-
Notifications
You must be signed in to change notification settings - Fork 15
/
Marlin_main.cpp
9917 lines (8551 loc) · 312 KB
/
Marlin_main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
*
* About Marlin
*
* This firmware is a mashup between Sprinter and grbl.
* - https://github.com/kliment/Sprinter
* - https://github.com/simen/grbl/tree
*
* It has preliminary support for Matthew Roberts advance algorithm
* - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
#include "vector_3.h"
#if ENABLED(AUTO_BED_LEVELING_GRID)
#include "qr_solve.h"
#endif
#endif // AUTO_BED_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
#if ENABLED(BEZIER_CURVE_SUPPORT)
#include "planner_bezier.h"
#endif
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
#include "endstops.h"
#include "temperature.h"
#include "cardreader.h"
#include "configuration_store.h"
#include "language.h"
#include "math.h"
#include "nozzle.h"
#include "duration_t.h"
#ifdef SDSUPPORT
#include "ff_gen_drv.h"
#include "sd_diskio.h"
//#include "uzlib.h"
#include "tgunzip.h"
#include "binGcodeCommand.h"
#endif
#if ENABLED(USE_WATCHDOG)
#include "watchdog.h"
#endif
#if ENABLED(BLINKM)
#include "blinkm.h"
#include "Wire.h"
#endif
#if HAS_SERVOS
#include "servo.h"
#endif
#if HAS_DIGIPOTSS
#include <SPI.h>
#endif
#if ENABLED(DAC_STEPPER_CURRENT)
#include "stepper_dac.h"
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS)
#include "twibus.h"
#endif
char crlfcrlfBuf[4];
int crlfcrlfIndex;
#if !defined(NO_WIFI)
char cmdReply[256];
int cmdReplyIndex;
static bool cmdForWifi = false;
#endif //#if !defined(NO_WIFI)
/**
* Look here for descriptions of G-codes:
* - http://linuxcnc.org/handbook/gcode/g-code.html
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
*
* Help us document these G-codes online:
* - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
* - http://reprap.org/wiki/G-code
*
* -----------------
* Implemented Codes
* -----------------
*
* "G" Codes
*
* G0 -> G1
* G1 - Coordinated Movement X Y Z E
* G2 - CW ARC
* G3 - CCW ARC
* G4 - Dwell S<seconds> or P<milliseconds>
* G5 - Cubic B-spline with XYZE destination and IJPQ offsets
* G10 - Retract filament according to settings of M207
* G11 - Retract recover filament according to settings of M208
* G12 - Clean tool
* G20 - Set input units to inches
* G21 - Set input units to millimeters
* G28 - Home one or more axes
* G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
* G30 - Single Z probe, probes bed at current XY location.
* G31 - Dock sled (Z_PROBE_SLED only)
* G32 - Undock sled (Z_PROBE_SLED only)
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given
*
* "M" Codes
*
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
* M1 - Same as M0
* M17 - Enable/Power all stepper motors
* M18 - Disable all stepper motors; same as M84
* M20 - List SD card
* M21 - Init SD card
* M22 - Release SD card
* M23 - Select SD file (M23 filename.g)
* M24 - Start/resume SD print
* M25 - Pause SD print
* M26 - Set SD position in bytes (M26 S12345)
* M27 - Report SD print status
* M28 - Start SD write (M28 filename.g)
* M29 - Stop SD write
* M30 - Delete file from SD (M30 filename.g)
* M31 - Output time since last M109 or SD card start to serial
* M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
* syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
* Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
* M33 - Get the longname version of a path
* M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
* M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
* M75 - Start the print job timer
* M76 - Pause the print job timer
* M77 - Stop the print job timer
* M78 - Show statistical information about the print jobs
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M82 - Set E codes absolute (default)
* M83 - Set E codes relative while in Absolute Coordinates (G90) mode
* M84 - Disable steppers until next move,
* or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
* M92 - Set planner.axis_steps_per_mm - same syntax as G92
* M104 - Set extruder target temp
* M105 - Read current temp
* M106 - Fan on
* M107 - Fan off
* M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
* IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
* M110 - Set the current line number
* M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
* M112 - Emergency stop
* M113 - Get or set the timeout interval for Host Keepalive "busy" messages
* M114 - Output current position to serial port
* M115 - Capabilities string
* M117 - Display a message on the controller screen
* M119 - Output Endstop status to serial port
* M120 - Enable endstop detection
* M121 - Disable endstop detection
* M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
* M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
* M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M140 - Set bed target temp
* M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
* M149 - Set temperature units
* M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
* M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
* M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
* M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
* M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
* M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
* M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
* M205 - Set advanced settings. Current units apply:
S<print> T<travel> minimum speeds
B<minimum segment time>
X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
* M206 - Set additional homing offset
* M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
* M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
* M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
Every normal extrude-only move will be classified as retract depending on the direction.
