-
Notifications
You must be signed in to change notification settings - Fork 46
/
lvcnet.py
210 lines (183 loc) · 9.09 KB
/
lvcnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
""" refer from https://github.com/zceng/LVCNet """
import torch
import torch.nn as nn
import torch.nn.functional as F
class KernelPredictor(torch.nn.Module):
''' Kernel predictor for the location-variable convolutions'''
def __init__(
self,
cond_channels,
conv_in_channels,
conv_out_channels,
conv_layers,
conv_kernel_size=3,
kpnet_hidden_channels=64,
kpnet_conv_size=3,
kpnet_dropout=0.0,
kpnet_nonlinear_activation="LeakyReLU",
kpnet_nonlinear_activation_params={"negative_slope":0.1},
):
'''
Args:
cond_channels (int): number of channel for the conditioning sequence,
conv_in_channels (int): number of channel for the input sequence,
conv_out_channels (int): number of channel for the output sequence,
conv_layers (int): number of layers
'''
super().__init__()
self.conv_in_channels = conv_in_channels
self.conv_out_channels = conv_out_channels
self.conv_kernel_size = conv_kernel_size
self.conv_layers = conv_layers
kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers # l_w
kpnet_bias_channels = conv_out_channels * conv_layers # l_b
self.input_conv = nn.Sequential(
nn.utils.weight_norm(nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True)),
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
)
self.residual_convs = nn.ModuleList()
padding = (kpnet_conv_size - 1) // 2
for _ in range(3):
self.residual_convs.append(
nn.Sequential(
nn.Dropout(kpnet_dropout),
nn.utils.weight_norm(nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True)),
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
nn.utils.weight_norm(nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding, bias=True)),
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
)
)
self.kernel_conv = nn.utils.weight_norm(
nn.Conv1d(kpnet_hidden_channels, kpnet_kernel_channels, kpnet_conv_size, padding=padding, bias=True))
self.bias_conv = nn.utils.weight_norm(
nn.Conv1d(kpnet_hidden_channels, kpnet_bias_channels, kpnet_conv_size, padding=padding, bias=True))
def forward(self, c):
'''
Args:
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
'''
batch, _, cond_length = c.shape
c = self.input_conv(c)
for residual_conv in self.residual_convs:
residual_conv.to(c.device)
c = c + residual_conv(c)
k = self.kernel_conv(c)
b = self.bias_conv(c)
kernels = k.contiguous().view(
batch,
self.conv_layers,
self.conv_in_channels,
self.conv_out_channels,
self.conv_kernel_size,
cond_length,
)
bias = b.contiguous().view(
batch,
self.conv_layers,
self.conv_out_channels,
cond_length,
)
return kernels, bias
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.input_conv[0])
nn.utils.remove_weight_norm(self.kernel_conv)
nn.utils.remove_weight_norm(self.bias_conv)
for block in self.residual_convs:
nn.utils.remove_weight_norm(block[1])
nn.utils.remove_weight_norm(block[3])
class LVCBlock(torch.nn.Module):
'''the location-variable convolutions'''
def __init__(
self,
in_channels,
cond_channels,
stride,
dilations=[1, 3, 9, 27],
lReLU_slope=0.2,
conv_kernel_size=3,
cond_hop_length=256,
kpnet_hidden_channels=64,
kpnet_conv_size=3,
kpnet_dropout=0.0,
):
super().__init__()
self.cond_hop_length = cond_hop_length
self.conv_layers = len(dilations)
self.conv_kernel_size = conv_kernel_size
self.kernel_predictor = KernelPredictor(
cond_channels=cond_channels,
conv_in_channels=in_channels,
conv_out_channels=2 * in_channels,
conv_layers=len(dilations),
conv_kernel_size=conv_kernel_size,
kpnet_hidden_channels=kpnet_hidden_channels,
kpnet_conv_size=kpnet_conv_size,
kpnet_dropout=kpnet_dropout,
kpnet_nonlinear_activation_params={"negative_slope":lReLU_slope}
)
self.convt_pre = nn.Sequential(
nn.LeakyReLU(lReLU_slope),
nn.utils.weight_norm(nn.ConvTranspose1d(in_channels, in_channels, 2 * stride, stride=stride, padding=stride // 2 + stride % 2, output_padding=stride % 2)),
)
self.conv_blocks = nn.ModuleList()
for dilation in dilations:
self.conv_blocks.append(
nn.Sequential(
nn.LeakyReLU(lReLU_slope),
nn.utils.weight_norm(nn.Conv1d(in_channels, in_channels, conv_kernel_size, padding=dilation * (conv_kernel_size - 1) // 2, dilation=dilation)),
nn.LeakyReLU(lReLU_slope),
)
)
def forward(self, x, c):
''' forward propagation of the location-variable convolutions.
Args:
x (Tensor): the input sequence (batch, in_channels, in_length)
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
Returns:
Tensor: the output sequence (batch, in_channels, in_length)
'''
_, in_channels, _ = x.shape # (B, c_g, L')
x = self.convt_pre(x) # (B, c_g, stride * L')
kernels, bias = self.kernel_predictor(c)
for i, conv in enumerate(self.conv_blocks):
output = conv(x) # (B, c_g, stride * L')
k = kernels[:, i, :, :, :, :] # (B, 2 * c_g, c_g, kernel_size, cond_length)
b = bias[:, i, :, :] # (B, 2 * c_g, cond_length)
output = self.location_variable_convolution(output, k, b, hop_size=self.cond_hop_length) # (B, 2 * c_g, stride * L'): LVC
x = x + torch.sigmoid(output[ :, :in_channels, :]) * torch.tanh(output[:, in_channels:, :]) # (B, c_g, stride * L'): GAU
return x
def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256):
''' perform location-variable convolution operation on the input sequence (x) using the local convolution kernl.
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
Args:
x (Tensor): the input sequence (batch, in_channels, in_length).
kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length)
bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length)
dilation (int): the dilation of convolution.
hop_size (int): the hop_size of the conditioning sequence.
Returns:
(Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length).
'''
batch, _, in_length = x.shape
batch, _, out_channels, kernel_size, kernel_length = kernel.shape
assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched"
padding = dilation * int((kernel_size - 1) / 2)
x = F.pad(x, (padding, padding), 'constant', 0) # (batch, in_channels, in_length + 2*padding)
x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding)
if hop_size < dilation:
x = F.pad(x, (0, dilation), 'constant', 0)
x = x.unfold(3, dilation, dilation) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
x = x[:, :, :, :, :hop_size]
x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size)
o = torch.einsum('bildsk,biokl->bolsd', x, kernel)
o = o.to(memory_format=torch.channels_last_3d)
bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d)
o = o + bias
o = o.contiguous().view(batch, out_channels, -1)
return o
def remove_weight_norm(self):
self.kernel_predictor.remove_weight_norm()
nn.utils.remove_weight_norm(self.convt_pre[1])
for block in self.conv_blocks:
nn.utils.remove_weight_norm(block[1])