diff --git a/src/micropython/main/typeshed.fr.json b/src/micropython/main/typeshed.fr.json index 312891f3b..ff7717690 100644 --- a/src/micropython/main/typeshed.fr.json +++ b/src/micropython/main/typeshed.fr.json @@ -8,7 +8,7 @@ "/typeshed/stdlib/builtins.pyi": "import sys\nimport types\nfrom _typeshed import (\n OpenBinaryMode,\n OpenTextMode,\n ReadableBuffer,\n Self,\n StrOrBytesPath,\n SupportsDivMod,\n SupportsKeysAndGetItem,\n SupportsLenAndGetItem,\n SupportsLessThan,\n SupportsLessThanT,\n SupportsRDivMod,\n SupportsWrite,\n)\nfrom types import CodeType, TracebackType\nfrom typing import (\n IO,\n AbstractSet,\n Any,\n AsyncIterable,\n AsyncIterator,\n BinaryIO,\n ByteString,\n Callable,\n FrozenSet,\n Generic,\n ItemsView,\n Iterable,\n Iterator,\n KeysView,\n Mapping,\n MutableMapping,\n MutableSequence,\n MutableSet,\n NoReturn,\n Protocol,\n Reversible,\n Sequence,\n Set,\n Sized,\n SupportsAbs,\n SupportsBytes,\n SupportsComplex,\n SupportsFloat,\n SupportsInt,\n SupportsRound,\n TextIO,\n Tuple,\n Type,\n TypeVar,\n Union,\n ValuesView,\n overload,\n)\nfrom typing_extensions import Literal, SupportsIndex, final\n\nif sys.version_info >= (3, 9):\n from types import GenericAlias\n\nclass _SupportsTrunc(Protocol):\n def __trunc__(self) -> int: ...\n\n_T = TypeVar(\"_T\")\n_T_co = TypeVar(\"_T_co\", covariant=True)\n_T_contra = TypeVar(\"_T_contra\", contravariant=True)\n_KT = TypeVar(\"_KT\")\n_VT = TypeVar(\"_VT\")\n_S = TypeVar(\"_S\")\n_T1 = TypeVar(\"_T1\")\n_T2 = TypeVar(\"_T2\")\n_T3 = TypeVar(\"_T3\")\n_T4 = TypeVar(\"_T4\")\n_T5 = TypeVar(\"_T5\")\n_TT = TypeVar(\"_TT\", bound=\"type\")\n_TBE = TypeVar(\"_TBE\", bound=\"BaseException\")\n\nclass object:\n __doc__: str | None\n __dict__: dict[str, Any]\n __slots__: str | Iterable[str]\n __module__: str\n __annotations__: dict[str, Any]\n @property\n def __class__(self: _T) -> Type[_T]: ...\n # Ignore errors about type mismatch between property getter and setter\n @__class__.setter\n def __class__(self, __type: Type[object]) -> None: ... # type: ignore # noqa: F811\n def __init__(self) -> None: ...\n def __new__(cls: Type[_T]) -> _T: ...\n def __setattr__(self, name: str, value: Any) -> None: ...\n def __eq__(self, o: object) -> bool: ...\n def __ne__(self, o: object) -> bool: ...\n def __str__(self) -> str: ...\n def __repr__(self) -> str: ...\n def __hash__(self) -> int: ...\n def __format__(self, format_spec: str) -> str: ...\n def __getattribute__(self, name: str) -> Any: ...\n def __delattr__(self, name: str) -> None: ...\n def __sizeof__(self) -> int: ...\n def __reduce__(self) -> str | Tuple[Any, ...]: ...\n if sys.version_info >= (3, 8):\n def __reduce_ex__(self, protocol: SupportsIndex) -> str | Tuple[Any, ...]: ...\n else:\n def __reduce_ex__(self, protocol: int) -> str | Tuple[Any, ...]: ...\n def __dir__(self) -> Iterable[str]: ...\n def __init_subclass__(cls) -> None: ...\n\nclass staticmethod(object): # Special, only valid as a decorator.\n __func__: Callable[..., Any]\n __isabstractmethod__: bool\n def __init__(self, f: Callable[..., Any]) -> None: ...\n def __new__(cls: Type[_T], *args: Any, **kwargs: Any) -> _T: ...\n def __get__(self, obj: _T, type: Type[_T] | None = ...) -> Callable[..., Any]: ...\n\nclass classmethod(object): # Special, only valid as a decorator.\n __func__: Callable[..., Any]\n __isabstractmethod__: bool\n def __init__(self, f: Callable[..., Any]) -> None: ...\n def __new__(cls: Type[_T], *args: Any, **kwargs: Any) -> _T: ...\n def __get__(self, obj: _T, type: Type[_T] | None = ...) -> Callable[..., Any]: ...\n\nclass type(object):\n __base__: type\n __bases__: Tuple[type, ...]\n __basicsize__: int\n __dict__: dict[str, Any]\n __dictoffset__: int\n __flags__: int\n __itemsize__: int\n __module__: str\n __name__: str\n __qualname__: str\n __text_signature__: str | None\n __weakrefoffset__: int\n @overload\n def __init__(self, o: object) -> None: ...\n @overload\n def __init__(\n self, name: str, bases: Tuple[type, ...], dict: dict[str, Any], **kwds: Any\n ) -> None: ...\n @overload\n def __new__(cls, o: object) -> type: ...\n @overload\n def __new__(\n cls: Type[_TT],\n name: str,\n bases: Tuple[type, ...],\n namespace: dict[str, Any],\n **kwds: Any,\n ) -> _TT: ...\n def __call__(self, *args: Any, **kwds: Any) -> Any: ...\n def __subclasses__(self: _TT) -> list[_TT]: ...\n def __instancecheck__(self, instance: Any) -> bool: ...\n def __subclasscheck__(self, subclass: type) -> bool: ...\n @classmethod\n def __prepare__(\n metacls, __name: str, __bases: Tuple[type, ...], **kwds: Any\n ) -> Mapping[str, Any]: ...\n if sys.version_info >= (3, 10):\n def __or__(self, t: Any) -> types.UnionType: ...\n def __ror__(self, t: Any) -> types.UnionType: ...\n\nclass super(object):\n @overload\n def __init__(self, t: Any, obj: Any) -> None: ...\n @overload\n def __init__(self, t: Any) -> None: ...\n @overload\n def __init__(self) -> None: ...\n\nclass int:\n @overload\n def __new__(\n cls: Type[_T],\n x: str | bytes | SupportsInt | SupportsIndex | _SupportsTrunc = ...,\n ) -> _T: ...\n @overload\n def __new__(\n cls: Type[_T], x: str | bytes | bytearray, base: SupportsIndex\n ) -> _T: ...\n def to_bytes(\n self,\n length: SupportsIndex,\n byteorder: Literal[\"little\", \"big\"],\n *,\n signed: bool = ...,\n ) -> bytes: ...\n @classmethod\n def from_bytes(\n cls,\n bytes: Iterable[SupportsIndex] | SupportsBytes,\n byteorder: Literal[\"little\", \"big\"],\n *,\n signed: bool = ...,\n ) -> int: ... # TODO buffer object argument\n def __add__(self, x: int) -> int: ...\n def __sub__(self, x: int) -> int: ...\n def __mul__(self, x: int) -> int: ...\n def __floordiv__(self, x: int) -> int: ...\n def __truediv__(self, x: int) -> float: ...\n def __mod__(self, x: int) -> int: ...\n def __divmod__(self, x: int) -> Tuple[int, int]: ...\n def __radd__(self, x: int) -> int: ...\n def __rsub__(self, x: int) -> int: ...\n def __rmul__(self, x: int) -> int: ...\n def __rfloordiv__(self, x: int) -> int: ...\n def __rtruediv__(self, x: int) -> float: ...\n def __rmod__(self, x: int) -> int: ...\n def __rdivmod__(self, x: int) -> Tuple[int, int]: ...\n @overload\n def __pow__(self, __x: Literal[2], __modulo: int | None = ...) -> int: ...\n @overload\n def __pow__(\n self, __x: int, __modulo: int | None = ...\n ) -> Any: ... # Return type can be int or float, depending on x.\n def __rpow__(self, x: int, mod: int | None = ...) -> Any: ...\n def __and__(self, n: int) -> int: ...\n def __or__(self, n: int) -> int: ...\n def __xor__(self, n: int) -> int: ...\n def __lshift__(self, n: int) -> int: ...\n def __rshift__(self, n: int) -> int: ...\n def __rand__(self, n: int) -> int: ...\n def __ror__(self, n: int) -> int: ...\n def __rxor__(self, n: int) -> int: ...\n def __rlshift__(self, n: int) -> int: ...\n def __rrshift__(self, n: int) -> int: ...\n def __neg__(self) -> int: ...\n def __pos__(self) -> int: ...\n def __invert__(self) -> int: ...\n def __trunc__(self) -> int: ...\n def __ceil__(self) -> int: ...\n def __floor__(self) -> int: ...\n def __round__(self, ndigits: SupportsIndex = ...) -> int: ...\n def __getnewargs__(self) -> Tuple[int]: ...\n def __eq__(self, x: object) -> bool: ...\n def __ne__(self, x: object) -> bool: ...\n def __lt__(self, x: int) -> bool: ...\n def __le__(self, x: int) -> bool: ...\n def __gt__(self, x: int) -> bool: ...\n def __ge__(self, x: int) -> bool: ...\n def __str__(self) -> str: ...\n def __float__(self) -> float: ...\n def __int__(self) -> int: ...\n def __abs__(self) -> int: ...\n def __hash__(self) -> int: ...\n def __bool__(self) -> bool: ...\n def __index__(self) -> int: ...\n\nclass float:\n def __new__(\n cls: Type[_T], x: SupportsFloat | SupportsIndex | str | bytes | bytearray = ...\n ) -> _T: ...\n def __add__(self, x: float) -> float: ...\n def __sub__(self, x: float) -> float: ...\n def __mul__(self, x: float) -> float: ...\n def __floordiv__(self, x: float) -> float: ...\n def __truediv__(self, x: float) -> float: ...\n def __mod__(self, x: float) -> float: ...\n def __divmod__(self, x: float) -> Tuple[float, float]: ...\n def __pow__(\n self, x: float, mod: None = ...\n ) -> float: ... # In Python 3, returns complex if self is negative and x is not whole\n def __radd__(self, x: float) -> float: ...\n def __rsub__(self, x: float) -> float: ...\n def __rmul__(self, x: float) -> float: ...\n def __rfloordiv__(self, x: float) -> float: ...\n def __rtruediv__(self, x: float) -> float: ...\n def __rmod__(self, x: float) -> float: ...\n def __rdivmod__(self, x: float) -> Tuple[float, float]: ...\n def __rpow__(self, x: float, mod: None = ...) -> float: ...\n def __getnewargs__(self) -> Tuple[float]: ...\n def __trunc__(self) -> int: ...\n if sys.version_info >= (3, 9):\n def __ceil__(self) -> int: ...\n def __floor__(self) -> int: ...\n @overload\n def __round__(self, ndigits: None = ...) -> int: ...\n @overload\n def __round__(self, ndigits: SupportsIndex) -> float: ...\n def __eq__(self, x: object) -> bool: ...\n def __ne__(self, x: object) -> bool: ...\n def __lt__(self, x: float) -> bool: ...\n def __le__(self, x: float) -> bool: ...\n def __gt__(self, x: float) -> bool: ...\n def __ge__(self, x: float) -> bool: ...\n def __neg__(self) -> float: ...\n def __pos__(self) -> float: ...\n def __str__(self) -> str: ...\n def __int__(self) -> int: ...\n def __float__(self) -> float: ...\n def __abs__(self) -> float: ...\n def __hash__(self) -> int: ...\n def __bool__(self) -> bool: ...\n\nclass complex:\n @overload\n def __new__(cls: Type[_T], real: float = ..., imag: float = ...) -> _T: ...\n @overload\n def __new__(\n cls: Type[_T], real: str | SupportsComplex | SupportsIndex | complex\n ) -> _T: ...\n @property\n def real(self) -> float: ...\n @property\n def imag(self) -> float: ...\n def __add__(self, x: complex) -> complex: ...\n def __sub__(self, x: complex) -> complex: ...\n def __mul__(self, x: complex) -> complex: ...\n def __pow__(self, x: complex, mod: None = ...) -> complex: ...\n def __truediv__(self, x: complex) -> complex: ...\n def __radd__(self, x: complex) -> complex: ...\n def __rsub__(self, x: complex) -> complex: ...\n def __rmul__(self, x: complex) -> complex: ...\n def __rpow__(self, x: complex, mod: None = ...) -> complex: ...\n def __rtruediv__(self, x: complex) -> complex: ...\n def __eq__(self, x: object) -> bool: ...\n def __ne__(self, x: object) -> bool: ...\n def __neg__(self) -> complex: ...\n def __pos__(self) -> complex: ...\n def __str__(self) -> str: ...\n def __abs__(self) -> float: ...\n def __hash__(self) -> int: ...\n def __bool__(self) -> bool: ...\n\nclass str(Sequence[str]):\n @overload\n def __new__(cls: Type[_T], o: object = ...) -> _T: ...\n @overload\n def __new__(\n cls: Type[_T], o: bytes, encoding: str = ..., errors: str = ...\n ) -> _T: ...\n def count(\n self,\n x: str,\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> int: ...\n def encode(self, encoding: str = ..., errors: str = ...) -> bytes: ...\n def endswith(\n self,\n __suffix: str | Tuple[str, ...],\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> bool: ...\n def find(\n self,\n __sub: str,\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> int: ...\n def format(self, *args: object, **kwargs: object) -> str: ...\n def index(\n self,\n __sub: str,\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> int: ...\n def isalpha(self) -> bool: ...\n def isdigit(self) -> bool: ...\n def islower(self) -> bool: ...\n def isspace(self) -> bool: ...\n def isupper(self) -> bool: ...\n def join(self, __iterable: Iterable[str]) -> str: ...\n def lower(self) -> str: ...\n def lstrip(self, __chars: str | None = ...) -> str: ...\n def replace(self, __old: str, __new: str, __count: SupportsIndex = ...) -> str: ...\n def rfind(\n self,\n __sub: str,\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> int: ...\n def rindex(\n self,\n __sub: str,\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> int: ...\n def rsplit(\n self, sep: str | None = ..., maxsplit: SupportsIndex = ...\n ) -> list[str]: ...\n def rstrip(self, __chars: str | None = ...) -> str: ...\n def split(\n self, sep: str | None = ..., maxsplit: SupportsIndex = ...\n ) -> list[str]: ...\n def startswith(\n self,\n __prefix: str | Tuple[str, ...],\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> bool: ...\n def strip(self, __chars: str | None = ...) -> str: ...\n def upper(self) -> str: ...\n def __add__(self, s: str) -> str: ...\n # Incompatible with Sequence.__contains__\n def __contains__(self, o: str) -> bool: ... # type: ignore\n def __eq__(self, x: object) -> bool: ...\n def __ge__(self, x: str) -> bool: ...\n def __getitem__(self, i: int | slice) -> str: ...\n def __gt__(self, x: str) -> bool: ...\n def __hash__(self) -> int: ...\n def __iter__(self) -> Iterator[str]: ...\n def __le__(self, x: str) -> bool: ...\n def __len__(self) -> int: ...\n def __lt__(self, x: str) -> bool: ...\n def __mod__(self, x: Any) -> str: ...\n def __mul__(self, n: SupportsIndex) -> str: ...\n def __ne__(self, x: object) -> bool: ...\n def __repr__(self) -> str: ...\n def __rmul__(self, n: SupportsIndex) -> str: ...\n def __str__(self) -> str: ...\n def __getnewargs__(self) -> Tuple[str]: ...\n\nclass bytes(ByteString):\n @overload\n def __new__(cls: Type[_T], ints: Iterable[SupportsIndex]) -> _T: ...\n @overload\n def __new__(cls: Type[_T], string: str, encoding: str, errors: str = ...) -> _T: ...\n @overload\n def __new__(cls: Type[_T], length: SupportsIndex) -> _T: ...\n @overload\n def __new__(cls: Type[_T]) -> _T: ...\n @overload\n def __new__(cls: Type[_T], o: SupportsBytes) -> _T: ...\n def count(\n self,\n __sub: bytes | SupportsIndex,\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> int: ...\n def decode(self, encoding: str = ..., errors: str = ...) -> str: ...\n def endswith(\n self,\n __suffix: bytes | Tuple[bytes, ...],\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> bool: ...\n def find(\n self,\n __sub: bytes | SupportsIndex,\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> int: ...\n def index(\n self,\n __sub: bytes | SupportsIndex,\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> int: ...\n def isalpha(self) -> bool: ...\n def isdigit(self) -> bool: ...\n def islower(self) -> bool: ...\n def isspace(self) -> bool: ...\n def isupper(self) -> bool: ...\n def join(self, __iterable_of_bytes: Iterable[ByteString | memoryview]) -> bytes: ...\n def lower(self) -> bytes: ...\n def lstrip(self, __bytes: bytes | None = ...) -> bytes: ...\n def replace(\n self, __old: bytes, __new: bytes, __count: SupportsIndex = ...\n ) -> bytes: ...\n def rfind(\n self,\n __sub: bytes | SupportsIndex,\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> int: ...\n def rindex(\n self,\n __sub: bytes | SupportsIndex,\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> int: ...\n def rsplit(\n self, sep: bytes | None = ..., maxsplit: SupportsIndex = ...\n ) -> list[bytes]: ...\n def rstrip(self, __bytes: bytes | None = ...) -> bytes: ...\n def split(\n self, sep: bytes | None = ..., maxsplit: SupportsIndex = ...\n ) -> list[bytes]: ...\n def startswith(\n self,\n __prefix: bytes | Tuple[bytes, ...],\n __start: SupportsIndex | None = ...,\n __end: SupportsIndex | None = ...,\n ) -> bool: ...\n def strip(self, __bytes: bytes | None = ...) -> bytes: ...\n def upper(self) -> bytes: ...\n def __len__(self) -> int: ...\n def __iter__(self) -> Iterator[int]: ...\n def __str__(self) -> str: ...\n def __repr__(self) -> str: ...\n def __hash__(self) -> int: ...\n @overload\n def __getitem__(self, i: SupportsIndex) -> int: ...\n @overload\n def __getitem__(self, s: slice) -> bytes: ...\n def __add__(self, s: bytes) -> bytes: ...\n def __mul__(self, n: SupportsIndex) -> bytes: ...\n def __rmul__(self, n: SupportsIndex) -> bytes: ...\n def __mod__(self, value: Any) -> bytes: ...\n # Incompatible with Sequence.__contains__\n def __contains__(self, o: SupportsIndex | bytes) -> bool: ... # type: ignore\n def __eq__(self, x: object) -> bool: ...\n def __ne__(self, x: object) -> bool: ...\n def __lt__(self, x: bytes) -> bool: ...\n def __le__(self, x: bytes) -> bool: ...\n def __gt__(self, x: bytes) -> bool: ...\n def __ge__(self, x: bytes) -> bool: ...\n def __getnewargs__(self) -> Tuple[bytes]: ...\n\nclass bytearray:\n @overload\n def __init__(self) -> None: ...\n @overload\n def __init__(self, ints: Iterable[SupportsIndex]) -> None: ...\n @overload\n def __init__(self, string: str, encoding: str, errors: str = ...) -> None: ...\n @overload\n def __init__(self, length: SupportsIndex) -> None: ...\n def append(self, __item: SupportsIndex) -> None: ...\n def decode(self, encoding: str = ..., errors: str = ...) -> str: ...\n def extend(self, __iterable_of_ints: Iterable[SupportsIndex]) -> None: ...\n def __len__(self) -> int: ...\n def __iter__(self) -> Iterator[int]: ...\n def __str__(self) -> str: ...\n def __repr__(self) -> str: ...\n __hash__: None # type: ignore\n @overload\n def __getitem__(self, i: SupportsIndex) -> int: ...\n @overload\n def __getitem__(self, s: slice) -> bytearray: ...\n @overload\n def __setitem__(self, i: SupportsIndex, x: SupportsIndex) -> None: ...\n @overload\n def __setitem__(self, s: slice, x: Iterable[SupportsIndex] | bytes) -> None: ...\n def __delitem__(self, i: SupportsIndex | slice) -> None: ...\n def __add__(self, s: bytes) -> bytearray: ...\n def __iadd__(self, s: Iterable[int]) -> bytearray: ...\n def __mul__(self, n: SupportsIndex) -> bytearray: ...\n def __rmul__(self, n: SupportsIndex) -> bytearray: ...\n def __imul__(self, n: SupportsIndex) -> bytearray: ...\n def __mod__(self, value: Any) -> bytes: ...\n # Incompatible with Sequence.__contains__\n def __contains__(self, o: SupportsIndex | bytes) -> bool: ... # type: ignore\n def __eq__(self, x: object) -> bool: ...\n def __ne__(self, x: object) -> bool: ...\n def __lt__(self, x: bytes) -> bool: ...\n def __le__(self, x: bytes) -> bool: ...\n def __gt__(self, x: bytes) -> bool: ...\n def __ge__(self, x: bytes) -> bool: ...\n\nclass memoryview(Sized, Sequence[int]):\n def __init__(self, obj: ReadableBuffer) -> None: ...\n @overload\n def __getitem__(self, i: SupportsIndex) -> int: ...\n @overload\n def __getitem__(self, s: slice) -> memoryview: ...\n def __contains__(self, x: object) -> bool: ...\n def __iter__(self) -> Iterator[int]: ...\n def __len__(self) -> int: ...\n @overload\n def __setitem__(self, s: slice, o: bytes) -> None: ...