-
Notifications
You must be signed in to change notification settings - Fork 0
/
ASI_sampler.R
192 lines (146 loc) · 6.26 KB
/
ASI_sampler.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# ASI_sampler function
# converted from matlab by chatgbt
ASI_sampler <- function(data_fixed, data, target, g, gprior, mode, RB_adap, RB,
hparam, tau, nu, burnin, numbofits, thin, numbofreps,
heat, adap_type, updateg) {
# Suppress warnings
options(warn=-1)
# Initialize variables
rhostar <- numeric(length(heat) - 1)
order <- matrix(1:(numbofreps * length(heat)), nrow=numbofreps, ncol=length(heat), byrow=TRUE)
# Calculate rhostar
for (i in 1:(length(heat) - 1)) {
rhostar[i] <- log(log(heat[i] / heat[i + 1]))
}
# Get dimensions of data
n <- nrow(data)
p <- ncol(data)
pfixed <- ncol(data_fixed)
numbofchains <- length(heat)
sigmasqalpha <- 0
sigmasqbeta <- 0
# Convert single hparam to array if needed
if (length(hparam) == 1) {
fixed <- 1
w <- matrix(hparam, nrow=numbofreps, ncol=numbofchains)
wstar <- hparam
} else {
fixed <- 0
wa <- hparam[1]
wb <- hparam[2]
wstar <- wa / (wa + wb)
}
logita <- 0.1 / p
logitb <- 1 - 0.1 / p
XTy_all <- t(data) %*% target
if (pfixed > 0) {
XTy_fixed <- t(data_fixed) %*% target
}
loglike <- matrix(0, nrow=numbofreps, ncol=numbofchains)
C <- vector("list", length=numbofreps * numbofchains)
gamma <- array(0, dim=c(numbofreps, p, numbofchains))
for (chain in 1:numbofchains) {
for (rep in 1:numbofreps) {
check <- 0
while (check == 0) {
gamma[rep, , chain] <- runif(p) < wstar
datastar <- cbind(1, data_fixed, data[, gamma[rep, , chain] == 1])
if (gprior == 1) {
n0star <- matrix(0, nrow=(1 + size(data_fixed, 2)), ncol=(1 + size(data_fixed, 2)))
n0star[(1 + size(data_fixed, 2)):(size(data_fixed, 2) + sum(gamma[rep, , chain])), (1 + size(data_fixed, 2)):(size(data_fixed, 2) + sum(gamma[rep, , chain]))] <- 1 / g[rep, chain] * t(datastar[, 2:end]) %*% datastar[, 2:end]
} else {
n0star <- 1 / g[rep, chain] * diag(sum(gamma[rep, , chain]) + 1 + size(data_fixed, 2))
n0star[1:(1 + size(data_fixed, 2)), 1:(1 + size(data_fixed, 2))] <- 0
}
C[[rep + (chain - 1) * numbofreps]] <- solve(t(datastar) %*% datastar + n0star)
if (pfixed > 0) {
XTy <- c(sum(target), XTy_fixed, XTy_all[gamma[rep, , chain] == 1])
} else {
XTy <- c(sum(target), XTy_all[gamma[rep, , chain] == 1])
}
loglike[rep, chain] <- -0.5 * sum(gamma[rep, , chain]) * log(g[rep, chain])
loglike[rep, chain] <- loglike[rep, chain] - 0.5 * log(det(t(datastar) %*% datastar + n0star))
loglike[rep, chain] <- loglike[rep, chain] - (0.5 * n + sigmasqalpha) * log(sigmasqbeta + 0.5 * (sum(target^2) - XTy %*% C[[rep + (chain - 1) * numbofreps]] %*% XTy))
