Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Using transfer to train over food101 #39

Open
andreynz691 opened this issue May 31, 2022 · 0 comments
Open

Using transfer to train over food101 #39

andreynz691 opened this issue May 31, 2022 · 0 comments

Comments

@andreynz691
Copy link

andreynz691 commented May 31, 2022

Hi all! I'm trying to train a model for food101 using the using the CSWin_64_12211_tiny_224 model with its pretrained values. The thing is, during execution it looks like its training from 0 rather than reusing the pretrained weights. By this I mean the initial top5 accuracy is around 5% but my initial thoughts is that it should be higher than this.

For this I loaded the pretrained model and changed it's classification layer in a separate script and saved it for use as follows

model = create_model( 'CSWin_64_12211_tiny_224', pretrained=True, num_classes=1000, drop_rate=0.0, drop_connect_rate=None, # DEPRECATED, use drop_path drop_path_rate=0.2, drop_block_rate=None, global_pool=None, bn_tf=False, bn_momentum=None, bn_eps=None, checkpoint_path='', img_size=224, use_chk=True)
chk_path = './pretrained/cswin_tiny_224.pth'
load_checkpoint(model, chk_path)
model.reset_classifier(101, 'max')

These are some of the runs I tried
`
bash finetune.sh 1 --data ../food-101 --model CSWin_64_12211_tiny_224 -b 32 --lr 5e-6 --min-lr 5e-7 --weight-decay 1e-8 --amp --img-size 224 --warmup-epochs 0 --model-ema-decay 0.9998 --epochs 20 --mixup 0.1 --cooldown-epochs 10 --drop-path 0.7 --ema-finetune --lr-scale 1 --cutmix 0.1 --use-chk --num-classes 101 --pretrained --finetune ./pretrained/CSWin_64_12211_tiny_224101.pth

bash finetune.sh 1 --data ../food-101 --model CSWin_64_12211_tiny_224 -b 32 --lr 2e-3 --weight-decay .05 --amp --img-size 224 --warmup-epochs 0 --model-ema-decay 0.9998 --epochs 20 --cooldown-epochs 10 --drop-path 0.2 --ema-finetune --cutmix 0.1 --use-chk --num-classes 101 --initial-checkpoint ./pretrained/CSWin_64_12211_tiny_224101.pth --lr-scale 1.0 --output ./full_base
`

Is there something I'm missing or a proper way I should try this?

Thanks in advance for any help! :)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant