forked from adafruit/Adafruit_SSD1306
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Adafruit_SSD1306.cpp
774 lines (692 loc) · 26.8 KB
/
Adafruit_SSD1306.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
/*********************************************************************
This is a library for our Monochrome OLEDs based on SSD1306 drivers
Pick one up today in the adafruit shop!
------> http://www.adafruit.com/category/63_98
These displays use SPI to communicate, 4 or 5 pins are required to
interface
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, check license.txt for more information
All text above, and the splash screen below must be included in any redistribution
*********************************************************************/
#ifdef ESP8266
#include <pgmspace.h>
#else
#include <avr/pgmspace.h>
#ifndef __SAM3X8E__
#include <util/delay.h>
#endif
#endif
#include <stdlib.h>
#include <Wire.h>
#include "Adafruit_GFX.h"
#include "Adafruit_SSD1306.h"
// the memory buffer for the LCD
static uint8_t buffer[SSD1306_LCDHEIGHT * SSD1306_LCDWIDTH / 8] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
0x80, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x80, 0x80, 0xC0, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xF8, 0xE0, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x80,
0x80, 0x80, 0x00, 0x80, 0x80, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00, 0xFF,
#if (SSD1306_LCDHEIGHT * SSD1306_LCDWIDTH > 96*16)
0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x80, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00,
0x80, 0xFF, 0xFF, 0x80, 0x80, 0x00, 0x80, 0x80, 0x00, 0x80, 0x80, 0x80, 0x80, 0x00, 0x80, 0x80,
0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x8C, 0x8E, 0x84, 0x00, 0x00, 0x80, 0xF8,
0xF8, 0xF8, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xE0, 0xE0, 0xC0, 0x80,
0x00, 0xE0, 0xFC, 0xFE, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFE, 0xFF, 0xC7, 0x01, 0x01,
0x01, 0x01, 0x83, 0xFF, 0xFF, 0x00, 0x00, 0x7C, 0xFE, 0xC7, 0x01, 0x01, 0x01, 0x01, 0x83, 0xFF,
0xFF, 0xFF, 0x00, 0x38, 0xFE, 0xC7, 0x83, 0x01, 0x01, 0x01, 0x83, 0xC7, 0xFF, 0xFF, 0x00, 0x00,
0x01, 0xFF, 0xFF, 0x01, 0x01, 0x00, 0xFF, 0xFF, 0x07, 0x01, 0x01, 0x01, 0x00, 0x00, 0x7F, 0xFF,
0x80, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x7F, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x01, 0xFF,
0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x03, 0x0F, 0x3F, 0x7F, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE7, 0xC7, 0xC7, 0x8F,
0x8F, 0x9F, 0xBF, 0xFF, 0xFF, 0xC3, 0xC0, 0xF0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, 0xFC, 0xFC,
0xFC, 0xFC, 0xFC, 0xFC, 0xFC, 0xF8, 0xF8, 0xF0, 0xF0, 0xE0, 0xC0, 0x00, 0x01, 0x03, 0x03, 0x03,
0x03, 0x03, 0x01, 0x03, 0x03, 0x00, 0x00, 0x00, 0x00, 0x01, 0x03, 0x03, 0x03, 0x03, 0x01, 0x01,
0x03, 0x01, 0x00, 0x00, 0x00, 0x01, 0x03, 0x03, 0x03, 0x03, 0x01, 0x01, 0x03, 0x03, 0x00, 0x00,
0x00, 0x03, 0x03, 0x00, 0x00, 0x00, 0x03, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x03, 0x03, 0x03, 0x03, 0x03, 0x01, 0x00, 0x00, 0x00, 0x01, 0x03, 0x01, 0x00, 0x00, 0x00, 0x03,
0x03, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
#if (SSD1306_LCDHEIGHT == 64)
