-
Notifications
You must be signed in to change notification settings - Fork 16
/
bas_lm.R
853 lines (796 loc) · 31.8 KB
/
bas_lm.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
normalize.initprobs.lm <- function(initprobs, p) {
if (length(initprobs) != p) {
stop(paste(
"length of initprobs is", length(initprobs),
"is not same as dimensions of X", p
))
}
if (initprobs[1] < 1.0 | initprobs[1] > 1.0) initprobs[1] <- 1.0
# intercept is always included otherwise we get a segmentation
# fault (relax later)
prob <- as.numeric(initprobs)
prob[initprobs < 0.0] = 0.0
prob[initprobs > 1.0] = 1.0
# if (!is.null(lm.obj)) {
# pval = summary(lm.obj)$coefficients[,4]
# if (any(is.na(pval))) {
# print(paste("warning full model is rank deficient."))
# }}
#
return(prob)
}
normalize.modelprior <- function(modelprior, p) {
if (modelprior$family == "Bernoulli") {
if (length(modelprior$hyper.parameters) == 1) {
modelprior$hyper.parameters <- c(1, rep(modelprior$hyper.parameters, p - 1))
}
if (length(modelprior$hyper.parameters) == (p - 1)) {
modelprior$hyper.parameters <- c(1,
modelprior$hyper.parameters)
}
if (length(modelprior$hyper.parameters) != p) {
stop(" Number of probabilities in Bernoulli family is not equal to the number of variables or 1")
}
}
return(modelprior)
}
normalize.n.models <- function(n.models, p, initprobs, method, bigmem) {
if (is.null(n.models)) {
p = max(30, p)
n.models <- 2^(p - 1)
}
if (n.models > 2^(p - 1)) n.models <- 2^(p - 1)
deg <- sum(initprobs >= 1) + sum(initprobs <= 0)
if (deg > 1 & n.models == 2^(p - 1)) {
n.models <- 2^(p - deg)
}
if (n.models > 2^25 && !bigmem && !(method == "MCMC")) {
stop(paste0("Number of requested models to sample is ",
n.models,
"; rerun with bigmem=TRUE or using method='MCMC'"
))
}
return(n.models)
}
is.solaris<-function() {
grepl('SunOS',Sys.info()['sysname'])
}
#' Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in
#' Linear Models
#'
#' Sample without replacement from a posterior distribution on models
#'
#' BAS provides several algorithms to sample from posterior distributions
#' of models for
#' use in Bayesian Model Averaging or Bayesian variable selection. For p less than
#' 20-25, BAS can enumerate all models depending on memory availability. As BAS saves all
#' models, MLEs, standard errors, log marginal likelihoods, prior and posterior and probabilities
#' memory requirements grow linearly with M*p where M is the number of models
#' and p is the number of predictors. For example, enumeration with p=21 with 2,097,152 takes just under
#' 2 Gigabytes on a 64 bit machine to store all summaries that would be needed for model averaging.
#' (A future version will likely include an option to not store all summaries if
#' users do not plan on using model averaging or model selection on Best Predictive models.)
#' For larger p, BAS samples without replacement using random or deterministic
#' sampling. The Bayesian Adaptive Sampling algorithm of Clyde, Ghosh, Littman
#' (2010) samples models without replacement using the initial sampling
#' probabilities, and will optionally update the sampling probabilities every
#' "update" models using the estimated marginal inclusion probabilities. BAS
#' uses different methods to obtain the \code{initprobs}, which may impact the
#' results in high-dimensional problems. The deterministic sampler provides a
#' list of the top models in order of an approximation of independence using
#' the provided \code{initprobs}. This may be effective after running the
#' other algorithms to identify high probability models and works well if the
#' correlations of variables are small to modest.
#' We recommend "MCMC" for
#' problems where enumeration is not feasible (memory or time constrained)
#' or even modest p if the number of
#' models sampled is not close to the number of possible models and/or there are significant
#' correlations among the predictors as the bias in estimates of inclusion
#' probabilities from "BAS" or "MCMC+BAS" may be large relative to the reduced
#' variability from using the normalized model probabilities as shown in Clyde and Ghosh, 2012.