* M218 - Set a tool offset: T<index> X<offset> Y<offset>
* M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
* M221 - Set Flow Percentage: S<percent>
* M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
* M240 - Trigger a camera to take a photograph
* M250 - Set LCD contrast C<contrast value> (value 0..63)
* M280 - Set servo position absolute. P: servo index, S: angle or microseconds
* M300 - Play beep sound S<frequency Hz> P<duration ms>
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
* M304 - Set bed PID parameters P I and D
* M380 - Activate solenoid on active extruder
* M381 - Disable all solenoids
* M400 - Finish all moves
* M401 - Lower Z probe if present
* M402 - Raise Z probe if present
* M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
* M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
* M406 - Disable Filament Sensor extrusion control
* M407 - Display measured filament diameter in millimeters
* M410 - Quickstop. Abort all the planned moves
* M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
* M428 - Set the home_offset logically based on the current_position
* M500 - Store parameters in EEPROM
* M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
* M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
* M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
* M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
* M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
* M666 - Set delta endstop adjustment
* M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
* M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
* M907 - Set digital trimpot motor current using axis codes.
* M908 - Control digital trimpot directly.
* M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
* M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
* M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly.
*
* ************ SCARA Specific - This can change to suit future G-code regulations
* M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
* M365 - SCARA calibration: Scaling factor, X, Y, Z axis
* ************* SCARA End ***************
*
* ************ Custom codes - This can change to suit future G-code regulations
* M100 - Watch Free Memory (For Debugging Only)
* M928 - Start SD logging (M928 filename.g) - ended by M29
* M999 - Restart after being stopped by error
*
* "T" Codes
*
* T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
*
*/
#if ENABLED(M100_FREE_MEMORY_WATCHER)
void gcode_M100();
#endif
#if ENABLED(SDSUPPORT)
CardReader card;
CardReader *p_card = &card;
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS)
TWIBus i2c;
#endif
bool Running = true;
uint8_t marlin_debug_flags = DEBUG_INFO /*| DEBUG_LEVELING*/;
float current_position[NUM_AXIS] = { 0.0 };
static float destination[NUM_AXIS] = { 0.0 };
bool axis_known_position[3] = { false };
bool axis_homed[3] = { false };
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
static char* current_command, *current_command_args;
static uint8_t cmd_queue_index_r = 0,
cmd_queue_index_w = 0,
commands_in_queue = 0;
#if ENABLED(INCH_MODE_SUPPORT)
float linear_unit_factor = 1.0;
float volumetric_unit_factor = 1.0;
#endif
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
TempUnit input_temp_units = TEMPUNIT_C;
#endif
/**
* Feed rates are often configured with mm/m
* but the planner and stepper like mm/s units.
*/
const float homing_feedrate_mm_m[] = {
#if ENABLED(DELTA)
HOMING_FEEDRATE_Z, HOMING_FEEDRATE_Z,
#else
HOMING_FEEDRATE_XY, HOMING_FEEDRATE_XY,
#endif
HOMING_FEEDRATE_Z, 0
};
float probing_feedrate = Z_PROBE_SPEED_FAST;
float probing_z_raise = Z_RAISE_BETWEEN_PROBINGS;
#if ENABLED(PROBE_DOUBLE_TOUCH)
bool double_touch = true;
#else
bool double_touch = false;
#endif
static float feedrate_mm_m = 1500.0, saved_feedrate_mm_m;
int feedrate_percentage = 100, saved_feedrate_percentage;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
// The distance that XYZ has been offset by G92. Reset by G28.
float position_shift[3] = { 0 };
// This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[3] = { 0 };
// Software Endstops. Default to configured limits.
float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
#if FAN_COUNT > 0
int fanSpeeds[FAN_COUNT] = { 0 };
#endif
// The active extruder (tool). Set with T<extruder> command.