0x00, 0x00, 0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3F, 0x1F, 0x0F,
0x87, 0xC7, 0xF7, 0xFF, 0xFF, 0x1F, 0x1F, 0x3D, 0xFC, 0xF8, 0xF8, 0xF8, 0xF8, 0x7C, 0x7D, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x3F, 0x0F, 0x07, 0x00, 0x30, 0x30, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xFE, 0xFE, 0xFC, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0xC0, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x30, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0xC0, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x7F, 0x3F, 0x1F,
0x0F, 0x07, 0x1F, 0x7F, 0xFF, 0xFF, 0xF8, 0xF8, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xF8, 0xE0,
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFE, 0xFE, 0x00, 0x00,
0x00, 0xFC, 0xFE, 0xFC, 0x0C, 0x06, 0x06, 0x0E, 0xFC, 0xF8, 0x00, 0x00, 0xF0, 0xF8, 0x1C, 0x0E,
0x06, 0x06, 0x06, 0x0C, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0xFE, 0xFE, 0x00, 0x00, 0x00, 0x00, 0xFC,
0xFE, 0xFC, 0x00, 0x18, 0x3C, 0x7E, 0x66, 0xE6, 0xCE, 0x84, 0x00, 0x00, 0x06, 0xFF, 0xFF, 0x06,
0x06, 0xFC, 0xFE, 0xFC, 0x0C, 0x06, 0x06, 0x06, 0x00, 0x00, 0xFE, 0xFE, 0x00, 0x00, 0xC0, 0xF8,
0xFC, 0x4E, 0x46, 0x46, 0x46, 0x4E, 0x7C, 0x78, 0x40, 0x18, 0x3C, 0x76, 0xE6, 0xCE, 0xCC, 0x80,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x07, 0x0F, 0x1F, 0x1F, 0x3F, 0x3F, 0x3F, 0x3F, 0x1F, 0x0F, 0x03,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F, 0x00, 0x00,
0x00, 0x0F, 0x0F, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F, 0x00, 0x00, 0x03, 0x07, 0x0E, 0x0C,
0x18, 0x18, 0x0C, 0x06, 0x0F, 0x0F, 0x0F, 0x00, 0x00, 0x01, 0x0F, 0x0E, 0x0C, 0x18, 0x0C, 0x0F,
0x07, 0x01, 0x00, 0x04, 0x0E, 0x0C, 0x18, 0x0C, 0x0F, 0x07, 0x00, 0x00, 0x00, 0x0F, 0x0F, 0x00,
0x00, 0x0F, 0x0F, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F, 0x00, 0x00, 0x00, 0x07,
0x07, 0x0C, 0x0C, 0x18, 0x1C, 0x0C, 0x06, 0x06, 0x00, 0x04, 0x0E, 0x0C, 0x18, 0x0C, 0x0F, 0x07,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
#endif
#endif
};
// the most basic function, set a single pixel
void Adafruit_SSD1306::drawPixel(int16_t x, int16_t y, uint16_t color) {
if ((x < 0) || (x >= width()) || (y < 0) || (y >= height()))
return;
// check rotation, move pixel around if necessary
switch (getRotation()) {
case 1:
swap(x, y);
x = WIDTH - x - 1;
break;
case 2:
x = WIDTH - x - 1;
y = HEIGHT - y - 1;
break;
case 3:
swap(x, y);
y = HEIGHT - y - 1;
break;
}
// x is which column
switch (color)
{
case WHITE: buffer[x+ (y/8)*SSD1306_LCDWIDTH] |= (1 << (y&7)); break;
case BLACK: buffer[x+ (y/8)*SSD1306_LCDWIDTH] &= ~(1 << (y&7)); break;
case INVERSE: buffer[x+ (y/8)*SSD1306_LCDWIDTH] ^= (1 << (y&7)); break;
}
}
Adafruit_SSD1306::Adafruit_SSD1306(int8_t SID, int8_t SCLK, int8_t DC, int8_t RST, int8_t CS) : Adafruit_GFX(SSD1306_LCDWIDTH, SSD1306_LCDHEIGHT) {
cs = CS;
rst = RST;
dc = DC;
sclk = SCLK;
sid = SID;
hwSPI = false;
}
// constructor for hardware SPI - we indicate DataCommand, ChipSelect, Reset
Adafruit_SSD1306::Adafruit_SSD1306(int8_t DC, int8_t RST, int8_t CS) : Adafruit_GFX(SSD1306_LCDWIDTH, SSD1306_LCDHEIGHT) {
dc = DC;
rst = RST;
cs = CS;
hwSPI = true;
}
// initializer for I2C - we only indicate the reset pin!