#' Diagnostic plots with MCMC can be used to assess convergence.
#' For large problems we recommend thinning with MCMC to reduce memory requirements.
#' The priors on coefficients
#' include Zellner's g-prior, the Hyper-g prior (Liang et al 2008, the
#' Zellner-Siow Cauchy prior, Empirical Bayes (local and global) g-priors. AIC
#' and BIC are also included, while a range of priors on the model space are available.
#'
#' @aliases bas bas.lm
#' @param formula linear model formula for the full model with all predictors,
#' Y ~ X. All code assumes that an intercept will be included in each model
#' and that the X's will be centered.
#' @param data a data frame. Factors will be converted to numerical vectors based on
#' the using `model.matrix`.
#' @param subset an optional vector specifying a subset of observations to be
#' used in the fitting process.
#' @param weights an optional vector of weights to be used in the fitting
#' process. Should be NULL or a numeric vector. If non-NULL, Bayes estimates
#' are obtained assuming that Y ~ N(Xb, sigma^2 diag(1/weights)).
#' @param contrasts an optional list. See the contrasts.arg of `model.matrix.default()`.
#' @param na.action a function which indicates what should happen when the data
#' contain NAs. The default is "na.omit".
#' @param n.models number of models to sample either without replacement
#' (method="BAS" or "MCMC+BAS") or with replacement (method="MCMC"). If NULL,
#' BAS with method="BAS" will try to enumerate all 2^p models. If enumeration
#' is not possible (memory or time) then a value should be supplied which
#' controls the number of sampled models using 'n.models'. With method="MCMC",
#' sampling will stop once the min(n.models, MCMC.iterations) occurs so
#' MCMC.iterations be significantly larger than n.models in order to explore the model space.
#' On exit for method= "MCMC" this is the number of unique models that have
#' been sampled with counts stored in the output as "freq".
#' @param prior prior distribution for regression coefficients. Choices
#' include
#' \itemize{
#' \item "AIC"
#' \item "BIC"
#' \item "g-prior", Zellner's g prior where `g` is specified using the argument `alpha`
#' \item "JZS" Jeffreys-Zellner-Siow prior which uses the Jeffreys
#' prior on sigma and the Zellner-Siow Cauchy prior on the coefficients.
#' The optional parameter `alpha` can be used to control
#' the squared scale of the prior, where the default is alpha=1. Setting
#' `alpha` is equal to rscale^2 in the BayesFactor package of Morey.
#' This uses QUADMATH for numerical integration of g.
#' \item "ZS-null", a Laplace approximation to the 'JZS' prior
#' for integration of g. alpha = 1 only. We recommend
#' using 'JZS' for accuracy and compatibility
#' with the BayesFactor package, although it is
#' slower.
#' \item "ZS-full" (to be deprecated)
#' \item "hyper-g", a mixture of g-priors where the prior on
#' g/(1+g) is a Beta(1, alpha/2) as in Liang et al (2008). This
#' uses the Cephes library for evaluation of the marginal
#' likelihoods and may be numerically unstable for
#' large n or R2 close to 1. Default choice of alpha is 3.
#' \item "hyper-g-laplace", Same as above but using a Laplace
#' approximation to integrate over the prior on g.
#' \item "hyper-g-n", a mixture of g-priors that where
#' u = g/n and u ~ Beta(1, alpha/2) to provide consistency
#' when the null model is true.
#' \item "EB-local", use the MLE of g from the marginal likelihood
#' within each model
#' \item "EB-global" uses an EM algorithm to find a common or
#' global estimate of g, averaged over all models. When it is not possible to
#' enumerate all models, the EM algorithm uses only the
#' models sampled under EB-local.
#' }
#' @param alpha optional hyperparameter in g-prior or hyper g-prior. For
#' Zellner's g-prior, alpha = g, for the Liang et al hyper-g or hyper-g-n
#' method, recommended choice is alpha are between (2 < alpha < 4), with alpha
#' = 3 the default. For the Zellner-Siow prior alpha = 1 by default, but can be used
#' to modify the rate parameter in the gamma prior on g, 1/g ~ G(1/2, n*alpha/2) so that
#' beta ~ C(0, sigma^2 alpha (X'X/n)^{-1}).
