diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 42f7e398b5..5fc4ead1bf 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -11,7 +11,8 @@ + lemma `emeasurable_itv` - in `exp.v`: + new lemmas `power_pos_ge0`, `power_pos0`, `power_pos_eq0`, - `power_posM`, `power_posAC`, `power12_sqrt` + `power_posM`, `power_posAC`, `power12_sqrt`, `power_pos_inv`, + `power_pos_intmul` - in `lebesgue_measure.v`: + lemmas `measurable_fun_ln`, `measurable_fun_power_pos` @@ -24,7 +25,7 @@ + weaken condition of `exp_funr1` and rename to `power_posr1` + weaken condition of `exp_fun_inv` and rename to `power_pos_inv` + `exp_fun1` -> `power_pos1` - + `ler_exp_fun` -> `ler_power_pos` + + weaken condition of `ler_exp_fun` and rename to `ler_power_pos` + `exp_funD` -> `power_posD` + `exp_fun_mulrn` -> `power_pos_mulrn` + the notation ``` `^ ``` has now scope `real_scope` diff --git a/theories/exp.v b/theories/exp.v index 8429381f45..e59b890fae 100644 --- a/theories/exp.v +++ b/theories/exp.v @@ -649,7 +649,16 @@ Qed. Lemma power_posD a : 0 < a -> {morph power_pos a : x y / x + y >-> x * y}. Proof. by move=> a0 x y; rewrite /power_pos gt_eqF// mulrDl expRD. Qed. -Lemma power_pos_inv a : 0 <= a -> a `^ (-1) = a ^-1. +Lemma power_pos_mulrn a n : 0 <= a -> a `^ n%:R = a ^+ n. +Proof. +move=> a0; elim: n => [|n ih]. + by rewrite mulr0n expr0 power_posr0//; apply: lt0r_neq0. +move: a0; rewrite le_eqVlt => /predU1P[<-|a0]. + by rewrite !power_pos0 mulrn_eq0/= oner_eq0/= expr0n. +by rewrite -natr1 power_posD// ih power_posr1// ?exprS 1?mulrC// ltW. +Qed. + +Lemma power_pos_inv1 a : 0 <= a -> a `^ (-1) = a ^-1. Proof. rewrite le_eqVlt => /predU1P[<-|a0]. by rewrite power_pos0 invr0 oppr_eq0 oner_eq0. @@ -658,13 +667,23 @@ rewrite -[X in X * _ = _](power_posr1 (ltW a0)) -power_posD // subrr. by rewrite power_posr0 divff// gt_eqF. Qed. -Lemma power_pos_mulrn a n : 0 <= a -> a `^ n%:R = a ^+ n. +Lemma power_pos_inv a n : 0 <= a -> a `^ (- n%:R) = a ^- n. Proof. move=> a0; elim: n => [|n ih]. - by rewrite mulr0n expr0 power_posr0//; apply: lt0r_neq0. + by rewrite -mulNrn mulr0n power_posr0 -exprVn expr0. move: a0; rewrite le_eqVlt => /predU1P[<-|a0]. - by rewrite !power_pos0 mulrn_eq0/= oner_eq0/= expr0n. -by rewrite -natr1 power_posD// ih power_posr1// ?exprS 1?mulrC// ltW. + by rewrite power_pos0 oppr_eq0 mulrn_eq0 oner_eq0 orbF exprnN exp0rz oppr_eq0. +rewrite -natr1 opprD power_posD// (power_pos_inv1 (ltW a0)) ih. +by rewrite -[in RHS]exprVn exprS [in RHS]mulrC exprVn. +Qed. + +Lemma power_pos_intmul a (z : int) : 0 <= a -> a `^ z%:~R = a ^ z. +Proof. +move=> a0; have [z0|z0] := leP 0 z. + rewrite -[in RHS](gez0_abs z0) abszE -exprnP -power_pos_mulrn//. + by rewrite natr_absz -abszE gez0_abs. +rewrite -(opprK z) (_ : - z = `|z|%N); last by rewrite ltz0_abs. +by rewrite -exprnN -power_pos_inv// nmulrn. Qed. Lemma power12_sqrt a : 0 <= a -> a `^ (2^-1) = Num.sqrt a.