Adafruit_SSD1306::Adafruit_SSD1306(int8_t reset) :
Adafruit_GFX(SSD1306_LCDWIDTH, SSD1306_LCDHEIGHT) {
sclk = dc = cs = sid = -1;
rst = reset;
}
void Adafruit_SSD1306::begin(uint8_t vccstate, uint8_t i2caddr, bool reset) {
_vccstate = vccstate;
_i2caddr = i2caddr;
// set pin directions
if (sid != -1){
pinMode(dc, OUTPUT);
pinMode(cs, OUTPUT);
csport = portOutputRegister(digitalPinToPort(cs));
cspinmask = digitalPinToBitMask(cs);
dcport = portOutputRegister(digitalPinToPort(dc));
dcpinmask = digitalPinToBitMask(dc);
if (!hwSPI){
// set pins for software-SPI
pinMode(sid, OUTPUT);
pinMode(sclk, OUTPUT);
clkport = portOutputRegister(digitalPinToPort(sclk));
clkpinmask = digitalPinToBitMask(sclk);
mosiport = portOutputRegister(digitalPinToPort(sid));
mosipinmask = digitalPinToBitMask(sid);
}
if (hwSPI){
SPI.begin ();
#ifdef __SAM3X8E__
SPI.setClockDivider (9); // 9.3 MHz
#else
SPI.setClockDivider (SPI_CLOCK_DIV2); // 8 MHz
#endif
}
}
else
{
// I2C Init
Wire.begin();
#ifdef __SAM3X8E__
// Force 400 KHz I2C, rawr! (Uses pins 20, 21 for SDA, SCL)
TWI1->TWI_CWGR = 0;
TWI1->TWI_CWGR = ((VARIANT_MCK / (2 * 400000)) - 4) * 0x101;
#endif
}
if (reset) {
// Setup reset pin direction (used by both SPI and I2C)
pinMode(rst, OUTPUT);
digitalWrite(rst, HIGH);
// VDD (3.3V) goes high at start, lets just chill for a ms
delay(1);
// bring reset low
digitalWrite(rst, LOW);
// wait 10ms
delay(10);
// bring out of reset
digitalWrite(rst, HIGH);
// turn on VCC (9V?)
}
#if defined SSD1306_128_32
// Init sequence for 128x32 OLED module
ssd1306_command(SSD1306_DISPLAYOFF); // 0xAE
ssd1306_command(SSD1306_SETDISPLAYCLOCKDIV); // 0xD5
ssd1306_command(0x80); // the suggested ratio 0x80
ssd1306_command(SSD1306_SETMULTIPLEX); // 0xA8
ssd1306_command(0x1F);
ssd1306_command(SSD1306_SETDISPLAYOFFSET); // 0xD3
ssd1306_command(0x0); // no offset
ssd1306_command(SSD1306_SETSTARTLINE | 0x0); // line #0
ssd1306_command(SSD1306_CHARGEPUMP); // 0x8D
if (vccstate == SSD1306_EXTERNALVCC)
{ ssd1306_command(0x10); }
else
{ ssd1306_command(0x14); }
ssd1306_command(SSD1306_MEMORYMODE); // 0x20
ssd1306_command(0x00); // 0x0 act like ks0108
ssd1306_command(SSD1306_SEGREMAP | 0x1);
ssd1306_command(SSD1306_COMSCANDEC);
ssd1306_command(SSD1306_SETCOMPINS); // 0xDA
ssd1306_command(0x02);
ssd1306_command(SSD1306_SETCONTRAST); // 0x81
ssd1306_command(0x8F);
ssd1306_command(SSD1306_SETPRECHARGE); // 0xd9
if (vccstate == SSD1306_EXTERNALVCC)
{ ssd1306_command(0x22); }
else
{ ssd1306_command(0xF1); }
ssd1306_command(SSD1306_SETVCOMDETECT); // 0xDB
ssd1306_command(0x40);
ssd1306_command(SSD1306_DISPLAYALLON_RESUME); // 0xA4
ssd1306_command(SSD1306_NORMALDISPLAY); // 0xA6
#endif
#if defined SSD1306_128_64
// Init sequence for 128x64 OLED module
ssd1306_command(SSD1306_DISPLAYOFF); // 0xAE
ssd1306_command(SSD1306_SETDISPLAYCLOCKDIV); // 0xD5
ssd1306_command(0x80); // the suggested ratio 0x80
ssd1306_command(SSD1306_SETMULTIPLEX); // 0xA8
ssd1306_command(0x3F);
ssd1306_command(SSD1306_SETDISPLAYOFFSET); // 0xD3
ssd1306_command(0x0); // no offset
ssd1306_command(SSD1306_SETSTARTLINE | 0x0); // line #0
ssd1306_command(SSD1306_CHARGEPUMP); // 0x8D