#' @param modelprior Family of prior distribution on the models. Choices
#' include \code{\link{uniform}} \code{\link{Bernoulli}} or
#' \code{\link{beta.binomial}}, \code{\link{tr.beta.binomial}},
#' (with truncation) \code{\link{tr.poisson}} (a truncated Poisson), and
#' \code{\link{tr.power.prior}} (a truncated power family),
#' with the default being a
#' \code{beta.binomial(1,1)}. Truncated versions are useful for p > n.
#' @param initprobs Vector of length p or a character string specifying which
#' method is used to create the vector. This is used to order variables for
#' sampling all methods for potentially more efficient storage while sampling
#' and provides the initial inclusion probabilities used for sampling without
#' replacement with method="BAS". Options for the character string giving the
#' method are: "Uniform" or "uniform" where each predictor variable is equally
#' likely to be sampled (equivalent to random sampling without replacement);
#' "eplogp" uses the \code{\link{eplogprob}} function to approximate the Bayes
#' factor from p-values from the full model to find initial marginal inclusion
#' probabilities; "marg-eplogp" uses\code{\link{eplogprob.marg}} function to
#' approximate the Bayes factor from p-values from the full model each simple
#' linear regression. To run a Markov Chain to provide initial estimates of
#' marginal inclusion probabilities for "BAS", use method="MCMC+BAS" below.
#' While the initprobs are not used in sampling for method="MCMC", this
#' determines the order of the variables in the lookup table and affects memory
#' allocation in large problems where enumeration is not feasible. For
#' variables that should always be included set the corresponding initprobs to
#' 1, to override the `modelprior` or use `include.always` to force these variables
#' to always be included in the model.
#' @param include.always A formula with terms that should always be included
#' in the model with probability one. By default this is `~ 1` meaning that the
#' intercept is always included. This will also override any of the values in `initprobs`
#' above by setting them to 1.
#' @param method A character variable indicating which sampling method to use:
#' \itemize{
#' \item "deterministic" uses the "top k" algorithm described in Ghosh and Clyde (2011)
#' to sample models in order of approximate probability under conditional independence
#' using the "initprobs". This is the most efficient algorithm for enumeration.
#' \item "BAS" uses Bayesian Adaptive Sampling (without replacement) using the
#' sampling probabilities given in initprobs under a model of conditional independence.
#' These can be updated based on estimates of the marginal inclusion probabilities.
#' \item "MCMC" samples with
#' replacement via a MCMC algorithm that combines the birth/death random walk
#' in Hoeting et al (1997) of MC3 with a random swap move to interchange a
#' variable in the model with one currently excluded as described in Clyde,
#' Ghosh and Littman (2010).
#' \item "MCMC+BAS" runs an initial MCMC to
#' calculate marginal inclusion probabilities and then samples without
#' replacement as in BAS. For BAS, the sampling probabilities can be updated
#' as more models are sampled. (see update below).
#' }
#' @param update number of iterations between potential updates of the sampling
#' probabilities for method "BAS" or "MCMC+BAS". If NULL do not update, otherwise the
#' algorithm will update using the marginal inclusion probabilities as they
#' change while sampling takes place. For large model spaces, updating is
#' recommended. If the model space will be enumerated, leave at the default.
#' @param bestmodel optional binary vector representing a model to initialize
#' the sampling. If NULL sampling starts with the null model
#' @param prob.local A future option to allow sampling of models "near" the
#' median probability model. Not used at this time.
#' @param prob.rw For any of the MCMC methods, probability of using the
#' random-walk Metropolis proposal; otherwise use a random "flip" move
#' to propose swap a variable that is excluded with a variable in the model.
#' @param MCMC.iterations Number of iterations for the MCMC sampler; the
#' default is n.models*10 if not set by the user.
#' @param lambda Parameter in the AMCMC algorithm (deprecated).
#' @param delta truncation parameter to prevent sampling probabilities to
#' degenerate to 0 or 1 prior to enumeration for sampling without replacement.
#' @param thin For "MCMC", thin the MCMC chain every "thin" iterations; default is no
#' thinning. For large p, thinning can be used to significantly reduce memory
#' requirements as models and associated summaries are saved only every thin iterations. For thin = p, the model and associated output are recorded every p iterations,
#' similar to the Gibbs sampler in SSVS.
