forked from gelotus/ccminer
-
Notifications
You must be signed in to change notification settings - Fork 4
/
cuda_skeincoin.cu
747 lines (640 loc) · 19.5 KB
/
cuda_skeincoin.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
/* Merged skein512 80 + sha256 64 (in a single kernel) for SM 5+
* based on sp and klaus work, adapted by tpruvot to keep skein2 compat
*/
#include <stdint.h>
#include <stdio.h>
#include <memory.h>
#include "cuda_helper.h"
/* try 1024 for 970+ */
#define TPB 512
static __constant__ uint64_t c_message16[2];
static __constant__ uint2 precalcvalues[9];
static uint32_t *d_found[MAX_GPUS];
static __device__ __forceinline__ uint2 vectorizelow(uint32_t v) {
uint2 result;
result.x = v;
result.y = 0;
return result;
}
static __device__ __forceinline__ uint2 vectorizehigh(uint32_t v) {
uint2 result;
result.x = 0;
result.y = v;
return result;
}
/*
* M9_ ## s ## _ ## i evaluates to s+i mod 9 (0 <= s <= 18, 0 <= i <= 7).
*/
#define M9_0_0 0
#define M9_0_1 1
#define M9_0_2 2
#define M9_0_3 3
#define M9_0_4 4
#define M9_0_5 5
#define M9_0_6 6
#define M9_0_7 7
#define M9_1_0 1
#define M9_1_1 2
#define M9_1_2 3
#define M9_1_3 4
#define M9_1_4 5
#define M9_1_5 6
#define M9_1_6 7
#define M9_1_7 8
#define M9_2_0 2
#define M9_2_1 3
#define M9_2_2 4
#define M9_2_3 5
#define M9_2_4 6
#define M9_2_5 7
#define M9_2_6 8
#define M9_2_7 0
#define M9_3_0 3
#define M9_3_1 4
#define M9_3_2 5
#define M9_3_3 6
#define M9_3_4 7
#define M9_3_5 8
#define M9_3_6 0
#define M9_3_7 1
#define M9_4_0 4
#define M9_4_1 5
#define M9_4_2 6
#define M9_4_3 7
#define M9_4_4 8
#define M9_4_5 0
#define M9_4_6 1
#define M9_4_7 2
#define M9_5_0 5
#define M9_5_1 6
#define M9_5_2 7
#define M9_5_3 8
#define M9_5_4 0
#define M9_5_5 1
#define M9_5_6 2
#define M9_5_7 3
#define M9_6_0 6
#define M9_6_1 7
#define M9_6_2 8
#define M9_6_3 0
#define M9_6_4 1
#define M9_6_5 2
#define M9_6_6 3
#define M9_6_7 4
#define M9_7_0 7
#define M9_7_1 8
#define M9_7_2 0
#define M9_7_3 1
#define M9_7_4 2
#define M9_7_5 3
#define M9_7_6 4
#define M9_7_7 5
#define M9_8_0 8
#define M9_8_1 0
#define M9_8_2 1
#define M9_8_3 2
#define M9_8_4 3
#define M9_8_5 4
#define M9_8_6 5
#define M9_8_7 6
#define M9_9_0 0
#define M9_9_1 1
#define M9_9_2 2
#define M9_9_3 3
#define M9_9_4 4
#define M9_9_5 5
#define M9_9_6 6
#define M9_9_7 7
#define M9_10_0 1
#define M9_10_1 2
#define M9_10_2 3
#define M9_10_3 4
#define M9_10_4 5
#define M9_10_5 6
#define M9_10_6 7
#define M9_10_7 8
#define M9_11_0 2
#define M9_11_1 3
#define M9_11_2 4
#define M9_11_3 5
#define M9_11_4 6
#define M9_11_5 7
#define M9_11_6 8
#define M9_11_7 0
#define M9_12_0 3
#define M9_12_1 4
#define M9_12_2 5
#define M9_12_3 6
#define M9_12_4 7
#define M9_12_5 8
#define M9_12_6 0
#define M9_12_7 1
#define M9_13_0 4
#define M9_13_1 5
