diff --git a/.github/workflows/coq-action.yml b/.github/workflows/coq-action.yml index 491406df7..e57449e75 100644 --- a/.github/workflows/coq-action.yml +++ b/.github/workflows/coq-action.yml @@ -15,8 +15,8 @@ jobs: strategy: matrix: image: - - 'mathcomp/mathcomp:1.11.0-coq-8.11' - - 'mathcomp/mathcomp:1.11.0-coq-8.12' + - 'mathcomp/mathcomp:1.12.0-coq-8.11' + - 'mathcomp/mathcomp:1.12.0-coq-8.12' fail-fast: false steps: - uses: actions/checkout@v2 diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index c1ee5bdc8..44c38e799 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -6,10 +6,25 @@ ### Changed +- Requires: + + MathComp >= 1.12 +- in `boolp.v`: + + lemmas `contra_not`, `contra_notT`, `contra_notN`, `contra_not_neq`, `contraPnot` + are now provided by MathComp 1.12 +- in `normedtype.v`: + + lemmas `ltr_distW`, `ler_distW` are now provided by MathComp 1.12 as lemmas + `ltr_distlC_subl` and `ler_distl_subl` + + lemmas `maxr_real` and `bigmaxr_real` are now provided by MathComp 1.12 as + lemmas `max_real` and `bigmax_real` + + definitions `isBOpen` and `isBClosed` are replaced by the definition `bound_side` + + definition `Rhull` now uses `BSide` instead of `BOpen_if` + ### Renamed ### Removed +- Drop support for MathComp 1.11 + ### Infrastructure ### Misc diff --git a/INSTALL.md b/INSTALL.md index a3945bce7..b16d5179b 100644 --- a/INSTALL.md +++ b/INSTALL.md @@ -3,8 +3,9 @@ ## Requirements - [The Coq Proof Assistant version ≥ 8.11](https://coq.inria.fr) -- [Mathematical Components version = 1.11.0](https://github.com/math-comp/math-comp) -- [Finmap library version ≥ 1.5.0](https://github.com/math-comp/finmap) +- [Mathematical Components version = 1.12.0](https://github.com/math-comp/math-comp) +- [Finmap library version ≥ 1.5.1](https://github.com/math-comp/finmap) +- [Hierarchy builder version >= 0.10.0](https://github.com/math-comp/hierarchy-builder) These requirements can be installed in a custom way, or through [opam](https://opam.ocaml.org/) (the recommended way) using @@ -20,8 +21,7 @@ Detailed instructions for possible installations of Mathematical Components are + type `opam install coq-mathcomp-analysis.X.Y.Z` where `X.Y.Z` is the version number (all the dependencies should be automatically installed, assuming `opam` has been properly configured and `coq-released` repository is added) -- Custom (assuming Coq ≥ 8.11, Mathematical Components version = 1.11.0, Finmap version ≥ 1.5.0, - and Hierarchy Builder ≥ 0.10.0 have been installed): +- Custom (assuming the requirements are met): + type `make` to use the provided `Makefile` ## From scratch instructions @@ -47,7 +47,7 @@ $ opam install coq-mathcomp-analysis ``` To install a precise version, type, say ``` -$ opam install coq-mathcomp-analysis.0.3.4 +$ opam install coq-mathcomp-analysis.0.3.5 ``` 4. Everytime you want to work in this same context, you need to type ``` @@ -70,7 +70,7 @@ using [proof general for emacs](https://github.com/ProofGeneral/PG) ## Break-down of phase 3 of the installation procedure step by step -With the example of Coq 8.12.0 and MathComp 1.11.0. For other versions, update the +With the example of Coq 8.12.0 and MathComp 1.12.0. For other versions, update the version numbers accordingly. 