-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun_lm_finetuning.py
936 lines (806 loc) · 44.4 KB
/
run_lm_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import pickle
import random
import re
import shutil
import copy
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
import collections
import nltk as tk
import sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encoding='utf-8')
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (
WEIGHTS_NAME,
AdamW,
BertTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
RobertaTokenizer,
get_linear_schedule_with_warmup,
)
from modeling.modeling_charbert import CharBertForMaskedLM
from modeling.modeling_roberta import RobertaForMaskedLM
from modeling.configuration_bert import BertConfig
from modeling.configuration_roberta import RobertaConfig
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'bert': (BertConfig, CharBertForMaskedLM, BertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
}
MaskedLmInstance = collections.namedtuple("MaskedLmInstance",["index", "label"])
def _is_whitespace(c):
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
return True
return False
class TextDataset(Dataset):
def __init__(self, tokenizer, args, file_path='train', block_size=512):
assert os.path.isfile(file_path)
self.char2ids_dict = self.load_line_to_ids_dict(fname=args.char_vocab)
self.term2ids_dict = self.load_line_to_ids_dict(fname=args.term_vocab)
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(directory, args.data_version + '_cached_lm_' + str(block_size) + '_' + filename)
file_raws = 0
with open(file_path, 'r', encoding="utf-8") as f:
for _ in f:
file_raws += 1
self.file_raws = file_raws
self.nraws = args.input_nraws
self.shuffle = True
self.file_path = file_path
self.finput = open(file_path, encoding="utf-8")
self.current_sample_idx = -1
self.examples = []
self.tokenizer = tokenizer
self.block_size = block_size
self.num_nraws = 0
self.args = args
self.rng = random.Random(args.seed)
def read_nraws(self):
self.num_nraws += 1
logger.info("Reading the [%d]th data block from dataset file at %s" % (self.num_nraws, self.file_path))
text = ""
for _ in range(self.nraws):
line = self.finput.readline()
if line:
text += line.strip()
else:
self.finput.seek(0)
line = self.finput.readline()
text += line.strip()
doc_tokens = tk.word_tokenize(text)
if self.args.output_debug:
print(f"doc_tokens : {' '.join(doc_tokens)}")
tokenized_tokens = []
sub_index_to_orig_token = {}
sub_index_to_change = {}
adv_labels = []
num_diff = num_same = 0
for idx, token in enumerate(doc_tokens):
ori_token = copy.deepcopy(token)
if self.rng.random() < self.args.adv_probability:
token = self.create_adv_word(token, self.rng)
if ori_token != token and self.args.output_debug:
if num_diff % 1000 == 0:
print(f"Change the token {ori_token} To {token}")
num_diff += 1
else:
num_same += 1
sub_tokens = []
if self.args.model_type == 'roberta':
sub_tokens = self.tokenizer.tokenize(token, add_prefix_space=True)
else:
sub_tokens = self.tokenizer.tokenize(token)
for sub_w in sub_tokens:
sub_index_to_orig_token[len(tokenized_tokens)] = token
if ori_token != token:
sub_index_to_change[len(tokenized_tokens)] = True
#if ori_token in self.term2ids_dict:
# adv_labels.append(self.term2ids_dict[ori_token])
if ori_token.lower() in self.term2ids_dict:
adv_labels.append(self.term2ids_dict[ori_token.lower()])
else:
adv_labels.append(self.term2ids_dict['<unk>'])
else:
sub_index_to_change[len(tokenized_tokens)] = False
adv_labels.append(-1)
tokenized_tokens.append(sub_w)
if self.args.output_debug:
print(f"num_same: {num_same} num_diff: {num_diff}")
print(f"tokenized doc: {' '.join(tokenized_tokens)}")
input_tokens, mask_labels = self.create_masked_lm_predictions(tokenized_tokens,\
self.args.mlm_probability, self.tokenizer, self.rng, sub_index_to_change)
tokenized_text = self.tokenizer.convert_tokens_to_ids(input_tokens)
