diff --git a/docs/src/specs/interop/interoptransactions.md b/docs/src/specs/interop/interoptransactions.md index 1919ef0e768c..4c12cef10c28 100644 --- a/docs/src/specs/interop/interoptransactions.md +++ b/docs/src/specs/interop/interoptransactions.md @@ -1,38 +1,30 @@ # Interop Transactions ## Basics - -The **InteropTransaction** sits at the top of our interop stack, acting as the “delivery” mechanism for **Interop -Bundles**. +The **InteropTransaction** sits at the top of our interop stack, acting as the “delivery” mechanism for **Interop Bundles**. Think of it like a car that picks up our "hitchhiker" bundles and carries them to their destination. ![interoptx.png](../img/interoptx.png) -**Note:** Interop Transactions aren’t the only way to execute a bundle. Once an interop bundle is created on the source -chain, users can simply send a regular transaction on the destination chain to execute it. +**Note:** Interop Transactions aren’t the only way to execute a bundle. Once an interop bundle is created on the source chain, users can simply send a regular transaction on the destination chain to execute it. -However, this approach can be inconvenient as it requires users to have funds on the destination chain to cover gas fees -and to configure the necessary network settings (like the RPC address). +However, this approach can be inconvenient as it requires users to have funds on the destination chain to cover gas fees and to configure the necessary network settings (like the RPC address). -**InteropTransactions** simplify this process by handling everything from the source chain. They allow you to select -which **interopBundle** to execute, specify gas details (such as gas amount and gas price), and determine who will cover -the gas costs. This can be achieved using tokens on the source chain or through a paymaster. +**InteropTransactions** simplify this process by handling everything from the source chain. They allow you to select which **interopBundle** to execute, specify gas details (such as gas amount and gas price), and determine who will cover the gas costs. This can be achieved using tokens on the source chain or through a paymaster. -Once configured, the transaction will automatically execute, either by the chain operator, the gateway, or off-chain -tools. +Once configured, the transaction will automatically execute, either by the chain operator, the gateway, or off-chain tools. An **InteropTransaction** contains two pointers to bundles: -- **feesBundle**: Holds interop calls to cover fees. -- **bundleHash**: Contains the main execution. +- **feesBundle**: Holds interop calls to cover fees. +- **bundleHash**: Contains the main execution. ![ipointers.png](../img/ipointers.png) ## Interface -The function `sendInteropTransaction` provides all the options. For simpler use cases, refer to the helper methods -defined later in the article. +The function `sendInteropTransaction` provides all the options. For simpler use cases, refer to the helper methods defined later in the article. ```solidity contract InteropCenter { @@ -41,15 +33,15 @@ contract InteropCenter { /// This function covers all the cases - we expect most users to use the helper /// functions defined later. function sendInteropTransaction( - destinationChain, + destinationChain, bundleHash, // the main bundle that you want to execute on destination chain gasLimit, // gasLimit & price for execution - gasPrice, + gasPrice, feesBundleHash, // this is the bundle that contains the calls to pay for gas destinationPaymaster, // optionally - you can use a paymaster on destination chain destinationPaymasterInput); // with specific params - + struct InteropTransaction { address sourceChainSender uint256 destinationChain @@ -64,70 +56,59 @@ contract InteropCenter { } ``` -After creating the **InteropBundle**, you can simply call `sendInteropTransaction` to create the complete transaction -that will execute the bundle. +After creating the **InteropBundle**, you can simply call `sendInteropTransaction` to create the complete transaction that will execute the bundle. ## Retries -If your transaction fails to execute the bundle (e.g., due to a low gas limit) or isn’t included at all (e.g., due to -too low gasPrice), you can send another transaction to **attempt to execute the same bundle again**. +If your transaction fails to execute the bundle (e.g., due to a low gas limit) or isn’t included at all (e.g., due to too low gasPrice), you can send another transaction to **attempt to execute the same bundle again**. Simply call `sendInteropTransaction` again with updated gas settings. + ### Example of Retrying -Here’s a concrete example: Suppose you created a bundle to perform a swap that includes transferring 100 ETH, executing -the swap, and transferring some tokens back. +Here’s a concrete example: Suppose you created a bundle to perform a swap that includes transferring 100 ETH, executing the swap, and transferring some tokens back. -You attempted to send the interop transaction with a low gas limit (e.g., 100). Since you didn’t have any base tokens on -the destination chain, you created a separate bundle to transfer a small fee (e.g., 0.0001) to cover the gas. +You attempted to send the interop transaction with a low gas limit (e.g., 100). Since you didn’t have any base tokens on the destination chain, you created a separate bundle to transfer a small fee (e.g., 0.0001) to cover the gas. -You sent your first interop transaction to the destination chain, but it failed due to insufficient gas. However, your -“fee bundle” was