#' @param renormalize For MCMC sampling, should posterior probabilities be
#' based on renormalizing the marginal likelihoods times prior probabilities
#' (TRUE) or frequencies from MCMC. The latter are unbiased in long runs,
#' while the former may have less variability. May be compared via the
#' diagnostic plot function \code{\link{diagnostics}}.
#' See details in Clyde and Ghosh (2012).
#' @param force.heredity Logical variable to force all levels of a factor to be
#' included together and to include higher order interactions only if lower
#' order terms are included. Currently supported with `method='MCMC'`
#' and experimentally with `method='BAS'` on non-Solaris platforms.
#' Default is FALSE.
#' @param pivot Logical variable to allow pivoting of columns when obtaining the
#' OLS estimates of a model so that models that are not full rank can be fit.
#' Defaults to TRUE.
#' Currently coefficients that are not estimable are set to zero. Use caution with
#' interpreting BMA estimates of parameters.
#' @param tol 1e-7 as
#' @param bigmem Logical variable to indicate that there is access to
#' large amounts of memory (physical or virtual) for enumeration
#' with large model spaces, e.g. > 2^25. default; used in determining rank of X^TX in cholesky
#' decomposition
#' with pivoting.
#'
#' @return \code{bas} returns an object of class \code{bas}
#'
#' An object of class \code{BAS} is a list containing at least the following
#' components:
#'
#' \item{postprob}{the posterior probabilities of the models selected}
#' \item{priorprobs}{the prior probabilities of the models selected}
#' \item{namesx}{the names of the variables}
#' \item{R2}{R2 values for the
#' models}
#' \item{logmarg}{values of the log of the marginal likelihood for the
#' models. This is equivalent to the log Bayes Factor for comparing
#' each model to a base model with intercept only.}
#' \item{n.vars}{total number of independent variables in the full
#' model, including the intercept}
#' \item{size}{the number of independent
#' variables in each of the models, includes the intercept}
#' \item{rank}{the rank of the design matrix; if `pivot = FALSE`, this is the same as size
#' as no checking of rank is conducted.}
#' \item{which}{a list
#' of lists with one list per model with variables that are included in the
#' model}
#' \item{probne0}{the posterior probability that each variable is
#' non-zero computed using the renormalized marginal likelihoods of sampled
#' models. This may be biased if the number of sampled models is much smaller
#' than the total number of models. Unbiased estimates may be obtained using
#' method "MCMC".}
#' \item{mle}{list of lists with one list per model giving the
#' MLE (OLS) estimate of each (nonzero) coefficient for each model. NOTE: The
#' intercept is the mean of Y as each column of X has been centered by
#' subtracting its mean.}
#' \item{mle.se}{list of lists with one list per model
#' giving the MLE (OLS) standard error of each coefficient for each model}
#' \item{prior}{the name of the prior that created the BMA object}
#' \item{alpha}{value of hyperparameter in coefficient prior used to create the BMA
#' object. }
#' \item{modelprior}{the prior distribution on models that created the
#' BMA object}
#' \item{Y}{response}
#' \item{X}{matrix of predictors}
#' \item{mean.x}{vector of means for each column of X (used in
#' \code{\link{predict.bas}})}
#' \item{include.always}{indices of variables that are forced into the model}
#'
#' The function \code{\link{summary.bas}}, is used to print a summary of the
#' results. The function \code{\link{plot.bas}} is used to plot posterior
#' distributions for the coefficients and \code{\link{image.bas}} provides an
#' image of the distribution over models. Posterior summaries of coefficients
#' can be extracted using \code{\link{coefficients.bas}}. Fitted values and
#' predictions can be obtained using the S3 functions \code{\link{fitted.bas}}
#' and \code{\link{predict.bas}}. BAS objects may be updated to use a
#' different prior (without rerunning the sampler) using the function
#' \code{\link{update.bas}}. For MCMC sampling \code{\link{diagnostics}} can be used
#' to assess whether the MCMC has run long enough so that the posterior probabilities
#' are stable. For more details see the associated demos and vignette.