#define M9_13_2 6
#define M9_13_3 7
#define M9_13_4 8
#define M9_13_5 0
#define M9_13_6 1
#define M9_13_7 2
#define M9_14_0 5
#define M9_14_1 6
#define M9_14_2 7
#define M9_14_3 8
#define M9_14_4 0
#define M9_14_5 1
#define M9_14_6 2
#define M9_14_7 3
#define M9_15_0 6
#define M9_15_1 7
#define M9_15_2 8
#define M9_15_3 0
#define M9_15_4 1
#define M9_15_5 2
#define M9_15_6 3
#define M9_15_7 4
#define M9_16_0 7
#define M9_16_1 8
#define M9_16_2 0
#define M9_16_3 1
#define M9_16_4 2
#define M9_16_5 3
#define M9_16_6 4
#define M9_16_7 5
#define M9_17_0 8
#define M9_17_1 0
#define M9_17_2 1
#define M9_17_3 2
#define M9_17_4 3
#define M9_17_5 4
#define M9_17_6 5
#define M9_17_7 6
#define M9_18_0 0
#define M9_18_1 1
#define M9_18_2 2
#define M9_18_3 3
#define M9_18_4 4
#define M9_18_5 5
#define M9_18_6 6
#define M9_18_7 7
/*
* M3_ ## s ## _ ## i evaluates to s+i mod 3 (0 <= s <= 18, 0 <= i <= 1).
*/
#define M3_0_0 0
#define M3_0_1 1
#define M3_1_0 1
#define M3_1_1 2
#define M3_2_0 2
#define M3_2_1 0
#define M3_3_0 0
#define M3_3_1 1
#define M3_4_0 1
#define M3_4_1 2
#define M3_5_0 2
#define M3_5_1 0
#define M3_6_0 0
#define M3_6_1 1
#define M3_7_0 1
#define M3_7_1 2
#define M3_8_0 2
#define M3_8_1 0
#define M3_9_0 0
#define M3_9_1 1
#define M3_10_0 1
#define M3_10_1 2
#define M3_11_0 2
#define M3_11_1 0
#define M3_12_0 0
#define M3_12_1 1
#define M3_13_0 1
#define M3_13_1 2
#define M3_14_0 2
#define M3_14_1 0
#define M3_15_0 0
#define M3_15_1 1
#define M3_16_0 1
#define M3_16_1 2
#define M3_17_0 2
#define M3_17_1 0
#define M3_18_0 0
#define M3_18_1 1
#define XCAT(x, y) XCAT_(x, y)
#define XCAT_(x, y) x ## y
#define SKBI(k, s, i) XCAT(k, XCAT(XCAT(XCAT(M9_, s), _), i))
#define SKBT(t, s, v) XCAT(t, XCAT(XCAT(XCAT(M3_, s), _), v))
#define TFBIG_KINIT_UI2(k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2) { \
k8 = ((k0 ^ k1) ^ (k2 ^ k3)) ^ ((k4 ^ k5) ^ (k6 ^ k7)) \
^ vectorize(SPH_C64(0x1BD11BDAA9FC1A22)); \
t2 = t0 ^ t1; \
}
#define TFBIG_ADDKEY_UI2(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \
w0 = (w0 + SKBI(k, s, 0)); \
w1 = (w1 + SKBI(k, s, 1)); \
w2 = (w2 + SKBI(k, s, 2)); \
w3 = (w3 + SKBI(k, s, 3)); \
w4 = (w4 + SKBI(k, s, 4)); \
w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \
w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \
w7 = (w7 + SKBI(k, s, 7) + vectorize(s)); \
}
#define TFBIG_MIX_UI2(x0, x1, rc) { \
x0 = x0 + x1; \
x1 = ROL2(x1, rc) ^ x0; \
}
#define TFBIG_MIX8_UI2(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \
TFBIG_MIX_UI2(w0, w1, rc0); \
TFBIG_MIX_UI2(w2, w3, rc1); \
TFBIG_MIX_UI2(w4, w5, rc2); \
TFBIG_MIX_UI2(w6, w7, rc3); \
}
#define TFBIG_4e_UI2(s) { \
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \
TFBIG_MIX8_UI2(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \
TFBIG_MIX8_UI2(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \
TFBIG_MIX8_UI2(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \
}
#define TFBIG_4o_UI2(s) { \
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \
TFBIG_MIX8_UI2(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \
TFBIG_MIX8_UI2(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \
TFBIG_MIX8_UI2(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \
}
/* precalc */
#define TFBIG_ADDKEY_PRE(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \
w0 = (w0 + SKBI(k, s, 0)); \
w1 = (w1 + SKBI(k, s, 1)); \
w2 = (w2 + SKBI(k, s, 2)); \
w3 = (w3 + SKBI(k, s, 3)); \
w4 = (w4 + SKBI(k, s, 4)); \
w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \
w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \
w7 = (w7 + SKBI(k, s, 7) + (s)); \
}
#define TFBIG_MIX_PRE(x0, x1, rc) { \
x0 = x0 + x1; \
x1 = ROTL64(x1, rc) ^ x0; \
}
#define TFBIG_MIX8_PRE(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \
TFBIG_MIX_PRE(w0, w1, rc0); \
TFBIG_MIX_PRE(w2, w3, rc1); \
TFBIG_MIX_PRE(w4, w5, rc2); \
TFBIG_MIX_PRE(w6, w7, rc3); \
}
#define TFBIG_4e_PRE(s) { \
TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \
TFBIG_MIX8_PRE(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \
TFBIG_MIX8_PRE(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \
TFBIG_MIX8_PRE(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \
}
#define TFBIG_4o_PRE(s) { \
TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \
TFBIG_MIX8_PRE(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \
TFBIG_MIX8_PRE(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \
TFBIG_MIX8_PRE(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \
}
/* Elementary defines for SHA256 */
#define SWAB32(x) cuda_swab32(x)
#define R(x, n) ((x) >> (n))
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22))
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25))
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3))
#define s1(x) (ROTR32(x,17) ^ ROTR32(x, 19) ^ R(x, 10))
static __device__ __constant__ uint32_t sha256_hashTable[] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
// precomputed table
static __constant__ uint32_t sha256_endingTable[64] = {
0xc28a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf374,
0x649b69c1, 0xf0fe4786, 0x0fe1edc6, 0x240cf254, 0x4fe9346f, 0x6cc984be, 0x61b9411e, 0x16f988fa,
0xf2c65152, 0xa88e5a6d, 0xb019fc65, 0xb9d99ec7, 0x9a1231c3, 0xe70eeaa0, 0xfdb1232b, 0xc7353eb0,
0x3069bad5, 0xcb976d5f, 0x5a0f118f, 0xdc1eeefd, 0x0a35b689, 0xde0b7a04, 0x58f4ca9d, 0xe15d5b16,
0x007f3e86, 0x37088980, 0xa507ea32, 0x6fab9537, 0x17406110, 0x0d8cd6f1, 0xcdaa3b6d, 0xc0bbbe37,
0x83613bda, 0xdb48a363, 0x0b02e931, 0x6fd15ca7, 0x521afaca, 0x31338431, 0x6ed41a95, 0x6d437890,