if self.args.output_debug:
print(f"mask tokens: {' '.join(input_tokens)}")
seq_maxlen = self.block_size - 2
self.examples = []
for i in range(0, len(tokenized_text)-seq_maxlen+1, seq_maxlen): # Truncate in block of block_size
input_ids = self.tokenizer.build_inputs_with_special_tokens(tokenized_text[i:i+seq_maxlen])
labels = [-1] + mask_labels[i:i+seq_maxlen] + [-1] #For CLS and SEP
adv_input_labels = [-1] + adv_labels[i:i+seq_maxlen] + [-1]
char_input_ids, start_ids, end_ids = self.build_char_inputs(input_ids, sub_index_to_orig_token, i, self.rng, labels)
assert len(input_ids) == len(labels)
assert len(input_ids) == len(adv_input_labels)
assert len(input_ids) == len(start_ids)
assert len(input_ids) == len(end_ids)
self.examples.append((torch.tensor(char_input_ids), torch.tensor(start_ids), torch.tensor(end_ids),\
torch.tensor(input_ids), torch.tensor(labels), torch.tensor(adv_input_labels)))
self.current_sample_idx = -1
if self.shuffle:
random.shuffle(self.examples)
def create_masked_lm_predictions(self, tokens, masked_lm_prob, tokenizer, rng, sub_index_to_change):
"""Creates the predictions for the masked LM objective."""
vocab_words = list(tokenizer.vocab.keys())
cand_indexes = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]" or token == "[PAD]":
continue
# Whole Word Masking means that if we mask all of the wordpieces
# corresponding to an original word. When a word has been split into
# WordPieces, the first token does not have any marker and any subsequence
# tokens are prefixed with ##. So whenever we see the ## token, we
# append it to the previous set of word indexes.
#
# Note that Whole Word Masking does *not* change the training code
# at all -- we still predict each WordPiece independently, softmaxed
# over the entire vocabulary.
if len(cand_indexes) >= 1 and token.startswith("##"):
cand_indexes[-1].append(i)
else:
cand_indexes.append([i])
rng.shuffle(cand_indexes)
output_tokens = list(tokens)
num_to_predict = int(round(len(tokens) * masked_lm_prob))
masked_lms = []
covered_indexes = set()
for index_set in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
# If adding a whole-word mask would exceed the maximum number of
# predictions, then just skip this candidate.
if len(masked_lms) + len(index_set) > num_to_predict:
continue
is_any_index_covered = False
for index in index_set:
if index in covered_indexes or sub_index_to_change[index]:
is_any_index_covered = True
break
if is_any_index_covered:
continue
for index in index_set:
covered_indexes.add(index)
masked_token = None
# 80% of the time, replace with [MASK]
if rng.random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if rng.random() < 0.5:
masked_token = tokens[index]
if self.args.output_debug and False:
print(f"Keep the original token: {masked_token}")
# 10% of the time, replace with random word
else:
masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)]
output_tokens[index] = masked_token
masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))
assert len(masked_lms) <= num_to_predict
masked_lms = sorted(masked_lms, key=lambda x: x.index)
masked_lm_labels = [-1] * len(tokens)
for p in masked_lms:
#masked_lm_positions.append(p.index)
#masked_lm_labels.append(p.label)
masked_lm_labels[p.index] = tokenizer.convert_tokens_to_ids(p.label)
return output_tokens, masked_lm_labels
def create_adv_word(self, orig_token, rng):
token = list(copy.deepcopy(orig_token))
if len(orig_token) < 4:
rand_idx = rng.randint(0, 80)
rand_char = list(self.char2ids_dict.keys())[rand_idx]
insert_idx = rng.randint(0, len(orig_token)-1)
token = token[:insert_idx] + [rand_char] + token[insert_idx:]
if self.args.output_debug and False:
print(f"Insert the char:{rand_char} orig_token: {orig_token} new_token: {token}")
else:
if rng.random() < 0.5:
rand_idx = rng.randint(0, len(orig_token)-1)
del token[rand_idx]
if self.args.output_debug and False:
print(f"Delete the char:{orig_token[rand_idx]} orig_token: {orig_token} new_token: {token}")
else:
idx = random.randint(1, len(orig_token)-2)
token[idx], token[idx+1] = token[idx+1], token[idx]
if self.args.output_debug and False:
print(f"Swap the char:{token[idx:idx+2]} orig_token: {orig_token} new_token: {token}")
token = ''.join(token)
return token
def build_char_inputs(self, input_ids, sub_index_to_ori_tok, start, rng, labels):
all_seq_tokens = self.tokenizer.convert_ids_to_tokens(input_ids)
#if True:
if self.args.output_debug:
print(f"all_seq_tokens: {' '.join(all_seq_tokens)}")
char_ids = []
start_ids = []
end_ids = []
char_maxlen = self.args.block_size * self.args.char_maxlen_for_word
for idx, token in enumerate(all_seq_tokens):
if len(char_ids) >= char_maxlen:
break
token = token.strip("##")
if token == self.tokenizer.unk_token:
tok_orig_index = idx+start - 1
if tok_orig_index in sub_index_to_ori_tok : #-1 for CLS
orig_token = sub_index_to_ori_tok[tok_orig_index]
#print(f'UNK: {token} to orig_tokens: {orig_token}')
token = orig_token
if token in ["[CLS]", "[SEP]", "[MASK]", "[PAD]"] or labels[idx] != -1:
start_ids.append(len(char_ids))
end_ids.append(len(char_ids))
char_ids.append(0)
else:
for char_idx, c in enumerate(token):
if len(char_ids) >= char_maxlen:
break
if char_idx == 0:
start_ids.append(len(char_ids))
if char_idx == len(token) - 1:
end_ids.append(len(char_ids))
if c in self.char2ids_dict:
cid = self.char2ids_dict[c]
else:
cid = self.char2ids_dict["<unk>"]
char_ids.append(cid)
if len(char_ids) < char_maxlen:
char_ids.append(0)
#if True:
if self.args.output_debug:
print(f'token[{token}]: {" ".join(map(str, char_ids[-1*(len(token)+2):]))}')
#print(f'len of char_ids: {len(char_ids)}')
if len(char_ids) > char_maxlen:
char_ids = char_ids[:char_maxlen]
else:
pad_len = char_maxlen - len(char_ids)
char_ids = char_ids + [0] * pad_len
while len(start_ids) < self.args.block_size:
start_ids.append(char_maxlen-1)
while len(end_ids) < self.args.block_size:
end_ids.append(char_maxlen-1)
#if True:
if self.args.output_debug:
print(f'char_ids : {" ".join(map(str, char_ids))}')
print(f'start_ids: {" ".join(map(str, start_ids))}')
print(f'end_ids : {" ".join(map(str, end_ids))}')
#max_start = max(start_ids)
#max_end = max(end_ids)
#if max_start > char_maxlen or max_end > char_maxlen:
# print("Error sequence information")
# exit(0)
return char_ids, start_ids, end_ids
def load_line_to_ids_dict(self, fname):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(fname, "r", encoding="utf-8") as reader:
chars = reader.readlines()
for index, char in enumerate(chars):
char = char.rstrip('\n')
vocab[char] = index
return vocab
def __len__(self):
return self.file_raws
def __getitem__(self, item):
self.current_sample_idx += 1
if len(self.examples) == 0 or self.current_sample_idx == len(self.examples):
self.read_nraws()
self.current_sample_idx += 1
return self.examples[self.current_sample_idx]
def load_and_cache_examples(args, tokenizer, evaluate=False):
dataset = TextDataset(tokenizer, args, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
return dataset
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def _rotate_checkpoints(args, checkpoint_prefix, use_mtime=False):
if not args.save_total_limit:
return
if args.save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
glob_checkpoints = glob.glob(os.path.join(args.output_dir, '{}-*'.format(checkpoint_prefix)))
if len(glob_checkpoints) <= args.save_total_limit:
return
ordering_and_checkpoint_path = []
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match('.*{}-([0-9]+)'.format(checkpoint_prefix), path)
if regex_match and regex_match.groups():
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint)
