diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 496ab1bb9..e14a1c9d5 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -132,6 +132,15 @@ - in `realfun.v`: + lemmas `lime_sup_lim`, `lime_inf_lim` +- in `boolp.v`: + + tactic `eqProp` + + variant `BoolProp` + + lemmas `PropB`, `notB`, `andB`, `orB`, `implyB`, `decide_or`, `not_andE`, + `not_orE`, `orCA`, `orAC`, `orACA`, `orNp`, `orpN`, `or3E`, `or4E`, `andCA`, + `andAC`, `andACA`, `and3E`, `and4E`, `and5E`, `implyNp`, `implypN`, + `implyNN`, `or_andr`, `or_andl`, `and_orr`, `and_orl`, `exists2E`, + `inhabitedE`, `inhabited_witness` + ### Changed - in `normedtype.v`: @@ -169,6 +178,9 @@ - in `sequences.v`: + `limn_esup` now defined from `lime_sup` + `limn_einf` now defined from `limn_esup` + +-in `boolp.v` + - lemmas `orC` and `andC` now use `commutative` ### Renamed @@ -191,6 +203,10 @@ - in `forms.v`: + lemmas `eq_map_mx`, `map_mx_id` +- in `boolp.v`: + + lemma `pdegen` + + ### Infrastructure ### Misc diff --git a/classical/boolp.v b/classical/boolp.v index 1bb538d61..369d0e87e 100644 --- a/classical/boolp.v +++ b/classical/boolp.v @@ -90,6 +90,8 @@ Qed. Lemma propext (P Q : Prop) : (P <-> Q) -> (P = Q). Proof. by have [propext _] := extensionality; apply: propext. Qed. +Ltac eqProp := apply: propext; split. + Lemma funext {T U : Type} (f g : T -> U) : (f =1 g) -> f = g. Proof. by case: extensionality=> _; apply. Qed. @@ -210,9 +212,6 @@ Qed. Lemma gen_choiceMixin {T : Type} : Choice.mixin_of T. Proof. by case: classic. Qed. -Lemma pdegen (P : Prop): P = True \/ P = False. -Proof. by have [p|Np] := pselect P; [left|right]; rewrite propeqE. Qed. - Lemma lem (P : Prop): P \/ ~P. Proof. by case: (pselect P); tauto. Qed. @@ -281,8 +280,7 @@ Proof. by rewrite propeqE; split => -[x [y]]; exists y, x. Qed. Lemma reflect_eq (P : Prop) (b : bool) : reflect P b -> P = b. Proof. by rewrite propeqE; exact: rwP. Qed. -Definition asbool (P : Prop) := - if pselect P then true else false. +Definition asbool (P : Prop) := if pselect P then true else false. Notation "`[< P >]" := (asbool P) : bool_scope. @@ -357,7 +355,8 @@ Definition canonical_of T U (sort : U -> T) := forall (G : T -> Type), Notation canonical_ sort := (@canonical_of _ _ sort). Notation canonical T E := (@canonical_of T E id). -Lemma canon T U (sort : U -> T) : (forall x, exists y, sort y = x) -> canonical_ sort. +Lemma canon T U (sort : U -> T) : + (forall x, exists y, sort y = x) -> canonical_ sort. Proof. by move=> + G Gs x => /(_ x)/cid[x' <-]. Qed. Arguments canon {T U sort} x. @@ -448,36 +447,55 @@ apply: (iffP idP); first by case/asboolP=> x Px; exists x; apply/asboolP. by case=> x bPx; apply/asboolP; exists x; apply/asboolP. Qed. -Lemma notT (P : Prop) : P = False -> ~ P. Proof. by move->. Qed. +(* -------------------------------------------------------------------- *) + +Variant