\n @overload\n def __setitem__(self, i: SupportsIndex, o: SupportsIndex) -> None: ...\n\n@final\nclass bool(int):\n def __new__(cls: Type[_T], __o: object = ...) -> _T: ...\n @overload\n def __and__(self, x: bool) -> bool: ...\n @overload\n def __and__(self, x: int) -> int: ...\n @overload\n def __or__(self, x: bool) -> bool: ...\n @overload\n def __or__(self, x: int) -> int: ...\n @overload\n def __xor__(self, x: bool) -> bool: ...\n @overload\n def __xor__(self, x: int) -> int: ...\n @overload\n def __rand__(self, x: bool) -> bool: ...\n @overload\n def __rand__(self, x: int) -> int: ...\n @overload\n def __ror__(self, x: bool) -> bool: ...\n @overload\n def __ror__(self, x: int) -> int: ...\n @overload\n def __rxor__(self, x: bool) -> bool: ...\n @overload\n def __rxor__(self, x: int) -> int: ...\n def __getnewargs__(self) -> Tuple[int]: ...\n\nclass slice(object):\n start: Any\n step: Any\n stop: Any\n __hash__: None # type: ignore\n def indices(self, len: SupportsIndex) -> Tuple[int, int, int]: ...\n\nclass tuple(Sequence[_T_co], Generic[_T_co]):\n def __new__(cls: Type[_T], iterable: Iterable[_T_co] = ...) -> _T: ...\n def __len__(self) -> int: ...\n def __contains__(self, x: object) -> bool: ...\n @overload\n def __getitem__(self, x: int) -> _T_co: ...\n @overload\n def __getitem__(self, x: slice) -> Tuple[_T_co, ...]: ...\n def __iter__(self) -> Iterator[_T_co]: ...\n def __lt__(self, x: Tuple[_T_co, ...]) -> bool: ...\n def __le__(self, x: Tuple[_T_co, ...]) -> bool: ...\n def __gt__(self, x: Tuple[_T_co, ...]) -> bool: ...\n def __ge__(self, x: Tuple[_T_co, ...]) -> bool: ...\n @overload\n def __add__(self, x: Tuple[_T_co, ...]) -> Tuple[_T_co, ...]: ...\n @overload\n def __add__(self, x: Tuple[_T, ...]) -> Tuple[_T_co | _T, ...]: ...\n def __mul__(self, n: SupportsIndex) -> Tuple[_T_co, ...]: ...\n def __rmul__(self, n: SupportsIndex) -> Tuple[_T_co, ...]: ...\n def count(self, __value: Any) -> int: ...\n def index(\n self, __value: Any, __start: SupportsIndex = ..., __stop: SupportsIndex = ...\n ) -> int: ...\n\n# Can we remove this?\nclass function:\n # TODO not defined in builtins!\n __name__: str\n __module__: str\n __code__: CodeType\n __qualname__: str\n __annotations__: dict[str, Any]\n\nclass frozenset(AbstractSet[_T_co], Generic[_T_co]):\n @overload\n def __new__(cls: type[Self]) -> Self: ...\n @overload\n def __new__(cls: type[Self], __iterable: Iterable[_T_co]) -> Self: ...\n def copy(self) -> FrozenSet[_T_co]: ...\n def difference(self, *s: Iterable[object]) -> FrozenSet[_T_co]: ...\n def intersection(self, *s: Iterable[object]) -> FrozenSet[_T_co]: ...\n def isdisjoint(self, s: Iterable[_T_co]) -> bool: ...\n def issubset(self, s: Iterable[object]) -> bool: ...\n def issuperset(self, s: Iterable[object]) -> bool: ...\n def symmetric_difference(self, s: Iterable[_T_co]) -> FrozenSet[_T_co]: ...\n def union(self, *s: Iterable[_T_co]) -> FrozenSet[_T_co]: ...\n def __len__(self) -> int: ...\n def __contains__(self, o: object) -> bool: ...\n def __iter__(self) -> Iterator[_T_co]: ...\n def __str__(self) -> str: ...\n def __and__(self, s: AbstractSet[_T_co]) -> FrozenSet[_T_co]: ...\n def __or__(self, s: AbstractSet[_S]) -> FrozenSet[_T_co | _S]: ...\n def __sub__(self, s: AbstractSet[_T_co]) -> FrozenSet[_T_co]: ...\n def __xor__(self, s: AbstractSet[_S]) -> FrozenSet[_T_co | _S]: ...\n def __le__(self, s: AbstractSet[object]) -> bool: ...\n def __lt__(self, s: AbstractSet[object]) -> bool: ...\n def __ge__(self, s: AbstractSet[object]) -> bool: ...\n def __gt__(self, s: AbstractSet[object]) -> bool: ...\n if sys.version_info >= (3, 9):\n def __class_getitem__(cls, item: Any) -> GenericAlias: ...\n\nclass list(MutableSequence[_T], Generic[_T]):\n @overload\n def __init__(self) -> None: ...\n @overload\n def __init__(self, iterable: Iterable[_T]) -> None: ...\n def clear(self) -> None: ...\n def copy(self) -> list[_T]: ...\n def append(self, __object: _T) -> None: ...\n def extend(self, __iterable: Iterable[_T]) -> None: ...\n def pop(self, __index: SupportsIndex = ...) -> _T: ...\n def index(\n self, __value: _T, __start: SupportsIndex = ..., __stop: SupportsIndex = ...\n ) -> int: ...\n def count(self, __value: _T) -> int: ...\n def insert(self, __index: SupportsIndex, __object: _T) -> None: ...\n def remove(self, __value: _T) -> None: ...\n def reverse(self) -> None: ...\n @overload\n def sort(\n self: list[SupportsLessThanT], *, key: None = ..., reverse: bool = ...\n ) -> None: ...\n @overload\n def sort(\n self, *, key: Callable[[_T], SupportsLessThan], reverse: bool = ...\n ) -> None: ...\n def __len__(self) -> int: ...\n def __iter__(self) -> Iterator[_T]: ...\n def __str__(self) -> str: ...\n __hash__: None # type: ignore\n @overload\n def __getitem__(self, i: SupportsIndex) -> _T: ...\n @overload\n def __getitem__(self, s: slice) -> list[_T]: ...\n @overload\n def __setitem__(self, i: SupportsIndex, o: _T) -> None: ...\n @overload\n def __setitem__(self, s: slice, o: Iterable[_T]) -> None: ...\n def __delitem__(self, i: SupportsIndex | slice) -> None: ...\n def __add__(self, x: list[_T]) -> list[_T]: ...\n def __iadd__(self: _S, x: Iterable[_T]) -> _S: ...\n def __mul__(self, n: SupportsIndex) -> list[_T]: ...\n def __rmul__(self, n: SupportsIndex) -> list[_T]: ...\n def __imul__(self: _S, n: SupportsIndex) -> _S: ...\n def __contains__(self, o: object) -> bool: ...\n def __reversed__(self) -> Iterator[_T]: ...\n def __gt__(self, x: list[_T]) -> bool: ...\n def __ge__(self, x: list[_T]) -> bool: ...\n def __lt__(self, x: list[_T]) -> bool: ...\n def __le__(self, x: list[_T]) -> bool: ...\n if sys.version_info >= (3, 9):\n def __class_getitem__(cls, item: Any) -> GenericAlias: ...\n\nclass dict(MutableMapping[_KT, _VT], Generic[_KT, _VT]):\n @overload\n def __init__(self: dict[_KT, _VT]) -> None: ...\n @overload\n def __init__(self: dict[str, _VT], **kwargs: _VT) -> None: ...\n @overload\n def __init__(\n self, map: SupportsKeysAndGetItem[_KT, _VT], **kwargs: _VT\n ) -> None: ...\n @overload\n def __init__(self, iterable: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) -> None: ...\n def __new__(cls: Type[_T1], *args: Any, **kwargs: Any) -> _T1: ...\n def clear(self) -> None: ...\n def copy(self) -> dict[_KT, _VT]: ...\n def popitem(self) -> Tuple[_KT, _VT]: ...\n def setdefault(self, __key: _KT, __default: _VT = ...) -> _VT: ...\n @overload\n def update(self, __m: Mapping[_KT, _VT], **kwargs: _VT) -> None: ...\n @overload\n def update(self, __m: Iterable[Tuple[_KT, _VT]], **kwargs: _VT) -> None: ...\n @overload\n def update(self, **kwargs: _VT) -> None: ...\n def keys(self) -> KeysView[_KT]: ...\n def values(self) -> ValuesView[_VT]: ...\n def items(self) -> ItemsView[_KT, _VT]: ...\n @classmethod\n @overload\n def fromkeys(\n cls, __iterable: Iterable[_T], __value: None = ...\n ) -> dict[_T, Any | None]: ...\n @classmethod\n @overload\n def fromkeys(cls, __iterable: Iterable[_T], __value: _S) -> dict[_T, _S]: ...\n def __len__(self) -> int: ...\n def __getitem__(self, k: _KT) -> _VT: ...\n def __setitem__(self, k: _KT, v: _VT) -> None: ...\n def __delitem__(self, v: _KT) -> None: ...\n def __iter__(self) -> Iterator[_KT]: ...\n if sys.version_info >= (3, 8):\n def __reversed__(self) -> Iterator[_KT]: ...\n def __str__(self) -> str: ...\n __hash__: None # type: ignore\n if sys.version_info >= (3, 9):\n def __class_getitem__(cls, item: Any) -> GenericAlias: ...\n def __or__(self, __value: Mapping[_T1, _T2]) -> dict[_KT | _T1, _VT | _T2]: ...\n def __ror__(self, __value: Mapping[_T1, _T2]) -> dict[_KT | _T1, _VT | _T2]: ...\n def __ior__(self, __value: Mapping[_KT, _VT]) -> dict[_KT, _VT]: ... # type: ignore\n\nclass set(MutableSet[_T], Generic[_T]):\n def __init__(self, iterable: Iterable[_T] = ...) -> None: ...\n def add(self, element: _T) -> None: ...\n def clear(self) -> None: ...\n def copy(self) -> Set[_T]: ...\n def difference(self, *s: Iterable[Any]) -> Set[_T]: ...\n def difference_update(self, *s: Iterable[Any]) -> None: ...\n def discard(self, element: _T) -> None: ...\n def intersection(self, *s: Iterable[Any]) -> Set[_T]: ...\n def intersection_update(self, *s: Iterable[Any]) -> None: ...\n def isdisjoint(self, s: Iterable[Any]) -> bool: ...\n def issubset(self, s: Iterable[Any]) -> bool: ...\n def issuperset(self, s: Iterable[Any]) -> bool: ...\n def pop(self) -> _T: ...\n def remove(self, element: _T) -> None: ...\n def symmetric_difference(self, s: Iterable[_T]) -> Set[_T]: ...\n def symmetric_difference_update(self, s: Iterable[_T]) -> None: ...\n def union(self, *s: Iterable[_T]) -> Set[_T]: ...\n def update(self, *s: Iterable[_T]) -> None: ...\n def __len__(self) -> int: ...\n def __contains__(self, o: object) -> bool: ...\n def __iter__(self) -> Iterator[_T]: ...\n def __str__(self) -> str: ...\n def __and__(self, s: AbstractSet[object]) -> Set[_T]: ...\n def __iand__(self, s: AbstractSet[object]) -> Set[_T]: ...\n def __or__(self, s: AbstractSet[_S]) -> Set[_T | _S]: ...\n def __ior__(self, s: AbstractSet[_S]) -> Set[_T | _S]: ...\n def __sub__(self, s: AbstractSet[_T | None]) -> Set[_T]: ...\n def __isub__(self, s: AbstractSet[_T | None]) -> Set[_T]: ...\n def __xor__(self, s: AbstractSet[_S]) -> Set[_T | _S]: ...\n def __ixor__(self, s: AbstractSet[_S]) -> Set[_T | _S]: ...\n def __le__(self, s: AbstractSet[object]) -> bool: ...\n def __lt__(self, s: AbstractSet[object]) -> bool: ...\n def __ge__(self, s: AbstractSet[object]) -> bool: ...\n def __gt__(self, s: AbstractSet[object]) -> bool: ...\n __hash__: None # type: ignore\n if sys.version_info >= (3, 9):\n def __class_getitem__(cls, item: Any) -> GenericAlias: ...\n\nclass enumerate(Iterator[Tuple[int, _T]], Generic[_T]):\n def __init__(self, iterable: Iterable[_T], start: int = ...) -> None: ...\n def __iter__(self) -> Iterator[Tuple[int, _T]]: ...\n def __next__(self) -> Tuple[int, _T]: ...\n if sys.version_info >= (3, 9):\n def __class_getitem__(cls, item: Any) -> GenericAlias: ...\n\nclass range(Sequence[int]):\n start: int\n stop: int\n step: int\n @overload\n def __init__(self, stop: SupportsIndex) -> None: ...\n @overload\n def __init__(\n self, start: SupportsIndex, stop: SupportsIndex, step: SupportsIndex = ...\n ) -> None: ...\n def __len__(self) -> int: ...\n def __contains__(self, o: object) -> bool: ...\n def __iter__(self) -> Iterator[int]: ...\n @overload\n def __getitem__(self, i: SupportsIndex) -> int: ...\n @overload\n def __getitem__(self, s: slice) -> range: ...\n def __repr__(self) -> str: ...\n def __reversed__(self) -> Iterator[int]: ...\n\nclass property(object):\n fget: Callable[[Any], Any] | None\n fset: Callable[[Any, Any], None] | None\n fdel: Callable[[Any], None] | None\n def __init__(\n self,\n fget: Callable[[Any], Any] | None = ...,\n fset: Callable[[Any, Any], None] | None = ...,\n fdel: Callable[[Any], None] | None = ...,\n doc: str | None = ...,\n ) -> None: ...\n def getter(self, fget: Callable[[Any], Any]) -> property: ...\n def setter(self, fset: Callable[[Any, Any], None]) -> property: ...\n def deleter(self, fdel: Callable[[Any], None]) -> property: ...\n def __get__(self, obj: Any, type: type | None = ...) -> Any: ...\n def __set__(self, obj: Any, value: Any) -> None: ...\n def __delete__(self, obj: Any) -> None: ...\n\nclass _NotImplementedType(Any): # type: ignore\n # A little weird, but typing the __call__ as NotImplemented makes the error message\n # for NotImplemented() much better\n __call__: NotImplemented # type: ignore\n\nNotImplemented: _NotImplementedType\n\ndef abs(__x: SupportsAbs[_T]) -> _T: ...\ndef all(__iterable: Iterable[object]) -> bool: ...\ndef any(__iterable: Iterable[object]) -> bool: ...\ndef bin(__number: int | SupportsIndex) -> str: ...\n\nif sys.version_info >= (3, 7):\n def breakpoint(*args: Any, **kws: Any) -> None: ...\n\ndef callable(__obj: object) -> bool: ...\ndef chr(__i: int) -> str: ...\n\n# We define this here instead of using os.PathLike to avoid import cycle issues.\n# See https://github.com/python/typeshed/pull/991#issuecomment-288160993\n_AnyStr_co = TypeVar(\"_AnyStr_co\", str, bytes, covariant=True)\n\nclass _PathLike(Protocol[_AnyStr_co]):\n def __fspath__(self) -> _AnyStr_co: ...\n\nif sys.version_info >= (3, 10):\n def aiter(__iterable: AsyncIterable[_T]) -> AsyncIterator[_T]: ...\n @overload\n async def anext(__i: AsyncIterator[_T]) -> _T: ...\n @overload\n async def anext(__i: AsyncIterator[_T], default: _VT) -> _T | _VT: ...\n\ndef delattr(__obj: Any, __name: str) -> None: ...\ndef dir(__o: object = ...) -> list[str]: ...\n@overload\ndef divmod(__x: SupportsDivMod[_T_contra, _T_co], __y: _T_contra) -> _T_co: ...\n@overload\ndef divmod(__x: _T_contra, __y: SupportsRDivMod[_T_contra, _T_co]) -> _T_co: ...\ndef eval(\n __source: str | bytes | CodeType,\n __globals: dict[str, Any] | None = ...,\n __locals: Mapping[str, Any] | None = ...,\n) -> Any: ...\ndef exec(\n __source: str | bytes | CodeType,\n __globals: dict[str, Any] | None = ...,\n __locals: Mapping[str, Any] | None = ...,\n) -> Any: ...\n\nclass filter(Iterator[_T], Generic[_T]):\n @overload\n def __init__(self, __function: None, __iterable: Iterable[_T | None]) -> None: ...\n @overload\n def __init__(\n self, __function: Callable[[_T], Any], __iterable: Iterable[_T]\n ) -> None: ...\n def __iter__(self) -> Iterator[_T]: ...\n def __next__(self) -> _T: ...\n\n@overload\ndef getattr(__o: object, name: str) -> Any: ...\n\n# While technically covered by the last overload, spelling out the types for None and bool\n# help mypy out in some tricky situations involving type context (aka bidirectional inference)\n@overload\ndef getattr(__o: object, name: str, __default: None) -> Any | None: ...\n@overload\ndef getattr(__o: object, name: str, __default: bool) -> Any | bool: ...\n@overload\ndef getattr(__o: object, name: str, __default: _T) -> Any | _T: ...\ndef globals() -> dict[str, Any]: ...\ndef hasattr(__obj: object, __name: str) -> bool: ...\ndef hash(__obj: object) -> int: ...\ndef help(*args: Any, **kwds: Any) -> None: ...\ndef hex(__number: int | SupportsIndex) -> str: ...\ndef id(__obj: object) -> int: ...\ndef input(__prompt: Any = ...) -> str: ...\n@overload\ndef iter(__iterable: Iterable[_T]) -> Iterator[_T]: ...\n@overload\ndef iter(__function: Callable[[], _T | None], __sentinel: None) -> Iterator[_T]: ...\n@overload\ndef iter(__function: Callable[[], _T], __sentinel: Any) -> Iterator[_T]: ...\n\nif sys.version_info >= (3, 10):\n def isinstance(\n __obj: object,\n __class_or_tuple: type\n | types.UnionType\n | Tuple[type | types.UnionType | Tuple[Any, ...], ...],\n ) -> bool: ...\n def issubclass(\n __cls: type,\n __class_or_tuple: type\n | types.UnionType\n | Tuple[type | types.UnionType | Tuple[Any, ...], ...],\n ) -> bool: ...\n\nelse:\n def isinstance(\n __obj: object, __class_or_tuple: type | Tuple[type | Tuple[Any, ...], ...]\n ) -> bool: ...\n def issubclass(\n __cls: type, __class_or_tuple: type | Tuple[type | Tuple[Any, ...], ...]\n ) -> bool: ...\n\ndef len(__obj: Sized) -> int: ...\ndef locals() -> dict[str, Any]: ...\n\nclass map(Iterator[_S], Generic[_S]):\n @overload\n def __init__(self, __func: Callable[[_T1], _S], __iter1: Iterable[_T1]) -> None: ...\n @overload\n def __init__(\n self,\n __func: Callable[[_T1, _T2], _S],\n __iter1: Iterable[_T1],\n __iter2: Iterable[_T2],\n ) -> None: ...\n @overload\n def __init__(\n self,\n __func: Callable[[_T1, _T2, _T3], _S],\n __iter1: Iterable[_T1],\n __iter2: Iterable[_T2],\n __iter3: Iterable[_T3],\n ) -> None: ...\n @overload\n def __init__(\n self,\n __func: Callable[[_T1, _T2, _T3, _T4], _S],\n __iter1: Iterable[_T1],\n __iter2: Iterable[_T2],\n __iter3: Iterable[_T3],\n __iter4: Iterable[_T4],\n ) -> None: ...\n @overload\n def __init__(\n self,\n __func: Callable[[_T1, _T2, _T3, _T4, _T5], _S],\n __iter1: Iterable[_T1],\n __iter2: Iterable[_T2],\n __iter3: Iterable[_T3],\n __iter4: Iterable[_T4],\n __iter5: Iterable[_T5],\n ) -> None: ...\n @overload\n def __init__(\n self,\n __func: Callable[..., _S],\n __iter1: Iterable[Any],\n __iter2: Iterable[Any],\n __iter3: Iterable[Any],\n __iter4: Iterable[Any],\n __iter5: Iterable[Any],\n __iter6: Iterable[Any],\n *iterables: Iterable[Any],\n ) -> None: ...\n def __iter__(self) -> Iterator[_S]: ...\n def __next__(self) -> _S: ...\n\n@overload\ndef max(\n __arg1: SupportsLessThanT,\n __arg2: SupportsLessThanT,\n *_args: SupportsLessThanT,\n key: None = ...,\n) -> SupportsLessThanT: ...\n@overload\ndef max(\n __arg1: _T, __arg2: _T, *_args: _T, key: Callable[[_T], SupportsLessThan]\n) -> _T: ...\n@overload\ndef max(\n __iterable: Iterable[SupportsLessThanT], *, key: None = ...\n) -> SupportsLessThanT: ...\n@overload\ndef max(__iterable: Iterable[_T], *, key: Callable[[_T], SupportsLessThan]) -> _T: ...\n@overload\ndef max(\n __iterable: Iterable[SupportsLessThanT], *, key: None = ..., default: _T\n) -> SupportsLessThanT | _T: ...\n@overload\ndef max(\n __iterable: Iterable[_T1], *, key: Callable[[_T1], SupportsLessThan], default: _T2\n) -> _T1 | _T2: ...\n@overload\ndef min(\n __arg1: SupportsLessThanT,\n __arg2: SupportsLessThanT,\n *_args: SupportsLessThanT,\n key: None = ...,\n) -> SupportsLessThanT: ...\n@overload\ndef min(\n __arg1: _T, __arg2: _T, *_args: _T, key: Callable[[_T], SupportsLessThan]\n) -> _T: ...\n@overload\ndef min(\n __iterable: Iterable[SupportsLessThanT], *, key: None = ...\n) -> SupportsLessThanT: ...\n@overload\ndef min(__iterable: Iterable[_T], *, key: Callable[[_T], SupportsLessThan]) -> _T: ...\n@overload\ndef min(\n __iterable: Iterable[SupportsLessThanT], *, key: None = ..., default: _T\n) -> SupportsLessThanT | _T: ...\n@overload\ndef min(\n __iterable: Iterable[_T1], *, key: Callable[[_T1], SupportsLessThan], default: _T2\n) -> _T1 | _T2: ...\n@overload\ndef next(__i: Iterator[_T]) -> _T: ...\n@overload\ndef next(__i: Iterator[_T], default: _VT) -> _T | _VT: ...\ndef oct(__number: int | SupportsIndex) -> str: ...\n\n_OpenFile = Union[StrOrBytesPath, int]\n_Opener = Callable[[str, int], int]\n\n# Text mode: always returns a TextIOWrapper\n@overload\ndef open(\n file: _OpenFile,\n mode: OpenTextMode = ...,\n buffering: int = ...,\n encoding: str | None = ...,\n errors: str | None = ...,\n newline: str | None = ...,\n closefd: bool = ...,\n opener: _Opener | None = ...,\n) -> TextIO: ...\n\n# Unbuffered binary mode: returns a FileIO\n@overload\ndef open(\n file: _OpenFile,\n mode: OpenBinaryMode,\n buffering: int = ...,\n encoding: None = ...,\n errors: None = ...,\n newline: None = ...,\n closefd: bool = ...,\n opener: _Opener | None = ...,\n) -> BinaryIO: ...