#' @author Merlise Clyde (\email{clyde@@duke.edu}) and Michael Littman
#' @seealso \code{\link{summary.bas}}, \code{\link{coefficients.bas}},
#' \code{\link{print.bas}}, \code{\link{predict.bas}}, \code{\link{fitted.bas}}
#' \code{\link{plot.bas}}, \code{\link{image.bas}}, \code{\link{eplogprob}},
#' \code{\link{update.bas}}
#' @references Clyde, M. Ghosh, J. and Littman, M. (2010) Bayesian Adaptive
#' Sampling for Variable Selection and Model Averaging. Journal of
#' Computational Graphics and Statistics. 20:80-101 \cr
#' \doi{10.1198/jcgs.2010.09049}
#'
#' Clyde, M. and Ghosh. J. (2012) Finite population estimators in stochastic search variable selection.
#' Biometrika, 99 (4), 981-988. \doi{10.1093/biomet/ass040}
#'
#' Clyde, M. and George, E. I. (2004) Model Uncertainty. Statist. Sci., 19,
#' 81-94. \cr \doi{10.1214/088342304000000035}
#'
#' Clyde, M. (1999) Bayesian Model Averaging and Model Search Strategies (with
#' discussion). In Bayesian Statistics 6. J.M. Bernardo, A.P. Dawid, J.O.
#' Berger, and A.F.M. Smith eds. Oxford University Press, pages 157-185.
#'
#' Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999)
#' Bayesian model averaging: a tutorial (with discussion). Statist. Sci., 14,
#' 382-401. \cr
#' \doi{10.1214/ss/1009212519}
#'
#' Liang, F., Paulo, R., Molina, G., Clyde, M. and Berger, J.O. (2008) Mixtures
#' of g-priors for Bayesian Variable Selection. Journal of the American
#' Statistical Association. 103:410-423. \cr
#' \doi{10.1198/016214507000001337}
#'
#' Zellner, A. (1986) On assessing prior distributions and Bayesian regression
#' analysis with g-prior distributions. In Bayesian Inference and Decision
#' Techniques: Essays in Honor of Bruno de Finetti, pp. 233-243.
#' North-Holland/Elsevier.
#'
#' Zellner, A. and Siow, A. (1980) Posterior odds ratios for selected
#' regression hypotheses. In Bayesian Statistics: Proceedings of the First
#' International Meeting held in Valencia (Spain), pp. 585-603.
#'
#' Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., \& Iverson, G.
#' (2009). Bayesian t-tests for accepting and rejecting the null hypothesis.
#' Psychonomic Bulletin & Review, 16, 225-237
#'
#' Rouder, J. N., Morey, R. D., Speckman, P. L., Province, J. M., (2012)
#' Default Bayes Factors for ANOVA Designs. Journal of Mathematical Psychology.
#' 56. p. 356-374.
#' @keywords regression
#' @family bas methods
#' @examples
#'
#' library(MASS)
#' data(UScrime)
#' crime.bic <- bas.lm(log(y) ~ log(M) + So + log(Ed) +
#' log(Po1) + log(Po2) +
#' log(LF) + log(M.F) + log(Pop) + log(NW) +
#' log(U1) + log(U2) + log(GDP) + log(Ineq) +
#' log(Prob) + log(Time),
#' data = UScrime, n.models = 2^15, prior = "BIC",
#' modelprior = beta.binomial(1, 1),
#' initprobs = "eplogp", pivot = FALSE
#' )
#'
#'
#' # use MCMC rather than enumeration
#' crime.mcmc <- bas.lm(log(y) ~ log(M) + So + log(Ed) +
#' log(Po1) + log(Po2) +
#' log(LF) + log(M.F) + log(Pop) + log(NW) +
#' log(U1) + log(U2) + log(GDP) + log(Ineq) +
#' log(Prob) + log(Time),
#' data = UScrime,
#' method = "MCMC",
#' MCMC.iterations = 20000, prior = "BIC",
#' modelprior = beta.binomial(1, 1),
#' initprobs = "eplogp", pivot = FALSE
#' )
#'
#' summary(crime.bic)
#' plot(crime.bic)
