-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_utils.py
123 lines (93 loc) · 3.79 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from tensorboardX import SummaryWriter
import megengine as mge
import megengine.functional as F
import megengine.distributed as dist
from copy import deepcopy
import os
import math
def get_optimizer(net, optim_name='SGD', lr=0.1, momentum=0.9, weight_decay=0, nesterov=True, bn_wd_skip=True):
decay = []
no_decay = []
for name, param in net.named_parameters():
if ('bn' in name or 'bias' in name) and bn_wd_skip:
no_decay.append(param)
else:
decay.append(param)
per_param_args = [{'params': decay},
{'params': no_decay, 'weight_decay': 0.0}]
optimizer = mge.optimizer.SGD(per_param_args, lr=lr, momentum=momentum, weight_decay=weight_decay, nesterov=nesterov)
return optimizer
def adjust_learning_rate(optimizer, current_step, num_training_steps, num_cycles=7. / 16., num_warmup_steps=0, base_lr=0.03):
if current_step < num_warmup_steps:
_lr = float(current_step) / float(max(1, num_warmup_steps))
else:
num_cos_steps = float(current_step - num_warmup_steps)
num_cos_steps = num_cos_steps / float(max(1, num_training_steps - num_warmup_steps))
_lr = max(0.0, math.cos(math.pi * num_cycles * num_cos_steps))
_lr = _lr * base_lr
for param_group in optimizer.param_groups:
param_group["lr"] = _lr
return _lr
class EMA(object):
def __init__(self, model, decay):
self.ema = deepcopy(model)
self.ema.eval()
self.decay = decay
def update(self, model):
model_params = dict(model.named_parameters())
ema_params = dict(self.ema.named_parameters())
assert model_params.keys() == ema_params.keys(), 'Model parameter keys incompatible with EMA stored parameter keys'
for name, param in model_params.items():
ema_params[name].set_value(F.mul(ema_params[name], self.decay))
ema_params[name].set_value(F.add(ema_params[name], (1 - self.decay) * param.detach()))
model_buffers = dict(model.named_buffers())
ema_buffers = dict(self.ema.named_buffers())
assert model_buffers.keys() == ema_buffers.keys(), 'Model parameter keys incompatible with EMA stored parameter keys'
for name, buffer in model_buffers.items():
ema_buffers[name].set_value(buffer.detach())
class TBLog:
"""
Construc tensorboard writer (self.writer).
The tensorboard is saved at os.path.join(tb_dir, file_name).
"""
def __init__(self, tb_dir, file_name):
self.tb_dir = tb_dir
self.writer = SummaryWriter(os.path.join(self.tb_dir, file_name))
def update(self, tb_dict, it, suffix=None, mode="train"):
if suffix is None:
suffix = ''
for key, value in tb_dict.items():
self.writer.add_scalar(suffix + key, value, it)
self.writer.flush()
def close(self):
self.writer.close()
class AverageMeter(object):
"""
refer: https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def ce_loss(logits, targets, use_hard_labels=True, reduction='mean'):
log_pred = F.logsoftmax(logits, axis=-1)
loss = -F.gather(log_pred, 1, targets.reshape(-1,1))
if reduction == 'none':
return loss.reshape(-1)
if reduction == 'mean':
return loss.mean()
if reduction == 'sum':
return loss.sum()
def reduce_tensor(tensor, mean=True):
ts = F.distributed.all_reduce_sum(tensor)
if mean:
return ts / dist.get_world_size()
return ts