\n\n# Fallback if mode is not specified\n@overload\ndef open(\n file: _OpenFile,\n mode: str,\n buffering: int = ...,\n encoding: str | None = ...,\n errors: str | None = ...,\n newline: str | None = ...,\n closefd: bool = ...,\n opener: _Opener | None = ...,\n) -> IO[Any]: ...\ndef ord(__c: str | bytes) -> int: ...\ndef print(\n *values: object,\n sep: str | None = ...,\n end: str | None = ...,\n file: SupportsWrite[str] | None = ...,\n flush: bool = ...,\n) -> None: ...\n\n_E = TypeVar(\"_E\", contravariant=True)\n_M = TypeVar(\"_M\", contravariant=True)\n\nclass _SupportsPow2(Protocol[_E, _T_co]):\n def __pow__(self, __other: _E) -> _T_co: ...\n\nclass _SupportsPow3(Protocol[_E, _M, _T_co]):\n def __pow__(self, __other: _E, __modulo: _M) -> _T_co: ...\n\nif sys.version_info >= (3, 8):\n @overload\n def pow(\n base: int, exp: int, mod: None = ...\n ) -> Any: ... # returns int or float depending on whether exp is non-negative\n @overload\n def pow(base: int, exp: int, mod: int) -> int: ...\n @overload\n def pow(base: float, exp: float, mod: None = ...) -> float: ...\n @overload\n def pow(base: _SupportsPow2[_E, _T_co], exp: _E) -> _T_co: ...\n @overload\n def pow(base: _SupportsPow3[_E, _M, _T_co], exp: _E, mod: _M) -> _T_co: ...\n\nelse:\n @overload\n def pow(\n __base: int, __exp: int, __mod: None = ...\n ) -> Any: ... # returns int or float depending on whether exp is non-negative\n @overload\n def pow(__base: int, __exp: int, __mod: int) -> int: ...\n @overload\n def pow(__base: float, __exp: float, __mod: None = ...) -> float: ...\n @overload\n def pow(__base: _SupportsPow2[_E, _T_co], __exp: _E) -> _T_co: ...\n @overload\n def pow(__base: _SupportsPow3[_E, _M, _T_co], __exp: _E, __mod: _M) -> _T_co: ...\n\nclass reversed(Iterator[_T], Generic[_T]):\n @overload\n def __init__(self, __sequence: Reversible[_T]) -> None: ...\n @overload\n def __init__(self, __sequence: SupportsLenAndGetItem[_T]) -> None: ...\n def __iter__(self) -> Iterator[_T]: ...\n def __next__(self) -> _T: ...\n\ndef repr(__obj: object) -> str: ...\n@overload\ndef round(number: SupportsRound[Any]) -> int: ...\n@overload\ndef round(number: SupportsRound[Any], ndigits: None) -> int: ...\n@overload\ndef round(number: SupportsRound[_T], ndigits: SupportsIndex) -> _T: ...\ndef setattr(__obj: object, __name: str, __value: Any) -> None: ...\n@overload\ndef sorted(\n __iterable: Iterable[SupportsLessThanT], *, key: None = ..., reverse: bool = ...\n) -> list[SupportsLessThanT]: ...\n@overload\ndef sorted(\n __iterable: Iterable[_T],\n *,\n key: Callable[[_T], SupportsLessThan],\n reverse: bool = ...,\n) -> list[_T]: ...\n\nif sys.version_info >= (3, 8):\n @overload\n def sum(__iterable: Iterable[_T]) -> _T | int: ...\n @overload\n def sum(__iterable: Iterable[_T], start: _S) -> _T | _S: ...\n\nelse:\n @overload\n def sum(__iterable: Iterable[_T]) -> _T | int: ...\n @overload\n def sum(__iterable: Iterable[_T], __start: _S) -> _T | _S: ...\n\nclass zip(Iterator[_T_co], Generic[_T_co]):\n @overload\n def __new__(cls, __iter1: Iterable[_T1]) -> zip[Tuple[_T1]]: ...\n @overload\n def __new__(\n cls, __iter1: Iterable[_T1], __iter2: Iterable[_T2]\n ) -> zip[Tuple[_T1, _T2]]: ...\n @overload\n def __new__(\n cls, __iter1: Iterable[_T1], __iter2: Iterable[_T2], __iter3: Iterable[_T3]\n ) -> zip[Tuple[_T1, _T2, _T3]]: ...\n @overload\n def __new__(\n cls,\n __iter1: Iterable[_T1],\n __iter2: Iterable[_T2],\n __iter3: Iterable[_T3],\n __iter4: Iterable[_T4],\n ) -> zip[Tuple[_T1, _T2, _T3, _T4]]: ...\n @overload\n def __new__(\n cls,\n __iter1: Iterable[_T1],\n __iter2: Iterable[_T2],\n __iter3: Iterable[_T3],\n __iter4: Iterable[_T4],\n __iter5: Iterable[_T5],\n ) -> zip[Tuple[_T1, _T2, _T3, _T4, _T5]]: ...\n @overload\n def __new__(\n cls,\n __iter1: Iterable[Any],\n __iter2: Iterable[Any],\n __iter3: Iterable[Any],\n __iter4: Iterable[Any],\n __iter5: Iterable[Any],\n __iter6: Iterable[Any],\n *iterables: Iterable[Any],\n ) -> zip[Tuple[Any, ...]]: ...\n def __iter__(self) -> Iterator[_T_co]: ...\n def __next__(self) -> _T_co: ...\n\ndef __import__(\n name: str,\n globals: Mapping[str, Any] | None = ...,\n locals: Mapping[str, Any] | None = ...,\n fromlist: Sequence[str] = ...,\n level: int = ...,\n) -> Any: ...\n\n# Actually the type of Ellipsis is , but since it's\n# not exposed anywhere under that name, we make it private here.\nclass ellipsis: ...\n\nEllipsis: ellipsis\n\nclass BaseException(object):\n args: Tuple[Any, ...]\n __cause__: BaseException | None\n __context__: BaseException | None\n __suppress_context__: bool\n __traceback__: TracebackType | None\n def __init__(self, *args: object) -> None: ...\n def __str__(self) -> str: ...\n def __repr__(self) -> str: ...\n def with_traceback(self: _TBE, tb: TracebackType | None) -> _TBE: ...\n\nclass GeneratorExit(BaseException): ...\nclass KeyboardInterrupt(BaseException): ...\n\nclass SystemExit(BaseException):\n code: int\n\nclass Exception(BaseException): ...\n\nclass StopIteration(Exception):\n value: Any\n\n_StandardError = Exception\n\nclass OSError(Exception):\n errno: int\n strerror: str\n # filename, filename2 are actually str | bytes | None\n filename: Any\n filename2: Any\n if sys.platform == \"win32\":\n winerror: int\n\nif sys.platform == \"win32\":\n WindowsError = OSError\n\nclass ArithmeticError(_StandardError): ...\nclass AssertionError(_StandardError): ...\n\nclass AttributeError(_StandardError):\n if sys.version_info >= (3, 10):\n name: str\n obj: object\n\nclass EOFError(_StandardError): ...\n\nclass ImportError(_StandardError):\n def __init__(\n self, *args: object, name: str | None = ..., path: str | None = ...\n ) -> None: ...\n name: str | None\n path: str | None\n msg: str # undocumented\n\nclass LookupError(_StandardError): ...\nclass MemoryError(_StandardError): ...\n\nclass NameError(_StandardError):\n if sys.version_info >= (3, 10):\n name: str\n\nclass RuntimeError(_StandardError): ...\n\nclass StopAsyncIteration(Exception):\n value: Any\n\nclass SyntaxError(_StandardError):\n msg: str\n lineno: int | None\n offset: int | None\n text: str | None\n filename: str | None\n if sys.version_info >= (3, 10):\n end_lineno: int | None\n end_offset: int | None\n\nclass TypeError(_StandardError): ...\nclass ValueError(_StandardError): ...\nclass FloatingPointError(ArithmeticError): ...\nclass OverflowError(ArithmeticError): ...\nclass ZeroDivisionError(ArithmeticError): ...\nclass IndexError(LookupError): ...\nclass KeyError(LookupError): ...\nclass NotImplementedError(RuntimeError): ...\nclass IndentationError(SyntaxError): ...\nclass TabError(IndentationError): ...\n", "/typeshed/stdlib/errno.pyi": "from typing import Mapping\n\nerrorcode: Mapping[int, str]\n\nEACCES: int\nEADDRINUSE: int\nEAGAIN: int\nEALREADY: int\nEBADF: int\nECONNABORTED: int\nECONNREFUSED: int\nECONNRESET: int\nEEXIST: int\nEHOSTUNREACH: int\nEINPROGRESS: int\nEINVAL: int\nEIO: int\nEISDIR: int\nENOBUFS: int\nENODEV: int\nENOENT: int\nENOMEM: int\nENOTCONN: int\nEOPNOTSUPP: int\nEPERM: int\nETIMEDOUT: int\n", "/typeshed/stdlib/gc.pyi": "\"\"\"Contr\u00f4ler le ramasse-miettes\"\"\"\nfrom typing import overload\n\ndef enable() -> None:\n \"\"\"Active la collecte automatique du ramasse-miettes.\"\"\"\n ...\n\ndef disable() -> None:\n \"\"\"D\u00e9sactive la collecte automatique du ramasse-miettes.\n\nHeap memory can still be allocated,\nand garbage collection can still be initiated manually using ``gc.collect``.\"\"\"\n\ndef collect() -> None:\n \"\"\"Ex\u00e9cute une collecte avec le ramasse-miettes\"\"\"\n ...\n\ndef mem_alloc() -> int:\n \"\"\"Obtenir le nombre d'octets allou\u00e9s pour le tas en RAM\n\n:return: The number of bytes allocated.\n\nThis function is MicroPython extension.\"\"\"\n ...\n\ndef mem_free() -> int:\n \"\"\"Obtenir le nombre d'octets disponibles pour le tas en RAM, ou -1 si ce nombre est inconnu.\n\n:return: The number of bytes free.\n\nThis function is MicroPython extension.\"\"\"\n ...\n\n@overload\ndef threshold() -> int:\n \"\"\"Demander le seuil d'allocation suppl\u00e9mentaire GC.\n\n:return: The GC allocation threshold.\n\nThis function is a MicroPython extension. CPython has a similar\nfunction - ``set_threshold()``, but due to different GC\nimplementations, its signature and semantics are different.\"\"\"\n ...\n\n@overload\ndef threshold(amount: int) -> None:\n \"\"\"Fixer le seuil d'allocation suppl\u00e9mentaire GC.\n\nNormally, a collection is triggered only when a new allocation\ncannot be satisfied, i.e. on an out-of-memory (OOM) condition.\nIf this function is called, in addition to OOM, a collection\nwill be triggered each time after ``amount`` bytes have been\nallocated (in total, since the previous time such an amount of bytes\nhave been allocated). ``amount`` is usually specified as less than the\nfull heap size, with the intention to trigger a collection earlier than when the\nheap becomes exhausted, and in the hope that an early collection will prevent\nexcessive memory fragmentation. This is a heuristic measure, the effect\nof which will vary from application to application, as well as\nthe optimal value of the ``amount`` parameter.\n\nA value of -1 means a disabled allocation threshold.\n\nThis function is a MicroPython extension. CPython has a similar\nfunction - ``set_threshold()``, but due to different GC\nimplementations, its signature and semantics are different.\n\n:param amount: Le nombre d'octets apr\u00e8s lequel un passage du ramasse-miettes doit \u00eatre d\u00e9clench\u00e9.\"\"\"\n ...", - "/typeshed/stdlib/log.pyi": "\"\"\"Journalisez des donn\u00e9es sur votre micro:bit V2.\"\"\"\nfrom typing import Literal, Mapping, Optional, Union, overload\nMILLISECONDS = 1\n\"\"\"Format d'horodatage en millisecondes.\"\"\"\nSECONDS = 10\n\"\"\"Format d'horodatage en secondes.\"\"\"\nMINUTES = 600\n\"\"\"Format d'horodatage en minutes.\"\"\"\nHOURS = 36000\n\"\"\"Format d'horodatage en heures.\"\"\"\nDAYS = 864000\n\"\"\"Format d'horodatage en jours.\"\"\"\n\ndef set_labels(*labels: str, timestamp: Optional[Literal[1, 10, 36000, 864000]]=SECONDS) -> None:\n \"\"\"D\u00e9finir l'en-t\u00eate du fichier journal\n\nExample: ``log.set_labels('X', 'Y', 'Z', timestamp=log.MINUTES)``\n\nIdeally this function should be called a single time, before any data is\nlogged, to configure the data table header once.\n\nIf a log file already exists when the program starts, or if this function\nis called multiple times, it will check the labels already defined in the\nlog file. If this function call contains any new labels not already\npresent, it will generate a new header row with the additional columns.\n\nBy default the first column contains a timestamp for each row. The time\nunit can be selected via the timestamp argument.\n\n:param *labels: (*etiquettes) Un nombre quelconque d'arguments positionnels, chacun correspondant \u00e0 une entr\u00e9e dans l'en-t\u00eate du journal.\n:param timestamp: (horodatage) S\u00e9lectionnez l'unit\u00e9 d'horodatage qui sera automatiquement ajout\u00e9e comme premi\u00e8re colonne de chaque ligne. Les valeurs d'horodatage peuvent \u00eatre l'une des suivantes ``log.MILLISECONDS``, ``log.SECONDS``, ``log.MINUTES``, ``log.HOURS``, ``log.DAYS`` ou ``None`` pour d\u00e9sactiver l'horodatage. La valeur par d\u00e9faut est ``log.SECONDS``.\"\"\"\n ...\n\n@overload\ndef add(data_dictionary: Optional[Mapping[str, Union[str, int, float]]]) -> None:\n \"\"\"Ajoute une ligne de donn\u00e9es au journal en passant un dictionnaire d'en-t\u00eates et de valeurs.\n\nExample: ``log.add({ 'temp': temperature() })``\n\nEach call to this function adds a row to the log.\n\nNew labels not previously specified via the set_labels function, or by a\nprevious call to this function, will trigger a new header entry to be added\nto the log with the extra labels.\n\nLabels previously specified and not present in a call to this function will\nbe skipped with an empty value in the log row.\n\n:param data_dictionary: (dictionnaire de donn\u00e9es) Les donn\u00e9es \u00e0 enregistrer sous forme de dictionnaire avec une cl\u00e9 pour chaque en-t\u00eate.\"\"\"\n ...\n\n@overload\ndef add(**kwargs: Union[str, int, float]) -> None:\n \"\"\"Ajoute une ligne de donn\u00e9es au journal en utilisant des arguments nomm\u00e9s.\n\nExample: ``log.add(temp=temperature())``\n\nEach call to this function adds a row to the log.\n\nNew labels not previously specified via the set_labels function, or by a\nprevious call to this function, will trigger a new header entry to be added\nto the log with the extra labels.\n\nLabels previously specified and not present in a call to this function will\nbe skipped with an empty value in the log row.\"\"\"\n ...\n\ndef delete(full=False):\n \"\"\"Supprime le contenu du journal, y compris les en-t\u00eates.\n\nExample: ``log.delete()``\n\nTo add the log headers again the ``set_labels`` function should to be called after this function.\n\nThere are two erase modes; \u201cfull\u201d completely removes the data from the physical storage,\nand \u201cfast\u201d invalidates the data without removing it.\n\n:param full: ``True`` s\u00e9lectionne un effacement \"complet\" et ``False`` s\u00e9lectionne la m\u00e9thode d'effacement \"rapide\".\"\"\"\n ...\n\ndef set_mirroring(serial: bool):\n \"\"\"Configurez la mise en miroir de l'activit\u00e9 d'enregistrement des donn\u00e9es sur la sortie s\u00e9rie.\n\nExample: ``log.set_mirroring(True)``\n\nSerial mirroring is disabled by default. When enabled, it will print to serial each row logged into the log file.\n\n:param serial: ``True`` active la mise en miroir des donn\u00e9es sur la sortie s\u00e9rie.\"\"\"\n ...", + "/typeshed/stdlib/log.pyi": "\"\"\"Journalisez des donn\u00e9es sur votre micro:bit V2.\"\"\"\nfrom typing import Literal, Mapping, Optional, Union, overload\nMILLISECONDS = 1\n\"\"\"Format d'horodatage en millisecondes.\"\"\"\nSECONDS = 10\n\"\"\"Format d'horodatage en secondes.\"\"\"\nMINUTES = 600\n\"\"\"Format d'horodatage en minutes.\"\"\"\nHOURS = 36000\n\"\"\"Format d'horodatage en heures.\"\"\"\nDAYS = 864000\n\"\"\"Format d'horodatage en jours.\"\"\"\n\ndef set_labels(*labels: str, timestamp: Optional[Literal[1, 10, 36000, 864000]]=SECONDS) -> None:\n \"\"\"D\u00e9finir l'en-t\u00eate du fichier journal\n\nExample: ``log.set_labels('X', 'Y', 'Z', timestamp=log.MINUTES)``\n\nIdeally this function should be called a single time, before any data is\nlogged, to configure the data table header once.\n\nIf a log file already exists when the program starts, or if this function\nis called multiple times, it will check the labels already defined in the\nlog file. If this function call contains any new labels not already\npresent, it will generate a new header row with the additional columns.\n\nBy default the first column contains a timestamp for each row. The time\nunit can be selected via the timestamp argument.\n\n:param *labels: Un nombre quelconque d'arguments positionnels, chacun correspondant \u00e0 une entr\u00e9e dans l'en-t\u00eate du journal.\n:param timestamp: (horodatage) S\u00e9lectionnez l'unit\u00e9 d'horodatage qui sera automatiquement ajout\u00e9e comme premi\u00e8re colonne de chaque ligne. Les valeurs d'horodatage peuvent \u00eatre l'une des suivantes ``log.MILLISECONDS``, ``log.SECONDS``, ``log.MINUTES``, ``log.HOURS``, ``log.DAYS`` ou ``None`` pour d\u00e9sactiver l'horodatage. La valeur par d\u00e9faut est ``log.SECONDS``.\"\"\"\n ...\n\n@overload\ndef add(data_dictionary: Optional[Mapping[str, Union[str, int, float]]]) -> None:\n \"\"\"Ajoute une ligne de donn\u00e9es au journal en passant un dictionnaire d'en-t\u00eates et de valeurs.\n\nExample: ``log.add({ 'temp': temperature() })``\n\nEach call to this function adds a row to the log.\n\nNew labels not previously specified via the set_labels function, or by a\nprevious call to this function, will trigger a new header entry to be added\nto the log with the extra labels.\n\nLabels previously specified and not present in a call to this function will\nbe skipped with an empty value in the log row.\n\n:param data_dictionary: Les donn\u00e9es \u00e0 enregistrer sous forme de dictionnaire avec une cl\u00e9 pour chaque en-t\u00eate.\"\"\"\n ...\n\n@overload\ndef add(**kwargs: Union[str, int, float]) -> None:\n \"\"\"Ajoute une ligne de donn\u00e9es au journal en utilisant des arguments nomm\u00e9s.\n\nExample: ``log.add(temp=temperature())``\n\nEach call to this function adds a row to the log.\n\nNew labels not previously specified via the set_labels function, or by a\nprevious call to this function, will trigger a new header entry to be added\nto the log with the extra labels.\n\nLabels previously specified and not present in a call to this function will\nbe skipped with an empty value in the log row.\"\"\"\n ...\n\ndef delete(full=False):\n \"\"\"Supprime le contenu du journal, y compris les en-t\u00eates.\n\nExample: ``log.delete()``\n\nTo add the log headers again the ``set_labels`` function should to be called after this function.\n\nThere are two erase modes; \u201cfull\u201d completely removes the data from the physical storage,\nand \u201cfast\u201d invalidates the data without removing it.\n\n:param full: ``True`` s\u00e9lectionne un effacement \"complet\" et ``False`` s\u00e9lectionne la m\u00e9thode d'effacement \"rapide\".\"\"\"\n ...\n\ndef set_mirroring(serial: bool):\n \"\"\"Configurez la mise en miroir de l'activit\u00e9 d'enregistrement des donn\u00e9es sur la sortie s\u00e9rie.\n\nExample: ``log.set_mirroring(True)``\n\nSerial mirroring is disabled by default. When enabled, it will print to serial each row logged into the log file.\n\n:param serial: ``True`` active la mise en miroir des donn\u00e9es sur la sortie s\u00e9rie.\"\"\"\n ...", "/typeshed/stdlib/love.pyi": "def badaboom() -> None: ...\n", "/typeshed/stdlib/machine.pyi": "\"\"\"Utilitaires bas niveau\"\"\"\nfrom typing import Any\nfrom .microbit import MicroBitDigitalPin\n\ndef unique_id() -> bytes:\n \"\"\"R\u00e9cup\u00e8re une cha\u00eene d'octets repr\u00e9sentant un identifiant unique d'une carte.\n\nExample: ``machine.unique_id()``\n\n:return: An identifier that varies from one board instance to another.\"\"\"\n ...\n\ndef reset() -> None:\n \"\"\"R\u00e9initialise l'appareil d'une mani\u00e8re similaire \u00e0 la pression sur le bouton RESET externe.