#' image(crime.bic, subset = -1)
#'
#' # example with two-way interactions and hierarchical constraints
#' data(ToothGrowth)
#' ToothGrowth$dose <- factor(ToothGrowth$dose)
#' levels(ToothGrowth$dose) <- c("Low", "Medium", "High")
#' TG.bas <- bas.lm(len ~ supp * dose,
#' data = ToothGrowth,
#' modelprior = uniform(), method = "BAS",
#' force.heredity = TRUE
#' )
#' summary(TG.bas)
#' image(TG.bas)
#'
#' # exmple with non-full rank case
#'
#' loc <- system.file("testdata", package = "BAS")
#' d <- read.csv(paste(loc, "JASP-testdata.csv", sep = "/"))
#' fullModelFormula <- as.formula("contNormal ~ contGamma * contExpon +
#' contGamma * contcor1 + contExpon * contcor1")
#'
#' # should give warning; use pivot = T to fit non-full rank case (fails on i386)
#' out = bas.lm(fullModelFormula,
#' data = d,
#' alpha = 0.125316,
#' prior = "JZS",
#' weights = facFifty, force.heredity = FALSE, pivot = FALSE)
#'
#'
#' # use pivot = TRUE to fit non-full rank case (default)
#' # This is slower but safer
#'
#' out = bas.lm(fullModelFormula,
#' data = d,
#' alpha = 0.125316,
#' prior = "JZS",
#' weights = facFifty, force.heredity = FALSE, pivot = TRUE)
#'
#' # more complete demo's
#' demo(BAS.hald)
#' \dontrun{
#' demo(BAS.USCrime)
#' }
#'
#' @rdname bas.lm
#' @keywords regression
#' @family BAS methods
#' @concept BMA
#' @concept variable selection
#' @export
bas.lm <- function(formula,
data,
subset,
weights,
contrasts=NULL,
na.action = "na.omit",
n.models = NULL,
prior = "ZS-null",
alpha = NULL,
modelprior = beta.binomial(1, 1),
initprobs = "Uniform",
include.always = ~1,
method = "BAS",
update = NULL,
bestmodel = NULL,
prob.local = 0.0,
prob.rw = 0.5,
MCMC.iterations = NULL,
lambda = NULL,
delta = 0.025,
thin = 1,
renormalize = FALSE,
force.heredity = FALSE,
pivot = TRUE,
tol = 1e-7,
bigmem = FALSE) {
num.updates <- 10
call <- match.call()
priormethods <- c(
"g-prior",
"hyper-g",
"hyper-g-laplace",
"hyper-g-n",
"AIC",
"BIC",
"ZS-null",
"ZS-full",
"EB-local",
"EB-global",
"JZS"
)
if (!(prior %in% priormethods)) {
stop(paste(
"prior ",
prior,
"is not one of ",
paste(priormethods, collapse = ", ")
))
}
if (!(method %in% c("BAS", "deterministic", "MCMC", "MCMC+BAS"))) {
stop(paste("No available sampling method:", method))
}
# from lm
mfall <- match.call(expand.dots = FALSE)
m <- match(
c(
"formula", "data", "subset", "weights", "na.action",
"offset"
),
names(mfall),
0L
)
mf <- mfall[c(1L, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- quote(stats::model.frame)
mf <- eval(mf, parent.frame())
# data = model.frame(formula, data, na.action=na.action, weights=weights)
n.NA <- length(attr(mf, "na.action"))
if (n.NA > 0) {
warning(paste(
"dropping ", as.character(n.NA),
"rows due to missing data"
))
}
Y <- model.response(mf, "numeric")
mt <- attr(mf, "terms")
X <- model.matrix(mt, mf, contrasts)
# X = model.matrix(formula, mf)
Xorg <- X
namesx <- dimnames(X)[[2]]
namesx[1] <- "Intercept"
n <- dim(X)[1]
if (n == 0) {stop("Sample size is zero; check data and subset arguments")}
weights <- as.vector(model.weights(mf))
if (is.null(weights)) {
weights <- rep(1, n)
}
if (length(weights) != n) {
stop(simpleError(paste(
"weights are of length ", length(weights), "not of length ", n