0xc39c91f2, 0x9eccabbd, 0xb5c9a0e6, 0x532fb63c, 0xd2c741c6, 0x07237ea3, 0xa4954b68, 0x4c191d76
};
static __constant__ uint32_t sha256_constantTable[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
__global__ __launch_bounds__(TPB)
void skeincoin_gpu_hash_50(uint32_t threads, uint32_t startNounce, uint32_t* d_found, uint64_t target64, int swap)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint2 h0, h1, h2, h3, h4, h5, h6, h7, h8;
uint2 t0, t1, t2;
uint2 p[8];
h0 = precalcvalues[0];
h1 = precalcvalues[1];
h2 = precalcvalues[2];
h3 = precalcvalues[3];
h4 = precalcvalues[4];
h5 = precalcvalues[5];
h6 = precalcvalues[6];
h7 = precalcvalues[7];
t2 = precalcvalues[8];
const uint32_t nonce = startNounce + thread;
const uint2 nonce2 = make_uint2(_LODWORD(c_message16[1]), swap ? cuda_swab32(nonce) : nonce);
// skein_big_close -> etype = 0x160, ptr = 16, bcount = 1, extra = 16
p[0] = vectorize(c_message16[0]);
p[1] = nonce2;
#pragma unroll
for (int i = 2; i < 8; i++)
p[i] = make_uint2(0, 0);
t0 = vectorizelow(0x50ull); // SPH_T64(bcount << 6) + (sph_u64)(extra);
t1 = vectorizehigh(0xB0000000ul); // (bcount >> 58) + ((sph_u64)(etype) << 55);
TFBIG_KINIT_UI2(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
TFBIG_4e_UI2(0);
TFBIG_4o_UI2(1);
TFBIG_4e_UI2(2);
TFBIG_4o_UI2(3);
TFBIG_4e_UI2(4);
TFBIG_4o_UI2(5);
TFBIG_4e_UI2(6);
TFBIG_4o_UI2(7);
TFBIG_4e_UI2(8);
TFBIG_4o_UI2(9);
TFBIG_4e_UI2(10);
TFBIG_4o_UI2(11);
TFBIG_4e_UI2(12);
TFBIG_4o_UI2(13);
TFBIG_4e_UI2(14);
TFBIG_4o_UI2(15);
TFBIG_4e_UI2(16);
TFBIG_4o_UI2(17);
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
t0 = vectorizelow(8); // extra
t1 = vectorizehigh(0xFF000000ul); // etype
h0 = vectorize(c_message16[0]) ^ p[0];
h1 = nonce2 ^ p[1];
h2 = p[2];
h3 = p[3];
h4 = p[4];
h5 = p[5];
h6 = p[6];
h7 = p[7];
h8 = h0 ^ h1 ^ p[2] ^ p[3] ^ p[4] ^ p[5] ^ p[6] ^ p[7] ^ vectorize(0x1BD11BDAA9FC1A22);
t2 = vectorize(0xFF00000000000008ull);
// p[8] = { 0 };
#pragma unroll 8
for (int i = 0; i<8; i++)
p[i] = make_uint2(0, 0);
TFBIG_4e_UI2(0);
TFBIG_4o_UI2(1);
TFBIG_4e_UI2(2);
TFBIG_4o_UI2(3);
TFBIG_4e_UI2(4);
TFBIG_4o_UI2(5);
TFBIG_4e_UI2(6);
TFBIG_4o_UI2(7);
TFBIG_4e_UI2(8);
TFBIG_4o_UI2(9);
TFBIG_4e_UI2(10);
TFBIG_4o_UI2(11);
TFBIG_4e_UI2(12);
TFBIG_4o_UI2(13);
TFBIG_4e_UI2(14);
TFBIG_4o_UI2(15);
TFBIG_4e_UI2(16);
TFBIG_4o_UI2(17);
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
uint32_t *message = (uint32_t *)p;
uint32_t regs[8];
uint32_t hash[8];
// Init with Hash-Table
#pragma unroll 8
for (int k = 0; k < 8; k++) {
hash[k] = regs[k] = sha256_hashTable[k];
}
uint32_t W1[16];
uint32_t W2[16];
#pragma unroll 16
for (int k = 0; k<16; k++)
W1[k] = SWAB32(message[k]);
// Progress W1
#pragma unroll 16
for (int j = 0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j] + W1[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int k = 6; k >= 0; k--) regs[k + 1] = regs[k];