\n\nExample: ``machine.reset()``\"\"\"\n ...\n\ndef freq() -> int:\n \"\"\"R\u00e9cup\u00e8re la fr\u00e9quence du CPU en hertz.\n\nExample: ``machine.freq()``\n\n:return: The CPU frequency.\"\"\"\n ...\n\ndef disable_irq() -> Any:\n \"\"\"D\u00e9sactiver les demandes d'interruption.\n\nExample: ``interrupt_state = machine.disable_irq()``\n\n:return: the previous IRQ state which should be considered an opaque value\n\nThe return value should be passed to the ``enable_irq`` function to restore\ninterrupts to their original state.\"\"\"\n ...\n\ndef enable_irq(state: Any) -> None:\n \"\"\"R\u00e9activer les demandes d'interruption.\n\nExample: ``machine.enable_irq(interrupt_state)``\n\n:param state: La valeur qui a \u00e9t\u00e9 renvoy\u00e9e par l'appel le plus r\u00e9cent \u00e0 la fonction ``disable_irq``.\"\"\"\n ...\n\ndef time_pulse_us(pin: MicroBitDigitalPin, pulse_level: int, timeout_us: int=1000000) -> int:\n \"\"\"Chronom\u00e9trer une impulsion sur une broche.\n\nExample: ``time_pulse_us(pin0, 1)``\n\nIf the current input value of the pin is different to ``pulse_level``, the\nfunction first waits until the pin input becomes equal to\n``pulse_level``, then times the duration that the pin is equal to\n``pulse_level``. If the pin is already equal to ``pulse_level`` then timing\nstarts straight away.\n\n:param pin: (broche) La broche \u00e0 utiliser\n:param pulse_level: 0 pour chronom\u00e9trer une impulsion basse ou 1 pour chronom\u00e9trer une impulsion haute.\n:param timeout_us: Un d\u00e9lai d'attente en microseconde\n:return: The duration of the pulse in microseconds, or -1 for a timeout waiting for the level to match ``pulse_level``, or -2 on timeout waiting for the pulse to end\"\"\"\n ...\n\nclass mem:\n \"\"\"La classe pour les vues m\u00e9moire ``mem8``, ``mem16`` et ``mem32``.\"\"\"\n\n def __getitem__(self, address: int) -> int:\n \"\"\"Acc\u00e9der \u00e0 une valeur dans la m\u00e9moire.\n\n:param address: L'adresse en m\u00e9moire.\n:return: The value at that address as an integer.\"\"\"\n ...\n\n def __setitem__(self, address: int, value: int) -> None:\n \"\"\"\u00c9crire une valeur \u00e0 une adresse donn\u00e9e.\n\n:param address: L'adresse en m\u00e9moire.\n:param value: La valeur enti\u00e8re \u00e0 \u00e9crire.\"\"\"\n ...\nmem8: mem\n\"\"\"Vue de la m\u00e9moire au format 8-bit (octet).\"\"\"\nmem16: mem\n\"\"\"Vue de la m\u00e9moire au format 16-bit.\"\"\"\nmem32: mem\n\"\"\"Vue de la m\u00e9moire au format 32-bit.\"\"\"", "/typeshed/stdlib/math.pyi": "\"\"\"Fonctions math\u00e9matiques.\"\"\"\nfrom typing import Tuple\n\ndef acos(x: float) -> float:\n \"\"\"Calculer le cosinus invers\u00e9.\n\nExample: ``math.acos(1)``\n\n:param x: Un nombre\n:return: The inverse cosine of ``x``\"\"\"\n ...\n\ndef asin(x: float) -> float:\n \"\"\"Calculer le sinus invers\u00e9.\n\nExample: ``math.asin(0)``\n\n:param x: Un nombre\n:return: The inverse sine of ``x``\"\"\"\n ...\n\ndef atan(x: float) -> float:\n \"\"\"Calculer la tangente inverse.\n\nExample: ``math.atan(0)``\n\n:param x: Un nombre\n:return: The inverse tangent of ``x``\"\"\"\n ...\n\ndef atan2(y: float, x: float) -> float:\n \"\"\"Calculer la valeur principale de la tangente inverse de ``y/x``.\n\nExample: ``math.atan2(0, -1)``\n\n:param y: Un nombre\n:param x: Un nombre\n:return: The principal value of the inverse tangent of ``y/x``\"\"\"\n ...\n\ndef ceil(x: float) -> float:\n \"\"\"Arrondir un nombre vers l'infini positif.\n\nExample: ``math.ceil(0.1)``\n\n:param x: Un nombre\n:return: ``x`` rounded towards positive infinity.\"\"\"\n ...\n\ndef copysign(x: float, y: float) -> float:\n \"\"\"Calculer ``x`` avec le signe de ``y``.\n\nExample: ``math.copysign(1, -1)``\n\n:param x: Un nombre\n:param y: La source du signe pour la valeur de retour\n:return: ``x`` with the sign of ``y``\"\"\"\n ...\n\ndef cos(x: float) -> float:\n \"\"\"Calculer le cosinus de ``x``.\n\nExample: ``math.cos(0)``\n\n:param x: Un nombre\n:return: The cosine of ``x``\"\"\"\n ...\n\ndef degrees(x: float) -> float:\n \"\"\"Convertir les radians en degr\u00e9s. (degr\u00e9s)\n\nExample: ``math.degrees(2 * math.pi)``\n\n:param x: Une valeur en radians\n:return: The value converted to degrees\"\"\"\n ...\n\ndef exp(x: float) -> float:\n \"\"\"Calculer l'exponentiel de ``x``.\n\nExample: ``math.exp(1)``\n\n:param x: Un nombre\n:return: The exponential of ``x``.\"\"\"\n ...\n\ndef fabs(x: float) -> float:\n \"\"\"Renvoie la valeur absolue de ``x``.\n\nExample: ``math.fabs(-0.1)``\n\n:param x: Un nombre\n:return: The absolute value of ``x``\"\"\"\n ...\n\ndef floor(x: float) -> int:\n \"\"\"Arrondir un nombre vers l'infini n\u00e9gatif.\n\nExample: ``math.floor(0.9)``\n\n:param x: Un nombre\n:return: ``x`` rounded towards negative infinity.\"\"\"\n ...\n\ndef fmod(x: float, y: float) -> float:\n \"\"\"Calculer le reste de ``x/y``.\n\nExample: ``math.fmod(10, 3)``\n\n:param x: Le num\u00e9rateur\n:param y: Le d\u00e9nominateur\"\"\"\n ...\n\ndef frexp(x: float) -> Tuple[float, int]:\n \"\"\"D\u00e9compose un nombre \u00e0 virgule flottante en sa mantisse et son exposant.\n\nExample: ``mantissa, exponent = math.frexp(2)``\n\nThe returned value is the tuple ``(m, e)`` such that ``x == m * 2**e``\nexactly. If ``x == 0`` then the function returns ``(0.0, 0)``, otherwise\nthe relation ``0.5 <= abs(m) < 1`` holds.\n\n:param x: Un nombre \u00e0 virgule flottante\n:return: A tuple of length two containing its mantissa then exponent\"\"\"\n ...\n\ndef isfinite(x: float) -> bool:\n \"\"\"V\u00e9rifier si une valeur est finie.\n\nExample: ``math.isfinite(float('inf'))``\n\n:param x: Un nombre.\n:return: ``True`` if ``x`` is finite, ``False`` otherwise.\"\"\"\n ...\n\ndef isinf(x: float) -> bool:\n \"\"\"V\u00e9rifie si une valeur est infinie.\n\nExample: ``math.isinf(float('-inf'))``\n\n:param x: Un nombre.\n:return: ``True`` if ``x`` is infinite, ``False`` otherwise.\"\"\"\n ...\n\ndef isnan(x: float) -> bool:\n \"\"\"V\u00e9rifie si une valeur n'est pas un nombre (NaN).\n\nExample: ``math.isnan(float('nan'))``\n\n:param x: Un nombre\n:return: ``True`` if ``x`` is not-a-number (NaN), ``False`` otherwise.\"\"\"\n ...\n\ndef ldexp(x: float, exp: int) -> float:\n \"\"\"Calculer ``x * (2**exp)``.\n\nExample: ``math.ldexp(0.5, 2)``\n\n:param x: Un nombre\n:param exp: Exposant entier\n:return: ``x * (2**exp)``\"\"\"\n ...\n\ndef log(x: float, base: float=e) -> float:\n \"\"\"Calculer le logarithme de ``x`` \u00e0 la base donn\u00e9e (logarithme naturel par d\u00e9faut).\n\nExample: ``math.log(math.e)``\n\nWith one argument, return the natural logarithm of x (to base e).\n\nWith two arguments, return the logarithm of x to the given base, calculated as ``log(x)/log(base)``.\n\n:param x: Un nombre\n:param base: La base \u00e0 utiliser\n:return: The natural logarithm of ``x``\"\"\"\n ...\n\ndef modf(x: float) -> Tuple[float, float]:\n \"\"\"Calculer les parties fractionnelles et int\u00e9grales de ``x``.\n\nExample: ``fractional, integral = math.modf(1.5)``\n\n:param x: Un nombre\n:return: A tuple of two floats representing the fractional then integral parts of ``x``.\n\nBoth the fractional and integral values have the same sign as ``x``.\"\"\"\n ...\n\ndef pow(x: float, y: float) -> float:\n \"\"\"Renvoie ``x`` \u00e0 la puissance ``y``.\n\nExample: ``math.pow(4, 0.5)``\n\n:param x: Un nombre\n:param y: L'exposant\n:return: ``x`` to the power of ``y``\"\"\"\n ...\n\ndef radians(x: float) -> float:\n \"\"\"Convertir les degr\u00e9s en radians.\n\nExample: ``math.radians(360)``\n\n:param x: Une valeur en degr\u00e9s\n:return: The value converted to radians\"\"\"\n ...\n\ndef sin(x: float) -> float:\n \"\"\"Calculer le sinus de ``x``.\n\nExample: ``math.sin(math.pi/2)``\n\n:param x: Un nombre\n:return: The sine of ``x``\"\"\"\n ...\n\ndef sqrt(x: float) -> float:\n \"\"\"Calculer la racine carr\u00e9e de ``x``.\n\nExample: ``math.sqrt(4)``\n\n:param x: Un nombre\n:return: The square root of ``x``\"\"\"\n ...\n\ndef tan(x: float) -> float:\n \"\"\"Calculer la tangente de ``x``.\n\nExample: ``math.tan(0)``\n\n:param x: Un nombre\n:return: The tangent of ``x``.\"\"\"\n ...\n\ndef trunc(x: float) -> int:\n \"\"\"Arrondir un nombre vers 0.\n\nExample: ``math.trunc(-0.9)``\n\n:param x: Un nombre\n:return: ``x`` rounded towards zero.\"\"\"\n ...\ne: float\n\"\"\"Base du logarithme naturel\"\"\"\npi: float\n\"\"\"Le ratio entre la circonf\u00e9rence d'un cercle et son diam\u00e8tre\"\"\"", @@ -35,9 +35,9 @@ "/typeshed/stdlib/usys.pyi": "from sys import *\n", "/typeshed/stdlib/utime.pyi": "from time import *\n", "/typeshed/stdlib/_typeshed/__init__.pyi": "# Utility types for typeshed\n#\n# See the README.md file in this directory for more information.\n\nimport array\nimport sys\nfrom os import PathLike\nfrom typing import AbstractSet, Any, Container, Iterable, Protocol, Tuple, TypeVar, Union\nfrom typing_extensions import Literal, final\n\n_KT = TypeVar(\"_KT\")\n_KT_co = TypeVar(\"_KT_co\", covariant=True)\n_KT_contra = TypeVar(\"_KT_contra\", contravariant=True)\n_VT = TypeVar(\"_VT\")\n_VT_co = TypeVar(\"_VT_co\", covariant=True)\n_T = TypeVar(\"_T\")\n_T_co = TypeVar(\"_T_co\", covariant=True)\n_T_contra = TypeVar(\"_T_contra\", contravariant=True)\n\n# Use for \"self\" annotations:\n# def __enter__(self: Self) -> Self: ...\nSelf = TypeVar(\"Self\") # noqa Y001\n\n# stable\nclass IdentityFunction(Protocol):\n def __call__(self, __x: _T) -> _T: ...\n\nclass SupportsLessThan(Protocol):\n def __lt__(self, __other: Any) -> bool: ...\n\nSupportsLessThanT = TypeVar(\"SupportsLessThanT\", bound=SupportsLessThan) # noqa: Y001\n\nclass SupportsDivMod(Protocol[_T_contra, _T_co]):\n def __divmod__(self, __other: _T_contra) -> _T_co: ...\n\nclass SupportsRDivMod(Protocol[_T_contra, _T_co]):\n def __rdivmod__(self, __other: _T_contra) -> _T_co: ...\n\nclass SupportsLenAndGetItem(Protocol[_T_co]):\n def __len__(self) -> int: ...\n def __getitem__(self, __k: int) -> _T_co: ...\n\n# Mapping-like protocols\n\n# stable\nclass SupportsItems(Protocol[_KT_co, _VT_co]):\n def items(self) -> AbstractSet[Tuple[_KT_co, _VT_co]]: ...\n\n# stable\nclass SupportsKeysAndGetItem(Protocol[_KT, _VT_co]):\n def keys(self) -> Iterable[_KT]: ...\n def __getitem__(self, __k: _KT) -> _VT_co: ...\n\n# stable\nclass SupportsGetItem(Container[_KT_contra], Protocol[_KT_contra, _VT_co]):\n def __getitem__(self, __k: _KT_contra) -> _VT_co: ...\n\n# stable\nclass SupportsItemAccess(SupportsGetItem[_KT_contra, _VT], Protocol[_KT_contra, _VT]):\n def __setitem__(self, __k: _KT_contra, __v: _VT) -> None: ...\n def __delitem__(self, __v: _KT_contra) -> None: ...\n\n# These aliases are simple strings in Python 2.\nStrPath = Union[str, PathLike[str]] # stable\nBytesPath = Union[bytes, PathLike[bytes]] # stable\nStrOrBytesPath = Union[str, bytes, PathLike[str], PathLike[bytes]] # stable\n\nOpenTextModeUpdating = Literal[\n \"r+\",\n \"+r\",\n \"rt+\",\n \"r+t\",\n \"+rt\",\n \"tr+\",\n \"t+r\",\n \"+tr\",\n \"w+\",\n \"+w\",\n \"wt+\",\n \"w+t\",\n \"+wt\",\n \"tw+\",\n \"t+w\",\n \"+tw\",\n \"a+\",\n \"+a\",\n \"at+\",\n \"a+t\",\n \"+at\",\n \"ta+\",\n \"t+a\",\n \"+ta\",\n \"x+\",\n \"+x\",\n \"xt+\",\n \"x+t\",\n \"+xt\",\n \"tx+\",\n \"t+x\",\n \"+tx\",\n]\nOpenTextModeWriting = Literal[\"w\", \"wt\", \"tw\", \"a\", \"at\", \"ta\", \"x\", \"xt\", \"tx\"]\nOpenTextModeReading = Literal[\"r\", \"rt\", \"tr\", \"U\", \"rU\", \"Ur\", \"rtU\", \"rUt\", \"Urt\", \"trU\", \"tUr\", \"Utr\"]\nOpenTextMode = Union[OpenTextModeUpdating, OpenTextModeWriting, OpenTextModeReading]\nOpenBinaryModeUpdating = Literal[\n \"rb+\",\n \"r+b\",\n \"+rb\",\n \"br+\",\n \"b+r\",\n \"+br\",\n \"wb+\",\n \"w+b\",\n \"+wb\",\n \"bw+\",\n \"b+w\",\n \"+bw\",\n \"ab+\",\n \"a+b\",\n \"+ab\",\n \"ba+\",\n \"b+a\",\n \"+ba\",\n \"xb+\",\n \"x+b\",\n \"+xb\",\n \"bx+\",\n \"b+x\",\n \"+bx\",\n]\nOpenBinaryModeWriting = Literal[\"wb\", \"bw\", \"ab\", \"ba\", \"xb\", \"bx\"]\nOpenBinaryModeReading = Literal[\"rb\", \"br\", \"rbU\", \"rUb\", \"Urb\", \"brU\", \"bUr\", \"Ubr\"]\nOpenBinaryMode = Union[OpenBinaryModeUpdating, OpenBinaryModeReading, OpenBinaryModeWriting]\n\n# stable\nclass HasFileno(Protocol):\n def fileno(self) -> int: ...\n\nFileDescriptor = int # stable\nFileDescriptorLike = Union[int, HasFileno] # stable\n\n# stable\nclass SupportsRead(Protocol[_T_co]):\n def read(self, __length: int = ...) -> _T_co: ...\n\n# stable\nclass SupportsReadline(Protocol[_T_co]):\n def readline(self, __length: int = ...) -> _T_co: ...\n\n# stable\nclass SupportsNoArgReadline(Protocol[_T_co]):\n def readline(self) -> _T_co: ...\n\n# stable\nclass SupportsWrite(Protocol[_T_contra]):\n def write(self, __s: _T_contra) -> Any: ...\n\nReadableBuffer = Union[bytes, bytearray, memoryview, array.array[Any]] # stable\nWriteableBuffer = Union[bytearray, memoryview, array.array[Any]] # stable\n\n# stable\nif sys.version_info >= (3, 10):\n from types import NoneType as NoneType\nelse:\n # Used by type checkers for checks involving None (does not exist at runtime)\n @final\n class NoneType:\n def __bool__(self) -> Literal[False]: ...\n", - "/typeshed/stdlib/microbit/__init__.pyi": "\"\"\"Broches, images, sons, temp\u00e9rature et volume\"\"\"\nfrom typing import Any, Callable, List, Optional, Tuple, Union, overload\nfrom _typeshed import ReadableBuffer\nfrom . import accelerometer as accelerometer\nfrom . import audio as audio\nfrom . import compass as compass\nfrom . import display as display\nfrom . import i2c as i2c\nfrom . import microphone as microphone\nfrom . import speaker as speaker\nfrom . import spi as spi\nfrom . import uart as uart\n\ndef run_every(callback: Optional[Callable[[], None]]=None, days: int=0, h: int=0, min: int=0, s: int=0, ms: int=0) -> Callable[[Callable[[], None]], Callable[[], None]]:\n \"\"\"Planifie l'ex\u00e9cution d'une fonction \u00e0 l'intervalle sp\u00e9cifi\u00e9 par les arguments temporels **V2 uniquement**.\n\nExample: ``run_every(my_logging, min=5)``\n\n``run_every`` can be used in two ways:\n\nAs a Decorator - placed on top of the function to schedule. For example::\n\n @run_every(h=1, min=20, s=30, ms=50)\n def my_function():\n # Do something here\n\nAs a Function - passing the callback as a positional argument. For example::\n\n def my_function():\n # Do something here\n run_every(my_function, s=30)\n\nEach argument corresponds to a different time unit and they are additive.\nSo ``run_every(min=1, s=30)`` schedules the callback every minute and a half.\n\nWhen an exception is thrown inside the callback function it deschedules the\nfunction. To avoid this you can catch exceptions with ``try/except``.\n\n:param callback: Fonction \u00e0 appeler \u00e0 l'intervalle fourni. \u00c0 omettre en cas d'utilisation comme d\u00e9corateur.\n:param days: D\u00e9finit la marque du jour pour la programmation.\n:param h: D\u00e9finit la marque d'heure pour la programmation.\n:param min: D\u00e9finit la marque de minute pour la programmation.\n:param s: D\u00e9finit la marque de seconde pour la programmation.\n:param ms: D\u00e9finit la marque de milliseconde pour la programmation.\"\"\"\n\ndef panic(n: int) -> None:\n \"\"\"Passer en mode panique.\n\nExample: ``panic(127)``\n\n:param n: Un nombre entier arbitraire <= 255 pour indiquer un \u00e9tat.\n\nRequires restart.\"\"\"\n\ndef reset() -> None:\n \"\"\"Red\u00e9marrer la carte.\"\"\"\n\n@overload\ndef scale(value: float, from_: Tuple[float, float], to: Tuple[int, int]) -> int:\n \"\"\"Convertit une valeur dans intervalle donn\u00e9 vers son \u00e9quivalent dans un autre intervalle d'entiers. (Mise \u00e0 l'\u00e9chelle)\n\nExample: ``volume = scale(accelerometer.get_x(), from_=(-2000, 2000), to=(0, 255))``\n\nFor example, to convert an accelerometer X value to a speaker volume.\n\nIf one of the numbers in the ``to`` parameter is a floating point\n(i.e a decimal number like ``10.0``), this function will return a\nfloating point number.\n\n temp_fahrenheit = scale(30, from_=(0.0, 100.0), to=(32.0, 212.0))\n\n:param value: Un nombre \u00e0 convertir.\n:param from_: (de) Un tuple qui d\u00e9finit l'intervalle de d\u00e9part.\n:param to: (vers) Un tuple qui d\u00e9finit l'intervalle d'arriv\u00e9e.\n:return: The ``value`` converted to the ``to`` range.\"\"\"\n\n@overload\ndef scale(value: float, from_: Tuple[float, float], to: Tuple[float, float]) -> float:\n \"\"\"Convertit une valeur dans intervalle donn\u00e9 vers son \u00e9quivalent dans un autre intervalle de nombres \u00e0 virgule flottante. (Mise \u00e0 l'\u00e9chelle)\n\nExample: ``temp_fahrenheit = scale(30, from_=(0.0, 100.0), to=(32.0, 212.0))``\n\nFor example, to convert temperature from a Celsius scale to Fahrenheit.\n\nIf one of the numbers in the ``to`` parameter is a floating point\n(i.e a decimal number like ``10.0``), this function will return a\nfloating point number.\nIf they are both integers (i.e ``10``), it will return an integer::\n\n returns_int = scale(accelerometer.get_x(), from_=(-2000, 2000), to=(0, 255))\n\n:param value: Un nombre \u00e0 convertir.\n:param from_: (de) Un tuple qui d\u00e9finit l'intervalle de d\u00e9part.\n:param to: (vers) Un tuple qui d\u00e9finit l'intervalle d'arriv\u00e9e.\n:return: The ``value`` converted to the ``to`` range.\"\"\"\n\ndef sleep(n: float) -> None:\n \"\"\"Attendre ``n`` millisecondes.\n\nExample: ``sleep(1000)``\n\n:param n: Le nombre de millisecondes \u00e0 attendre\n\nOne second is 1000 milliseconds, so::\n\n microbit.sleep(1000)\n\nwill pause the execution for one second.\"\"\"\n\ndef running_time() -> int:\n \"\"\"Obtenir le temps de fonctionnement de la carte.\n\n:return: The number of milliseconds since the board was switched on or restarted.\"\"\"\n\ndef temperature() -> int:\n \"\"\"Obtenir la temp\u00e9rature du micro:bit en degr\u00e9s Celcius.\"\"\"\n\ndef set_volume(v: int) -> None:\n \"\"\"D\u00e9finit le volume.\n\nExample: ``set_volume(127)``\n\n:param v: Une valeur entre 0 (bas) et 255 (haut).\n\nOut of range values will be clamped to 0 or 255.\n\n**V2** only.\"\"\"\n ...\n\nclass Button:\n \"\"\"La classe pour les boutons ``button_a`` et ``button_b``.\"\"\"\n\n def is_pressed(self) -> bool:\n \"\"\"V\u00e9rifier si le bouton est appuy\u00e9.\n\n:return: ``True`` if the specified button ``button`` is pressed, and ``False`` otherwise.\"\"\"\n ...\n\n def was_pressed(self) -> bool:\n \"\"\"V\u00e9rifie si le bouton a \u00e9t\u00e9 press\u00e9 depuis que l'appareil a \u00e9t\u00e9 d\u00e9marr\u00e9 ou depuis la derni\u00e8re fois o\u00f9 cette m\u00e9thode a \u00e9t\u00e9 appel\u00e9e.