)))
}
mean.x <- apply(X[, -1, drop = F], 2, weighted.mean, w = weights)
ones <- X[, 1]
X <- cbind(ones, sweep(X[, -1, drop = FALSE], 2, mean.x))
p <- dim(X)[2] # with intercept
if (n <= p) {
if (modelprior$family == "Uniform" ||
modelprior$family == "Bernoulli") {
warning(
"Uniform prior (Bernoulli) distribution on the Model Space are not recommended for p > n; please consider using tr.beta.binomial or power.prior instead"
)
}
}
if (!is.numeric(initprobs)) {
if (n <= p && initprobs == "eplogp") {
stop(
"Full model is not full rank so cannot use the eplogp bound to create starting sampling probabilities, perhpas use 'marg-eplogp' for fiting marginal models\n"
)
}
initprobs <- switch(
initprobs,
"eplogp" = eplogprob(lm(Y ~ X - 1)),
"marg-eplogp" = eplogprob.marg(Y, X),
"uniform" = c(1.0, rep(.5, p - 1)),
"Uniform" = c(1.0, rep(.5, p - 1))
)
}
if (length(initprobs) == (p - 1)) {
initprobs <- c(1.0, initprobs)
}
keep <- 1
# set up variables to always include
if ("include.always" %in% names(mfall)) {
minc <-
match(c("include.always", "data", "subset"), names(mfall), 0L)
mfinc <- mfall[c(1L, minc)]
mfinc$drop.unused.levels <- TRUE
names(mfinc)[2] <- "formula"
mfinc[[1L]] <- quote(stats::model.frame)
mfinc <- eval(mfinc, parent.frame())
mtinc <- attr(mfinc, "terms")
X.always <- model.matrix(mtinc, mfinc, contrasts)
keep <- c(1L, match(colnames(X.always)[-1], colnames(X)))
initprobs[keep] <- 1.0
if (ncol(X.always) == ncol(X)) {
# just one model with all variables forced in
# use method='BAS" as deterministic and MCMC fail in this context
method <- "BAS"
}
}
if (is.null(n.models)) {
n.models <- min(2^p, 2^19)
}
if (is.null(MCMC.iterations)) {
MCMC.iterations <- as.integer(n.models * 10)
}
Burnin.iterations <- as.integer(MCMC.iterations)
if (is.null(lambda)) {
lambda <- 1.0
}
int <- TRUE # assume that an intercept is always included
method.num <- switch(
prior,
"g-prior" = 0,
"hyper-g" = 1,
"EB-local" = 2,
"BIC" = 3,
"ZS-null" = 4,
"ZS-full" = 5,
"hyper-g-laplace" = 6,
"AIC" = 7,
"EB-global" = 2,
"hyper-g-n" = 8,
"JZS" = 9
)
if (is.null(alpha)) {
alpha <- switch(
prior,
"g-prior" = n,
"hyper-g" = 3,
"EB-local" = 2,
"BIC" = n,
"ZS-null" = 1,
"ZS-full" = n,
"hyper-g-laplace" = 3,
"AIC" = 0,
"EB-global" = 2,
"hyper-g-n" = 3,
"JZS" = 1,
NULL
)
}
if (is.null(alpha)) {
alpha <- 0.0
}
parents <- matrix(1, 1, 1)
if (method == "MCMC+BAS" |
method == "deterministic" | is.solaris()) {
force.heredity <- FALSE
} # does not work with updating the tree
if (force.heredity) {
parents <- make.parents.of.interactions(mf, data)
# check to see if really necessary
if (sum(parents) == nrow(parents)) {
parents <- matrix(1, 1, 1)
force.heredity <- FALSE
}
}
prob <- normalize.initprobs.lm(initprobs, p)
if (is.null(bestmodel)) {
#bestmodel = as.integer(initprobs)
bestmodel = as.integer(prob)
#bestmodel <- c(1, rep(0, p - 1))
}
bestmodel[keep] <- 1
if (force.heredity) {
update <- NULL # do not update tree FIXME LATER
if (prob.heredity(bestmodel, parents) == 0) {
warning("bestmodel violates heredity conditions; resetting to null model")
bestmodel <- c(1, rep(0, p - 1))
}
# initprobs=c(1, seq(.95, .55, length=(p-1) ))
}
n.models <- normalize.n.models(n.models, p, prob,
