_files = [non_tp_ckpt_name]
os.makedirs(config.save_mp_checkpoint_path, exist_ok=True)
if not dist.is_initialized() or dist.get_rank() == 0:
print("Saving tp-sharded checkpoints")
torch.save(
OrderedDict({
k: v
for k, v in dict(replaced_module.state_dict()).items() if transformer_name not in k
}), f'{config.save_mp_checkpoint_path}/{non_tp_ckpt_name}')
dtype_reprs = {
torch.float32: 'float32',
torch.float16: 'float16',
torch.int8: 'int8',
torch.bfloat16: 'bfloat16'
}
ckpt_config = json.dumps({
'type': ckpt_name,
'base_dir': f'{config.save_mp_checkpoint_path}',
'checkpoints': {
"non_tp": ckpt_files,
"tp": [f'tp_{r:0>2d}_{m:0>2d}.pt' for m in range(num_partitions) for r in range(world_size)]
},
'version': 1.0,
'parallelization': 'tp',
'tp_size': world_size,
'dtype': dtype_reprs[config.dtype]
})
with open(f"{config.save_mp_checkpoint_path}/ds_inference_config.json", "w") as cfg:
cfg.write(ckpt_config)
rep_sd = replaced_module.state_dict()
for n, p in replaced_module.named_parameters():
if hasattr(p, 'scale'):
rep_sd[n] = [p, p.scale]
keys = list(rep_sd.keys())
partition_size = (len(keys) // num_partitions + 1)
for m in range(num_partitions):
torch.save(
OrderedDict({
k: [rep_sd[k], rep_sd[k].scale] if hasattr(rep_sd[k], 'scale') else rep_sd[k]
for k in keys[m * partition_size:(m + 1) * partition_size] if transformer_name in k
}), f'{config.save_mp_checkpoint_path}/tp_{rank:0>2d}_{m:0>2d}.pt')
return replaced_module
def revert_transformer_layer(orig_layer_impl, model, config, preln=False):
""" Revert DeepSpeed's transformer layer back to original bert-style transformer layer
Arguments:
orig_layer_impl (torch.nn.Module): the original transformer layer implementation that was replaced,
e.g., transformers.models.bert.modeling_bert.BertLayer or transformers.BertLayer
model (torch.nn.Module): user's nn.module representing their model
config (dict): model config containing hidden size, attention heads, etc.
Returns:
Updated nn.module with original bert-style transformer layers
"""
def replace_fn(child, _replace_policy, layer_id):
#from turing.nvidia_modelingpreln import BertLayer
orig_module = orig_layer_impl(config)
# copy relevant state from child -> original module
qkvw = child.attn_qkvw.data
qkvb = child.attn_qkvb.data
qw, kw, vw = torch.chunk(qkvw, 3, axis=0)
qb, kb, vb = torch.chunk(qkvb, 3, axis=0)
orig_module.attention.self.query.weight.data = qw
orig_module.attention.self.query.bias.data = qb
orig_module.attention.self.key.weight.data = kw
orig_module.attention.self.key.bias.data = kb
orig_module.attention.self.value.weight.data = vw
orig_module.attention.self.value.bias.data = vb
orig_module.attention.output.dense.weight.data = child.attn_ow.data
orig_module.attention.output.dense.bias.data = child.attn_ob.data
attn_ln_w = child.attn_nw.data
attn_ln_b = child.attn_nb.data
if preln:
orig_module.PostAttentionLayerNorm.weight.data = attn_ln_w
orig_module.PostAttentionLayerNorm.bias.data = attn_ln_b
else:
orig_module.attention.output.LayerNorm.weight.data = attn_ln_w
orig_module.attention.output.LayerNorm.bias.data = attn_ln_b
inter_ff_w = child.inter_w.data
inter_ff_b = child.inter_b.data
if preln:
orig_module.intermediate.dense_act.weight.data = inter_ff_w
orig_module.intermediate.dense_act.bias.data = inter_ff_b
else:
orig_module.intermediate.dense.weight.data = inter_ff_w
orig_module.intermediate.dense.bias.data = inter_ff_b
orig_module.output.dense.weight.data = child.output_w.data
orig_module.output.dense.bias.data = child.output_b.data
transformer_ln_w = child.norm_w.data
transformer_ln_b = child.norm_b.data
if preln:
orig_module.PreAttentionLayerNorm.weight.data = transformer_ln_w
orig_module.PreAttentionLayerNorm.bias.data = transformer_ln_b
else:
orig_module.output.LayerNorm.weight.data = transformer_ln_w
orig_module.output.LayerNorm.bias.data = transformer_ln_b
return orig_module
return replace_module(model=model,
orig_class=deepspeed.DeepSpeedTransformerLayer,
replace_fn=replace_fn,
_replace_policy=None)
def replace_module(model, orig_class, replace_fn, _replace_policy, checkpoint=None):
""" Scan the model for instances of ``orig_clas:`` to replace using ``replace_fn``.