\n\nCalling this method will clear the press state so\nthat the button must be pressed again before this method will return\n``True`` again.\n\n:return: ``True`` if the specified button ``button`` was pressed, and ``False`` otherwise\"\"\"\n ...\n\n def get_presses(self) -> int:\n \"\"\"Obtenir le nombre total d'occurrences o\u00f9 le bouton a \u00e9t\u00e9 appuy\u00e9, et r\u00e9initialise ce total avant de retourner.\n\n:return: The number of presses since the device started or the last time this method was called\"\"\"\n ...\nbutton_a: Button\n\"\"\"L'objet bouton ``Button`` gauche.\"\"\"\nbutton_b: Button\n\"\"\"L'objet bouton ``Button`` droit.\"\"\"\n\nclass MicroBitDigitalPin:\n \"\"\"Une broche num\u00e9rique.\n\nSome pins support analog and touch features using the ``MicroBitAnalogDigitalPin`` and ``MicroBitTouchPin`` subclasses.\"\"\"\n NO_PULL: int\n PULL_UP: int\n PULL_DOWN: int\n\n def read_digital(self) -> int:\n \"\"\"R\u00e9cup\u00e8re la valeur num\u00e9rique de la broche\n\nExample: ``value = pin0.read_digital()``\n\n:return: 1 if the pin is high, and 0 if it's low.\"\"\"\n ...\n\n def write_digital(self, value: int) -> None:\n \"\"\"D\u00e9finit la valeur num\u00e9rique de la broche\n\nExample: ``pin0.write_digital(1)``\n\n:param value: 1 pour d\u00e9finir la broche \u00e0 un niveau haut ou 0 pour d\u00e9finir la broche \u00e0 un niveau bas\"\"\"\n ...\n\n def set_pull(self, value: int) -> None:\n \"\"\"D\u00e9finissez l'\u00e9tat de tirage sur l'une des trois valeurs possibles\\xa0: ``PULL_UP``, ``PULL_DOWN`` ou ``NO_PULL``.\n\nExample: ``pin0.set_pull(pin0.PULL_UP)``\n\n:param value: L'\u00e9tat de tirage sur la broche correspondante, par exemple ``pin0.PULL_UP``.\"\"\"\n ...\n\n def get_pull(self) -> int:\n \"\"\"Obtenir l'\u00e9tat de tirage sur une broche.\n\nExample: ``pin0.get_pull()``\n\n:return: ``NO_PULL``, ``PULL_DOWN``, or ``PULL_UP``\n\nThese are set using the ``set_pull()`` method or automatically configured\nwhen a pin mode requires it.\"\"\"\n ...\n\n def get_mode(self) -> str:\n \"\"\"Renvoie le mode de la broche\n\nExample: ``pin0.get_mode()``\n\nWhen a pin is used for a specific function, like\nwriting a digital value, or reading an analog value, the pin mode\nchanges.\n\n:return: ``\"unused\"``, ``\"analog\"``, ``\"read_digital\"``, ``\"write_digital\"``, ``\"display\"``, ``\"button\"``, ``\"music\"``, ``\"audio\"``, ``\"touch\"``, ``\"i2c\"``, or ``\"spi\"``\"\"\"\n ...\n\n def write_analog(self, value: int) -> None:\n \"\"\"Sortie d'un signal PWM sur la broche, avec un rapport cyclique proportionnel \u00e0 ``value``.\n\nExample: ``pin0.write_analog(254)``\n\n:param value: Un entier ou un nombre \u00e0 virgule flottante entre 0 (rapport cyclique \u00e0 0%) et 1023 (rapport cyclique \u00e0 100%).\"\"\"\n\n def set_analog_period(self, period: int) -> None:\n \"\"\"D\u00e9finit la p\u00e9riode de sortie du signal PWM \u00e0 ``period`` en millisecondes.\n\nExample: ``pin0.set_analog_period(10)``\n\n:param period: La p\u00e9riode en millisecondes avec une valeur minimale valide de 1 ms.\"\"\"\n\n def set_analog_period_microseconds(self, period: int) -> None:\n \"\"\"D\u00e9finit la p\u00e9riode de sortie du signal PWM \u00e0 ``period`` en millisecondes.\n\nExample: ``pin0.set_analog_period_microseconds(512)``\n\n:param period: La p\u00e9riode en microsecondes avec une valeur minimale valide de 256\u00b5s.\"\"\"\n\nclass MicroBitAnalogDigitalPin(MicroBitDigitalPin):\n \"\"\"Une broche avec des fonctions analogiques et num\u00e9riques.\"\"\"\n\n def read_analog(self) -> int:\n \"\"\"Lit la tension appliqu\u00e9e \u00e0 la broche.\n\nExample: ``pin0.read_analog()``\n\n:return: An integer between 0 (meaning 0V) and 1023 (meaning 3.3V).\"\"\"\n\nclass MicroBitTouchPin(MicroBitAnalogDigitalPin):\n \"\"\"Une broche avec des fonctions analogiques, num\u00e9riques et tactiles.\"\"\"\n CAPACITIVE: int\n RESISTIVE: int\n\n def is_touched(self) -> bool:\n \"\"\"V\u00e9rifie si la broche est touch\u00e9e.\n\nExample: ``pin0.is_touched()``\n\nThe default touch mode for the pins on the edge connector is ``resistive``.\nThe default for the logo pin **V2** is ``capacitive``.\n\n**Resistive touch**\nThis test is done by measuring how much resistance there is between the\npin and ground. A low resistance gives a reading of ``True``. To get\na reliable reading using a finger you may need to touch the ground pin\nwith another part of your body, for example your other hand.\n\n**Capacitive touch**\nThis test is done by interacting with the electric field of a capacitor\nusing a finger as a conductor. `Capacitive touch\n`_\ndoes not require you to make a ground connection as part of a circuit.\n\n:return: ``True`` if the pin is being touched with a finger, otherwise return ``False``.\"\"\"\n ...\n\n def set_touch_mode(self, value: int) -> None:\n \"\"\"D\u00e9finit le mode tactile pour la broche.\n\nExample: ``pin0.set_touch_mode(pin0.CAPACITIVE)``\n\nThe default touch mode for the pins on the edge connector is\n``resistive``. The default for the logo pin **V2** is ``capacitive``.\n\n:param value: ``CAPACITIVE`` ou ``RESISTIVE`` pour la broche correspondante.\"\"\"\n ...\npin0: MicroBitTouchPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques, analogiques, et tactiles.\"\"\"\npin1: MicroBitTouchPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques, analogiques, et tactiles.\"\"\"\npin2: MicroBitTouchPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques, analogiques, et tactiles.\"\"\"\npin3: MicroBitAnalogDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques et analogiques.\"\"\"\npin4: MicroBitAnalogDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques et analogiques.\"\"\"\npin5: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin6: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin7: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin8: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin9: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin10: MicroBitAnalogDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques et analogiques.\"\"\"\npin11: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin12: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin13: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin14: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin15: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin16: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin19: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin20: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin_logo: MicroBitTouchPin\n\"\"\"Une broche logo sensible au toucher sur l'avant du micro:bit, qui est d\u00e9finie par d\u00e9faut en mode tactile capacitif.\"\"\"\npin_speaker: MicroBitAnalogDigitalPin\n\"\"\"Une broche pour adresser le haut-parleur micro:bit.\n\nThis API is intended only for use in Pulse-Width Modulation pin operations e.g. pin_speaker.write_analog(128).\n\"\"\"\n\nclass Image:\n \"\"\"Une image \u00e0 afficher sur l'\u00e9cran LED du micro:bit.\n\nGiven an image object it's possible to display it via the ``display`` API::\n\n display.show(Image.HAPPY)\"\"\"\n HEART: Image\n \"\"\"Image d'un c\u0153ur.\"\"\"\n HEART_SMALL: Image\n \"\"\"Petite image d'un c\u0153ur\"\"\"\n HAPPY: Image\n \"\"\"Image de visage heureux.\"\"\"\n SMILE: Image\n \"\"\"Image de visage souriant.\"\"\"\n SAD: Image\n \"\"\"Image de visage triste.\"\"\"\n CONFUSED: Image\n \"\"\"Image d'un visage perplexe.\"\"\"\n ANGRY: Image\n \"\"\"Image de visage en col\u00e8re.\"\"\"\n ASLEEP: Image\n \"\"\"Image de visage endormi\"\"\"\n SURPRISED: Image\n \"\"\"Image de visage surpris.\"\"\"\n SILLY: Image\n \"\"\"Image de visage absurde.\"\"\"\n FABULOUS: Image\n \"\"\"Image de visage avec lunettes de soleil.\"\"\"\n MEH: Image\n \"\"\"Image de visage pas impressionn\u00e9\"\"\"\n YES: Image\n \"\"\"Image d'une coche.\"\"\"\n NO: Image\n \"\"\"Image d'une croix.\"\"\"\n CLOCK12: Image\n \"\"\"Image avec une ligne indiquant vers 12 heures.\"\"\"\n CLOCK11: Image\n \"\"\"Image avec une ligne indiquant vers 11 heures.\"\"\"\n CLOCK10: Image\n \"\"\"Image avec une ligne indiquant vers 10 heures.\"\"\"\n CLOCK9: Image\n \"\"\"Image avec une ligne indiquant vers 9 heures.\"\"\"\n CLOCK8: Image\n \"\"\"Image avec une ligne indiquant vers 8 heures.\"\"\"\n CLOCK7: Image\n \"\"\"Image avec une ligne indiquant vers 7 heures.\"\"\"\n CLOCK6: Image\n \"\"\"Image avec une ligne indiquant vers 6 heures.\"\"\"\n CLOCK5: Image\n \"\"\"Image avec une ligne indiquant vers 5 heures.\"\"\"\n CLOCK4: Image\n \"\"\"Image avec une ligne indiquant vers 4 heures.\"\"\"\n CLOCK3: Image\n \"\"\"Image avec une ligne indiquant vers 3 heures.\"\"\"\n CLOCK2: Image\n \"\"\"Image avec une ligne indiquant vers 2 heures.\"\"\"\n CLOCK1: Image\n \"\"\"Image avec une ligne indiquant vers 1 heure.\"\"\"\n ARROW_N: Image\n \"\"\"Image de fl\u00e8che pointant vers le nord.\"\"\"\n ARROW_NE: Image\n \"\"\"Image de fl\u00e8che pointant vers le nord est.\"\"\"\n ARROW_E: Image\n \"\"\"Image de fl\u00e8che pointant vers l'est.\"\"\"\n ARROW_SE: Image\n \"\"\"Image de fl\u00e8che pointant vers le sud-est.\"\"\"\n ARROW_S: Image\n \"\"\"Image de fl\u00e8che pointant vers le sud.\"\"\"\n ARROW_SW: Image\n \"\"\"Image de fl\u00e8che pointant vers le sud-ouest.\"\"\"\n ARROW_W: Image\n \"\"\"Image de fl\u00e8che pointant vers l'ouest.\"\"\"\n ARROW_NW: Image\n \"\"\"Image de fl\u00e8che pointant vers le nord ouest.\"\"\"\n TRIANGLE: Image\n \"\"\"Image d'un triangle pointant vers le haut.\"\"\"\n TRIANGLE_LEFT: Image\n \"\"\"Image d'un triangle dans le coin gauche.\"\"\"\n CHESSBOARD: Image\n \"\"\"\u00c9clairage alternatif des LEDs dans un motif d'\u00e9chiquier.\"\"\"\n DIAMOND: Image\n \"\"\"Image de diamant.\"\"\"\n DIAMOND_SMALL: Image\n \"\"\"Petite image de diamant.\"\"\"\n SQUARE: Image\n \"\"\"Image de carr\u00e9.\"\"\"\n SQUARE_SMALL: Image\n \"\"\"Petite image de carr\u00e9.\"\"\"\n RABBIT: Image\n \"\"\"Image de lapin.\"\"\"\n COW: Image\n \"\"\"Image de vache.\"\"\"\n MUSIC_CROTCHET: Image\n \"\"\"Image d'une note.\"\"\"\n MUSIC_QUAVER: Image\n \"\"\"Image d'une croche.\"\"\"\n MUSIC_QUAVERS: Image\n \"\"\"Image d'une paire de croche.\"\"\"\n PITCHFORK: Image\n \"\"\"Image d'une fourche.\"\"\"\n XMAS: Image\n \"\"\"Image d'un arbre de No\u00ebl.\"\"\"\n PACMAN: Image\n \"\"\"Image du personnage d'arcade Pac-Man.\"\"\"\n TARGET: Image\n \"\"\"Image d'une cible.\"\"\"\n TSHIRT: Image\n \"\"\"Image de t-shirt.\"\"\"\n ROLLERSKATE: Image\n \"\"\"Image de patin \u00e0 roulette.\"\"\"\n DUCK: Image\n \"\"\"Image de canard.\"\"\"\n HOUSE: Image\n \"\"\"Image d'une maison.\"\"\"\n TORTOISE: Image\n \"\"\"Image d'une tortue.\"\"\"\n BUTTERFLY: Image\n \"\"\"Image d'un papillon.\"\"\"\n STICKFIGURE: Image\n \"\"\"Image d'un personnage.\"\"\"\n GHOST: Image\n \"\"\"Image de fant\u00f4me.\"\"\"\n SWORD: Image\n \"\"\"Image d'une \u00e9p\u00e9e.\"\"\"\n GIRAFFE: Image\n \"\"\"Image d'une girafe.\"\"\"\n SKULL: Image\n \"\"\"Image d'un cr\u00e2ne.\"\"\"\n UMBRELLA: Image\n \"\"\"Image d'un parapluie.\"\"\"\n SNAKE: Image\n \"\"\"Image de serpent.\"\"\"\n SCISSORS: Image\n \"\"\"Image de ciseaux. (ciseaux)\"\"\"\n ALL_CLOCKS: List[Image]\n \"\"\"Une liste contenant toutes les images CLOCK_ en s\u00e9quence.\"\"\"\n ALL_ARROWS: List[Image]\n \"\"\"Une liste contenant toutes les images ARROW_ en s\u00e9quence.\"\"\"\n\n @overload\n def __init__(self, string: str) -> None:\n \"\"\"Cr\u00e9er une image \u00e0 partir d'une cha\u00eene de caract\u00e8res d\u00e9crivant quelles LED sont allum\u00e9es.\n\n``string`` has to consist of digits 0-9 arranged into lines,\ndescribing the image, for example::\n\n image = Image(\"90009:\"\n \"09090:\"\n \"00900:\"\n \"09090:\"\n \"90009\")\n\nwill create a 5\u00d75 image of an X. The end of a line is indicated by a\ncolon. It's also possible to use newlines (\\\\n) insead of the colons.\n\n:param string: La cha\u00eene de caract\u00e8res d\u00e9crivant l'image.\"\"\"\n ...\n\n @overload\n def __init__(self, width: int=5, height: int=5, buffer: ReadableBuffer=None) -> None:\n \"\"\"Cr\u00e9er une image vide avec ``width`` colonnes et ``height`` lignes.\n\n:param width: Largeur optionnelle de l'image\n:param height: Hauteur optionnelle de l'image\n:param buffer: Tableau optionnel ou octets de ``width``\u00d7``height`` entiers dans la plage 0-9 pour initialiser l'image\n\nExamples::\n\n Image(2, 2, b'\\x08\\x08\\x08\\x08')\n Image(2, 2, bytearray([9,9,9,9]))\n\nThese create 2 x 2 pixel images at full brightness.\"\"\"\n ...\n\n def width(self) -> int:\n \"\"\"R\u00e9cup\u00e8re le nombre de colonnes.\n\n:return: The number of columns in the image\"\"\"\n ...\n\n def height(self) -> int:\n \"\"\"R\u00e9cup\u00e8re le nombre de lignes.\n\n:return: The number of rows in the image\"\"\"\n ...\n\n def set_pixel(self, x: int, y: int, value: int) -> None:\n \"\"\"D\u00e9finit la luminosit\u00e9 d'un pixel.\n\nExample: ``my_image.set_pixel(0, 0, 9)``\n\n:param x: Le num\u00e9ro de colonne\n:param y: Le num\u00e9ro de ligne\n:param value: La luminosit\u00e9 sous la forme d'un entier compris entre 0 (sombre) et 9 (lumineux)\n\nThis method will raise an exception when called on any of the built-in\nread-only images, like ``Image.HEART``.\"\"\"\n ...\n\n def get_pixel(self, x: int, y: int) -> int:\n \"\"\"R\u00e9cup\u00e8re la luminosit\u00e9 d'un pixel.\n\nExample: ``my_image.get_pixel(0, 0)``\n\n:param x: Le num\u00e9ro de colonne\n:param y: Le num\u00e9ro de ligne\n:return: The brightness as an integer between 0 and 9.\"\"\"\n ...\n\n def shift_left(self, n: int) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en d\u00e9pla\u00e7ant l'image \u00e0 gauche.\n\nExample: ``Image.HEART_SMALL.shift_left(1)``\n\n:param n: Le nombre de colonnes par lequel d\u00e9placer\n:return: The shifted image\"\"\"\n ...\n\n def shift_right(self, n: int) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en d\u00e9pla\u00e7ant l'image \u00e0 droite.\n\nExample: ``Image.HEART_SMALL.shift_right(1)``\n\n:param n: Le nombre de colonnes par lequel d\u00e9placer\n:return: The shifted image\"\"\"\n ...\n\n def shift_up(self, n: int) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en d\u00e9pla\u00e7ant l'image vers le haut.\n\nExample: ``Image.HEART_SMALL.shift_up(1)``\n\n:param n: Le nombre de lignes par lequel d\u00e9placer\n:return: The shifted image\"\"\"\n ...\n\n def shift_down(self, n: int) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en d\u00e9pla\u00e7ant l'image vers le bas.\n\nExample: ``Image.HEART_SMALL.shift_down(1)``\n\n:param n: Le nombre de lignes par lequel d\u00e9placer\n:return: The shifted image\"\"\"\n ...\n\n def crop(self, x: int, y: int, w: int, h: int) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en recadrant l'image.\n\nExample: ``Image.HEART.crop(1, 1, 3, 3)``\n\n:param x: Le nombre de colonnes duquel d\u00e9caler le recadrage\n:param y: Le nombre de lignes duquel d\u00e9caler le recadrage\n:param w: La largeur du recadrage\n:param h: La hauteur du recadrage\n:return: The new image\"\"\"\n ...\n\n def copy(self) -> Image:\n \"\"\"Cr\u00e9er une copie exacte de l'image.\n\nExample: ``Image.HEART.copy()``\n\n:return: The new image\"\"\"\n ...\n\n def invert(self) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en inversant la luminosit\u00e9 des pixels de l'image source.\n\nExample: ``Image.SMALL_HEART.invert()``\n\n:return: The new image.\"\"\"\n ...\n\n def fill(self, value: int) -> None:\n \"\"\"D\u00e9finit la luminosit\u00e9 de tous les pixels de l'image.\n\nExample: ``my_image.fill(5)``\n\n:param value: La nouvelle luminosit\u00e9 sous la forme d'un nombre compris entre 0 (sombre) et 9 (lumineux).\n\nThis method will raise an exception when called on any of the built-in\nread-only images, like ``Image.HEART``.\"\"\"\n ...\n\n def blit(self, src: Image, x: int, y: int, w: int, h: int, xdest: int=0, ydest: int=0) -> None:\n \"\"\"Copier la zone d'une autre image vers cette image.\n\nExample: ``my_image.blit(Image.HEART, 1, 1, 3, 3, 1, 1)``\n\n:param src: L'image source\n:param x: Le d\u00e9calage de la colonne de d\u00e9part dans l'image source\n:param y: D\u00e9calage de la ligne de d\u00e9part dans l'image source\n:param w: Le nombre de colonnes \u00e0 copier\n:param h: Le nombre de lignes \u00e0 copier\n:param xdest: Le d\u00e9calage de la colonne \u00e0 modifier dans cette image\n:param ydest: Le d\u00e9calage de la ligne \u00e0 modifier dans cette image\n\nPixels outside the source image are treated as having a brightness of 0.\n\n``shift_left()``, ``shift_right()``, ``shift_up()``, ``shift_down()``\nand ``crop()`` can are all implemented by using ``blit()``.\n\nFor example, img.crop(x, y, w, h) can be implemented as::\n\n def crop(self, x, y, w, h):\n res = Image(w, h)\n res.blit(self, x, y, w, h)\n return res\"\"\"\n ...\n\n def __repr__(self) -> str:\n \"\"\"R\u00e9cup\u00e8re une repr\u00e9sentation de l'image sous forme de texte compact.\"\"\"\n ...\n\n def __str__(self) -> str:\n \"\"\"R\u00e9cup\u00e8re une cha\u00eene de caract\u00e8res lisible de l'image.\"\"\"\n ...\n\n def __add__(self, other: Image) -> Image:\n \"\"\"Cr\u00e9e une nouvelle image en additionnant les valeurs de luminosit\u00e9 des deux images\npour chaque pixel.\n\nExample: ``Image.HEART + Image.HAPPY``\n\n:param other: L'image \u00e0 ajouter.\"\"\"\n ...\n\n def __sub__(self, other: Image) -> Image:\n \"\"\"Cr\u00e9e une nouvelle image en soustrayant de cette image les valeurs de luminosit\u00e9 de\nl'autre image.\n\nExample: ``Image.HEART - Image.HEART_SMALL``\n\n:param other: L'image \u00e0 soustraire.\"\"\"\n ...\n\n def __mul__(self, n: float) -> Image:\n \"\"\"Cr\u00e9e une nouvelle image en multipliant la luminosit\u00e9 de chaque pixel par\n``n``.\n\nExample: ``Image.HEART * 0.5``\n\n:param n: La valeur par laquelle multiplier.\"\"\"\n ...\n\n def __truediv__(self, n: float) -> Image:\n \"\"\"Cr\u00e9e une nouvelle image en divisant la luminosit\u00e9 de chaque pixel par\n``n``.\n\nExample: ``Image.HEART / 2``\n\n:param n: La valeur par laquelle diviser.\"\"\"\n ...\n\nclass SoundEvent:\n LOUD: SoundEvent\n \"\"\"Repr\u00e9sente la transition d'\u00e9v\u00e9nements sonores, de ``quiet`` \u00e0 ``loud`` comme un clap dans les mains ou un cri.