if (vccstate == SSD1306_EXTERNALVCC)
{ ssd1306_command(0x10); }
else
{ ssd1306_command(0x14); }
ssd1306_command(SSD1306_MEMORYMODE); // 0x20
ssd1306_command(0x00); // 0x0 act like ks0108
ssd1306_command(SSD1306_SEGREMAP | 0x1);
ssd1306_command(SSD1306_COMSCANDEC);
ssd1306_command(SSD1306_SETCOMPINS); // 0xDA
ssd1306_command(0x12);
ssd1306_command(SSD1306_SETCONTRAST); // 0x81
if (vccstate == SSD1306_EXTERNALVCC)
{ ssd1306_command(0x9F); }
else
{ ssd1306_command(0xCF); }
ssd1306_command(SSD1306_SETPRECHARGE); // 0xd9
if (vccstate == SSD1306_EXTERNALVCC)
{ ssd1306_command(0x22); }
else
{ ssd1306_command(0xF1); }
ssd1306_command(SSD1306_SETVCOMDETECT); // 0xDB
ssd1306_command(0x40);
ssd1306_command(SSD1306_DISPLAYALLON_RESUME); // 0xA4
ssd1306_command(SSD1306_NORMALDISPLAY); // 0xA6
#endif
#if defined SSD1306_96_16
// Init sequence for 96x16 OLED module
ssd1306_command(SSD1306_DISPLAYOFF); // 0xAE
ssd1306_command(SSD1306_SETDISPLAYCLOCKDIV); // 0xD5
ssd1306_command(0x80); // the suggested ratio 0x80
ssd1306_command(SSD1306_SETMULTIPLEX); // 0xA8
ssd1306_command(0x0F);
ssd1306_command(SSD1306_SETDISPLAYOFFSET); // 0xD3
ssd1306_command(0x00); // no offset
ssd1306_command(SSD1306_SETSTARTLINE | 0x0); // line #0
ssd1306_command(SSD1306_CHARGEPUMP); // 0x8D
if (vccstate == SSD1306_EXTERNALVCC)
{ ssd1306_command(0x10); }
else
{ ssd1306_command(0x14); }
ssd1306_command(SSD1306_MEMORYMODE); // 0x20
ssd1306_command(0x00); // 0x0 act like ks0108
ssd1306_command(SSD1306_SEGREMAP | 0x1);
ssd1306_command(SSD1306_COMSCANDEC);
ssd1306_command(SSD1306_SETCOMPINS); // 0xDA
ssd1306_command(0x2); //ada x12
ssd1306_command(SSD1306_SETCONTRAST); // 0x81
if (vccstate == SSD1306_EXTERNALVCC)
{ ssd1306_command(0x10); }
else
{ ssd1306_command(0xAF); }
ssd1306_command(SSD1306_SETPRECHARGE); // 0xd9
if (vccstate == SSD1306_EXTERNALVCC)
{ ssd1306_command(0x22); }
else
{ ssd1306_command(0xF1); }
ssd1306_command(SSD1306_SETVCOMDETECT); // 0xDB
ssd1306_command(0x40);
ssd1306_command(SSD1306_DISPLAYALLON_RESUME); // 0xA4
ssd1306_command(SSD1306_NORMALDISPLAY); // 0xA6
#endif
ssd1306_command(SSD1306_DISPLAYON);//--turn on oled panel
}
void Adafruit_SSD1306::invertDisplay(uint8_t i) {
if (i) {
ssd1306_command(SSD1306_INVERTDISPLAY);
} else {
ssd1306_command(SSD1306_NORMALDISPLAY);
}
}
void Adafruit_SSD1306::ssd1306_command(uint8_t c) {
if (sid != -1)
{
// SPI
//digitalWrite(cs, HIGH);
*csport |= cspinmask;
//digitalWrite(dc, LOW);
*dcport &= ~dcpinmask;
//digitalWrite(cs, LOW);
*csport &= ~cspinmask;
fastSPIwrite(c);
//digitalWrite(cs, HIGH);
*csport |= cspinmask;
}
else
{
// I2C
uint8_t control = 0x00; // Co = 0, D/C = 0
Wire.beginTransmission(_i2caddr);
WIRE_WRITE(control);
WIRE_WRITE(c);
Wire.endTransmission();
}
}
// startscrollright
// Activate a right handed scroll for rows start through stop
// Hint, the display is 16 rows tall. To scroll the whole display, run:
// display.scrollright(0x00, 0x0F)
void Adafruit_SSD1306::startscrollright(uint8_t start, uint8_t stop){
ssd1306_command(SSD1306_RIGHT_HORIZONTAL_SCROLL);
ssd1306_command(0X00);
ssd1306_command(start);
ssd1306_command(0X00);
ssd1306_command(stop);
ssd1306_command(0X00);