1. Install Coq 8.12.0 @@ -79,15 +79,15 @@ $ opam install coq.8.12.0 ``` 2. Install the Mathematical Components ``` -$ opam install coq-mathcomp-ssreflect.1.11.0 -$ opam install coq-mathcomp-fingroup.1.11.0 -$ opam install coq-mathcomp-algebra.1.11.0 -$ opam install coq-mathcomp-solvable.1.11.0 -$ opam install coq-mathcomp-field.1.11.0 +$ opam install coq-mathcomp-ssreflect.1.12.0 +$ opam install coq-mathcomp-fingroup.1.12.0 +$ opam install coq-mathcomp-algebra.1.12.0 +$ opam install coq-mathcomp-solvable.1.12.0 +$ opam install coq-mathcomp-field.1.12.0 ``` 3. Install the Finite maps library ``` -$ opam install coq-mathcomp-finmap.1.5.0 +$ opam install coq-mathcomp-finmap.1.5.1 ``` 4. Install the Hierarchy Builder ``` diff --git a/README.md b/README.md index 85c5bbc27..9fc31b638 100644 --- a/README.md +++ b/README.md @@ -27,12 +27,12 @@ the Coq proof-assistant and using the Mathematical Components library. - License: [CeCILL-C](LICENSE) - Compatible Coq versions: Coq 8.11 to 8.12 - Additional dependencies: - - [MathComp ssreflect 1.11](https://math-comp.github.io) - - [MathComp fingroup 1.11](https://math-comp.github.io) - - [MathComp algebra 1.11](https://math-comp.github.io) - - [MathComp solvable 1.11](https://math-comp.github.io) - - [MathComp field 1.11](https://math-comp.github.io) - - [MathComp finmap 1.5](https://github.com/math-comp/finmap) + - [MathComp ssreflect 1.12](https://math-comp.github.io) + - [MathComp fingroup 1.12](https://math-comp.github.io) + - [MathComp algebra 1.12](https://math-comp.github.io) + - [MathComp solvable 1.12](https://math-comp.github.io) + - [MathComp field 1.12](https://math-comp.github.io) + - [MathComp finmap 1.5.1](https://github.com/math-comp/finmap) - [Hierarchy Builder 0.10](https://github.com/math-comp/hierarchy-builder) - Coq namespace: `mathcomp.analysis` - Related publication(s): diff --git a/_CoqProject b/_CoqProject index 68d4a3350..0d7feb0f1 100644 --- a/_CoqProject +++ b/_CoqProject @@ -1,5 +1,8 @@ -arg -w -arg -parsing +-arg -w -arg +undeclared-scope +-arg -w -arg +non-primitive-record +-arg -w -arg +undeclared-scope theories/boolp.v theories/ereal.v diff --git a/config.nix b/config.nix index 7c30f74dc..1daa16d79 100644 --- a/config.nix +++ b/config.nix @@ -1,6 +1,6 @@ { coq = "8.11"; - mathcomp = "mathcomp-1.11.0"; - mathcomp-real-closed = "1.1.1"; - mathcomp-finmap = "1.5.0"; + mathcomp = "mathcomp-1.12.0"; + mathcomp-real-closed = "1.1.2"; + mathcomp-finmap = "1.5.1"; } diff --git a/coq-mathcomp-analysis.opam b/coq-mathcomp-analysis.opam index 695d95883..5ea0e3dcc 100644 --- a/coq-mathcomp-analysis.opam +++ b/coq-mathcomp-analysis.opam @@ -16,12 +16,12 @@ build: [make "-j%{jobs}%" ] install: [make "install"] depends: [ "coq" { (>= "8.11" & < "8.13~") | (= "dev") } - "coq-mathcomp-ssreflect" { (>= "1.11.0" & < "1.12~") } - "coq-mathcomp-fingroup" { (>= "1.11.0" & < "1.12~") } - "coq-mathcomp-algebra" { (>= "1.11.0" & < "1.12~") } - "coq-mathcomp-solvable" { (>= "1.11.0" & < "1.12~") } - "coq-mathcomp-field" { (>= "1.11.0" & < "1.12~") } - "coq-mathcomp-finmap" { (>= "1.5.0" & < "1.6~") } + "coq-mathcomp-ssreflect" { (>= "1.12.0" & < "1.13~") } + "coq-mathcomp-fingroup" { (>= "1.12.0" & < "1.13~") } + "coq-mathcomp-algebra" { (>= "1.12.0" & < "1.13~") } + "coq-mathcomp-solvable" { (>= "1.12.0" & < "1.13~") } + "coq-mathcomp-field" { (>= "1.12.0" & < "1.13~") } + "coq-mathcomp-finmap" { (>= "1.5.1" & < "1.6~") } "coq-hierarchy-builder" { (>= "0.10.0" & < "0.11~") } ] diff --git a/meta.yml b/meta.yml index 98d3a52c7..e53a1cd23 100644 --- a/meta.yml +++ b/meta.yml @@ -44,42 +44,42 @@ supported_coq_versions: opam: '{ (>= "8.11" & < "8.13~") | (= "dev") }' tested_coq_opam_versions: -- version: '1.11.0-coq-8.11' +- version: '1.12.0-coq-8.11' repo: 'mathcomp/mathcomp' -- version: '1.11.0-coq-8.12' +- version: '1.12.0-coq-8.12' repo: 'mathcomp/mathcomp' dependencies: - opam: name: coq-mathcomp-ssreflect - version: '{ (>= "1.11.0" & < "1.12~") }' + version: '{ (>= "1.12.0" & < "1.13~") }' description: |- - [MathComp ssreflect 1.11](https://math-comp.github.io) + [MathComp ssreflect 1.12](https://math-comp.github.io) - opam: name: coq-mathcomp-fingroup - version: '{ (>= "1.11.0" & < "1.12~") }' + version: '{ (>= "1.12.0" & < "1.13~") }' description: |- - [MathComp fingroup 1.11](https://math-comp.github.io) + [MathComp fingroup 1.12](https://math-comp.github.io) - opam: name: coq-mathcomp-algebra - version: '{ (>= "1.11.0" & < "1.12~") }' + version: '{ (>= "1.12.0" & < "1.13~") }' description: |- - [MathComp algebra 1.11](https://math-comp.github.io) + [MathComp algebra 1.12](https://math-comp.github.io) - opam: name: coq-mathcomp-solvable - version: '{ (>= "1.11.0" & < "1.12~") }' + version: '{ (>= "1.12.0" & < "1.13~") }' description: |- - [MathComp solvable 1.11](https://math-comp.github.io) + [MathComp solvable 1.12](https://math-comp.github.io) - opam: name: coq-mathcomp-field - version: '{ (>= "1.11.0" & < "1.12~") }' + version: '{ (>= "1.12.0" & < "1.13~") }' description: |- - [MathComp field 1.11](https://math-comp.github.io) + [MathComp field 1.12](https://math-comp.github.io) - opam: name: coq-mathcomp-finmap - version: '{ (>= "1.5.0" & < "1.6~") }' + version: '{ (>= "1.5.1" & < "1.6~") }' description: |- - [MathComp finmap 1.5](https://github.com/math-comp/finmap) + [MathComp finmap 1.5.1](https://github.com/math-comp/finmap) - opam: name: coq-hierarchy-builder version: '{ (>= "0.10.0" & < "0.11~") }' diff --git a/theories/boolp.v b/theories/boolp.v index 0ce11e6f6..2bbde07da 100644 --- a/theories/boolp.v +++ b/theories/boolp.v @@ -11,6 +11,9 @@ Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. +Declare Scope box_scope. +Declare Scope quant_scope. + (* Copy of the ssrbool shim to ensure compatibility with MathComp v1.8.0. *) Definition PredType : forall T pT, (pT -> pred T) -> predType T. exact PredType || exact mkPredType. @@ -325,29 +328,6 @@ by case=> x bPx; apply/asboolP; exists x; apply/asboolP. Qed. (* -------------------------------------------------------------------- *) -Lemma contra_not (Q P : Prop) : (Q -> P) -> ~ P -> ~ Q. -Proof. -move=> cb /asboolPn nb; apply/asboolPn. -by apply: contra nb => /asboolP /cb /asboolP. -Qed. - -(** subsumed by mathcomp 1.12, to be removed *) -Lemma contra_notT (P: Prop) (b:bool) : (~~ b -> P) -> ~ P -> b. -Proof. by case: b => //= /(_ isT) HP /(_ HP). Qed. - -(** subsumed by mathcomp 1.12, to be removed *) -Lemma contra_notN (P: Prop) (b:bool) : (b -> P) -> ~ P -> ~~ b. -Proof. rewrite -{1}[b]negbK; exact: contra_notT. Qed. - -(** subsumed by mathcomp 1.12, to be removed *) -Lemma contra_not_neq (T: eqType) (P: Prop) (x y:T) : (x = y -> P) -> ~ P -> x != y. -Proof. by move=> imp; apply: contra_notN => /eqP. Qed. - -Lemma contraPnot (Q P : Prop) : (Q -> ~ P) -> P -> ~ Q. -Proof. -move=> cb /asboolP