\"\"\"\n QUIET: SoundEvent\n \"\"\"Repr\u00e9sente la transition d'\u00e9v\u00e9nements sonores de ``loud`` \u00e0 ``quiet`` comme parler ou \u00e9couter de la musique de fond.\"\"\"\n\nclass Sound:\n \"\"\"Les sons int\u00e9gr\u00e9s peuvent \u00eatre appel\u00e9s en utilisant ``audio.play(Sound.NAME)``.\"\"\"\n GIGGLE: Sound\n \"\"\"Bruit de gloussement.\"\"\"\n HAPPY: Sound\n \"\"\"Son joyeux.\"\"\"\n HELLO: Sound\n \"\"\"Son de salutation.\"\"\"\n MYSTERIOUS: Sound\n \"\"\"Son myst\u00e9rieux.\"\"\"\n SAD: Sound\n \"\"\"Son triste.\"\"\"\n SLIDE: Sound\n \"\"\"Bruit de glissade.\"\"\"\n SOARING: Sound\n \"\"\"Bruit d'envol\u00e9e.\"\"\"\n SPRING: Sound\n \"\"\"Son d'un ressort.\"\"\"\n TWINKLE: Sound\n \"\"\"Son de scintillement.\"\"\"\n YAWN: Sound\n \"\"\"Son de b\u00e2illement.\"\"\"", - "/typeshed/stdlib/microbit/accelerometer.pyi": "\"\"\"Mesurer l'acc\u00e9l\u00e9ration du micro:bit et reconnaitre des mouvements.\"\"\"\nfrom typing import Tuple\n\ndef get_x() -> int:\n \"\"\"R\u00e9cup\u00e9rer la mesure de l'acc\u00e9l\u00e9ration dans l'axe ``x`` en milli-g.\n\nExample: ``accelerometer.get_x()``\n\n:return: A positive or negative integer depending on direction in the range +/- 2000mg.\"\"\"\n ...\n\ndef get_y() -> int:\n \"\"\"R\u00e9cup\u00e9rer la mesure de l'acc\u00e9l\u00e9ration dans l'axe ``y`` en milli-g.\n\nExample: ``accelerometer.get_y()``\n\n:return: A positive or negative integer depending on direction in the range +/- 2000mg.\"\"\"\n ...\n\ndef get_z() -> int:\n \"\"\"R\u00e9cup\u00e9rer la mesure de l'acc\u00e9l\u00e9ration dans l'axe ``z`` en milli-g.\n\nExample: ``accelerometer.get_z()``\n\n:return: A positive or negative integer depending on direction in the range +/- 2000mg.\"\"\"\n ...\n\ndef get_values() -> Tuple[int, int, int]:\n \"\"\"R\u00e9cup\u00e9rer en une fois les mesures d'acc\u00e9l\u00e9ration dans tous les axes sous forme d'un tuple.\n\nExample: ``x, y, z = accelerometer.get_values()``\n\n:return: a three-element tuple of integers ordered as X, Y, Z, each value a positive or negative integer depending on direction in the range +/- 2000mg\"\"\"\n ...\n\ndef get_strength() -> int:\n \"\"\"Obtenir la mesure de l'acc\u00e9l\u00e9ration de tous les axes combin\u00e9s, sous la forme d'un nombre entier positif. C'est la somme pythagoricienne des axes X, Y et Z. (obtenir la force)\n\nExample: ``accelerometer.get_strength()``\n\n:return: The combined acceleration strength of all the axes, in milli-g.\"\"\"\n ...\n\ndef current_gesture() -> str:\n \"\"\"R\u00e9cup\u00e9rer le nom du geste actuel.\n\nExample: ``accelerometer.current_gesture()``\n\nMicroPython understands the following gesture names: ``\"up\"``, ``\"down\"``,\n``\"left\"``, ``\"right\"``, ``\"face up\"``, ``\"face down\"``, ``\"freefall\"``,\n``\"3g\"``, ``\"6g\"``, ``\"8g\"``, ``\"shake\"``. Gestures are always\nrepresented as strings.\n\n:return: The current gesture\"\"\"\n ...\n\ndef is_gesture(name: str) -> bool:\n \"\"\"V\u00e9rifier si le geste nomm\u00e9 est actif en ce moment.\n\nExample: ``accelerometer.is_gesture('shake')``\n\nMicroPython understands the following gesture names: ``\"up\"``, ``\"down\"``,\n``\"left\"``, ``\"right\"``, ``\"face up\"``, ``\"face down\"``, ``\"freefall\"``,\n``\"3g\"``, ``\"6g\"``, ``\"8g\"``, ``\"shake\"``. Gestures are always\nrepresented as strings.\n\n:param name: Le nom du geste.\n:return: ``True`` if the gesture is active, ``False`` otherwise.\"\"\"\n ...\n\ndef was_gesture(name: str) -> bool:\n \"\"\"V\u00e9rifier si le geste nomm\u00e9 a \u00e9t\u00e9 actif depuis le dernier appel.\n\nExample: ``accelerometer.was_gesture('shake')``\n\nMicroPython understands the following gesture names: ``\"up\"``, ``\"down\"``,\n``\"left\"``, ``\"right\"``, ``\"face up\"``, ``\"face down\"``, ``\"freefall\"``,\n``\"3g\"``, ``\"6g\"``, ``\"8g\"``, ``\"shake\"``. Gestures are always\nrepresented as strings.\n\n:param name: Le nom du geste.\n:return: ``True`` if the gesture was active since the last call, ``False`` otherwise.\"\"\"\n\ndef get_gestures() -> Tuple[str, ...]:\n \"\"\"Renvoyer un tuple de l'historique des gestes.\n\nExample: ``accelerometer.get_gestures()``\n\nClears the gesture history before returning.\n\nGestures are not updated in the background so there needs to be constant\ncalls to some accelerometer method to do the gesture detection. Usually\ngestures can be detected using a loop with a small :func:`microbit.sleep` delay.\n\n:return: The history as a tuple, most recent last.\"\"\"\n ...\n\ndef set_range(value: int) -> None:\n \"\"\"Set the accelerometer sensitivity range, in g (standard gravity), to the closest values supported by the hardware, so it rounds to either ``2``, ``4``, or ``8`` g.\n\nExample: ``accelerometer.set_range(8)``\n\n:param value: New range for the accelerometer, an integer in ``g``.\"\"\"", - "/typeshed/stdlib/microbit/audio.pyi": "\"\"\"Jouer des sons en utilisant le micro:bit (importer ``audio`` pour compatibilit\u00e9 V1).\"\"\"\nfrom ..microbit import MicroBitDigitalPin, Sound, pin0\nfrom typing import ClassVar, Iterable, Union\n\ndef play(source: Union[Iterable[AudioFrame], Sound, SoundEffect], wait: bool=True, pin: MicroBitDigitalPin=pin0, return_pin: Union[MicroBitDigitalPin, None]=None) -> None:\n \"\"\"Play a built-in sound, sound effect or custom audio frames.\n\nExample: ``audio.play(Sound.GIGGLE)``\n\n:param source: A built-in ``Sound`` such as ``Sound.GIGGLE``, a ``SoundEffect`` or sample data as an iterable of ``AudioFrame`` objects.\n:param wait: Si ``wait`` est ``True``, cette fonction bloquera jusqu'\u00e0 ce que le son soit termin\u00e9.\n:param pin: (broche) Un argument optionnel pour sp\u00e9cifier la broche de sortie, peut \u00eatre utilis\u00e9 pour remplacer la valeur par d\u00e9faut ``pin0``. Si nous ne voulons pas que le son soit jou\u00e9, il est possible d'utiliser ``pin=None``.\n:param return_pin: Sp\u00e9cifie une broche de connecteur de bord diff\u00e9rentiel \u00e0 connecter \u00e0 un haut-parleur externe au lieu de la masse. Ceci est ignor\u00e9 dans la r\u00e9vision **V2**.\"\"\"\n\ndef is_playing() -> bool:\n \"\"\"V\u00e9rifier si un son est en train d'\u00eatre jou\u00e9.\n\nExample: ``audio.is_playing()``\n\n:return: ``True`` if audio is playing, otherwise ``False``.\"\"\"\n ...\n\ndef stop() -> None:\n \"\"\"Arr\u00eater toute lecture audio.\n\nExample: ``audio.stop()``\"\"\"\n ...\n\nclass SoundEffect:\n \"\"\"A sound effect, composed by a set of parameters configured via the constructor or attributes.\"\"\"\n WAVEFORM_SINE: ClassVar[int]\n \"\"\"Sine wave option used for the ``waveform`` parameter.\"\"\"\n WAVEFORM_SAWTOOTH: ClassVar[int]\n \"\"\"Sawtooth wave option used for the ``waveform`` parameter.\"\"\"\n WAVEFORM_TRIANGLE: ClassVar[int]\n \"\"\"Triangle wave option used for the ``waveform`` parameter.\"\"\"\n WAVEFORM_SQUARE: ClassVar[int]\n \"\"\"Square wave option used for the ``waveform`` parameter.\"\"\"\n WAVEFORM_NOISE: ClassVar[int]\n \"\"\"Noise option used for the ``waveform`` parameter.\"\"\"\n SHAPE_LINEAR: ClassVar[int]\n \"\"\"Linear interpolation option used for the ``shape`` parameter.\"\"\"\n SHAPE_CURVE: ClassVar[int]\n \"\"\"Curve interpolation option used for the ``shape`` parameter.\"\"\"\n SHAPE_LOG: ClassVar[int]\n \"\"\"Logarithmic interpolation option used for the ``shape`` parameter.\"\"\"\n FX_NONE: ClassVar[int]\n \"\"\"No effect option used for the ``fx`` parameter.\"\"\"\n FX_TREMOLO: ClassVar[int]\n \"\"\"Tremelo effect option used for the ``fx`` parameter.\"\"\"\n FX_VIBRATO: ClassVar[int]\n \"\"\"Vibrato effect option used for the ``fx`` parameter.\"\"\"\n FX_WARBLE: ClassVar[int]\n \"\"\"Warble effect option used for the ``fx`` parameter.\"\"\"\n freq_start: int\n \"\"\"Start frequency in Hertz (Hz), a number between ``0`` and ``9999``\"\"\"\n freq_end: int\n \"\"\"End frequency in Hertz (Hz), a number between ``0`` and ``9999``\"\"\"\n duration: int\n \"\"\"Duration of the sound in milliseconds, a number between ``0`` and ``9999``\"\"\"\n vol_start: int\n \"\"\"Start volume value, a number between ``0`` and ``255``\"\"\"\n vol_end: int\n \"\"\"End volume value, a number between ``0`` and ``255``\"\"\"\n waveform: int\n \"\"\"Type of waveform shape, one of these values: ``WAVEFORM_SINE``, ``WAVEFORM_SAWTOOTH``, ``WAVEFORM_TRIANGLE``, ``WAVEFORM_SQUARE``, ``WAVEFORM_NOISE`` (randomly generated noise)\"\"\"\n fx: int\n \"\"\"Effect to add on the sound, one of the following values: ``FX_TREMOLO``, ``FX_VIBRATO``, ``FX_WARBLE``, or ``FX_NONE``\"\"\"\n shape: int\n \"\"\"The type of the interpolation curve between the start and end frequencies, different wave shapes have different rates of change in frequency. One of the following values: ``SHAPE_LINEAR``, ``SHAPE_CURVE``, ``SHAPE_LOG``\"\"\"\n\n def __init__(self, freq_start: int=500, freq_end: int=2500, duration: int=500, vol_start: int=255, vol_end: int=0, waveform: int=WAVEFORM_SQUARE, fx: int=FX_NONE, shape: int=SHAPE_LOG):\n \"\"\"Create a new sound effect.\n\nExample: ``my_effect = SoundEffect(duration=1000)``\n\nAll the parameters are optional, with default values as shown above, and\nthey can all be modified via attributes of the same name. For example, we\ncan first create an effect ``my_effect = SoundEffect(duration=1000)``,\nand then change its attributes ``my_effect.duration = 500``.\n\n:param freq_start: Start frequency in Hertz (Hz), a number between ``0`` and ``9999``.\n:param freq_end: End frequency in Hertz (Hz), a number between ``0`` and ``9999``.\n:param duration: Duration of the sound in milliseconds, a number between ``0`` and ``9999``.\n:param vol_start: Start volume value, a number between ``0`` and ``255``.\n:param vol_end: End volume value, a number between ``0`` and ``255``.\n:param waveform: Type of waveform shape, one of these values: ``WAVEFORM_SINE``, ``WAVEFORM_SAWTOOTH``, ``WAVEFORM_TRIANGLE``, ``WAVEFORM_SQUARE``, ``WAVEFORM_NOISE`` (randomly generated noise).\n:param fx: Effect to add on the sound, one of the following values: ``FX_TREMOLO``, ``FX_VIBRATO``, ``FX_WARBLE``, or ``FX_NONE``.\n:param shape: The type of the interpolation curve between the start and end frequencies, different wave shapes have different rates of change in frequency. One of the following values: ``SHAPE_LINEAR``, ``SHAPE_CURVE``, ``SHAPE_LOG``.\"\"\"\n\n def copy(self) -> SoundEffect:\n \"\"\"Create a copy of this ``SoundEffect``.\n\nExample: ``sound_2 = sound_1.copy()``\n\n:return: A copy of the SoundEffect.\"\"\"\n\nclass AudioFrame:\n \"\"\"Un objet ``AudioFrame`` est une liste de 32 \u00e9chantillons, chacun d'eux \u00e9tant un octet non sign\u00e9\n(nombre entier entre 0 et 255).\n\nIt takes just over 4 ms to play a single frame.\n\nExample::\n\n frame = AudioFrame()\n for i in range(len(frame)):\n frame[i] = 252 - i * 8\"\"\"\n\n def copyfrom(self, other: AudioFrame) -> None:\n \"\"\"Overwrite the data in this ``AudioFrame`` with the data from another ``AudioFrame`` instance.\n\nExample: ``my_frame.copyfrom(source_frame)``\n\n:param other: ``AudioFrame`` instance from which to copy the data.\"\"\"\n\n def __len__(self) -> int:\n ...\n\n def __setitem__(self, key: int, value: int) -> None:\n ...\n\n def __getitem__(self, key: int) -> int:\n ...", + "/typeshed/stdlib/microbit/__init__.pyi": "\"\"\"Broches, images, sons, temp\u00e9rature et volume\"\"\"\nfrom typing import Any, Callable, List, Optional, Tuple, Union, overload\nfrom _typeshed import ReadableBuffer\nfrom . import accelerometer as accelerometer\nfrom . import audio as audio\nfrom . import compass as compass\nfrom . import display as display\nfrom . import i2c as i2c\nfrom . import microphone as microphone\nfrom . import speaker as speaker\nfrom . import spi as spi\nfrom . import uart as uart\n\ndef run_every(callback: Optional[Callable[[], None]]=None, days: int=0, h: int=0, min: int=0, s: int=0, ms: int=0) -> Callable[[Callable[[], None]], Callable[[], None]]:\n \"\"\"Planifie l'ex\u00e9cution d'une fonction \u00e0 l'intervalle sp\u00e9cifi\u00e9 par les arguments temporels **V2 uniquement**.\n\nExample: ``run_every(my_logging, min=5)``\n\n``run_every`` can be used in two ways:\n\nAs a Decorator - placed on top of the function to schedule. For example::\n\n @run_every(h=1, min=20, s=30, ms=50)\n def my_function():\n # Do something here\n\nAs a Function - passing the callback as a positional argument. For example::\n\n def my_function():\n # Do something here\n run_every(my_function, s=30)\n\nEach argument corresponds to a different time unit and they are additive.\nSo ``run_every(min=1, s=30)`` schedules the callback every minute and a half.\n\nWhen an exception is thrown inside the callback function it deschedules the\nfunction. To avoid this you can catch exceptions with ``try/except``.\n\n:param callback: Fonction \u00e0 appeler \u00e0 l'intervalle fourni. \u00c0 omettre en cas d'utilisation comme d\u00e9corateur.\n:param days: D\u00e9finit la marque du jour pour la programmation.\n:param h: D\u00e9finit la marque d'heure pour la programmation.\n:param min: D\u00e9finit la marque de minute pour la programmation.\n:param s: D\u00e9finit la marque de seconde pour la programmation.\n:param ms: D\u00e9finit la marque de milliseconde pour la programmation.\"\"\"\n\ndef panic(n: int) -> None:\n \"\"\"Passer en mode panique.\n\nExample: ``panic(127)``\n\n:param n: Un nombre entier arbitraire <= 255 pour indiquer un \u00e9tat.\n\nRequires restart.\"\"\"\n\ndef reset() -> None:\n \"\"\"Red\u00e9marrer la carte.\"\"\"\n\n@overload\ndef scale(value: float, from_: Tuple[float, float], to: Tuple[int, int]) -> int:\n \"\"\"Convertit une valeur dans l'intervalle donn\u00e9 vers son \u00e9quivalent dans un autre intervalle d'entiers.\n\nExample: ``volume = scale(accelerometer.get_x(), from_=(-2000, 2000), to=(0, 255))``\n\nFor example, to convert an accelerometer X value to a speaker volume.\n\nIf one of the numbers in the ``to`` parameter is a floating point\n(i.e a decimal number like ``10.0``), this function will return a\nfloating point number.\n\n temp_fahrenheit = scale(30, from_=(0.0, 100.0), to=(32.0, 212.0))\n\n:param value: Un nombre \u00e0 convertir.\n:param from_: Un tuple qui d\u00e9finit l'intervalle de d\u00e9part.\n:param to: Un tuple qui d\u00e9finit l'intervalle d'arriv\u00e9e.\n:return: The ``value`` converted to the ``to`` range.\"\"\"\n\n@overload\ndef scale(value: float, from_: Tuple[float, float], to: Tuple[float, float]) -> float:\n \"\"\"Convertit une valeur dans l'intervalle donn\u00e9 vers son \u00e9quivalent dans un autre intervalle de nombres \u00e0 virgule flottante.\n\nExample: ``temp_fahrenheit = scale(30, from_=(0.0, 100.0), to=(32.0, 212.0))``\n\nFor example, to convert temperature from a Celsius scale to Fahrenheit.\n\nIf one of the numbers in the ``to`` parameter is a floating point\n(i.e a decimal number like ``10.0``), this function will return a\nfloating point number.\nIf they are both integers (i.e ``10``), it will return an integer::\n\n returns_int = scale(accelerometer.get_x(), from_=(-2000, 2000), to=(0, 255))\n\n:param value: Un nombre \u00e0 convertir.\n:param from_: Un tuple qui d\u00e9finit l'intervalle de d\u00e9part.\n:param to: Un tuple qui d\u00e9finit l'intervalle d'arriv\u00e9e.\n:return: The ``value`` converted to the ``to`` range.\"\"\"\n\ndef sleep(n: float) -> None:\n \"\"\"Attendre ``n`` millisecondes.\n\nExample: ``sleep(1000)``\n\n:param n: Le nombre de millisecondes \u00e0 attendre\n\nOne second is 1000 milliseconds, so::\n\n microbit.sleep(1000)\n\nwill pause the execution for one second.\"\"\"\n\ndef running_time() -> int:\n \"\"\"Obtenir le temps de fonctionnement de la carte.\n\n:return: The number of milliseconds since the board was switched on or restarted.\"\"\"\n\ndef temperature() -> int:\n \"\"\"Obtenir la temp\u00e9rature du micro:bit en degr\u00e9s Celcius.\"\"\"\n\ndef set_volume(v: int) -> None:\n \"\"\"D\u00e9finit le volume.\n\nExample: ``set_volume(127)``\n\n:param v: Une valeur entre 0 (bas) et 255 (haut).\n\nOut of range values will be clamped to 0 or 255.\n\n**V2** only.\"\"\"\n ...\n\nclass Button:\n \"\"\"La classe pour les boutons ``button_a`` et ``button_b``.\"\"\"\n\n def is_pressed(self) -> bool:\n \"\"\"V\u00e9rifier si le bouton est appuy\u00e9.\n\n:return: ``True`` if the specified button ``button`` is pressed, and ``False`` otherwise.\"\"\"\n ...\n\n def was_pressed(self) -> bool:\n \"\"\"V\u00e9rifie si le bouton a \u00e9t\u00e9 press\u00e9 depuis que l'appareil a \u00e9t\u00e9 d\u00e9marr\u00e9 ou depuis la derni\u00e8re fois o\u00f9 cette m\u00e9thode a \u00e9t\u00e9 appel\u00e9e.\n\nCalling this method will clear the press state so\nthat the button must be pressed again before this method will return\n``True`` again.\n\n:return: ``True`` if the specified button ``button`` was pressed, and ``False`` otherwise\"\"\"\n ...\n\n def get_presses(self) -> int:\n \"\"\"Obtenir le nombre total d'occurrences o\u00f9 le bouton a \u00e9t\u00e9 appuy\u00e9, et r\u00e9initialise ce total avant de retourner.\n\n:return: The number of presses since the device started or the last time this method was called\"\"\"\n ...\nbutton_a: Button\n\"\"\"L'objet bouton ``Button`` gauche.\"\"\"\nbutton_b: Button\n\"\"\"L'objet bouton ``Button`` droit.\"\"\"\n\nclass MicroBitDigitalPin:\n \"\"\"Une broche num\u00e9rique.\n\nSome pins support analog and touch features using the ``MicroBitAnalogDigitalPin`` and ``MicroBitTouchPin`` subclasses.\"\"\"\n NO_PULL: int\n PULL_UP: int\n PULL_DOWN: int\n\n def read_digital(self) -> int:\n \"\"\"R\u00e9cup\u00e8re la valeur num\u00e9rique de la broche\n\nExample: ``value = pin0.read_digital()``\n\n:return: 1 if the pin is high, and 0 if it's low.\"\"\"\n ...\n\n def write_digital(self, value: int) -> None:\n \"\"\"D\u00e9finit la valeur num\u00e9rique de la broche\n\nExample: ``pin0.write_digital(1)``\n\n:param value: 1 pour d\u00e9finir la broche \u00e0 un niveau haut ou 0 pour d\u00e9finir la broche \u00e0 un niveau bas\"\"\"\n ...\n\n def set_pull(self, value: int) -> None:\n \"\"\"D\u00e9finissez l'\u00e9tat de tirage sur l'une des trois valeurs possibles\\xa0: ``PULL_UP``, ``PULL_DOWN`` ou ``NO_PULL``.\n\nExample: ``pin0.set_pull(pin0.PULL_UP)``\n\n:param value: L'\u00e9tat de tirage sur la broche correspondante, par exemple ``pin0.PULL_UP``.\"\"\"\n ...\n\n def get_pull(self) -> int:\n \"\"\"Obtenir l'\u00e9tat de tirage sur une broche.\n\nExample: ``pin0.get_pull()``\n\n:return: ``NO_PULL``, ``PULL_DOWN``, or ``PULL_UP``\n\nThese are set using the ``set_pull()`` method or automatically configured\nwhen a pin mode requires it.