successfully executed, as it covered the gas cost for the failed attempt. +You sent your first interop transaction to the destination chain, but it failed due to insufficient gas. However, your “fee bundle” was successfully executed, as it covered the gas cost for the failed attempt. Now, you have two options: either cancel the execution bundle (the one with 100 ETH) or retry. -To retry, you decide to set a higher gas limit (e.g., 10,000) and create another fee transfer (e.g., 0.01) but use **the -same execution bundle** as before. +To retry, you decide to set a higher gas limit (e.g., 10,000) and create another fee transfer (e.g., 0.01) but use **the same execution bundle** as before. -This time, the transaction succeeds — the swap completes on the destination chain, and the resulting tokens are -successfully transferred back to the source chain. +This time, the transaction succeeds — the swap completes on the destination chain, and the resulting tokens are successfully transferred back to the source chain. ![retryexample.png](../img/retryexample.png) ## Fees & Restrictions -Using an **InteropBundle** for fee payments offers flexibility, allowing users to transfer a small amount to cover the -fees while keeping the main assets in the execution bundle itself. +Using an **InteropBundle** for fee payments offers flexibility, allowing users to transfer a small amount to cover the fees while keeping the main assets in the execution bundle itself. ### Restrictions -This flexibility comes with trade-offs, similar to the validation phases in **Account Abstraction** or **ERC4337**, -primarily designed to prevent DoS attacks. Key restrictions include: +This flexibility comes with trade-offs, similar to the validation phases in **Account Abstraction** or **ERC4337**, primarily designed to prevent DoS attacks. Key restrictions include: -- **Lower gas limits** +- **Lower gas limits** - **Limited access to specific slots** -Additionally, when the `INTEROP_CENTER` constructs an **InteropTransaction**, it enforces extra restrictions on -**feePaymentBundles**: +Additionally, when the `INTEROP_CENTER` constructs an **InteropTransaction**, it enforces extra restrictions on **feePaymentBundles**: - **Restricted Executors**: - Only your **AliasedAccount** on the receiving side can execute the `feePaymentBundle`. + Only your **AliasedAccount** on the receiving side can execute the `feePaymentBundle`. + +This restriction is crucial for security, preventing others from executing your **fee bundle**, which could cause your transaction to fail and prevent the **execution bundle** from processing. + -This restriction is crucial for security, preventing others from executing your **fee bundle**, which could cause your -transaction to fail and prevent the **execution bundle** from processing. ### **Types of Fees** #### Using the Destination Chain’s Base Token -The simplest scenario is when you (as the sender) already have the destination chain’s base token available on the -source chain. +The simplest scenario is when you (as the sender) already have the destination chain’s base token available on the source chain. For example: - -- If you are sending a transaction from **Era** (base token: ETH) to **Sophon** (base token: SOPH) and already have SOPH - on ERA, you can use it for the fee. +- If you are sending a transaction from **Era** (base token: ETH) to **Sophon** (base token: SOPH) and already have SOPH on ERA, you can use it for the fee. To make this easier, we’ll provide a helper function: @@ -137,7 +118,7 @@ contract InteropCenter { // Before calling, you have to 'approve' InteropCenter to the ERC20/Bridge that holds the destination chain's base tokens. // or if the destination chain's tokens are the same as yours, just attach value to this call. function sendInteropTxMinimal( - destinationChain, + destinationChain, bundleHash, // the main bundle that you want to execute on destination chain gasLimit, // gasLimit & price for execution gasPrice, @@ -147,11 +128,9 @@ contract InteropCenter { #### Using paymaster on the destination chain -If you don’t have the base token from the destination chain (e.g., SOPH in our example) on your source chain, you’ll -need to use a paymaster on the destination chain instead. +If you don’t have the base token from the destination chain (e.g., SOPH in our example) on your source chain, you’ll need to use a paymaster on the destination chain instead. -In this case, you’ll send the token you do have (e.g., USDC) to the destination chain as part of the **feeBundleHash**. -Once there, you’ll use it to pay the paymaster on the destination chain to cover your gas fees. +In this case, you’ll send the token you do have (e.g., USDC) to the destination chain as part of the **feeBundleHash**. Once there, you’ll use it to pay the paymaster on the destination chain to cover your gas fees. Your **InteropTransaction** would look like this: @@ -159,42 +138,36 @@ Your **InteropTransaction** would look like this: ## **Automatic Execution** -One of the main advantages of **InteropTransactions** is that they execute automatically. As the sender on the source -chain, you don’t need to worry about technical details like RPC addresses or obtaining proofs — it’s all handled for -you. +One of the main advantages of **InteropTransactions** is that they execute automatically. As the sender on the source chain, you don’t need to worry about technical details like RPC addresses or obtaining proofs — it’s all handled for you. -After creating an **InteropTransaction**, it can be relayed to the