forked from flintlib/flint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ulong_extras.h
359 lines (234 loc) · 9.33 KB
/
ulong_extras.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2006, 2007, 2008, 2009 William Hart
Copyright (C) 2008, Peter Shrimpton
Copyright (C) 2009, Tom Boothby
Copyright (C) 2010, Fredrik Johansson
******************************************************************************/
#ifndef ULONG_EXTRAS_H
#define ULONG_EXTRAS_H
#include <mpir.h>
#include "flint.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct pair_s
{
mp_limb_t x, y;
} n_pair_t;
#define FLINT_MAX_FACTORS_IN_LIMB 15
typedef struct {
int num;
int exp[FLINT_MAX_FACTORS_IN_LIMB];
mp_limb_t p[FLINT_MAX_FACTORS_IN_LIMB];
} n_factor_t;
#define FLINT_ODDPRIME_SMALL_CUTOFF 4096
#define FLINT_NUM_PRIMES_SMALL 172
#define FLINT_PRIMES_SMALL_CUTOFF 1030
#define FLINT_PSEUDOSQUARES_CUTOFF 1000
#define FLINT_FACTOR_TRIAL_PRIMES 3000
#define FLINT_FACTOR_SQUFOF_ITERS 50000
#define FLINT_FACTOR_ONE_LINE_MAX (1UL<<39)
#define FLINT_FACTOR_ONE_LINE_ITERS 40000
#define FLINT_PRIME_PI_ODD_LOOKUP_CUTOFF 311
#define FLINT_SIEVE_SIZE 65536
#if FLINT64
#define ULONG_MAX_PRIME 18446744073709551557UL
#else
#define ULONG_MAX_PRIME 4294967291UL
#endif
typedef struct
{
long small_i;
long small_num;
unsigned int * small_primes;
mp_limb_t sieve_a;
mp_limb_t sieve_b;
long sieve_i;
long sieve_num;
char * sieve;
}
n_primes_struct;
typedef n_primes_struct n_primes_t[1];
void n_primes_init(n_primes_t iter);
void n_primes_clear(n_primes_t iter);
void n_primes_extend_small(n_primes_t iter, mp_limb_t bound);
void n_primes_sieve_range(n_primes_t iter, mp_limb_t a, mp_limb_t b);
void n_primes_jump_after(n_primes_t iter, mp_limb_t n);
static __inline__ mp_limb_t
n_primes_next(n_primes_t iter)
{
if (iter->small_i < iter->small_num)
return iter->small_primes[(iter->small_i)++];
for (;;)
{
while (iter->sieve_i < iter->sieve_num)
if (iter->sieve[iter->sieve_i++] != 0)
return iter->sieve_a + 2 * (iter->sieve_i - 1);
if (iter->sieve_b == 0)
n_primes_jump_after(iter, iter->small_primes[iter->small_num-1]);
else
n_primes_jump_after(iter, iter->sieve_b);
}
}
extern const unsigned int flint_primes_small[];
extern mp_limb_t * flint_primes;
extern double * flint_prime_inverses;
extern mp_limb_t flint_num_primes;
extern mp_limb_t flint_primes_cutoff;
mp_limb_t n_randlimb(flint_rand_t state);
mp_limb_t n_randint(flint_rand_t state, mp_limb_t limit);
mp_limb_t n_randbits(flint_rand_t state, unsigned int bits);
mp_limb_t n_randtest_bits(flint_rand_t state, int bits);
mp_limb_t n_randtest(flint_rand_t state);
mp_limb_t n_randtest_not_zero(flint_rand_t state);