ssd1306_command(0XFF);
ssd1306_command(SSD1306_ACTIVATE_SCROLL);
}
// startscrollleft
// Activate a right handed scroll for rows start through stop
// Hint, the display is 16 rows tall. To scroll the whole display, run:
// display.scrollright(0x00, 0x0F)
void Adafruit_SSD1306::startscrollleft(uint8_t start, uint8_t stop){
ssd1306_command(SSD1306_LEFT_HORIZONTAL_SCROLL);
ssd1306_command(0X00);
ssd1306_command(start);
ssd1306_command(0X00);
ssd1306_command(stop);
ssd1306_command(0X00);
ssd1306_command(0XFF);
ssd1306_command(SSD1306_ACTIVATE_SCROLL);
}
// startscrolldiagright
// Activate a diagonal scroll for rows start through stop
// Hint, the display is 16 rows tall. To scroll the whole display, run:
// display.scrollright(0x00, 0x0F)
void Adafruit_SSD1306::startscrolldiagright(uint8_t start, uint8_t stop){
ssd1306_command(SSD1306_SET_VERTICAL_SCROLL_AREA);
ssd1306_command(0X00);
ssd1306_command(SSD1306_LCDHEIGHT);
ssd1306_command(SSD1306_VERTICAL_AND_RIGHT_HORIZONTAL_SCROLL);
ssd1306_command(0X00);
ssd1306_command(start);
ssd1306_command(0X00);
ssd1306_command(stop);
ssd1306_command(0X01);
ssd1306_command(SSD1306_ACTIVATE_SCROLL);
}
// startscrolldiagleft
// Activate a diagonal scroll for rows start through stop
// Hint, the display is 16 rows tall. To scroll the whole display, run:
// display.scrollright(0x00, 0x0F)
void Adafruit_SSD1306::startscrolldiagleft(uint8_t start, uint8_t stop){
ssd1306_command(SSD1306_SET_VERTICAL_SCROLL_AREA);
ssd1306_command(0X00);
ssd1306_command(SSD1306_LCDHEIGHT);
ssd1306_command(SSD1306_VERTICAL_AND_LEFT_HORIZONTAL_SCROLL);
ssd1306_command(0X00);
ssd1306_command(start);
ssd1306_command(0X00);
ssd1306_command(stop);
ssd1306_command(0X01);
ssd1306_command(SSD1306_ACTIVATE_SCROLL);
}
void Adafruit_SSD1306::stopscroll(void){
ssd1306_command(SSD1306_DEACTIVATE_SCROLL);
}
// Dim the display
// dim = true: display is dimmed
// dim = false: display is normal
void Adafruit_SSD1306::dim(boolean dim) {
uint8_t contrast;
if (dim) {
contrast = 0; // Dimmed display
} else {
if (_vccstate == SSD1306_EXTERNALVCC) {
contrast = 0x9F;
} else {
contrast = 0xCF;
}
}
// the range of contrast to too small to be really useful
// it is useful to dim the display
ssd1306_command(SSD1306_SETCONTRAST);
ssd1306_command(contrast);
}
void Adafruit_SSD1306::ssd1306_data(uint8_t c) {
if (sid != -1)
{
// SPI
//digitalWrite(cs, HIGH);
*csport |= cspinmask;
//digitalWrite(dc, HIGH);
*dcport |= dcpinmask;
//digitalWrite(cs, LOW);
*csport &= ~cspinmask;
fastSPIwrite(c);
//digitalWrite(cs, HIGH);
*csport |= cspinmask;
}
else
{
// I2C
uint8_t control = 0x40; // Co = 0, D/C = 1
Wire.beginTransmission(_i2caddr);
WIRE_WRITE(control);
WIRE_WRITE(c);
Wire.endTransmission();
}
}
void Adafruit_SSD1306::display(void) {
ssd1306_command(SSD1306_COLUMNADDR);
ssd1306_command(0); // Column start address (0 = reset)
ssd1306_command(SSD1306_LCDWIDTH-1); // Column end address (127 = reset)
ssd1306_command(SSD1306_PAGEADDR);
ssd1306_command(0); // Page start address (0 = reset)
#if SSD1306_LCDHEIGHT == 64
ssd1306_command(7); // Page end address
#endif
#if SSD1306_LCDHEIGHT == 32
ssd1306_command(3); // Page end address