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, num_workers=1)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, 'optimizer.pt')) and os.path.isfile(os.path.join(args.model_name_or_path, 'scheduler.pt')):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, 'optimizer.pt')))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, 'scheduler.pt')))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to gobal_step of last saved checkpoint from model path
#global_step = int(args.model_name_or_path.split('-')[-1].split('/')[0])
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss = 0.0, 0.0
model_to_resize = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_resize.resize_token_embeddings(len(tokenizer))
model.zero_grad()
train_iterator = trange(epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
char_input_ids, start_ids, end_ids, inputs, labels, adv_labels = batch
char_input_ids = char_input_ids.to(args.device)
start_ids = start_ids.to(args.device)
end_ids = end_ids.to(args.device)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
adv_labels = adv_labels.to(args.device)
model.train()
outputs = model(char_input_ids, start_ids, end_ids, inputs, masked_lm_labels=labels, adv_labels=adv_labels)
if args.output_debug:
print(f'mask_lm loss: {outputs[0]}')
print(f'adv_term loss: {outputs[1]}')
loss = outputs[0] + outputs[1] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
checkpoint_prefix = 'checkpoint'
# Save model checkpoint
output_dir = os.path.join(args.output_dir, '{}-{}'.format(checkpoint_prefix, global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
_rotate_checkpoints(args, checkpoint_prefix)
torch.save(optimizer.state_dict(), os.path.join(output_dir, 'optimizer.pt'))
torch.save(scheduler.state_dict(), os.path.join(output_dir, 'scheduler.pt'))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def eval_hit_metrics(args, pred_scores, labels):
p_at_1 = p_at_5 = simple_mask_num = 0
batch_size = list(pred_scores.size())[0]
seq_maxlen = list(pred_scores.size())[1]
pred_score_arr = np.asarray(pred_scores)
labels_arr = np.asarray(labels)
for i in range(batch_size):
simple_pred_scores = pred_score_arr[i]
simple_labels = labels_arr[i]
#find the prediction scores for the mask tokens
mask_idx = np.where(simple_labels != -1)
mask_scores = simple_pred_scores[mask_idx]
true_word_ids = simple_labels[mask_idx]
if args.output_debug:
print(f"mask_scores shape: {mask_scores.shape}")
print(f"labels: {list(simple_labels)}")
print(f"mask_idx: {list(mask_idx)}")
#assert len(mask_scores) == len(answers) * args.mask_tokens_num
#calculate the metric for each whole mask position
len_of_mask_pos = mask_scores.shape[0]
#true_words = tokenizer.convert_ids_to_tokens(true_word_ids)
simple_mask_num += len_of_mask_pos
for seq_idx in range(len_of_mask_pos):
score_l = mask_scores[seq_idx]
#true_wordid = true_word_ids[seq_idx]
nbest_words_idx = score_l.argsort()[-1*5:][::-1]
nbest_scores = []
for word_idx in nbest_words_idx:
nbest_scores.append(score_l[word_idx])
#nbest_words = tokenizer.convert_ids_to_tokens(nbest_words_idx)
#true_token = true_words[seq_idx]
true_id = true_word_ids[seq_idx]
#if args.output_debug:
if True:
print(f"True_id: {true_id}")
print(f"Nbest pos ids: {' '.join(map(str, nbest_words_idx))}")
print(f"Nbest scores: {nbest_scores}")
#print(f"Nbest wordid: {nbest_words_idx}")
#calculate the matrics
if true_id == nbest_words_idx[0]:
p_at_1 += 1
p_at_5 += 1
print(f'Hit top 1')
elif true_id in nbest_words_idx:
p_at_5 += 1
print(f'Hit top 5')
else:
print(f"Fail to predict")
print("")
token_idx_score = []
return p_at_1, p_at_5, simple_mask_num
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, num_workers=1)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
softmax_layer = torch.nn.Softmax(dim=-1)
hit_1 = hit_5 = mask_num_all = 0
adv_hit_1 = adv_hit_5 = adv_num_all = 0
for batch in tqdm(eval_dataloader, desc="Evaluating"):
char_input_ids, start_ids, end_ids, inputs, labels, adv_labels_cpu = batch
char_input_ids = char_input_ids.to(args.device)