uint8_t active_extruder = 0;
// Relative Mode. Enable with G91, disable with G90.
static bool relative_mode = false;
volatile bool wait_for_heatup = true;
const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static int serial_count = 0;
// GCode parameter pointer used by code_seen(), code_value_float(), etc.
static char* seen_pointer;
// Next Immediate GCode Command pointer. NULL if none.
const char* queued_commands_P = NULL;
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
// Inactivity shutdown
millis_t previous_cmd_ms = 0;
static millis_t max_inactive_time = 0;
static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
// Print Job Timer
#if ENABLED(PRINTCOUNTER)
PrintCounter print_job_timer = PrintCounter();
#else
Stopwatch print_job_timer = Stopwatch();
#endif
int8_t progress=0;
// Buzzer
#if HAS_BUZZER
Buzzer buzzer;
#endif
static uint8_t target_extruder;
#if HAS_BED_PROBE
float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
int xy_probe_feedrate_mm_m = XY_PROBE_SPEED;
bool bed_leveling_in_progress = false;
#define XY_PROBE_FEEDRATE_MM_M xy_probe_feedrate_mm_m
#elif defined(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE_MM_M XY_PROBE_SPEED
#else
#define XY_PROBE_FEEDRATE_MM_M MMS_TO_MMM(PLANNER_XY_FEEDRATE())
#endif
#if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
float z_endstop_adj = 0;
#endif
// Extruder offsets
#if HOTENDS > 1
float hotend_offset[][HOTENDS] = {
HOTEND_OFFSET_X,
HOTEND_OFFSET_Y
#ifdef HOTEND_OFFSET_Z
, HOTEND_OFFSET_Z
#endif
};
#endif
#if HAS_Z_SERVO_ENDSTOP
const int z_servo_angle[2] = Z_SERVO_ANGLES;
#endif
#if ENABLED(BARICUDA)
int baricuda_valve_pressure = 0;
int baricuda_e_to_p_pressure = 0;
#endif
#if ENABLED(FWRETRACT)
bool autoretract_enabled = false;
bool retracted[EXTRUDERS] = { false };
bool retracted_swap[EXTRUDERS] = { false };
float retract_length = RETRACT_LENGTH;
float retract_length_swap = RETRACT_LENGTH_SWAP;
float retract_feedrate_mm_s = RETRACT_FEEDRATE;
float retract_zlift = RETRACT_ZLIFT;
float retract_recover_length = RETRACT_RECOVER_LENGTH;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
#endif // FWRETRACT
#if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
bool powersupply =
#if ENABLED(PS_DEFAULT_OFF)
false
#else
true
#endif
;
#endif
#if ENABLED(DELTA)
#define TOWER_1 X_AXIS
#define TOWER_2 Y_AXIS
#define TOWER_3 Z_AXIS
float delta[3];
float cartesian_position[3] = { 0 };
#define SIN_60 0.8660254037844386
#define COS_60 0.5
float endstop_adj[3] = { DELTA_ENDSTOP_ADJ_X, DELTA_ENDSTOP_ADJ_Y, DELTA_ENDSTOP_ADJ_Z };
// these are the default values, can be overriden with M665
float delta_height = Z_HOME_POS;
float delta_radius = DELTA_RADIUS;
float delta_radius_trim_tower_1 = DELTA_RADIUS_TRIM_TOWER_1;
float delta_radius_trim_tower_2 = DELTA_RADIUS_TRIM_TOWER_2;
float delta_radius_trim_tower_3 = DELTA_RADIUS_TRIM_TOWER_3;
float delta_tower1_x = cos(RADIANS(210-120 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + delta_radius_trim_tower_1); // front left tower
float delta_tower1_y = sin(RADIANS(210-120 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + delta_radius_trim_tower_1);
float delta_tower2_x = cos(RADIANS(330-120 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + delta_radius_trim_tower_2); // front right tower
float delta_tower2_y = sin(RADIANS(330-120 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + delta_radius_trim_tower_2);
float delta_tower3_x = cos(RADIANS( 90-120 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + delta_radius_trim_tower_3); // back middle tower
float delta_tower3_y = sin(RADIANS( 90-120 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + delta_radius_trim_tower_3);
float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
float delta_tower_angle_trim[3] = DELTA_TOWER_ANGLE_TRIM;
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
float delta_clip_start_height = Z_MAX_POS;
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
float delta_grid_spacing[2] = { ((RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS - 1)),
((BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS - 1)) };
float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
#endif
float delta_safe_distance_from_top();
#else
static bool home_all_axis = true;
#endif
#if ENABLED(SCARA)
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
float delta[3];
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
//Variables for Filament Sensor input
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