\"\"\"\n ...\n\n def get_mode(self) -> str:\n \"\"\"Renvoie le mode de la broche\n\nExample: ``pin0.get_mode()``\n\nWhen a pin is used for a specific function, like\nwriting a digital value, or reading an analog value, the pin mode\nchanges.\n\n:return: ``\"unused\"``, ``\"analog\"``, ``\"read_digital\"``, ``\"write_digital\"``, ``\"display\"``, ``\"button\"``, ``\"music\"``, ``\"audio\"``, ``\"touch\"``, ``\"i2c\"``, or ``\"spi\"``\"\"\"\n ...\n\n def write_analog(self, value: int) -> None:\n \"\"\"Sortie d'un signal PWM sur la broche, avec un rapport cyclique proportionnel \u00e0 ``value``.\n\nExample: ``pin0.write_analog(254)``\n\n:param value: Un entier ou un nombre \u00e0 virgule flottante entre 0 (rapport cyclique \u00e0 0%) et 1023 (rapport cyclique \u00e0 100%).\"\"\"\n\n def set_analog_period(self, period: int) -> None:\n \"\"\"D\u00e9finit la p\u00e9riode de sortie du signal PWM \u00e0 ``period`` en millisecondes.\n\nExample: ``pin0.set_analog_period(10)``\n\n:param period: La p\u00e9riode en millisecondes avec une valeur minimale valide de 1 ms.\"\"\"\n\n def set_analog_period_microseconds(self, period: int) -> None:\n \"\"\"D\u00e9finit la p\u00e9riode de sortie du signal PWM \u00e0 ``period`` en millisecondes.\n\nExample: ``pin0.set_analog_period_microseconds(512)``\n\n:param period: La p\u00e9riode en microsecondes avec une valeur minimale valide de 256\u00b5s.\"\"\"\n\nclass MicroBitAnalogDigitalPin(MicroBitDigitalPin):\n \"\"\"Une broche avec des fonctions analogiques et num\u00e9riques.\"\"\"\n\n def read_analog(self) -> int:\n \"\"\"Lit la tension appliqu\u00e9e \u00e0 la broche.\n\nExample: ``pin0.read_analog()``\n\n:return: An integer between 0 (meaning 0V) and 1023 (meaning 3.3V).\"\"\"\n\nclass MicroBitTouchPin(MicroBitAnalogDigitalPin):\n \"\"\"Une broche avec des fonctions analogiques, num\u00e9riques et tactiles.\"\"\"\n CAPACITIVE: int\n RESISTIVE: int\n\n def is_touched(self) -> bool:\n \"\"\"V\u00e9rifie si la broche est touch\u00e9e.\n\nExample: ``pin0.is_touched()``\n\nThe default touch mode for the pins on the edge connector is ``resistive``.\nThe default for the logo pin **V2** is ``capacitive``.\n\n**Resistive touch**\nThis test is done by measuring how much resistance there is between the\npin and ground. A low resistance gives a reading of ``True``. To get\na reliable reading using a finger you may need to touch the ground pin\nwith another part of your body, for example your other hand.\n\n**Capacitive touch**\nThis test is done by interacting with the electric field of a capacitor\nusing a finger as a conductor. `Capacitive touch\n`_\ndoes not require you to make a ground connection as part of a circuit.\n\n:return: ``True`` if the pin is being touched with a finger, otherwise return ``False``.\"\"\"\n ...\n\n def set_touch_mode(self, value: int) -> None:\n \"\"\"D\u00e9finit le mode tactile pour la broche.\n\nExample: ``pin0.set_touch_mode(pin0.CAPACITIVE)``\n\nThe default touch mode for the pins on the edge connector is\n``resistive``. The default for the logo pin **V2** is ``capacitive``.\n\n:param value: ``CAPACITIVE`` ou ``RESISTIVE`` pour la broche correspondante.\"\"\"\n ...\npin0: MicroBitTouchPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques, analogiques, et tactiles.\"\"\"\npin1: MicroBitTouchPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques, analogiques, et tactiles.\"\"\"\npin2: MicroBitTouchPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques, analogiques, et tactiles.\"\"\"\npin3: MicroBitAnalogDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques et analogiques.\"\"\"\npin4: MicroBitAnalogDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques et analogiques.\"\"\"\npin5: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin6: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin7: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin8: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin9: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin10: MicroBitAnalogDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques et analogiques.\"\"\"\npin11: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin12: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin13: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin14: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin15: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin16: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin19: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin20: MicroBitDigitalPin\n\"\"\"Broche avec des fonctionnalit\u00e9s num\u00e9riques\"\"\"\npin_logo: MicroBitTouchPin\n\"\"\"Une broche logo sensible au toucher sur l'avant du micro:bit, qui est d\u00e9finie par d\u00e9faut en mode tactile capacitif.\"\"\"\npin_speaker: MicroBitAnalogDigitalPin\n\"\"\"Une broche pour adresser le haut-parleur micro:bit.\n\nThis API is intended only for use in Pulse-Width Modulation pin operations e.g. pin_speaker.write_analog(128).\n\"\"\"\n\nclass Image:\n \"\"\"Une image \u00e0 afficher sur l'\u00e9cran LED du micro:bit.\n\nGiven an image object it's possible to display it via the ``display`` API::\n\n display.show(Image.HAPPY)\"\"\"\n HEART: Image\n \"\"\"Image d'un c\u0153ur.\"\"\"\n HEART_SMALL: Image\n \"\"\"Petite image d'un c\u0153ur\"\"\"\n HAPPY: Image\n \"\"\"Image de visage heureux.\"\"\"\n SMILE: Image\n \"\"\"Image de visage souriant.\"\"\"\n SAD: Image\n \"\"\"Image de visage triste.\"\"\"\n CONFUSED: Image\n \"\"\"Image d'un visage perplexe.\"\"\"\n ANGRY: Image\n \"\"\"Image de visage en col\u00e8re.\"\"\"\n ASLEEP: Image\n \"\"\"Image de visage endormi\"\"\"\n SURPRISED: Image\n \"\"\"Image de visage surpris.\"\"\"\n SILLY: Image\n \"\"\"Image de visage absurde.\"\"\"\n FABULOUS: Image\n \"\"\"Image de visage avec lunettes de soleil.\"\"\"\n MEH: Image\n \"\"\"Image de visage pas impressionn\u00e9\"\"\"\n YES: Image\n \"\"\"Image d'une coche.\"\"\"\n NO: Image\n \"\"\"Image d'une croix.\"\"\"\n CLOCK12: Image\n \"\"\"Image avec une ligne indiquant vers 12 heures.\"\"\"\n CLOCK11: Image\n \"\"\"Image avec une ligne indiquant vers 11 heures.\"\"\"\n CLOCK10: Image\n \"\"\"Image avec une ligne indiquant vers 10 heures.\"\"\"\n CLOCK9: Image\n \"\"\"Image avec une ligne indiquant vers 9 heures.\"\"\"\n CLOCK8: Image\n \"\"\"Image avec une ligne indiquant vers 8 heures.\"\"\"\n CLOCK7: Image\n \"\"\"Image avec une ligne indiquant vers 7 heures.\"\"\"\n CLOCK6: Image\n \"\"\"Image avec une ligne indiquant vers 6 heures.\"\"\"\n CLOCK5: Image\n \"\"\"Image avec une ligne indiquant vers 5 heures.\"\"\"\n CLOCK4: Image\n \"\"\"Image avec une ligne indiquant vers 4 heures.\"\"\"\n CLOCK3: Image\n \"\"\"Image avec une ligne indiquant vers 3 heures.\"\"\"\n CLOCK2: Image\n \"\"\"Image avec une ligne indiquant vers 2 heures.\"\"\"\n CLOCK1: Image\n \"\"\"Image avec une ligne indiquant vers 1 heure.\"\"\"\n ARROW_N: Image\n \"\"\"Image de fl\u00e8che pointant vers le nord.\"\"\"\n ARROW_NE: Image\n \"\"\"Image de fl\u00e8che pointant vers le nord est.\"\"\"\n ARROW_E: Image\n \"\"\"Image de fl\u00e8che pointant vers l'est.\"\"\"\n ARROW_SE: Image\n \"\"\"Image de fl\u00e8che pointant vers le sud-est.\"\"\"\n ARROW_S: Image\n \"\"\"Image de fl\u00e8che pointant vers le sud.\"\"\"\n ARROW_SW: Image\n \"\"\"Image de fl\u00e8che pointant vers le sud-ouest.\"\"\"\n ARROW_W: Image\n \"\"\"Image de fl\u00e8che pointant vers l'ouest.\"\"\"\n ARROW_NW: Image\n \"\"\"Image de fl\u00e8che pointant vers le nord ouest.\"\"\"\n TRIANGLE: Image\n \"\"\"Image d'un triangle pointant vers le haut.\"\"\"\n TRIANGLE_LEFT: Image\n \"\"\"Image d'un triangle dans le coin gauche.\"\"\"\n CHESSBOARD: Image\n \"\"\"\u00c9clairage alternatif des LEDs dans un motif d'\u00e9chiquier.\"\"\"\n DIAMOND: Image\n \"\"\"Image de diamant.\"\"\"\n DIAMOND_SMALL: Image\n \"\"\"Petite image de diamant.\"\"\"\n SQUARE: Image\n \"\"\"Image de carr\u00e9.\"\"\"\n SQUARE_SMALL: Image\n \"\"\"Petite image de carr\u00e9.\"\"\"\n RABBIT: Image\n \"\"\"Image de lapin.\"\"\"\n COW: Image\n \"\"\"Image de vache.\"\"\"\n MUSIC_CROTCHET: Image\n \"\"\"Image d'une note.\"\"\"\n MUSIC_QUAVER: Image\n \"\"\"Image d'une croche.\"\"\"\n MUSIC_QUAVERS: Image\n \"\"\"Image d'une paire de croche.\"\"\"\n PITCHFORK: Image\n \"\"\"Image d'une fourche.\"\"\"\n XMAS: Image\n \"\"\"Image d'un arbre de No\u00ebl.\"\"\"\n PACMAN: Image\n \"\"\"Image du personnage d'arcade Pac-Man.\"\"\"\n TARGET: Image\n \"\"\"Image d'une cible.\"\"\"\n TSHIRT: Image\n \"\"\"Image de t-shirt.\"\"\"\n ROLLERSKATE: Image\n \"\"\"Image de patin \u00e0 roulette.\"\"\"\n DUCK: Image\n \"\"\"Image de canard.\"\"\"\n HOUSE: Image\n \"\"\"Image d'une maison.\"\"\"\n TORTOISE: Image\n \"\"\"Image d'une tortue.\"\"\"\n BUTTERFLY: Image\n \"\"\"Image d'un papillon.\"\"\"\n STICKFIGURE: Image\n \"\"\"Image d'un personnage.\"\"\"\n GHOST: Image\n \"\"\"Image de fant\u00f4me.\"\"\"\n SWORD: Image\n \"\"\"Image d'une \u00e9p\u00e9e.\"\"\"\n GIRAFFE: Image\n \"\"\"Image d'une girafe.\"\"\"\n SKULL: Image\n \"\"\"Image d'un cr\u00e2ne.\"\"\"\n UMBRELLA: Image\n \"\"\"Image d'un parapluie.\"\"\"\n SNAKE: Image\n \"\"\"Image de serpent.\"\"\"\n SCISSORS: Image\n \"\"\"Image de ciseaux.\"\"\"\n ALL_CLOCKS: List[Image]\n \"\"\"Une liste contenant toutes les images CLOCK_ en s\u00e9quence.\"\"\"\n ALL_ARROWS: List[Image]\n \"\"\"Une liste contenant toutes les images ARROW_ en s\u00e9quence.\"\"\"\n\n @overload\n def __init__(self, string: str) -> None:\n \"\"\"Cr\u00e9er une image \u00e0 partir d'une cha\u00eene de caract\u00e8res d\u00e9crivant quelles LED sont allum\u00e9es.\n\n``string`` has to consist of digits 0-9 arranged into lines,\ndescribing the image, for example::\n\n image = Image(\"90009:\"\n \"09090:\"\n \"00900:\"\n \"09090:\"\n \"90009\")\n\nwill create a 5\u00d75 image of an X. The end of a line is indicated by a\ncolon. It's also possible to use newlines (\\\\n) insead of the colons.\n\n:param string: La cha\u00eene de caract\u00e8res d\u00e9crivant l'image.\"\"\"\n ...\n\n @overload\n def __init__(self, width: int=5, height: int=5, buffer: ReadableBuffer=None) -> None:\n \"\"\"Cr\u00e9er une image vide avec ``width`` colonnes et ``height`` lignes.\n\n:param width: Largeur optionnelle de l'image\n:param height: Hauteur optionnelle de l'image\n:param buffer: Tableau optionnel ou octets de ``width``\u00d7``height`` entiers dans la plage 0-9 pour initialiser l'image\n\nExamples::\n\n Image(2, 2, b'\\x08\\x08\\x08\\x08')\n Image(2, 2, bytearray([9,9,9,9]))\n\nThese create 2 x 2 pixel images at full brightness.\"\"\"\n ...\n\n def width(self) -> int:\n \"\"\"R\u00e9cup\u00e8re le nombre de colonnes.\n\n:return: The number of columns in the image\"\"\"\n ...\n\n def height(self) -> int:\n \"\"\"R\u00e9cup\u00e8re le nombre de lignes.\n\n:return: The number of rows in the image\"\"\"\n ...\n\n def set_pixel(self, x: int, y: int, value: int) -> None:\n \"\"\"D\u00e9finit la luminosit\u00e9 d'un pixel.\n\nExample: ``my_image.set_pixel(0, 0, 9)``\n\n:param x: Le num\u00e9ro de colonne\n:param y: Le num\u00e9ro de ligne\n:param value: La luminosit\u00e9 sous la forme d'un entier compris entre 0 (sombre) et 9 (lumineux)\n\nThis method will raise an exception when called on any of the built-in\nread-only images, like ``Image.HEART``.\"\"\"\n ...\n\n def get_pixel(self, x: int, y: int) -> int:\n \"\"\"R\u00e9cup\u00e8re la luminosit\u00e9 d'un pixel.\n\nExample: ``my_image.get_pixel(0, 0)``\n\n:param x: Le num\u00e9ro de colonne\n:param y: Le num\u00e9ro de ligne\n:return: The brightness as an integer between 0 and 9.\"\"\"\n ...\n\n def shift_left(self, n: int) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en d\u00e9pla\u00e7ant l'image \u00e0 gauche.\n\nExample: ``Image.HEART_SMALL.shift_left(1)``\n\n:param n: Le nombre de colonnes par lequel d\u00e9placer\n:return: The shifted image\"\"\"\n ...\n\n def shift_right(self, n: int) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en d\u00e9pla\u00e7ant l'image \u00e0 droite.\n\nExample: ``Image.HEART_SMALL.shift_right(1)``\n\n:param n: Le nombre de colonnes par lequel d\u00e9placer\n:return: The shifted image\"\"\"\n ...\n\n def shift_up(self, n: int) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en d\u00e9pla\u00e7ant l'image vers le haut.\n\nExample: ``Image.HEART_SMALL.shift_up(1)``\n\n:param n: Le nombre de lignes par lequel d\u00e9placer\n:return: The shifted image\"\"\"\n ...\n\n def shift_down(self, n: int) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en d\u00e9pla\u00e7ant l'image vers le bas.\n\nExample: ``Image.HEART_SMALL.shift_down(1)``\n\n:param n: Le nombre de lignes par lequel d\u00e9placer\n:return: The shifted image\"\"\"\n ...\n\n def crop(self, x: int, y: int, w: int, h: int) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en recadrant l'image.\n\nExample: ``Image.HEART.crop(1, 1, 3, 3)``\n\n:param x: Le nombre de colonnes duquel d\u00e9caler le recadrage\n:param y: Le nombre de lignes duquel d\u00e9caler le recadrage\n:param w: La largeur du recadrage\n:param h: La hauteur du recadrage\n:return: The new image\"\"\"\n ...\n\n def copy(self) -> Image:\n \"\"\"Cr\u00e9er une copie exacte de l'image.\n\nExample: ``Image.HEART.copy()``\n\n:return: The new image\"\"\"\n ...\n\n def invert(self) -> Image:\n \"\"\"Cr\u00e9er une nouvelle image en inversant la luminosit\u00e9 des pixels de l'image source.\n\nExample: ``Image.SMALL_HEART.invert()``\n\n:return: The new image.\"\"\"\n ...\n\n def fill(self, value: int) -> None:\n \"\"\"D\u00e9finit la luminosit\u00e9 de tous les pixels de l'image.\n\nExample: ``my_image.fill(5)``\n\n:param value: La nouvelle luminosit\u00e9 sous la forme d'un nombre compris entre 0 (sombre) et 9 (lumineux).\n\nThis method will raise an exception when called on any of the built-in\nread-only images, like ``Image.HEART``.\"\"\"\n ...\n\n def blit(self, src: Image, x: int, y: int, w: int, h: int, xdest: int=0, ydest: int=0) -> None:\n \"\"\"Copier la zone d'une autre image vers cette image.\n\nExample: ``my_image.blit(Image.HEART, 1, 1, 3, 3, 1, 1)``\n\n:param src: L'image source\n:param x: Le d\u00e9calage de la colonne de d\u00e9part dans l'image source\n:param y: D\u00e9calage de la ligne de d\u00e9part dans l'image source\n:param w: Le nombre de colonnes \u00e0 copier\n:param h: Le nombre de lignes \u00e0 copier\n:param xdest: Le d\u00e9calage de la colonne \u00e0 modifier dans cette image\n:param ydest: Le d\u00e9calage de la ligne \u00e0 modifier dans cette image\n\nPixels outside the source image are treated as having a brightness of 0.\n\n``shift_left()``, ``shift_right()``, ``shift_up()``, ``shift_down()``\nand ``crop()`` can are all implemented by using ``blit()``.\n\nFor example, img.crop(x, y, w, h) can be implemented as::\n\n def crop(self, x, y, w, h):\n res = Image(w, h)\n res.blit(self, x, y, w, h)\n return res\"\"\"\n ...\n\n def __repr__(self) -> str:\n \"\"\"R\u00e9cup\u00e8re une repr\u00e9sentation de l'image sous forme de texte compact.\"\"\"\n ...\n\n def __str__(self) -> str:\n \"\"\"R\u00e9cup\u00e8re une cha\u00eene de caract\u00e8res lisible de l'image.\"\"\"\n ...\n\n def __add__(self, other: Image) -> Image:\n \"\"\"Cr\u00e9e une nouvelle image en additionnant les valeurs de luminosit\u00e9 des deux images\npour chaque pixel.\n\nExample: ``Image.HEART + Image.HAPPY``\n\n:param other: L'image \u00e0 ajouter.\"\"\"\n ...\n\n def __sub__(self, other: Image) -> Image:\n \"\"\"Cr\u00e9e une nouvelle image en soustrayant de cette image les valeurs de luminosit\u00e9 de\nl'autre image.\n\nExample: ``Image.HEART - Image.HEART_SMALL``\n\n:param other: L'image \u00e0 soustraire.\"\"\"\n ...\n\n def __mul__(self, n: float) -> Image:\n \"\"\"Cr\u00e9e une nouvelle image en multipliant la luminosit\u00e9 de chaque pixel par\n``n``.\n\nExample: ``Image.HEART * 0.5``\n\n:param n: La valeur par laquelle multiplier.\"\"\"\n ...\n\n def __truediv__(self, n: float) -> Image:\n \"\"\"Cr\u00e9e une nouvelle image en divisant la luminosit\u00e9 de chaque pixel par\n``n``.\n\nExample: ``Image.HEART / 2``\n\n:param n: La valeur par laquelle diviser.\"\"\"\n ...\n\nclass SoundEvent:\n LOUD: SoundEvent\n \"\"\"Repr\u00e9sente la transition d'\u00e9v\u00e9nements sonores, de ``quiet`` \u00e0 ``loud`` comme un clap dans les mains ou un cri.\"\"\"\n QUIET: SoundEvent\n \"\"\"Repr\u00e9sente la transition d'\u00e9v\u00e9nements sonores de ``loud`` \u00e0 ``quiet`` comme parler ou \u00e9couter de la musique de fond.\"\"\"\n\nclass Sound:\n \"\"\"Les sons int\u00e9gr\u00e9s peuvent \u00eatre appel\u00e9s en utilisant ``audio.play(Sound.NAME)``.\"\"\"\n GIGGLE: Sound\n \"\"\"Bruit de gloussement.\"\"\"\n HAPPY: Sound\n \"\"\"Son joyeux.\"\"\"\n HELLO: Sound\n \"\"\"Son de salutation.\"\"\"\n MYSTERIOUS: Sound\n \"\"\"Son myst\u00e9rieux.\"\"\"\n SAD: Sound\n \"\"\"Son triste.\"\"\"\n SLIDE: Sound\n \"\"\"Bruit de glissade.\"\"\"\n SOARING: Sound\n \"\"\"Bruit d'envol\u00e9e.\"\"\"\n SPRING: Sound\n \"\"\"Son d'un ressort.\"\"\"\n TWINKLE: Sound\n \"\"\"Son de scintillement.\"\"\"\n YAWN: Sound\n \"\"\"Son de b\u00e2illement.\"\"\"", + "/typeshed/stdlib/microbit/accelerometer.pyi": "\"\"\"Mesurer l'acc\u00e9l\u00e9ration du micro:bit et reconnaitre des mouvements.\"\"\"\nfrom typing import Tuple\n\ndef get_x() -> int:\n \"\"\"R\u00e9cup\u00e9rer la mesure de l'acc\u00e9l\u00e9ration dans l'axe ``x`` en milli-g.\n\nExample: ``accelerometer.get_x()``\n\n:return: A positive or negative integer depending on direction in the range +/- 2000mg.\"\"\"\n ...\n\ndef get_y() -> int:\n \"\"\"R\u00e9cup\u00e9rer la mesure de l'acc\u00e9l\u00e9ration dans l'axe ``y`` en milli-g.\n\nExample: ``accelerometer.get_y()``\n\n:return: A positive or negative integer depending on direction in the range +/- 2000mg.\"\"\"\n ...\n\ndef get_z() -> int:\n \"\"\"R\u00e9cup\u00e9rer la mesure de l'acc\u00e9l\u00e9ration dans l'axe ``z`` en milli-g.\n\nExample: ``accelerometer.get_z()``\n\n:return: A positive or negative integer depending on direction in the range +/- 2000mg.\"\"\"\n ...\n\ndef get_values() -> Tuple[int, int, int]:\n \"\"\"R\u00e9cup\u00e9rer en une fois les mesures d'acc\u00e9l\u00e9ration dans tous les axes sous forme d'un tuple.\n\nExample: ``x, y, z = accelerometer.get_values()``\n\n:return: a three-element tuple of integers ordered as X, Y, Z, each value a positive or negative integer depending on direction in the range +/- 2000mg\"\"\"\n ...