regs[0] = T1 + T2;
regs[4] += T1;
}
// Progress W2...W3
////// PART 1
#pragma unroll 2
for (int j = 0; j<2; j++)
W2[j] = s1(W1[14 + j]) + W1[9 + j] + s0(W1[1 + j]) + W1[j];
#pragma unroll 5
for (int j = 2; j<7; j++)
W2[j] = s1(W2[j - 2]) + W1[9 + j] + s0(W1[1 + j]) + W1[j];
#pragma unroll 8
for (int j = 7; j<15; j++)
W2[j] = s1(W2[j - 2]) + W2[j - 7] + s0(W1[1 + j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Round function
#pragma unroll 16
for (int j = 0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 16] + W2[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
////// PART 2
#pragma unroll 2
for (int j = 0; j<2; j++)
W1[j] = s1(W2[14 + j]) + W2[9 + j] + s0(W2[1 + j]) + W2[j];
#pragma unroll 5
for (int j = 2; j<7; j++)
W1[j] = s1(W1[j - 2]) + W2[9 + j] + s0(W2[1 + j]) + W2[j];
#pragma unroll 8
for (int j = 7; j<15; j++)
W1[j] = s1(W1[j - 2]) + W1[j - 7] + s0(W2[1 + j]) + W2[j];
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
// Round function
#pragma unroll 16
for (int j = 0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 32] + W1[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
////// PART 3
#pragma unroll 2
for (int j = 0; j<2; j++)
W2[j] = s1(W1[14 + j]) + W1[9 + j] + s0(W1[1 + j]) + W1[j];
#pragma unroll 5
for (int j = 2; j<7; j++)
W2[j] = s1(W2[j - 2]) + W1[9 + j] + s0(W1[1 + j]) + W1[j];
#pragma unroll 8
for (int j = 7; j<15; j++)
W2[j] = s1(W2[j - 2]) + W2[j - 7] + s0(W1[1 + j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Round function
#pragma unroll 16
for (int j = 0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 48] + W2[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
#pragma unroll 8
for (int k = 0; k<8; k++)
hash[k] += regs[k];
/////
///// Second Pass (ending)
/////
#pragma unroll 8
for (int k = 0; k<8; k++)
regs[k] = hash[k];
// Progress W1
uint32_t T1, T2;
#pragma unroll 1
for (int j = 0; j<56; j++)//62
{
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_endingTable[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int k = 6; k >= 0; k--)
regs[k + 1] = regs[k];
regs[0] = T1 + T2;
regs[4] += T1;
}
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6])+sha256_endingTable[56];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
regs[7] = T1 + T2;
regs[3] += T1;
T1 = regs[6] + S1(regs[3]) + Ch(regs[3], regs[4], regs[5]) + sha256_endingTable[57];
T2 = S0(regs[7]) + Maj(regs[7], regs[0], regs[1]);
regs[6] = T1 + T2;
regs[2] += T1;
//************
regs[1] += regs[5] + S1(regs[2]) + Ch(regs[2], regs[3], regs[4]) + sha256_endingTable[58];
regs[0] += regs[4] + S1(regs[1]) + Ch(regs[1], regs[2], regs[3]) + sha256_endingTable[59];
regs[7] += regs[3] + S1(regs[0]) + Ch(regs[0], regs[1], regs[2]) + sha256_endingTable[60];