int filwidth_delay_index1 = 0; //index into ring buffer
int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
static bool filament_ran_out = false;
#endif
#if ENABLED(FILAMENT_CHANGE_FEATURE)
FilamentChangeMenuResponse filament_change_menu_response;
#endif
#if ENABLED(MIXING_EXTRUDER)
float mixing_factor[MIXING_STEPPERS];
#if MIXING_VIRTUAL_TOOLS > 1
float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
#endif
#endif
static bool send_ok[BUFSIZE];
#if HAS_SERVOS
Servo servo[NUM_SERVOS];
#define MOVE_SERVO(I, P) servo[I].move(P)
#if HAS_Z_SERVO_ENDSTOP
#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
#define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
#endif
#endif
#ifdef CHDK
millis_t chdkHigh = 0;
boolean chdkActive = false;
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
int lpq_len = 20;
#endif
#if ENABLED(HOST_KEEPALIVE_FEATURE)
static MarlinBusyState busy_state = NOT_BUSY;
static millis_t next_busy_signal_ms = 0;
uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
#else
#define host_keepalive() ;
#define KEEPALIVE_STATE(n) ;
#endif // HOST_KEEPALIVE_FEATURE
/**
* ***************************************************************************
* ******************************** FUNCTIONS ********************************
* ***************************************************************************
*/
void stop();
void get_available_commands();
void process_next_command();
void prepare_move_to_destination();
void set_current_from_steppers_for_axis(AxisEnum axis);
void gcode_G28();
void set_cartesian_from_steppers();
#if ENABLED(ARC_SUPPORT)
void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
#endif
#if ENABLED(BEZIER_CURVE_SUPPORT)
void plan_cubic_move(const float offset[4]);
#endif
void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void tool_change(const uint8_t tmp_extruder, const float fr_mm_m=0.0, bool no_move=false);
static void report_current_position();
//This does outputs lowercase xyz, so it is not parsed by pronterface
static void report_current_position2(float position[],long stepper_position[]);
static float calc_delta_adjust(float cartesian[3]);
#if ENABLED(DEBUG_LEVELING_FEATURE)
void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
serialprintPGM(prefix);
SERIAL_ECHOPAIR("(", x);
SERIAL_ECHOPAIR(", ", y);
SERIAL_ECHOPAIR(", ", z);
SERIAL_ECHOPGM(")");
if (suffix) serialprintPGM(suffix);
else SERIAL_EOL;
}
void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
}
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
}
#endif
#define DEBUG_POS(SUFFIX,VAR) do { \
print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
#endif
/**
* sync_plan_position
* Set planner / stepper positions to the cartesian current_position.
* The stepper code translates these coordinates into step units.
* Allows translation between steps and millimeters for cartesian & core robots
*/
inline void sync_plan_position() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
#endif
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
#if ENABLED(DELTA) || ENABLED(SCARA)
inline void sync_plan_position_delta() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
#endif
inverse_kinematics(current_position);
planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
}
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
#else
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
#endif
#if 0
//#if ENABLED(SDSUPPORT)
#include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
#else
int freeMemory() { return 0; } //No free ram management
#endif //!SDSUPPORT
#if ENABLED(DIGIPOT_I2C)
extern void digipot_i2c_set_current(int channel, float current);
extern void digipot_i2c_init();
#endif
/**
* Inject the next "immediate" command, when possible.
* Return true if any immediate commands remain to inject.
*/
static bool drain_queued_commands_P() {
if (queued_commands_P != NULL) {
size_t i = 0;
char c, cmd[30];
strncpy(cmd, queued_commands_P, sizeof(cmd) - 1);
// strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1); -- BDI
cmd[sizeof(cmd) - 1] = '\0';
while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
cmd[i] = '\0';
if (enqueue_and_echo_command(cmd)) { // success?
if (c) // newline char?
queued_commands_P += i + 1; // advance to the next command
else
queued_commands_P = NULL; // nul char? no more commands
}
}
return (queued_commands_P != NULL); // return whether any more remain
}
/**
* Record one or many commands to run from program memory.
