diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 23444475d..a738ad0ab 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -154,6 +154,11 @@ + `xsection_preimage_snd`, `ysection_preimage_fst` - in `constructive_ereal.v`: + `oppeD`, `oppeB` +- in `measure.v`: + + lemma `eq_measure` +- in `lebesgue_integral.v`: + + lemma `integrable_abse` + ### Deprecated diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index d96545c23..3c0ea3e2c 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -3781,14 +3781,11 @@ Local Open Scope ereal_scope. Context d (T : measurableType d) (R : realType). Variable (mu : {measure set T -> \bar R}). -Lemma integrable_abse (D : set T) : measurable D -> - forall f : T -> \bar R, mu.-integrable D f -> mu.-integrable D (abse \o f). +Lemma integrable_abse (D : set T) (f : T -> \bar R) : + mu.-integrable D f -> mu.-integrable D (abse \o f). Proof. -move=> mD f [mf fi]; split; first exact: measurable_funT_comp. -apply: le_lt_trans fi; apply: ge0_le_integral => //. -- by apply: measurable_funT_comp => //; exact: measurable_funT_comp. -- exact: measurable_funT_comp. -- by move=> t Dt //=; rewrite abse_id. +move=> [mf foo]; split; first exact: measurable_funT_comp. +by under eq_integral do rewrite abse_id. Qed. Lemma integrable_summable (F : (set T)^nat) (g : T -> \bar R): @@ -3799,8 +3796,7 @@ Proof. move=> tF mF fi. rewrite /summable -(_ : [set _ | true] = setT); last exact/seteqP. rewrite -nneseries_esum//. -case: (fi) => _; rewrite ge0_integral_bigcup//; last first. - by apply: integrable_abse => //; exact: bigcup_measurable. +case: (fi) => _; rewrite ge0_integral_bigcup//; last exact: integrable_abse. apply: le_lt_trans; apply: lee_lim. - exact: is_cvg_ereal_nneg_natsum_cond. - by apply: is_cvg_ereal_nneg_natsum_cond => n _ _; exact: integral_ge0. diff --git a/theories/measure.v b/theories/measure.v index 4ea753533..69e2a26f4 100644 --- a/theories/measure.v +++ b/theories/measure.v @@ -1518,7 +1518,7 @@ HB.instance Definition _ := isContent.Build d R T mu HB.instance Definition _ := isMeasure0.Build d R T mu measure_semi_sigma_additive. HB.end. -Lemma eq_measure d (T : measurableType d) (R : realType) +Lemma eq_measure d (T : measurableType d) (R : realFieldType) (m1 m2 : {measure set T -> \bar R}) : (m1 = m2 :> (set T -> \bar R)) -> m1 = m2. Proof.