regs[6] += regs[2] + S1(regs[7]) + Ch(regs[7], regs[0], regs[1]) + sha256_endingTable[61];
uint64_t test = SWAB32(hash[7] + regs[7]);
test <<= 32;
test|= SWAB32(hash[6] + regs[6]);
if (test <= target64)
{
uint32_t tmp = atomicExch(&(d_found[0]), startNounce + thread);
if (tmp != UINT32_MAX)
d_found[1] = tmp;
}
}
}
__host__
static void precalc(uint64_t* message)
{
uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8;
uint64_t t0, t1, t2;
h0 = 0x4903ADFF749C51CEull;
h1 = 0x0D95DE399746DF03ull;
h2 = 0x8FD1934127C79BCEull;
h3 = 0x9A255629FF352CB1ull;
h4 = 0x5DB62599DF6CA7B0ull;
h5 = 0xEABE394CA9D5C3F4ull;
h6 = 0x991112C71A75B523ull;
h7 = 0xAE18A40B660FCC33ull;
//h8 = h0 ^ h1 ^ h2 ^ h3 ^ h4 ^ h5 ^ h6 ^ h7 ^ SPH_C64(0x1BD11BDAA9FC1A22);
h8 = 0xcab2076d98173ec4ULL;
t0 = 64; // ptr
t1 = 0x7000000000000000ull;
t2 = 0x7000000000000040ull;
uint64_t p[8];
for (int i = 0; i<8; i++)
p[i] = message[i];
TFBIG_4e_PRE(0);
TFBIG_4o_PRE(1);
TFBIG_4e_PRE(2);
TFBIG_4o_PRE(3);
TFBIG_4e_PRE(4);
TFBIG_4o_PRE(5);
TFBIG_4e_PRE(6);
TFBIG_4o_PRE(7);
TFBIG_4e_PRE(8);
TFBIG_4o_PRE(9);
TFBIG_4e_PRE(10);
TFBIG_4o_PRE(11);
TFBIG_4e_PRE(12);
TFBIG_4o_PRE(13);
TFBIG_4e_PRE(14);
TFBIG_4o_PRE(15);
TFBIG_4e_PRE(16);
TFBIG_4o_PRE(17);
TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
uint64_t buffer[9];
buffer[0] = message[0] ^ p[0];
buffer[1] = message[1] ^ p[1];
buffer[2] = message[2] ^ p[2];
buffer[3] = message[3] ^ p[3];
buffer[4] = message[4] ^ p[4];
buffer[5] = message[5] ^ p[5];
buffer[6] = message[6] ^ p[6];
buffer[7] = message[7] ^ p[7];
buffer[8] = t2;
CUDA_SAFE_CALL(cudaMemcpyToSymbol(precalcvalues, buffer, sizeof(buffer), 0, cudaMemcpyHostToDevice));
}
__host__
void skeincoin_init(int thr_id)
{
cuda_get_arch(thr_id);
CUDA_SAFE_CALL(cudaMalloc(&d_found[thr_id], 2 * sizeof(uint32_t)));
}
__host__
void skeincoin_free(int thr_id) {
cudaFree(d_found[thr_id]);
}
__host__
void skeincoin_setBlock_80(int thr_id, void *pdata)
{
uint64_t message[16];
memcpy(&message[0], pdata, 80);
cudaMemcpyToSymbol(c_message16, &message[8], 16, 0, cudaMemcpyHostToDevice);
precalc(message);
}
__host__
uint32_t skeincoin_hash_sm5(int thr_id, uint32_t threads, uint32_t startNounce, int swap, uint64_t target64, uint32_t *secNonce)
{
uint32_t h_found[2];
uint32_t threadsperblock = TPB;
dim3 block(threadsperblock);
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
memset(h_found, 0xff, sizeof(h_found));
cudaMemset(d_found[thr_id], 0xff, 2 * sizeof(uint32_t));
skeincoin_gpu_hash_50 <<< grid, block >>> (threads, startNounce, d_found[thr_id], target64, swap);
cudaMemcpy(h_found, d_found[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
if (h_found[1] && h_found[1] != UINT32_MAX && h_found[1] != h_found[0])
*secNonce = h_found[1];
return h_found[0];
}