hb; apply/asboolPn. -by apply: contraL hb => /asboolP /cb /asboolPn. -Qed. Lemma contra_notP (Q P : Prop) : (~ Q -> P) -> ~ P -> Q. Proof. diff --git a/theories/classical_sets.v b/theories/classical_sets.v index be57d1fb4..edc3f7953 100644 --- a/theories/classical_sets.v +++ b/theories/classical_sets.v @@ -98,6 +98,8 @@ Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. +Declare Scope classical_set_scope. + Reserved Notation "[ 'set' x : T | P ]" (at level 0, x at level 99, only parsing). Reserved Notation "[ 'set' x | P ]" diff --git a/theories/derive.v b/theories/derive.v index 27cf6c427..ec5c8d13f 100644 --- a/theories/derive.v +++ b/theories/derive.v @@ -1312,7 +1312,7 @@ Proof. move=> leab fcont; set imf := [set t | (f @` [set x | x \in `[a, b]]) t]. have imf_sup : has_sup imf. split. - by exists (f a) => //; rewrite /imf; apply/imageP; rewrite /= inE /= lexx. + by exists (f a); apply/imageP; rewrite /= in_itv /= lexx. have [M [Mreal imfltM]] : bounded_set (f @` [set x | x \in `[a, b]] : set R^o). apply/compact_bounded/continuous_compact; last exact: segment_compact. by move=> ?; rewrite inE => /fcont. @@ -1430,9 +1430,9 @@ apply/eqP; rewrite eq_le; apply/andP; split. by rewrite invr_ge0; apply: ltW; near: h; exists 1. rewrite subr_le0 [_%:A]mulr1; apply: cmax; near: h. exists (b - c); first by rewrite /= subr_gt0 (itvP cab). - move=> h; rewrite /= distrC subr0. - move=> /(le_lt_trans (ler_norm _)); rewrite ltr_subr_addr inE/= => ->. - by move=> /ltr_spsaddl -> //; rewrite (itvP cab). + move=> h; rewrite /= distrC subr0 /= in_itv /= -ltr_subr_addr. + move=> /(le_lt_trans (ler_norm _)) -> /ltr_spsaddl -> //. + by rewrite (itvP cab). rewrite ['D_1 f c]cvg_at_leftE; last exact: fdrvbl. apply: le0r_cvg_map; last first. have /fdrvbl dfc := cab; rewrite -(@cvg_at_leftE _ _ (fun h => h^-1 *: ((f \o shift c) _ - f c))) //. @@ -1444,7 +1444,7 @@ near=> h; apply: mulr_le0. rewrite subr_le0 [_%:A]mulr1; apply: cmax; near: h. exists (c - a); first by rewrite /= subr_gt0 (itvP cab). move=> h; rewrite /= distrC subr0. -move=> /ltr_normlP []; rewrite ltr_subr_addl ltr_subl_addl inE/= => -> _. +move=> /ltr_normlP []; rewrite ltr_subr_addl ltr_subl_addl in_itv /= => -> _. by move=> /ltr_snsaddl -> //; rewrite (itvP cab). Grab Existential Variables. all: end_near. Qed. @@ -1471,24 +1471,24 @@ case: (pselect ([set a; b] cmax))=> [cmaxeaVb|]; last first. move=> /asboolPn; rewrite asbool_or => /norP. move=> [/asboolPn/eqP cnea /asboolPn/eqP cneb]. have {}cmaxab : cmax \in `]a, b[. - by rewrite inE/= !lt_def !(itvP cmaxab) cnea eq_sym cneb. + by rewrite in_itv /= !lt_def !(itvP cmaxab) cnea eq_sym cneb. exists cmax => //; apply: derive1_at_max (ltW ltab) fdrvbl cmaxab _ => t tab. - by apply: fcmax; rewrite inE/= !ltW // (itvP tab). + by apply: fcmax; rewrite in_itv /= !ltW // (itvP tab). have [cmin cminab fcmin] := EVT_min (ltW ltab) fcont. case: (pselect ([set a; b] cmin))=> [cmineaVb|]; last first. move=> /asboolPn; rewrite asbool_or => /norP. move=> [/asboolPn/eqP cnea /asboolPn/eqP cneb]. have {}cminab : cmin \in `]a, b[. - by rewrite inE/= !lt_def !(itvP cminab) cnea eq_sym cneb. + by rewrite in_itv /= !lt_def !