diff --git a/pymc3/tests/test_distributions_random.py b/pymc3/tests/test_distributions_random.py index 4bccd1e2a45..00655b70166 100644 --- a/pymc3/tests/test_distributions_random.py +++ b/pymc3/tests/test_distributions_random.py @@ -33,7 +33,7 @@ from pymc3.distributions.multivariate import quaddist_matrix from pymc3.distributions.shape_utils import to_tuple from pymc3.exceptions import ShapeError -from pymc3.tests.helpers import SeededTest, select_by_precision +from pymc3.tests.helpers import SeededTest from pymc3.tests.test_distributions import ( Domain, I, @@ -1759,36 +1759,3 @@ def test_with_cov_rv(self, sample_shape, dist_shape, mu_shape): prior = pm.sample_prior_predictive(samples=sample_shape) assert prior["mv"].shape == to_tuple(sample_shape) + dist_shape - - -def test_exponential_parameterization(): - test_lambda = floatX(10.0) - - exp_pymc = pm.Exponential.dist(lam=test_lambda) - (rv_scale,) = exp_pymc.owner.inputs[3:] - - npt.assert_almost_equal(rv_scale.eval(), 1 / test_lambda) - - -def test_gamma_parameterization(): - - test_alpha = floatX(10.0) - test_beta = floatX(100.0) - - gamma_pymc = pm.Gamma.dist(alpha=test_alpha, beta=test_beta) - rv_alpha, rv_inv_beta = gamma_pymc.owner.inputs[3:] - - assert np.array_equal(rv_alpha.eval(), test_alpha) - - decimal = select_by_precision(float64=6, float32=3) - - npt.assert_almost_equal(rv_inv_beta.eval(), 1.0 / test_beta, decimal) - - test_mu = test_alpha / test_beta - test_sigma = np.sqrt(test_mu / test_beta) - - gamma_pymc = pm.Gamma.dist(mu=test_mu, sigma=test_sigma) - rv_alpha, rv_inv_beta = gamma_pymc.owner.inputs[3:] - - npt.assert_almost_equal(rv_alpha.eval(), test_alpha, decimal) - npt.assert_almost_equal(rv_inv_beta.eval(), 1.0 / test_beta, decimal)