mp_limb_t n_randprime(flint_rand_t state, unsigned long bits, int proved);
mp_limb_t n_randtest_prime(flint_rand_t state, int proved);
mp_limb_t n_pow(mp_limb_t n, ulong exp);
mp_limb_t n_flog(mp_limb_t n, mp_limb_t b);
mp_limb_t n_clog(mp_limb_t n, mp_limb_t b);
static __inline__
double n_precompute_inverse(mp_limb_t n)
{
return (double) 1 / (double) n;
}
static __inline__
mp_limb_t n_preinvert_limb(mp_limb_t n)
{
mp_limb_t norm, ninv;
count_leading_zeros(norm, n);
invert_limb(ninv, n<<norm);
return ninv;
}
mp_limb_t n_mod_precomp(mp_limb_t a, mp_limb_t n, double ninv);
mp_limb_t n_mod2_precomp(mp_limb_t a, mp_limb_t n, double ninv);
mp_limb_t n_divrem2_precomp(mp_limb_t * q, mp_limb_t a,
mp_limb_t n, double npre);
mp_limb_t n_mod2_preinv(mp_limb_t a, mp_limb_t n, mp_limb_t ninv);
mp_limb_t n_ll_mod_preinv(mp_limb_t a_hi, mp_limb_t a_lo,
mp_limb_t n, mp_limb_t ninv);
mp_limb_t n_lll_mod_preinv(mp_limb_t a_hi, mp_limb_t a_mi,
mp_limb_t a_lo, mp_limb_t n, mp_limb_t ninv);
mp_limb_t n_mulmod_precomp(mp_limb_t a, mp_limb_t b,
mp_limb_t n, double ninv);
mp_limb_t n_mulmod2_preinv(mp_limb_t a, mp_limb_t b,
mp_limb_t n, mp_limb_t ninv);
mp_limb_t n_mulmod_preinv(mp_limb_t a, mp_limb_t b,
mp_limb_t n, mp_limb_t ninv, ulong norm);
mp_limb_t
n_powmod_ui_precomp(mp_limb_t a, mp_limb_t exp, mp_limb_t n, double npre);
mp_limb_t n_powmod_precomp(mp_limb_t a,
mp_limb_signed_t exp, mp_limb_t n, double npre);
static __inline__
mp_limb_t n_powmod(mp_limb_t a, mp_limb_signed_t exp, mp_limb_t n)
{
double npre = n_precompute_inverse(n);
return n_powmod_precomp(a, exp, n, npre);
}
mp_limb_t n_powmod2_preinv(mp_limb_t a,
mp_limb_signed_t exp, mp_limb_t n, mp_limb_t ninv);
mp_limb_t n_powmod2_ui_preinv(mp_limb_t a, mp_limb_t exp,
mp_limb_t n, mp_limb_t ninv);
static __inline__
mp_limb_t n_powmod2(mp_limb_t a, mp_limb_signed_t exp, mp_limb_t n)
{
mp_limb_t ninv = n_preinvert_limb(n);
return n_powmod2_preinv(a, exp, n, ninv);
}
static __inline__
mp_limb_t n_addmod(mp_limb_t x, mp_limb_t y, mp_limb_t n)
{
return (n - y > x ? x + y : x + y - n);
}
static __inline__
mp_limb_t n_submod(mp_limb_t x, mp_limb_t y, mp_limb_t n)
{
return (y > x ? x - y + n : x - y);
}
static __inline__
mp_limb_t n_negmod(mp_limb_t x, mp_limb_t n)
{
return n_submod(0, x, n);
}
mp_limb_t n_sqrtmod(mp_limb_t a, mp_limb_t p);
long n_sqrtmod_2pow(mp_limb_t ** sqrt, mp_limb_t a, long exp);
long n_sqrtmod_primepow(mp_limb_t ** sqrt, mp_limb_t a,
mp_limb_t p, long exp);
long n_sqrtmodn(mp_limb_t ** sqrt, mp_limb_t a, n_factor_t * fac);
mp_limb_t n_gcd(mp_limb_t x, mp_limb_t y);
mp_limb_t n_xgcd(mp_limb_t * a, mp_limb_t * b, mp_limb_t x, mp_limb_t y);
