-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathplotS.py
60 lines (48 loc) · 1.77 KB
/
plotS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from getMedianRunLength import getMedianRunLength
def convert2AlertSingle(Rs, last_alarm, tshold):
if last_alarm > Rs.shape[0]:
last_alarm = Rs.shape[0]
changePointProb = Rs[:last_alarm + 1].sum()
if changePointProb >= tshold:
alert = True
last_alarm = 0
else:
alert = False
last_alarm += 1
return alert, last_alarm
def convert2Alert(Rs, alertTsh):
max_run, T = Rs.shape
last_alarm = np.inf
alert = [False] * T
for i in range(T):
alert[i], last_alarm = convert2AlertSingle(
Rs[:, i], last_alarm, alertTsh)
return alert
def plotS(S, X, timeindex, changePoints=None):
alertThreshold = 0.95
alert = convert2Alert(S, alertThreshold)
alertInd = [i for i, j in enumerate(alert) if j]
fig = plt.figure()
_ = plt.subplot(2, 1, 1)
_ = plt.plot(timeindex, X)
_ = plt.plot(timeindex[alertInd], np.mean(X) * np.ones_like(
timeindex[alertInd]), 'rx', markersize=12, mew=3)
if changePoints:
_ = plt.plot(timeindex[changePoints], np.mean(X) * np.ones_like(
timeindex[changePoints]), 'kx', markersize=12, mew=3)
_ = plt.xlim([timeindex[0], timeindex[-1]])
_ = plt.ylim([X.min(), X.max()])
_ = plt.grid()
_ = plt.subplot(2, 1, 2)
_ = plt.imshow(
np.cumsum(S, axis=0), extent=[timeindex[0], timeindex[-1], 0,
np.asarray(range(S.shape[0]))[-1]], aspect='auto', cmap=cm.Greys_r, origin='lower')
Mrun, tmp = getMedianRunLength(S)
_ = plt.plot(timeindex, Mrun, 'r')
_ = plt.xlim([timeindex[0], timeindex[-1]])
_ = plt.ylim([Mrun.min(), Mrun.max()])
_ = plt.ylabel('Median run length')
return fig