#endif
#if SSD1306_LCDHEIGHT == 16
ssd1306_command(1); // Page end address
#endif
if (sid != -1)
{
// SPI
*csport |= cspinmask;
*dcport |= dcpinmask;
*csport &= ~cspinmask;
for (uint16_t i=0; i<(SSD1306_LCDWIDTH*SSD1306_LCDHEIGHT/8); i++) {
fastSPIwrite(buffer[i]);
//ssd1306_data(buffer[i]);
}
*csport |= cspinmask;
}
else
{
// save I2C bitrate
#ifdef __AVR__
uint8_t twbrbackup = TWBR;
TWBR = 12; // upgrade to 400KHz!
#endif
//Serial.println(TWBR, DEC);
//Serial.println(TWSR & 0x3, DEC);
// I2C
for (uint16_t i=0; i<(SSD1306_LCDWIDTH*SSD1306_LCDHEIGHT/8); i++) {
// send a bunch of data in one xmission
Wire.beginTransmission(_i2caddr);
WIRE_WRITE(0x40);
for (uint8_t x=0; x<16; x++) {
WIRE_WRITE(buffer[i]);
i++;
}
i--;
Wire.endTransmission();
}
#ifdef __AVR__
TWBR = twbrbackup;
#endif
}
}
// clear everything
void Adafruit_SSD1306::clearDisplay(void) {
memset(buffer, 0, (SSD1306_LCDWIDTH*SSD1306_LCDHEIGHT/8));
}
inline void Adafruit_SSD1306::fastSPIwrite(uint8_t d) {
if(hwSPI) {
(void)SPI.transfer(d);
} else {
for(uint8_t bit = 0x80; bit; bit >>= 1) {
*clkport &= ~clkpinmask;
if(d & bit) *mosiport |= mosipinmask;
else *mosiport &= ~mosipinmask;
*clkport |= clkpinmask;
}
}
//*csport |= cspinmask;
}
void Adafruit_SSD1306::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) {
boolean bSwap = false;
switch(rotation) {
case 0:
// 0 degree rotation, do nothing
break;
case 1:
// 90 degree rotation, swap x & y for rotation, then invert x
bSwap = true;
swap(x, y);
x = WIDTH - x - 1;
break;
case 2:
// 180 degree rotation, invert x and y - then shift y around for height.
x = WIDTH - x - 1;
y = HEIGHT - y - 1;
x -= (w-1);
break;
case 3:
// 270 degree rotation, swap x & y for rotation, then invert y and adjust y for w (not to become h)
bSwap = true;
swap(x, y);
y = HEIGHT - y - 1;
y -= (w-1);
break;
}
if(bSwap) {
drawFastVLineInternal(x, y, w, color);
} else {
drawFastHLineInternal(x, y, w, color);
}
}
void Adafruit_SSD1306::drawFastHLineInternal(int16_t x, int16_t y, int16_t w, uint16_t color) {
// Do bounds/limit checks
if(y < 0 || y >= HEIGHT) { return; }
// make sure we don't try to draw below 0
if(x < 0) {
w += x;
x = 0;
}
// make sure we don't go off the edge of the display
if( (x + w) > WIDTH) {
w = (WIDTH - x);
}
// if our width is now negative, punt
if(w <= 0) { return; }
// set up the pointer for movement through the buffer
register uint8_t *pBuf = buffer;
// adjust the buffer pointer for the current row
pBuf += ((y/8) * SSD1306_LCDWIDTH);
// and offset x columns in
pBuf += x;
register uint8_t mask = 1 << (y&7);
switch (color)
{
case WHITE: while(w--) { *pBuf++ |= mask; }; break;
case BLACK: mask = ~mask; while(w--) { *pBuf++ &= mask; }; break;
case INVERSE: while(w--) { *pBuf++ ^= mask; }; break;
}
}
void Adafruit_SSD1306::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) {
bool bSwap = false;
switch(rotation) {
case 0:
break;
case 1:
// 90 degree rotation, swap x & y for rotation, then invert x and adjust x for h (now to become w)
bSwap = true;
swap(x, y);
x = WIDTH - x - 1;
x -= (h-1);
break;
case 2:
// 180 degree rotation, invert x and y - then shift y around for height.