if (is.na(loglike[rep, chain]) == FALSE && is.infinite(loglike[rep, chain]) == FALSE) {
check <- 1
}
}
}
}
if (fixed == 1) {
gibbssteps <- c(0, 0)
} else {
gibbssteps <- c(0, 0, 0)
}
numbofstep <- rep(0, numbofchains)
for (rep in 1:numbofreps) {
for (chain in 1:numbofchains) {
numbofstep[chain] <- numbofstep[chain] + 1
if (numbofstep[chain] > burnin && numbofstep[chain] %% thin == 0) {
if (fixed == 1) {
gibbssteps <- cbind(gibbssteps, w[rep, chain])
} else {
gibbssteps <- cbind(gibbssteps, wa / (wa + wb))
}
}
if (fixed == 1) {
w[rep, chain] <- wstar
} else {
gamma2 <- gamma[rep, , chain]
XTy <- XTy_all[gamma2 == 1]
if (pfixed > 0) {
XTy <- c(sum(target), XTy_fixed, XTy)
} else {
XTy <- c(sum(target), XTy)
}
datastar <- cbind(1, data_fixed, data[, gamma2 == 1])
n0star <- 1 / g[rep, chain] * diag(sum(gamma2) + 1 + pfixed)
n0star[1:(1 + pfixed), 1:(1 + pfixed)] <- 0
C[[rep + (chain - 1) * numbofreps]] <- solve(t(datastar) %*% datastar + n0star)
datastar <- cbind(1, data_fixed, data)
n0star <- 1 / g[rep, chain] * diag(n + 1 + pfixed)
n0star[1:(1 + pfixed), 1:(1 + pfixed)] <- 0
Ctot <- solve(t(datastar) %*% datastar + n0star)
gamma3 <- gamma2
for (s in 1:numbofits) {
if (pfixed > 0) {
if (updateg == 1) {
g[rep, chain] <- rgamma(1, nu + 0.5 * (n + sum(gamma2)), tau + 0.5 * (target %*% target - 2 * XTy %*% C[[rep + (chain - 1) * numbofreps]] %*% XTy + trace(Ctot %*% t(datastar) %*% datastar)))
}
}
XTy <- XTy_all[gamma3 == 1]
if (pfixed > 0) {
XTy <- c(sum(target), XTy_fixed, XTy)
} else {
XTy <- c(sum(target), XTy)
}
datastar <- cbind(1, data_fixed, data[, gamma3 == 1])
n0star <- 1 / g[rep, chain] * diag(sum(gamma3) + 1 + pfixed)
n0star[1:(1 + pfixed), 1:(1 + pfixed)] <- 0
C[[rep + (chain - 1) * numbofreps]] <- solve(t(datastar) %*% datastar + n0star)
pstar <- apply(C[[rep + (chain - 1) * numbofreps]], 1, function(x) {
x %*% XTy
})
mean1 <- pstar[1]
means <- pstar[-1]
mean1 <- mean1 / sqrt(sigmasqbeta + 0.5 * (target %*% target - 2 * XTy %*% C[[rep + (chain - 1) * numbofreps]] %*% XTy + trace(Ctot %*% t(datastar) %*% datastar)))
means <- means / sqrt(sigmasqbeta + 0.5 * (target %*% target - 2 * XTy %*% C[[rep + (chain - 1) * numbofreps]] %*% XTy + trace(Ctot %*% t(datastar) %*% datastar)))
mean1 <- mean1 / sqrt(sigmasqalpha)
means <- means / sqrt(sigmasqalpha)
u1 <- rnorm(1)
us <- rnorm(p - pfixed)
temp1 <- qlogis(plogis(mean1 + u1))
temps <- qlogis(plogis(means + us))
gamma3[gamma3 == 1] <- temps > logitb
gamma3[gamma3 == 0] <- temps < logita
gamma3[1] <- temp1 > logitb
gamma3[1] <- temp1 < logita
}
gamma[rep, , chain] <- gamma3
gibbssteps <- cbind(gibbssteps, wstar)
}
}
}
options(warn=0)
return(gibbssteps)
}