method, bigmem)
# print(n.models)
modelprior <- normalize.modelprior(modelprior, p)
if (is.null(update)) {
if (force.heredity) { # do not update tree for BAS
update <- n.models + 1}
else {
if (n.models == 2^(p - 1)) {
update <- n.models + 1
} else {
(update <- n.models / num.updates)
}}
}
modelindex <- as.list(1:n.models)
Yvec <- as.numeric(Y)
modeldim <- as.integer(rep(0, n.models))
n.models <- as.integer(n.models)
# sampleprobs = as.double(rep(0.0, n.models))
result <- switch(
method,
"BAS" = .Call(
C_sampleworep_new,
Yvec,
X,
sqrt(weights),
prob,
modeldim,
incint = as.integer(int),
alpha = as.numeric(alpha),
method = as.integer(method.num),
modelprior = modelprior,
update = as.integer(update),
Rbestmodel = as.integer(bestmodel),
plocal = as.numeric(prob.local),
Rparents = parents,
Rpivot = pivot,
Rtol = tol,
PACKAGE = "BAS"
),
"MCMC+BAS" = .Call(
C_mcmcbas,
Yvec,
X,
sqrt(weights),
prob,
modeldim,
incint = as.integer(int),
alpha = as.numeric(alpha),
method = as.integer(method.num),
modelprior = modelprior,
update = as.integer(update),
Rbestmodel = as.integer(bestmodel),
plocal = as.numeric(1.0 - prob.rw),
as.integer(Burnin.iterations),
as.integer(MCMC.iterations),
as.numeric(lambda),
as.numeric(delta),
Rparents = parents
),
"MCMC" = .Call(
C_mcmc_new,
Yvec,
X,
sqrt(weights),
prob,
modeldim,
incint = as.integer(int),
alpha = as.numeric(alpha),
method = as.integer(method.num),
modelprior = modelprior,
update = as.integer(update),
Rbestmodel = as.integer(bestmodel),
plocal = as.numeric(1.0 - prob.rw),
as.integer(Burnin.iterations),
as.integer(MCMC.iterations),
as.numeric(lambda),
as.numeric(delta),
as.integer(thin),
Rparents = parents,
Rpivot = pivot,
Rtol = tol
),
"deterministic" = .Call(
C_deterministic,
Yvec,
X,
sqrt(weights),
prob,
modeldim,
incint = as.integer(int),
alpha = as.numeric(alpha),
method = as.integer(method.num),
modelprior = modelprior,
Rpivot = pivot,
Rtol = tol
)
)
result$rank_deficient <- FALSE
if (any(is.na(result$logmarg))) {
warning(
"log marginals and posterior probabilities contain NA's. Consider re-running with the option `pivot=TRUE` if there are models that are not full rank"
)
result$rank_deficient <- TRUE
}
if (any(result$rank != result$size)) {
result$rank_deficient <- TRUE
}
result$n.models <- length(result$postprobs)
result$namesx <- namesx
result$n <- length(Yvec)
result$prior <- prior
result$modelprior <- modelprior
result$alpha <- alpha
result$probne0.RN <- result$probne0
result$postprobs.RN <- result$postprobs
result$include.always <- keep
if (method == "MCMC" || method == "MCMC_new") {
result$n.models <- result$n.Unique
result$postprobs.MCMC <- result$freq / sum(result$freq)
if (!renormalize) {
result$probne0 <- result$probne0.MCMC
result$postprobs <- result$postprobs.MCMC
}
}
df <- rep(n - 1, result$n.models)
if (prior == "AIC" |
prior == "BIC" | prior == "IC") {
df <- df - result$rank + 1
}
result$df <- df
result$n.vars <- p
result$Y <- Yvec
result$X <- Xorg
result$mean.x <- mean.x
result$call <- call
result$contrasts <- attr(X, "contrasts")
result$xlevels <- .getXlevels(mt, mf)
result$terms <- mt
result$model <- mf
class(result) <- c("bas")
if (prior == "EB-global") {
result <- EB.global(result)
}
return(result)
}