destination chain by anyone. The transaction already -includes a signature (also known as an interop message proof), making it fully self-contained and ready to send without -requiring additional permissions. +After creating an **InteropTransaction**, it can be relayed to the destination chain by anyone. The transaction already includes a signature (also known as an interop message proof), making it fully self-contained and ready to send without requiring additional permissions. -Typically, the destination chain’s operator will handle and include incoming **InteropTransactions**. However, if they -don’t, the **Gateway** or other participants can step in to prepare and send them. +Typically, the destination chain’s operator will handle and include incoming **InteropTransactions**. However, if they don’t, the **Gateway** or other participants can step in to prepare and send them. -You can also use the available tools to create and send the destination transaction yourself. Since the transaction is -self-contained, it doesn’t require additional funds or signatures to execute. +You can also use the available tools to create and send the destination transaction yourself. Since the transaction is self-contained, it doesn’t require additional funds or signatures to execute. ![Usually destination chain operator will keep querying gateway to see if there are any messages for their chain.](../img/autoexecution.png) -Once they see the message, they can request the proof from the **Gateway** and also fetch the **InteropBundles** -contained within the message (along with their respective proofs). +Once they see the message, they can request the proof from the **Gateway** and also fetch the **InteropBundles** contained within the message (along with their respective proofs). ![Operator getting necessary data from Gateway.](../img/chainop.png) -As the final step, the operator can use the received data to create a regular transaction, which can then be sent to -their chain. +As the final step, the operator can use the received data to create a regular transaction, which can then be sent to their chain. + ![Creating the final transaction to send to the destination chain](../img/finaltx.png) The steps above don’t require any special permissions and can be executed by anyone. -While the **Gateway** was used above for tasks like providing proofs, if the Gateway becomes malicious, all this -information can still be constructed off-chain using data available on L1. +While the **Gateway** was used above for tasks like providing proofs, if the Gateway becomes malicious, all this information can still be constructed off-chain using data available on L1. + -### How it Works Under the Hood +### How it Works Under the hood + +We’ll modify the default account to accept interop proofs as signatures, seamlessly integrating with the existing ZKSync native **Account Abstraction** model. -We’ll modify the default account to accept interop proofs as signatures, seamlessly integrating with the existing ZKSync -native **Account Abstraction** model. ### Comparison with Superchain Superchain doesn’t offer anything that is comparable to **InteropTransactions** on this level. + diff --git a/install b/install new file mode 100755 index 000000000000..8bf36687e20d --- /dev/null +++ b/install @@ -0,0 +1,64 @@ +#!/usr/bin/env bash +set -eo pipefail + +echo "Installing foundryup-zksync..." + +BASE_DIR="${XDG_CONFIG_HOME:-$HOME}" +FOUNDRY_DIR="${FOUNDRY_DIR-"$BASE_DIR/.foundry"}" +FOUNDRY_BIN_DIR="$FOUNDRY_DIR/bin" +FOUNDRY_MAN_DIR="$FOUNDRY_DIR/share/man/man1" + +BIN_URL="https://raw.githubusercontent.com/matter-labs/foundry-zksync/main/foundryup-zksync/foundryup-zksync" +BIN_PATH="$FOUNDRY_BIN_DIR/foundryup-zksync" + +# Create the .foundry bin directory and foundryup binary if it doesn't exist. +mkdir -p "$FOUNDRY_BIN_DIR" +curl -sSf -L "$BIN_URL" -o "$BIN_PATH" +chmod +x "$BIN_PATH" + +# Create the man directory for future man files if it doesn't exist. +mkdir -p "$FOUNDRY_MAN_DIR" + +# Store the correct profile file (i.e. .profile for bash or .zshenv for ZSH). +case $SHELL in +*/zsh) + PROFILE="${ZDOTDIR-"$HOME"}/.zshenv" + PREF_SHELL=zsh + ;; +*/bash) + PROFILE=$HOME/.bashrc + PREF_SHELL=bash + ;; +*/fish) + PROFILE=$HOME/.config/fish/config.fish + PREF_SHELL=fish + ;; +*/ash) + PROFILE=$HOME/.profile + PREF_SHELL=ash + ;; +*) + echo "foundryup-zksync: could not detect shell, manually add ${FOUNDRY_BIN_DIR} to your PATH." + exit 1 +esac + +# Only add foundryup-zksync if it isn't already in PATH. +if [[ ":$PATH:" != *":${FOUNDRY_BIN_DIR}:"* ]]; then + # Add the foundryup directory to the path and ensure the old PATH variables remain. + # If the shell is fish, echo fish_add_path instead of export. + if [[ "$PREF_SHELL" == "fish" ]]; then + echo >> "$PROFILE" && echo "fish_add_path -a $FOUNDRY_BIN_DIR" >> "$PROFILE" + else + echo >> "$PROFILE" && echo "export PATH=\"\$PATH:$FOUNDRY_BIN_DIR\"" >> "$PROFILE" + fi +fi + +# Warn MacOS users that they may need to manually install libusb via Homebrew: +if [[ "$OSTYPE" =~ ^darwin ]] && [[ ! -f /usr/local/opt/libusb/lib/libusb-1.0.0.dylib && ! -f /opt/homebrew/opt/libusb/lib/libusb-1.0.0.dylib ]]; then + echo && echo "warning: libusb not found. You may need to install it manually on MacOS via Homebrew (brew install libusb)." +fi + +echo +echo "Detected your preferred shell is $PREF_SHELL and added foundryup-zksync to PATH." +echo "Run 'source $PROFILE' or start a new terminal session to use foundryup-zksync." +echo "Then, simply run 'foundryup-zksync' to install foundry-zksync."