mp_limb_t n_invmod(mp_limb_t x, mp_limb_t y);
mp_limb_t n_gcdinv(mp_limb_t * a, mp_limb_t x, mp_limb_t y);
ulong n_revbin(ulong in, ulong bits);
int n_jacobi(mp_limb_signed_t x, mp_limb_t y);
int n_jacobi_unsigned(mp_limb_t x, mp_limb_t y);
mp_limb_t n_sqrt(mp_limb_t a);
mp_limb_t n_sqrtrem(mp_limb_t * r, mp_limb_t a);
int n_is_square(mp_limb_t x);
int n_is_perfect_power235(mp_limb_t n);
int n_is_oddprime_small(mp_limb_t n);
int n_is_oddprime_binary(mp_limb_t n);
int n_is_probabprime_fermat(mp_limb_t n, mp_limb_t i);
int n_is_probabprime_fibonacci(mp_limb_t n);
int n_is_probabprime_lucas(mp_limb_t n);
int n_is_probabprime_BPSW(mp_limb_t n);
int n_is_strong_probabprime_precomp(mp_limb_t n,
double npre, mp_limb_t a, mp_limb_t d);
int n_is_strong_probabprime2_preinv(mp_limb_t n,
mp_limb_t ninv, mp_limb_t a, mp_limb_t d);
int n_is_probabprime(mp_limb_t n);
int n_is_prime_pseudosquare(mp_limb_t n);
int n_is_prime_pocklington(mp_limb_t n, ulong iterations);
int n_is_prime(mp_limb_t n);
void n_compute_primes(ulong num_primes);
mp_limb_t n_nth_prime(ulong n);
void n_nth_prime_bounds(mp_limb_t *lo, mp_limb_t *hi, ulong n);
ulong n_prime_pi(mp_limb_t n);
void n_prime_pi_bounds(ulong *lo, ulong *hi, mp_limb_t n);
int n_remove(mp_limb_t * n, mp_limb_t p);
int n_remove2_precomp(mp_limb_t * n, mp_limb_t p, double ppre);
static __inline__
void n_factor_init(n_factor_t * factors)
{
factors->num = 0UL;
}
void n_factor_insert(n_factor_t * factors, mp_limb_t p, ulong exp);
mp_limb_t n_factor_trial_range(n_factor_t * factors,
mp_limb_t n, ulong start, ulong num_primes);
mp_limb_t n_factor_trial_partial(n_factor_t * factors, mp_limb_t n,
mp_limb_t * prod, ulong num_primes, mp_limb_t limit);
mp_limb_t n_factor_trial(n_factor_t * factors,
mp_limb_t n, mp_limb_t num_primes);
mp_limb_t n_factor_partial(n_factor_t * factors,
mp_limb_t n, mp_limb_t limit, int proved);
mp_limb_t n_factor_power235(ulong *exp, mp_limb_t n);
mp_limb_t n_factor_one_line(mp_limb_t n, ulong iters);
mp_limb_t n_factor_lehman(mp_limb_t n);
mp_limb_t n_factor_SQUFOF(mp_limb_t n, ulong iters);
void n_factor(n_factor_t * factors, mp_limb_t n, int proved);
mp_limb_t n_factor_pp1(mp_limb_t n, ulong B1, ulong c);
int n_is_squarefree(mp_limb_t n);
int n_moebius_mu(mp_limb_t n);
void n_moebius_mu_vec(int * mu, ulong len);
mp_limb_t n_euler_phi(mp_limb_t n);
int n_sizeinbase(mp_limb_t n, int base);
mp_limb_t n_nextprime(mp_limb_t n, int proved);
mp_limb_t n_factorial_mod2_preinv(ulong n, mp_limb_t p, mp_limb_t pinv);
mp_limb_t n_factorial_fast_mod2_preinv(ulong n, mp_limb_t p, mp_limb_t pinv);
#ifdef __cplusplus
}
#endif
#endif