BoolProp : Prop -> Type := + | TrueProp : BoolProp True + | FalseProp : BoolProp False. + +Lemma PropB P : BoolProp P. +Proof. by case: (asboolP P) => [/propT-> | /propF->]; [left | right]. Qed. + +Lemma notB : ((~ True) = False) * ((~ False) = True). +Proof. by rewrite /not; split; eqProp. Qed. + +Lemma andB : left_id True and * right_id True and + * (left_zero False and * right_zero False and * idempotent and). +Proof. by do ![split] => /PropB[]; eqProp=> // -[]. Qed. + +Lemma orB : left_id False or * right_id False or + * (left_zero True or * right_zero True or * idempotent or). +Proof. do ![split] => /PropB[]; eqProp=> -[] //; by [left | right]. Qed. + +Lemma implyB : let imply (P Q : Prop) := P -> Q in + (imply False =1 fun=> True) * (imply^~ False =1 not) + * (left_id True imply * right_zero True imply * self_inverse True imply). +Proof. by do ![split] => /PropB[]; eqProp=> //; apply. Qed. + +Lemma decide_or P Q : P \/ Q -> {P} + {Q}. +Proof. by case/PropB: P; [left | rewrite orB; right]. Qed. + +(* -------------------------------------------------------------------- *) + +Lemma notT (P : Prop) : P = False -> ~ P. +Proof. by move->. Qed. Lemma contrapT P : ~ ~ P -> P. -Proof. -by move/asboolPn=> nnb; apply/asboolP; apply: contraR nnb => /asboolPn /asboolP. -Qed. +Proof. by case: (PropB P) => //; rewrite not_False. Qed. -Lemma notTE (P : Prop) : (~ P) -> P = False. -Proof. by case: (pdegen P)=> ->. Qed. +Lemma notTE (P : Prop) : (~ P) -> P = False. Proof. by case: (PropB P). Qed. Lemma notFE (P : Prop) : (~ P) = False -> P. -Proof. move/notT; exact: contrapT. Qed. +Proof. by move/notT; exact: contrapT. Qed. Lemma notK : involutive not. -Proof. -move=> P; case: (pdegen P)=> ->; last by apply: notTE; intuition. -by rewrite [~ True]notTE //; case: (pdegen (~ False)) => // /notFE. -Qed. +Proof. by case/PropB; rewrite !(not_False,not_True). Qed. Lemma contra_notP (Q P : Prop) : (~ Q -> P) -> ~ P -> Q. -Proof. -move=> cb /asboolPn nb; apply/asboolP. -by apply: contraR nb => /asboolP /cb /asboolP. -Qed. +Proof. by move: Q P => /PropB[] /PropB[]. Qed. Lemma contraPP (Q P : Prop) : (~ Q -> ~ P) -> P -> Q. -Proof. -move=> cb /asboolP hb; apply/asboolP. -by apply: contraLR hb => /asboolP /cb /asboolPn. -Qed. +Proof. by move: Q P => /PropB[] /PropB[]//; rewrite not_False not_True. Qed. Lemma contra_notT b (P : Prop) : (~~ b -> P) -> ~ P -> b. Proof. by move=> bP; apply: contra_notP => /negP. Qed. @@ -494,7 +512,7 @@ Proof. by move=> /contra_notP + /negP => /[apply]. Qed. Lemma contra_neqP (T : eqType) (x y : T) P : (~ P -> x = y) -> x != y -> P. Proof. by move=> Pxy; apply: contraNP => /Pxy/eqP. Qed. -Lemma contra_eqP (T : eqType) (x y : T) (Q : Prop) : (~ Q -> x != y) -> x = y -> Q. +Lemma contra_eqP (T : eqType) (x y : T) Q : (~ Q -> x != y) -> x = y -> Q. Proof. by move=> Qxy /eqP; apply: contraTP. Qed. Lemma contra_leP {disp1 : unit} {T1 : porderType disp1} [P : Prop] [x y : T1] : @@ -512,9 +530,10 @@ by apply: Order.POrderTheory.contra_ltT yx => /asboolPn. Qed. Lemma wlog_neg P : (~ P -> P) -> P. -Proof. by move=> ?; case: (pselect P). Qed. +Proof. by case: (PropB P); exact. Qed. Lemma not_inj : injective not. Proof. exact: can_inj notK. Qed. + Lemma notLR P Q : (P = ~ Q) -> (~ P) = Q. Proof. exact: canLR notK. Qed. Lemma notRL P Q : (~ P) = Q -> P = ~ Q. Proof. exact: canRL notK. Qed. @@ -587,12 +606,15 @@ split=> [/asboolP|[p nq pq]]; [|exact/nq/pq]. by rewrite asbool_neg => /imply_asboolPn. Qed. -Lemma not_andP (P Q : Prop) : ~ (P /\ Q) <-> ~ P \/ ~ Q. +Lemma not_andE (P Q : Prop) : (~ (P /\ Q)) = ~ P \/ ~ Q. Proof. -split => [/asboolPn|[|]]; try by apply: contra_not => -[]. +eqProp=> [/asboolPn|[|]]; try by apply: contra_not => -[]. by rewrite asbool_and negb_and => /orP[]/asboolPn; [left|right]. Qed. +Lemma not_andP (P Q : Prop) : ~ (P /\ Q) <-> ~ P \/ ~ Q. +Proof. by rewrite not_andE. Qed. + Lemma not_and3P (P Q R : Prop) : ~ [/\ P, Q & R] <-> [\/ ~ P, ~ Q | ~ R]. Proof. split=> [/and3_asboolP|/or3_asboolP]. @@ -605,8 +627,11 @@ Proof. by split => [|p]; [exact: contrapT|exact]. Qed. Lemma notE (P : Prop) : (~ ~ P) = P. Proof. by rewrite propeqE notP. Qed. +Lemma not_orE (P Q : Prop) : (~ (P \/ Q)) = ~ P /\ ~ Q. +Proof. by rewrite -[_ /\ _]notE not_andE 2!notE. Qed. + Lemma not_orP (P Q : Prop) : ~ (P \/ Q) <-> ~ P /\ ~ Q. -Proof. by rewrite -(notP (_ /\ _)) not_andP 2!notE. Qed. +Proof. by rewrite not_orE. Qed. Lemma not_implyE (P Q : Prop) : (~ (P -> Q)) = (P /\ ~ Q). Proof. by rewrite propeqE not_implyP. Qed. @@ -614,18 +639,83 @@ Proof. by rewrite propeqE not_implyP. Qed. Lemma implyE (P Q : Prop) : (P -> Q) = (~ P \/ Q). Proof. by rewrite -[LHS]notE not_implyE propeqE not_andP notE. Qed. -Lemma orC (P Q : Prop) : (P \/ Q) = (Q \/ P). -Proof. by rewrite propeqE; split=> [[]|[]]; [right|left|right|left]. Qed. +Lemma orC : commutative or. +Proof. by move=> /PropB[] /PropB[] => //; rewrite !orB. Qed. Lemma orA : associative or. Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed. -Lemma andC (P Q : Prop) : (P /\ Q) = (Q /\ P). -Proof. by rewrite propeqE; split=> [[]|[]]. Qed. +Lemma orCA : left_commutative or. +Proof. by move=> P Q R; rewrite !orA (orC P). Qed. + +Lemma orAC : right_commutative or. +Proof. by move=> P Q R; rewrite -!orA (orC Q). Qed. + +Lemma orACA : interchange or or. +Proof. by move=> P Q R S; rewrite !orA (orAC P). Qed. + +Lemma orNp P Q : (~ P \/ Q) = (P -> Q). +Proof. by case/PropB: P; rewrite notB orB implyB. Qed. + +Lemma orpN P Q : (P \/ ~ Q) = (Q -> P). Proof. by rewrite orC orNp. Qed. + +Lemma or3E P Q R : [\/ P, Q | R] = (P \/ Q \/ R). +Proof. +rewrite -(asboolE P) -(asboolE Q) -(asboolE R) (reflect_eq or3P). +by rewrite -2!