-
Notifications
You must be signed in to change notification settings - Fork 0
/
VGG.py
85 lines (74 loc) · 2.85 KB
/
VGG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Lifted from https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
# This version ran but accuracy is <0.1 and the values for AvgPool size and the first linear input to the classifier are utterly arbitrary
import torch.nn as nn
import logging
logging.basicConfig(level=logging.INFO)
class VGG(nn.Module):
# Try not initialising weights
def __init__(self, features, num_classes=1000, init_weights=True):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential(
# Try resizing the first linear layer
nn.ReLU(True),
nn.Linear(73728, 4096), #, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x):
logging.debug(x)
logging.debug(x.dim())
logging.debug(len(x))
x = self.features(x)
logging.debug(x.dim())
x = x.view(x.size(0), -1)
logging.debug(len(x))
logging.debug(self.classifier)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def make_layers(cfg, batch_norm=True):
layers = []
in_channels = 3
for v in cfg:
# The only significant change, use an adaptive maxpool
# if v == 'A':
# layers += [nn.AdaptiveAvgPool2d(1)]
if v == 'A':
layers += [nn.AdaptiveAvgPool2d((12,12))]
elif v =='M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
def vgg_custom(**kwargs):
"""VGG 11-layer model (configuration "A")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
#cfg = [64, 'A', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
cfg = [64, 'A', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'A']
model = VGG(make_layers(cfg),**kwargs)
return model