input:
- Generate a GTEx expression count matrix (scenario parameters: sample size, tissue, number of genes, null proportion, etc).
- Estimate effect sizes and standard errors from the current count matrix by several approaches (voom, glm, etc).
- Save the count matrix and effect sizes (betahat), standard errors (sebetahat).
meta: Save the true null information of the count matrix.
output: Existing methods (limma, edgeR, DESeq, etc): apply methods on the count matrix, save the q-values. ASH-related methods: apply ash-related methods on the betahats and sebetahats, save the whole ASH output objects (lists).
output parser: Use an output parser to extract q-values from ASH ouputs.
scores: Use the true null information (meta) and q-values (output) to compute scores: discovery proportion at 0.05, false discovery proportion, estimated null proportion, etc.