Arguments:
model (torch.nn.Module): the model to augment
orig_class (torch.nn.Module): the module to search for
replace_fn (method): a method to convert instances of ``orig_class`` to the
desired type and return a new instance.
Returns:
A modified ``model``.
"""
sd = None
if checkpoint is not None:
if checkpoint.endswith(".safetensors"):
from safetensors.torch import load_file
sd = load_file(checkpoint)
else:
sd = torch.load(checkpoint, map_location='cpu', weights_only=False)
policy = {}
if orig_class is not None:
policy.update({orig_class: (replace_fn, _replace_policy)})
else:
for plcy in replace_policies:
# instantiate a throw-away policy in order to populate the _orig_layer_class
_ = plcy(None)
if isinstance(plcy._orig_layer_class, list):
for orig_layer_class in plcy._orig_layer_class:
policy.update({orig_layer_class: (replace_fn, plcy)})
elif plcy._orig_layer_class is not None:
policy.update({plcy._orig_layer_class: (replace_fn, plcy)})
assert len(policy.items()) > 0,\
"No default policy found! Please specify your policy injection_policy (like {BertLayer:HFBEertLayerPolicy})." +\
"You can find some samples here: https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/module_inject/replace_policy.py"
replaced_module, _ = _replace_module(model, policy, state_dict=sd)
return replaced_module
from ..pipe import PipelineModule
import re
def skip_level_0_prefix(model, state_dict):
model = str(model)
key = re.search(r": (.*?)Model", model)
if key is None:
key = re.search(r": (.*?)Stack", model)
if key is None:
key = re.match(r"(.*?)Model", model)
# if keys start with 'model.', don't skip level 0 prefix
if state_dict is not None:
for item in state_dict.keys():
if re.match("^model[.]", item):
return False
if key is not None and key.group(1).lower() in ["bloom", "opt"]:
return True
return False
def _replace_module(model, policies, prefix='', layer_id=0, level_id=0, state_dict=None):
""" Traverse model's children recursively and apply any transformations in ``policies``.
Arguments:
model (torch.nn.Module): model to augment
policies (dict): Mapping of source class to replacement function.
Returns:
Modified ``model``.
"""
for name, child in model.named_children():
if child.__class__ in policies:
replaced_module = policies[child.__class__][0](child,
policies[child.__class__][-1],
layer_id,
prefix=prefix + name,
state_dict=state_dict)
setattr(model, name, replaced_module)
if isinstance(model, PipelineModule):
assert hasattr(model, 'forward_funcs'),\
"we require pipe-module to have the list of fwd_functions"
model.forward_funcs[model.fwd_map[name]] = replaced_module
layer_id += 1
else:
checking_key = prefix + name + '.'
if Loading.is_load_module(child) and state_dict is not None:
if any(checking_key in item for item in state_dict):
Loading.load(
child,
state_dict,
checking_key,
)
else:
continue
if len(child._buffers) != 0 and state_dict is not None:
Loading.load_buffer(child, state_dict, checking_key)
_, layer_id = _replace_module(child,
policies,
prefix if level_id == 0 and skip_level_0_prefix(model, state_dict) else \
prefix + name + '.',
layer_id=layer_id,
level_id=level_id + 1,
state_dict=state_dict)
# Add the reset_cache func to the model, so that it can be called in the beginning of text-generation.
model.reset_cache = transformer_inference.DeepSpeedTransformerInference.reset_cache
return model, layer_id