* Aborts the current queue, if any.
* Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
*/
void enqueue_and_echo_commands_P(const char* pgcode) {
queued_commands_P = pgcode;
drain_queued_commands_P(); // first command executed asap (when possible)
}
void clear_command_queue() {
cmd_queue_index_r = cmd_queue_index_w;
commands_in_queue = 0;
}
/**
* Once a new command is in the ring buffer, call this to commit it
*/
inline void _commit_command(bool say_ok) {
send_ok[cmd_queue_index_w] = say_ok;
cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
commands_in_queue++;
}
/**
* Copy a command directly into the main command buffer, from RAM.
* Returns true if successfully adds the command
*/
inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
strcpy(command_queue[cmd_queue_index_w], cmd);
_commit_command(say_ok);
return true;
}
void enqueue_and_echo_command_now(const char* cmd) {
while (!enqueue_and_echo_command(cmd)) idle();
}
/**
* Enqueue with Serial Echo
*/
bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
if (_enqueuecommand(cmd, say_ok)) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_Enqueueing);
SERIAL_ECHO(cmd);
SERIAL_ECHOLNPGM("\"");
return true;
}
return false;
}
void setup_killpin() {
#if HAS_KILL
SET_INPUT(KILL_PIN);
WRITE(KILL_PIN, HIGH);
#endif
}
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
void setup_filrunoutpin() {
pinMode(FIL_RUNOUT_PIN, INPUT);
#if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
WRITE(FIL_RUNOUT_PIN, HIGH);
#endif
}
#endif
// Set home pin
void setup_homepin(void) {
#if HAS_HOME
SET_INPUT(HOME_PIN);
WRITE(HOME_PIN, HIGH);
#endif
}
void setup_photpin() {
#if HAS_PHOTOGRAPH
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
#endif
}
void setup_powerhold() {
//----- General BSP initialization to use 4 motors */
BSP_MiscOverallInit(4);
//----- Switch Step clock to SW mode (no used of PWMs)*/
BSP_MiscSetStepClockToSwMode();
//----- ADC init*/
BSP_AdcHwInit();
//----- Endstop Init
BSP_MiscStopInit(0);
BSP_MiscStopInit(1);
BSP_MiscStopInit(2);
BSP_MiscStopInit(5);
//Extruder 0 Fan init
BSP_MiscFanInit(0);
BSP_MiscFanInit(1);
BSP_MiscFanInit(2);
}
char SDPath[4]; /* SD card logical drive path */
void setup_sdcard()
{
#if defined(SDSUPPORT)
while (p_card->autostart_atmillis>millis()) { }
if(FATFS_LinkDriver(&SD_Driver, SDPath) == 0)
{
p_card->checkautostart(true);
if(p_card->cardOK)
Config_RetrieveSettings();
}
#endif
}
void suicide() {
serialprintPGM("3DPrinter board resetting !");
NVIC_SystemReset();
}
void servo_init() {
#if NUM_SERVOS >= 1 && HAS_SERVO_0
servo[0].attach(SERVO0_PIN);
servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
#endif
#if NUM_SERVOS >= 2 && HAS_SERVO_1
servo[1].attach(SERVO1_PIN);
servo[1].detach();
#endif
#if NUM_SERVOS >= 3 && HAS_SERVO_2
servo[2].attach(SERVO2_PIN);
servo[2].detach();
#endif
#if NUM_SERVOS >= 4 && HAS_SERVO_3
servo[3].attach(SERVO3_PIN);
servo[3].detach();
#endif
#if HAS_Z_SERVO_ENDSTOP
/**
* Set position of Z Servo Endstop
*
* The servo might be deployed and positioned too low to stow
* when starting up the machine or rebooting the board.
* There's no way to know where the nozzle is positioned until
* homing has been done - no homing with z-probe without init!
*
*/
STOW_Z_SERVO();
#endif
#if HAS_BED_PROBE
endstops.enable_z_probe(false);
#endif
}
/**
* Stepper Reset (RigidBoard, et.al.)