start_ids = start_ids.to(args.device)
end_ids = end_ids.to(args.device)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
adv_labels = adv_labels_cpu.to(args.device)
with torch.no_grad():
outputs = model(char_input_ids, start_ids, end_ids, inputs, masked_lm_labels=labels, adv_labels=adv_labels)
lm_loss = outputs[0]
adv_logits = outputs[3]
adv_scores = softmax_layer(adv_logits)
adv_scores = adv_scores.detach().cpu()
sample_adv_hit_1, sample_adv_hit_5, sample_adv_num = eval_hit_metrics(args,\
adv_scores, adv_labels_cpu)
adv_hit_1 += sample_adv_hit_1
adv_hit_5 += sample_adv_hit_5
adv_num_all += sample_adv_num
eval_loss += lm_loss.mean().item()
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.exp(torch.tensor(eval_loss))
adv_hit_1 = adv_hit_1 * 1.0 / adv_num_all
adv_hit_5 = adv_hit_5 * 1.0 / adv_num_all
result = {
"perplexity": perplexity,
"adv_hit_at_1": adv_hit_1,
"adv_hit_at_5": adv_hit_5,
"adv_all_num": adv_num_all
}
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_data_file", default=None, type=str, required=True,
help="The input training data file (a text file).")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--eval_data_file", default=None, type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
parser.add_argument("--char_vocab", default="./data/dict/bert_char_vocab", type=str,
help="char vocab for charBert")
parser.add_argument("--term_vocab", default="/home/rc/wtma/work2/data/wikipedia/term_vocab", type=str,
help="term vocab for charBert")
parser.add_argument("--model_type", default="bert", type=str,
help="The model architecture to be fine-tuned.")
parser.add_argument("--model_name_or_path", default="bert-base-cased", type=str,
help="The model checkpoint for weights initialization.")
parser.add_argument("--mlm", action='store_true',
help="Train with masked-language modeling loss instead of language modeling.")
parser.add_argument("--mlm_probability", type=float, default=0.10,
help="Ratio of tokens to mask for masked language modeling loss")
parser.add_argument("--adv_probability", type=float, default=0.10,
help="Ratio of tokens to mask for masked language modeling loss")
parser.add_argument("--config_name", default="", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--data_version", default="", type=str,
help="training data version for cached file")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--cache_dir", default="", type=str,
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
parser.add_argument("--block_size", default=-1, type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--output_debug", action='store_true',
help="Whether to output the debug information.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Run evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--char_maxlen_for_word", default=6, type=int,
help="Max number of char for each word.")
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=1.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--input_nraws", default=10000, type=int,
help="number of lines when read the input data each time.")
parser.add_argument('--save_total_limit', type=int, default=None,
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm "
"flag (masked language modeling).")
if args.eval_data_file is None and args.do_eval:
raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
"or remove the --do_eval argument.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
if args.block_size <= 0:
args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
model = model_class.from_pretrained(args.model_name_or_path,
from_tf=bool('.ckpt' in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None)
model.to(args.device)
if args.local_rank == 0:
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
if args.local_rank == 0:
torch.distributed.barrier()
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
main()