(reflect_eq orP). +Qed. + +Lemma or4E P Q R S : [\/ P, Q, R | S] = (P \/ Q \/ R \/ S). +Proof. +rewrite -(asboolE P) -(asboolE Q) -(asboolE R) -(asboolE S) (reflect_eq or4P). +by rewrite -3!(reflect_eq orP). +Qed. + +Lemma andC : commutative and. +Proof. by move=> /PropB[] /PropB[]; rewrite !andB. Qed. Lemma andA : associative and. Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed. +Lemma andCA : left_commutative and. +Proof. by move=> P Q R; rewrite !andA (andC P). Qed. + +Lemma andAC : right_commutative and. +Proof. by move=> P Q R; rewrite -!andA (andC Q). Qed. + +Lemma andACA : interchange and and. +Proof. by move=> P Q R S; rewrite !andA (andAC P). Qed. + +Lemma and3E P Q R : [/\ P, Q & R] = (P /\ Q /\ R). +Proof. by eqProp=> [[] | [? []]]. Qed. + +Lemma and4E P Q R S : [/\ P, Q, R & S] = (P /\ Q /\ R /\ S). +Proof. by eqProp=> [[] | [? [? []]]]. Qed. + +Lemma and5E P Q R S T : [/\ P, Q, R, S & T] = (P /\ Q /\ R /\ S /\ T). +Proof. by eqProp=> [[] | [? [? [? []]]]]. Qed. + +Lemma implyNp P Q : (~ P -> Q : Prop) = (P \/ Q). +Proof. by rewrite -orNp notK. Qed. + +Lemma implypN (P Q : Prop) : (P -> ~ Q) = ~ (P /\ Q). +Proof. by case/PropB: P; rewrite implyB andB ?notB. Qed. + +Lemma implyNN P Q : (~ P -> ~ Q) = (Q -> P). +Proof. by rewrite implyNp orpN. Qed. + +Lemma or_andr : right_distributive or and. +Proof. by case/PropB=> Q R; rewrite !orB ?andB. Qed. + +Lemma or_andl : left_distributive or and. +Proof. by move=> P Q R; rewrite -!(orC R) or_andr. Qed. + +Lemma and_orr : right_distributive and or. +Proof. by move=> P Q R; apply/not_inj; rewrite !(not_andE, not_orE) or_andr. Qed. + +Lemma and_orl : left_distributive and or. +Proof. by move=> P Q R; apply/not_inj; rewrite !(not_andE, not_orE) or_andl. Qed. + Lemma forallNE {T} (P : T -> Prop) : (forall x, ~ P x) = ~ exists x, P x. Proof. by rewrite propeqE; split => [fP [x /fP]//|nexP x Px]; apply: nexP; exists x. @@ -649,9 +739,12 @@ Proof. by rewrite forallNE. Qed. Lemma not_forallP T (P : T -> Prop) : (forall x, P x) <-> ~ exists x, ~ P x. Proof. by rewrite existsNE notK. Qed. +Lemma exists2E A P Q : (exists2 x : A, P x & Q x) = (exists x, P x /\ Q x). +Proof. by eqProp=> -[x]; last case; exists x. Qed. + Lemma exists2P T (P Q : T -> Prop) : (exists2 x, P x & Q x) <-> exists x, P x /\ Q x. -Proof. by split=> [[x ? ?] | [x []]]; exists x. Qed. +Proof. by rewrite exists2E. Qed. Lemma not_exists2P T (P Q : T -> Prop) : (exists2 x, P x & Q x) <-> ~ forall x, ~ P x \/ ~ Q x. @@ -801,3 +894,14 @@ Proof. by apply/funeqP => ?; rewrite iterSr. Qed. Lemma iter0 {T} (f : T -> T) : iter 0 f = id. Proof. by []. Qed. + +Section Inhabited. +Variable (T : Type). + +Lemma inhabitedE: inhabited T = exists x : T, True. +Proof. by eqProp; case. Qed. + +Lemma inhabited_witness: inhabited T -> T. +Proof. by rewrite inhabitedE => /cid[]. Qed. + +End Inhabited.