*/
#if HAS_STEPPER_RESET
void disableStepperDrivers() {
pinMode(STEPPER_RESET_PIN, OUTPUT);
digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
}
void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
#endif
__IO uint16_t *REG_ADDR = (uint16_t *)0x60000000;
__IO uint16_t *RAM_ADDR = (uint16_t *)0x60020000;
#define ROWBOUND 0x002A
#define COLBOUND 0x002B
#define RAMWR 0x002C
void setup6() {
char buffer[80];
char *pbuff = buffer;
setup_killpin();
setup_powerhold();
MYSERIAL.begin(BAUDRATE);
lcd_init();
HAL_I2Cx_init();
while(1) {
while(MYSERIAL.available()) {
*(pbuff++) = MYSERIAL.read();
MYSERIAL.write(*(pbuff-1));
if(*(pbuff-1)=='\n' || *(pbuff-1)=='\r') {
break;
}
}
if(*(pbuff-1)=='\n' || *(pbuff-1)=='\r') {
static uint16_t ADR = 0;
bool isRead = false;
*pbuff = '\0';
pbuff = buffer;
switch (buffer[0]) {
case 'w':
case 'W':
{
if(buffer[1]!=' ')
continue;//continue parsing
ADR = atoi((const char *) &buffer[2]);
char *loc = strchr(&buffer[2],' ');
if(!loc) //no second space, continue
continue;
uint8_t DAT = atoi(loc);
HAL_I2C_Mem_Write(&I2cHandle,I2C_FRAM_ADDR,ADR,I2C_MEMADD_SIZE_16BIT,&DAT,1,100);
break; }
case 'r':
case 'R': {
if(buffer[1]!=' ') {
uint16_t DAT = *RAM_ADDR;
MYSERIAL.print(" ");
MYSERIAL.println(DAT,HEX);
}
else {
ADR = atoi((const char *) &buffer[2]);
// *REG_ADDR = ADR;
uint16_t rpt = 1;
char *loc = strchr(&buffer[2],' ');
if(loc)
rpt = atoi(loc);
for(int i=0;i<rpt;i++) {
// uint16_t DAT = *RAM_ADDR;
uint8_t DAT;
if(HAL_I2C_Mem_Read(&I2cHandle,I2C_FRAM_ADDR,ADR++,I2C_MEMADD_SIZE_16BIT,&DAT,1,100)!=HAL_OK)
{
MYSERIAL.println("Read Error");
break;
}
// if(i==0) {
MYSERIAL.print("Read address: ");
MYSERIAL.print(ADR-1,HEX);
MYSERIAL.print(" data = ");
// }
// else
// MYSERIAL.print(" ");
MYSERIAL.println(DAT,HEX);
}
MYSERIAL.print("\r\n");
}
break; }
} //switch(buff[0])
} //if =='\n'
BSP_UartIfSendQueuedData();
} //while(1)
}
void setup5() {
setup_killpin();
setup_powerhold();
MYSERIAL.begin(BAUDRATE);
lcd_init();
while(1) {
delay(100);
if(HAL_GPIO_ReadPin(LCD_BTN_GPIO_PORT,LCD_BTN_PIN)==GPIO_PIN_RESET) {
BSP_LED_Toggle(LED1);
BSP_LED_Toggle(LED2);
}
if(HAL_GPIO_ReadPin(LCD_ENC1_GPIO_PORT,LCD_ENC1_PIN)==GPIO_PIN_RESET)
BSP_LED_Toggle(LED1);
if(HAL_GPIO_ReadPin(LCD_ENC2_GPIO_PORT,LCD_ENC2_PIN)==GPIO_PIN_RESET)
{
BSP_LED_Toggle(LED2);
}
}
}
void setup4() {
char buffer[80];
char *pbuff = buffer;
setup_killpin();
setup_powerhold();
MYSERIAL.begin(BAUDRATE);
// BSP_LCD_Init();
// LCD_Init();
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_3,GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_6,GPIO_PIN_SET);
// HAL_GPIO_WritePin(GPIOD,GPIO_PIN_12,GPIO_PIN_SET);
delay(1000); //Give USB time to connect and initialize before starting LCD interface
lcd_init();
delay(1000); //Give USB time to connect and initialize before starting LCD interface
while(1) {
while(MYSERIAL.available()) {
*(pbuff++) = MYSERIAL.read();
MYSERIAL.write(*(pbuff-1));
if(*(pbuff-1)=='\n' || *(pbuff-1)=='\r') {
break;
}