-
Notifications
You must be signed in to change notification settings - Fork 0
/
2373. Largest Local Values in a Matrix.py
52 lines (33 loc) · 1.42 KB
/
2373. Largest Local Values in a Matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
'''
You are given an n x n integer matrix grid.
Generate an integer matrix maxLocal of size (n - 2) x (n - 2) such that:
maxLocal[i][j] is equal to the largest value of the 3 x 3 matrix in grid centered around row i + 1 and column j + 1.
In other words, we want to find the largest value in every contiguous 3 x 3 matrix in grid.
Return the generated matrix.
Example 1:
Input: grid = [[9,9,8,1],[5,6,2,6],[8,2,6,4],[6,2,2,2]]
Output: [[9,9],[8,6]]
Explanation: The diagram above shows the original matrix and the generated matrix.
Notice that each value in the generated matrix corresponds to the largest value of a contiguous 3 x 3 matrix in grid.
Example 2:
Input: grid = [[1,1,1,1,1],[1,1,1,1,1],[1,1,2,1,1],[1,1,1,1,1],[1,1,1,1,1]]
Output: [[2,2,2],[2,2,2],[2,2,2]]
Explanation: Notice that the 2 is contained within every contiguous 3 x 3 matrix in grid.
Constraints:
n == grid.length == grid[i].length
3 <= n <= 100
1 <= grid[i][j] <= 100
'''
class Solution:
def largestLocal(self, grid: List[List[int]]) -> List[List[int]]:
n, res = len(grid), []
for i in range(1, n - 1):
temp_row = []
for j in range(1, n - 1):
temp = 0
for k in range(i - 1, i + 2):
for l in range(j - 1, j + 2):
temp = max(temp, grid[k][l])
temp_row.append(temp)
res.append(temp_row)
return res