x = WIDTH - x - 1;
y = HEIGHT - y - 1;
y -= (h-1);
break;
case 3:
// 270 degree rotation, swap x & y for rotation, then invert y
bSwap = true;
swap(x, y);
y = HEIGHT - y - 1;
break;
}
if(bSwap) {
drawFastHLineInternal(x, y, h, color);
} else {
drawFastVLineInternal(x, y, h, color);
}
}
void Adafruit_SSD1306::drawFastVLineInternal(int16_t x, int16_t __y, int16_t __h, uint16_t color) {
// do nothing if we're off the left or right side of the screen
if(x < 0 || x >= WIDTH) { return; }
// make sure we don't try to draw below 0
if(__y < 0) {
// __y is negative, this will subtract enough from __h to account for __y being 0
__h += __y;
__y = 0;
}
// make sure we don't go past the height of the display
if( (__y + __h) > HEIGHT) {
__h = (HEIGHT - __y);
}
// if our height is now negative, punt
if(__h <= 0) {
return;
}
// this display doesn't need ints for coordinates, use local byte registers for faster juggling
register uint8_t y = __y;
register uint8_t h = __h;
// set up the pointer for fast movement through the buffer
register uint8_t *pBuf = buffer;
// adjust the buffer pointer for the current row
pBuf += ((y/8) * SSD1306_LCDWIDTH);
// and offset x columns in
pBuf += x;
// do the first partial byte, if necessary - this requires some masking
register uint8_t mod = (y&7);
if(mod) {
// mask off the high n bits we want to set
mod = 8-mod;
// note - lookup table results in a nearly 10% performance improvement in fill* functions
// register uint8_t mask = ~(0xFF >> (mod));
static uint8_t premask[8] = {0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
register uint8_t mask = premask[mod];
// adjust the mask if we're not going to reach the end of this byte
if( h < mod) {
mask &= (0XFF >> (mod-h));
}
switch (color)
{
case WHITE: *pBuf |= mask; break;
case BLACK: *pBuf &= ~mask; break;
case INVERSE: *pBuf ^= mask; break;
}
// fast exit if we're done here!
if(h<mod) { return; }
h -= mod;
pBuf += SSD1306_LCDWIDTH;
}
// write solid bytes while we can - effectively doing 8 rows at a time
if(h >= 8) {
if (color == INVERSE) { // separate copy of the code so we don't impact performance of the black/white write version with an extra comparison per loop
do {
*pBuf=~(*pBuf);
// adjust the buffer forward 8 rows worth of data
pBuf += SSD1306_LCDWIDTH;
// adjust h & y (there's got to be a faster way for me to do this, but this should still help a fair bit for now)
h -= 8;
} while(h >= 8);
}
else {
// store a local value to work with
register uint8_t val = (color == WHITE) ? 255 : 0;
do {
// write our value in
*pBuf = val;
// adjust the buffer forward 8 rows worth of data
pBuf += SSD1306_LCDWIDTH;
// adjust h & y (there's got to be a faster way for me to do this, but this should still help a fair bit for now)
h -= 8;
} while(h >= 8);
}
}
// now do the final partial byte, if necessary
if(h) {
mod = h & 7;
// this time we want to mask the low bits of the byte, vs the high bits we did above
// register uint8_t mask = (1 << mod) - 1;
// note - lookup table results in a nearly 10% performance improvement in fill* functions
static uint8_t postmask[8] = {0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F };
register uint8_t mask = postmask[mod];
switch (color)
{
case WHITE: *pBuf |= mask; break;
case BLACK: *pBuf &= ~mask; break;
case INVERSE: *pBuf ^= mask; break;
}
}
}