\n\ndef get_strength() -> int:\n \"\"\"Obtenir la mesure de l'acc\u00e9l\u00e9ration de tous les axes combin\u00e9s, sous la forme d'un nombre entier positif. C'est la somme pythagoricienne des axes X, Y et Z.\n\nExample: ``accelerometer.get_strength()``\n\n:return: The combined acceleration strength of all the axes, in milli-g.\"\"\"\n ...\n\ndef current_gesture() -> str:\n \"\"\"R\u00e9cup\u00e9rer le nom du geste actuel.\n\nExample: ``accelerometer.current_gesture()``\n\nMicroPython understands the following gesture names: ``\"up\"``, ``\"down\"``,\n``\"left\"``, ``\"right\"``, ``\"face up\"``, ``\"face down\"``, ``\"freefall\"``,\n``\"3g\"``, ``\"6g\"``, ``\"8g\"``, ``\"shake\"``. Gestures are always\nrepresented as strings.\n\n:return: The current gesture\"\"\"\n ...\n\ndef is_gesture(name: str) -> bool:\n \"\"\"V\u00e9rifier si le geste nomm\u00e9 est actif en ce moment.\n\nExample: ``accelerometer.is_gesture('shake')``\n\nMicroPython understands the following gesture names: ``\"up\"``, ``\"down\"``,\n``\"left\"``, ``\"right\"``, ``\"face up\"``, ``\"face down\"``, ``\"freefall\"``,\n``\"3g\"``, ``\"6g\"``, ``\"8g\"``, ``\"shake\"``. Gestures are always\nrepresented as strings.\n\n:param name: Le nom du geste.\n:return: ``True`` if the gesture is active, ``False`` otherwise.\"\"\"\n ...\n\ndef was_gesture(name: str) -> bool:\n \"\"\"V\u00e9rifier si le geste nomm\u00e9 a \u00e9t\u00e9 actif depuis le dernier appel.\n\nExample: ``accelerometer.was_gesture('shake')``\n\nMicroPython understands the following gesture names: ``\"up\"``, ``\"down\"``,\n``\"left\"``, ``\"right\"``, ``\"face up\"``, ``\"face down\"``, ``\"freefall\"``,\n``\"3g\"``, ``\"6g\"``, ``\"8g\"``, ``\"shake\"``. Gestures are always\nrepresented as strings.\n\n:param name: Le nom du geste.\n:return: ``True`` if the gesture was active since the last call, ``False`` otherwise.\"\"\"\n\ndef get_gestures() -> Tuple[str, ...]:\n \"\"\"Renvoyer un tuple de l'historique des gestes.\n\nExample: ``accelerometer.get_gestures()``\n\nClears the gesture history before returning.\n\nGestures are not updated in the background so there needs to be constant\ncalls to some accelerometer method to do the gesture detection. Usually\ngestures can be detected using a loop with a small :func:`microbit.sleep` delay.\n\n:return: The history as a tuple, most recent last.\"\"\"\n ...\n\ndef set_range(value: int) -> None:\n \"\"\"D\u00e9finir la plage de sensibilit\u00e9 de l'acc\u00e9l\u00e9rom\u00e8tre, en g (gravit\u00e9 standard), \u00e0 la valeur la plus proche support\u00e9e par le mat\u00e9riel, l'arrondi se fait soit \u00e0 ``2``, ``4``, ou ``8`` g.\n\nExample: ``accelerometer.set_range(8)``\n\n:param value: Nouvelle plage pour l'acc\u00e9l\u00e9rom\u00e8tre, un entier en ``g``.\"\"\"", + "/typeshed/stdlib/microbit/audio.pyi": "\"\"\"Jouer des sons en utilisant le micro:bit (importer ``audio`` pour compatibilit\u00e9 V1).\"\"\"\nfrom ..microbit import MicroBitDigitalPin, Sound, pin0\nfrom typing import ClassVar, Iterable, Union\n\ndef play(source: Union[Iterable[AudioFrame], Sound, SoundEffect], wait: bool=True, pin: MicroBitDigitalPin=pin0, return_pin: Union[MicroBitDigitalPin, None]=None) -> None:\n \"\"\"Jouer un son int\u00e9gr\u00e9, un effet sonore ou des frames audio personnalis\u00e9es.\n\nExample: ``audio.play(Sound.GIGGLE)``\n\n:param source: Un ``Sound`` int\u00e9gr\u00e9 tel que ``Sound.GIGGLE``, un ``SoundEffect`` ou un \u00e9chantillon de donn\u00e9es sous la forme d'un it\u00e9rable d'objets ``AudioFrame``.\n:param wait: Si ``wait`` est ``True``, cette fonction bloquera jusqu'\u00e0 ce que le son soit termin\u00e9.\n:param pin: (broche) Un argument optionnel pour sp\u00e9cifier la broche de sortie, peut \u00eatre utilis\u00e9 pour remplacer la valeur par d\u00e9faut ``pin0``. Si nous ne voulons pas que le son soit jou\u00e9, il est possible d'utiliser ``pin=None``.\n:param return_pin: Sp\u00e9cifie une broche de connecteur de bord diff\u00e9rentiel \u00e0 connecter \u00e0 un haut-parleur externe au lieu de la masse. Ceci est ignor\u00e9 dans la r\u00e9vision **V2**.\"\"\"\n\ndef is_playing() -> bool:\n \"\"\"V\u00e9rifier si un son est en train d'\u00eatre jou\u00e9.\n\nExample: ``audio.is_playing()``\n\n:return: ``True`` if audio is playing, otherwise ``False``.\"\"\"\n ...\n\ndef stop() -> None:\n \"\"\"Arr\u00eater toute lecture audio.\n\nExample: ``audio.stop()``\"\"\"\n ...\n\nclass SoundEffect:\n \"\"\"Un effet sonore, compos\u00e9 d'un ensemble de param\u00e8tres configur\u00e9s via le constructeur ou les attributs.\"\"\"\n WAVEFORM_SINE: ClassVar[int]\n \"\"\"Option d'onde sinuso\u00efdale utilis\u00e9e pour le param\u00e8tre ``waveform``.\"\"\"\n WAVEFORM_SAWTOOTH: ClassVar[int]\n \"\"\"Optionde forme d'onde en dent de scie utilis\u00e9e pour le param\u00e8tre ``waveform``.\"\"\"\n WAVEFORM_TRIANGLE: ClassVar[int]\n \"\"\"Option d'onde triangulaire utilis\u00e9e pour le param\u00e8tre ``waveform``.\"\"\"\n WAVEFORM_SQUARE: ClassVar[int]\n \"\"\"Option d'onde carr\u00e9e utilis\u00e9e pour le param\u00e8tre ``waveform``.\"\"\"\n WAVEFORM_NOISE: ClassVar[int]\n \"\"\"Option d'onde de bruit utilis\u00e9e pour le param\u00e8tre ``waveform``.\"\"\"\n SHAPE_LINEAR: ClassVar[int]\n \"\"\"Option d'interpolation lin\u00e9aire utilis\u00e9e pour le param\u00e8tre ``shape``.\"\"\"\n SHAPE_CURVE: ClassVar[int]\n \"\"\"Option d'interpolation courbe utilis\u00e9e pour le param\u00e8tre ``shape``.\"\"\"\n SHAPE_LOG: ClassVar[int]\n \"\"\"Option d'interpolation logarithmique utilis\u00e9e pour le param\u00e8tre ``shape``.\"\"\"\n FX_NONE: ClassVar[int]\n \"\"\"Option sans effet utilis\u00e9e pour le param\u00e8tre ``fx``.\"\"\"\n FX_TREMOLO: ClassVar[int]\n \"\"\"Option d'effet tremolo utilis\u00e9e pour le param\u00e8tre ``fx``.\"\"\"\n FX_VIBRATO: ClassVar[int]\n \"\"\"Option d'effet vibrato utilis\u00e9e pour le param\u00e8tre ``fx``.\"\"\"\n FX_WARBLE: ClassVar[int]\n \"\"\"Option d'effet de Warble utilis\u00e9e pour le param\u00e8tre ``fx``.\"\"\"\n freq_start: int\n \"\"\"Fr\u00e9quence de d\u00e9part en Hertz (Hz), un nombre compris entre ``0`` et ``9999``\"\"\"\n freq_end: int\n \"\"\"Fr\u00e9quence de fin en Hertz (Hz), un nombre compris entre ``0`` et ``9999``\"\"\"\n duration: int\n \"\"\"Dur\u00e9e du son en millisecondes, un nombre compris entre ``0`` et ``9999``\"\"\"\n vol_start: int\n \"\"\"Valeur du volume de d\u00e9part, un nombre compris entre ``0`` et ``255``\"\"\"\n vol_end: int\n \"\"\"Valeur du volume \u00e0 la fin, un nombre compris entre ``0`` et ``255``\"\"\"\n waveform: int\n \"\"\"Type de forme d'onde, une de ces valeurs : ``WAVEFORM_SINE``, ``WAVEFORM_SAWTOOTH``, ``WAVEFORM_TRIANGLE``, ``WAVEFORM_SQUARE``, ``WAVEFORM_NOISE`` (bruit g\u00e9n\u00e9r\u00e9 al\u00e9atoirement)\"\"\"\n fx: int\n \"\"\"Effet \u00e0 ajouter au son, l'une des valeurs suivantes : ``FX_TREMOLO``, ``FX_VIBRATO``, ``FX_WARBLE``, ou ``FX_NONE``\"\"\"\n shape: int\n \"\"\"Le type de la courbe d'interpolation entre les fr\u00e9quences de d\u00e9but et de fin, les diff\u00e9rentes formes d'onde ont des taux de variation de fr\u00e9quence diff\u00e9rents. L'une des valeurs suivantes : ``SHAPE_LINEAR``, ``SHAPE_CURVE``, ``SHAPE_LOG``\"\"\"\n\n def __init__(self, freq_start: int=500, freq_end: int=2500, duration: int=500, vol_start: int=255, vol_end: int=0, waveform: int=WAVEFORM_SQUARE, fx: int=FX_NONE, shape: int=SHAPE_LOG):\n \"\"\"Cr\u00e9er un nouvel effet sonore.\n\nExample: ``my_effect = SoundEffect(duration=1000)``\n\nAll the parameters are optional, with default values as shown above, and\nthey can all be modified via attributes of the same name. For example, we\ncan first create an effect ``my_effect = SoundEffect(duration=1000)``,\nand then change its attributes ``my_effect.duration = 500``.\n\n:param freq_start: Fr\u00e9quence de d\u00e9part en Hertz (Hz), un nombre compris entre ``0`` et ``9999``.\n:param freq_end: Fr\u00e9quence de fin en Hertz (Hz), un nombre compris entre ``0`` et ``9999``.\n:param duration: Dur\u00e9e du son en millisecondes, un nombre compris entre ``0`` et ``9999``.\n:param vol_start: Valeur du volume de d\u00e9part, un nombre compris entre ``0`` et ``255``.\n:param vol_end: Valeur du volume \u00e0 la fin, un nombre compris entre ``0`` et ``255``.\n:param waveform: Type de forme d'onde, une de ces valeurs : ``WAVEFORM_SINE``, ``WAVEFORM_SAWTOOTH``, ``WAVEFORM_TRIANGLE``, ``WAVEFORM_SQUARE``, ``WAVEFORM_NOISE`` (bruit g\u00e9n\u00e9r\u00e9 al\u00e9atoirement).\n:param fx: Effet \u00e0 ajouter au son, l'une des valeurs suivantes : ``FX_TREMOLO``, ``FX_VIBRATO``, ``FX_WARBLE``, ou ``FX_NONE``.\n:param shape: Le type de la courbe d'interpolation entre les fr\u00e9quences de d\u00e9but et de fin, les diff\u00e9rentes formes d'onde ont des taux de variation de fr\u00e9quence diff\u00e9rents. L'une des valeurs suivantes : ``SHAPE_LINEAR``, ``SHAPE_CURVE``, ``SHAPE_LOG``.\"\"\"\n\n def copy(self) -> SoundEffect:\n \"\"\"Cr\u00e9er une copie de ce ``SoundEffect``.\n\nExample: ``sound_2 = sound_1.copy()``\n\n:return: A copy of the SoundEffect.\"\"\"\n\nclass AudioFrame:\n \"\"\"Un objet ``AudioFrame`` est une liste de 32 \u00e9chantillons, chacun d'eux \u00e9tant un octet non sign\u00e9\n(nombre entier entre 0 et 255).\n\nIt takes just over 4 ms to play a single frame.\n\nExample::\n\n frame = AudioFrame()\n for i in range(len(frame)):\n frame[i] = 252 - i * 8\"\"\"\n\n def copyfrom(self, other: AudioFrame) -> None:\n \"\"\"\u00c9craser les donn\u00e9es de ce ``AudioFrame`` avec les donn\u00e9es d'une autre instance ``AudioFrame``.\n\nExample: ``my_frame.copyfrom(source_frame)``\n\n:param other: Instance ``AudioFrame`` \u00e0 partir de laquelle copier les donn\u00e9es.\"\"\"\n\n def __len__(self) -> int:\n ...\n\n def __setitem__(self, key: int, value: int) -> None:\n ...\n\n def __getitem__(self, key: int) -> int:\n ...", "/typeshed/stdlib/microbit/compass.pyi": "\"\"\"Utiliser la boussole int\u00e9gr\u00e9e.\"\"\"\n\ndef calibrate() -> None:\n \"\"\"D\u00e9marrer le processus d'\u00e9talonnage.\n\nExample: ``compass.calibrate()``\n\nAn instructive message will be scrolled to the user after which they will need\nto rotate the device in order to draw a circle on the LED display.\"\"\"\n ...\n\ndef is_calibrated() -> bool:\n \"\"\"V\u00e9rifier si la boussole est \u00e9talonn\u00e9e.\n\nExample: ``compass.is_calibrated()``\n\n:return: ``True`` if the compass has been successfully calibrated, ``False`` otherwise.\"\"\"\n ...\n\ndef clear_calibration() -> None:\n \"\"\"Annule l'\u00e9talonnage, la boussole est ainsi \u00e0 nouveau non-\u00e9talonn\u00e9e.\n\nExample: ``compass.clear_calibration()``\"\"\"\n ...\n\ndef get_x() -> int:\n \"\"\"Obtenir la force du champ magn\u00e9tique sur l'axe ``x``.\n\nExample: ``compass.get_x()``\n\nCall ``calibrate`` first or the results will be inaccurate.\n\n:return: A positive or negative integer in nano tesla representing the magnitude and direction of the field.\"\"\"\n ...\n\ndef get_y() -> int:\n \"\"\"Obtenir la force du champ magn\u00e9tique sur l'axe ``y``.\n\nExample: ``compass.get_y()``\n\nCall ``calibrate`` first or the results will be inaccurate.\n\n:return: A positive or negative integer in nano tesla representing the magnitude and direction of the field.\"\"\"\n ...\n\ndef get_z() -> int:\n \"\"\"Obtenir la force du champ magn\u00e9tique sur l'axe ``z``.\n\nExample: ``compass.get_z()``\n\nCall ``calibrate`` first or the results will be inaccurate.\n\n:return: A positive or negative integer in nano tesla representing the magnitude and direction of the field.\"\"\"\n ...\n\ndef heading() -> int:\n \"\"\"Obtenir le cap de la boussole.\n\nExample: ``compass.heading()``\n\n:return: An integer in the range from 0 to 360, representing the angle in degrees, clockwise, with north as 0.\"\"\"\n ...\n\ndef get_field_strength() -> int:\n \"\"\"R\u00e9cup\u00e8re la magnitude du champ magn\u00e9tique autour de l'appareil.\n\nExample: ``compass.get_field_strength()``\n\n:return: An integer indication of the magnitude of the magnetic field in nano tesla.\"\"\"\n ...", "/typeshed/stdlib/microbit/display.pyi": "\"\"\"Afficher du texte, des images et des animations sur l'\u00e9cran LED 5\u00d75.\"\"\"\nfrom ..microbit import Image\nfrom typing import Union, overload, Iterable\n\ndef get_pixel(x: int, y: int) -> int:\n \"\"\"R\u00e9cup\u00e8re la luminosit\u00e9 de la LED \u00e0 la colonne ``x`` et \u00e0 la ligne ``y``.\n\nExample: ``display.get_pixel(0, 0)``\n\n:param x: La colonne d'affichage (0..4)\n:param y: La ligne d'affichage (0..4)\n:return: A number between 0 (off) and 9 (bright)\"\"\"\n ...\n\ndef set_pixel(x: int, y: int, value: int) -> None:\n \"\"\"D\u00e9finit la luminosit\u00e9 de la LED \u00e0 la colonne ``x`` et \u00e0 la ligne ``y``.\n\nExample: ``display.set_pixel(0, 0, 9)``\n\n:param x: La colonne d'affichage (0..4)\n:param y: La ligne d'affichage (0..4)\n:param value: La luminosit\u00e9 entre 0 (\u00e9teint) et 9 (lumineux)\"\"\"\n ...\n\ndef clear() -> None:\n \"\"\"R\u00e9gler la luminosit\u00e9 de toutes les LED \u00e0 0 (\u00e9teintes).\n\nExample: ``display.clear()``\"\"\"\n ...\n\ndef show(image: Union[str, float, int, Image, Iterable[Image]], delay: int=400, wait: bool=True, loop: bool=False, clear: bool=False) -> None:\n \"\"\"Afficher des images, des lettres ou des chiffres sur l'affichage LED.\n\nExample: ``display.show(Image.HEART)``\n\nWhen ``image`` is an image or a list of images then each image is displayed in turn.\nIf ``image`` is a string or number, each letter or digit is displayed in turn.\n\n:param image: Une cha\u00eene de caract\u00e8res, un nombre, une image ou une liste d'images \u00e0 afficher.\n:param delay: Chaque lettre, chiffre ou image est s\u00e9par\u00e9 par un d\u00e9lai de ``delay`` millisecondes.\n:param wait: Si ``wait`` est ``True`` cette fonction bloquera jusqu'\u00e0 la fin de l'animation, sinon l'animation s'effectuera en arri\u00e8re-plan.\n:param loop: Si ``loop`` est ``True``, l'animation se r\u00e9p\u00e9tera ind\u00e9finiment.\n:param clear: Si ``clear`` est ``True``, l'affichage sera effac\u00e9 une fois la s\u00e9quence termin\u00e9e.\n\nThe ``wait``, ``loop`` and ``clear`` arguments must be specified using their keyword.\"\"\"\n ...\n\ndef scroll(text: Union[str, float, int], delay: int=150, wait: bool=True, loop: bool=False, monospace: bool=False) -> None:\n \"\"\"Faire d\u00e9filer un nombre ou un texte sur l'affichage LED.\n\nExample: ``display.scroll('micro:bit')``\n\n:param text: La cha\u00eene de caract\u00e8res \u00e0 faire d\u00e9filer. Si ``text`` est un entier ou un nombre d\u00e9cimal, il sera converti en une cha\u00eene avec ``str()``.\n:param delay: Le param\u00e8tre ``delay`` contr\u00f4le la vitesse de d\u00e9filement du texte.\n:param wait: Si ``wait`` est ``True`` cette fonction bloquera jusqu'\u00e0 la fin de l'animation, sinon l'animation s'effectuera en arri\u00e8re-plan.\n:param loop: Si ``loop`` est ``True``, l'animation se r\u00e9p\u00e9tera ind\u00e9finiment.\n:param monospace: Si ``monospace`` est ``True``, tous les caract\u00e8res utiliseront 5 pixels en largeur, sinon, exactement 1 colonne de pixel vide sera ins\u00e9r\u00e9e entre chaque caract\u00e8re lors du d\u00e9filement.\n\nThe ``wait``, ``loop`` and ``monospace`` arguments must be specified\nusing their keyword.\"\"\"\n ...\n\ndef on() -> None:\n \"\"\"Allumer l'\u00e9cran LED.\n\nExample: ``display.on()``\"\"\"\n ...\n\ndef off() -> None:\n \"\"\"Eteindre l'\u00e9cran LED (d\u00e9sactiver l'affichage vous permet de r\u00e9utiliser les broches GPIO \u00e0 d'autres fins).\n\nExample: ``display.off()``\"\"\"\n ...\n\ndef is_on() -> bool:\n \"\"\"V\u00e9rifier si l'affichage LED est activ\u00e9.\n\nExample: ``display.is_on()``\n\n:return: ``True`` if the display is on, otherwise returns ``False``.\"\"\"\n ...\n\ndef read_light_level() -> int:\n \"\"\"Lit le niveau de lumi\u00e8re.\n\nExample: ``display.read_light_level()``\n\nUses the display's LEDs in reverse-bias mode to sense the amount of light\nfalling on the display.\n\n:return: An integer between 0 and 255 representing the light level, with larger meaning more light.\"\"\"\n ...", "/typeshed/stdlib/microbit/i2c.pyi": "\"\"\"Communiquer avec les p\u00e9riph\u00e9riques en utilisant le protocole de bus I\u00b2C.\"\"\"\nfrom _typeshed import ReadableBuffer\nfrom ..microbit import MicroBitDigitalPin, pin19, pin20\nfrom typing import List\n\ndef init(freq: int=100000, sda: MicroBitDigitalPin=pin20, scl: MicroBitDigitalPin=pin19) -> None:\n \"\"\"R\u00e9initialiser un p\u00e9riph\u00e9rique.\n\nExample: ``i2c.init()``\n\n:param freq: fr\u00e9quence d'horloge\n:param sda: Broche ``sda`` (19 par d\u00e9faut)\n:param scl: Broche ``scl`` (19 par d\u00e9faut)\n\nOn a micro:bit V1 board, changing the I\u00b2C pins from defaults will make\nthe accelerometer and compass stop working, as they are connected\ninternally to those pins. This warning does not apply to the **V2**\nrevision of the micro:bit as this has `separate I\u00b2C lines `_\nfor the motion sensors and the edge connector.\"\"\"\n ...\n\ndef scan() -> List[int]:\n \"\"\"Scanner le bus pour d\u00e9tecter des p\u00e9riph\u00e9riques.\n\nExample: ``i2c.scan()``\n\n:return: A list of 7-bit addresses corresponding to those devices that responded to the scan.\"\"\"\n ...\n\ndef read(addr: int, n: int, repeat: bool=False) -> bytes:\n \"\"\"Lire des octets depuis un p\u00e9riph\u00e9rique.\n\nExample: ``i2c.read(0x50, 64)``\n\n:param addr: L'adresse 7-bit du p\u00e9riph\u00e9rique\n:param n: Le nombre d'octets \u00e0 lire\n:param repeat: Si ``True``, aucun bit d'arr\u00eat ne sera envoy\u00e9\n:return: The bytes read\"\"\"\n ...\n\ndef write(addr: int, buf: ReadableBuffer, repeat: bool=False) -> None:\n \"\"\"\u00c9crire des octets sur un p\u00e9riph\u00e9rique.\n\nExample: ``i2c.write(0x50, bytes([1, 2, 3]))``\n\n:param addr: L'adresse 7-bit du p\u00e9riph\u00e9rique\n:param buf: Un buffer contenant les octets \u00e0 \u00e9crire\n:param repeat: Si ``True``, aucun bit d'arr\u00eat ne sera envoy\u00e9\"\"\"\n ...", diff --git a/src/settings/settings.tsx b/src/settings/settings.tsx index 55b2d37ce..9cb554a6e 100644 --- a/src/settings/settings.tsx +++ b/src/settings/settings.tsx @@ -30,7 +30,6 @@ const allLanguages: Language[] = [ id: "ca", name: "CatalĂ ", enName: "Catalan", - preview: true, }, { id: "zh-cn",