(itvP cminab) cnea eq_sym cneb. exists cmin => //; apply: derive1_at_min (ltW ltab) fdrvbl cminab _ => t tab. - by apply: fcmin; rewrite inE/= !ltW // (itvP tab). + by apply: fcmin; rewrite in_itv /= !ltW // (itvP tab). have midab : (a + b) / 2 \in `]a, b[ by apply: mid_in_itvoo. exists ((a + b) / 2) => //; apply: derive1_at_max (ltW ltab) fdrvbl (midab) _. move=> t tab. suff fcst : forall s, s \in `]a, b[ -> f s = f cmax by rewrite !fcst. move=> s sab. -apply/eqP; rewrite eq_le fcmax; last by rewrite inE/= !ltW ?(itvP sab). -suff -> : f cmax = f cmin by rewrite fcmin // inE/= !ltW ?(itvP sab). +apply/eqP; rewrite eq_le fcmax; last by rewrite in_itv /= !ltW ?(itvP sab). +suff -> : f cmax = f cmin by rewrite fcmin // in_itv /= !ltW ?(itvP sab). by case: cmaxeaVb => ->; case: cmineaVb => ->. Qed. @@ -1512,7 +1512,7 @@ have gaegb : g a = g b. by rewrite mul1r addrCA subrr addr0. by apply: lt0r_neq0; rewrite subr_gt0. have [c cab dgc0] := Rolle altb gdrvbl gcont gaegb. -exists c; first by apply/andP; split; apply/ltW; rewrite (itvP cab). +exists c; first by rewrite in_itv /= ltW (itvP cab). have /fdrvbl dfc := cab; move/@derive_val: dgc0; rewrite deriveB //; last first. exact/derivable1_diffP. move/eqP; rewrite [X in _ - X]deriveE // derive_val diff_val scale1r subr_eq0. @@ -1526,7 +1526,8 @@ Lemma ler0_derive1_nincr (R : realType) (f : R^o -> R^o) (a b : R) : forall x y, a <= x -> x <= y -> y <= b -> f y <= f x. Proof. move=> fdrvbl dfle0 x y leax lexy leyb; rewrite -subr_ge0. -have itvW : {subset `[x, y] <= `[a, b]} by apply/subitvP; rewrite /= leyb leax. +have itvW : {subset `[x, y] <= `[a, b]}. + by apply/subitvP; rewrite /<=%O /= /<=%O /= leyb leax. have fdrv z : z \in `]x, y[ -> is_derive (z : R^o) 1 f (f^`()z). rewrite inE => /andP [/ltW lexz /ltW lezy]. apply: DeriveDef; last by rewrite derive1E. diff --git a/theories/ereal.v b/theories/ereal.v index 6ac2c9b14..3aa59c3c9 100644 --- a/theories/ereal.v +++ b/theories/ereal.v @@ -55,6 +55,8 @@ Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. +Declare Scope ereal_scope. + Import Order.TTheory GRing.Theory Num.Theory. Local Open Scope ring_scope. diff --git a/theories/forms.v b/theories/forms.v index bed94efdd..b2e505a47 100644 --- a/theories/forms.v +++ b/theories/forms.v @@ -253,7 +253,7 @@ End BidirectionalLinearZ. End BilinearTheory. -Canonical rev_mulmx (R : ringType) m n p := @RevOp _ _ _ (@mulmxr_head R m n p tt) +Canonical rev_mulmx (R : ringType) m n p := @RevOp _ _ _ (@mulmxr R m n p) (@mulmx R m n p) (fun _ _ => erefl). Canonical mulmx_bilinear (R : comRingType) m n p := [bilinear of @mulmx R m n p]. diff --git a/theories/landau.v b/theories/landau.v index d2b508459..dd43504cd 100644 --- a/theories/landau.v +++ b/theories/landau.v @@ -92,10 +92,12 @@ Require Import prodnormedzmodule. (* "=O_(x \near F)", not in the syntax "=O_(x : U)". *) (* *) (******************************************************************************) - Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. + +Declare Scope R_scope. + Import Order.TTheory GRing.Theory Num.Theory. Reserved Notation "{o_ F f }" (at level 0, F at level 0, format "{o_ F f }"). diff --git a/theories/normedtype.v b/theories/normedtype.v index e3e3f3b37..824bc8f9b 100644 --- a/theories/normedtype.v +++ b/theories/normedtype.v @@ -81,19 +81,6 @@ Unset Printing Implicit Defensive. Import Order.TTheory GRing.Theory Num.Def Num.Theory. Local Open Scope ring_scope. - -Section add_to_mathcomp. - -Lemma ltr_distW (R : realDomainType) (x y e : R) : - `|x - y| < e -> y - e < x. -Proof. by rewrite ltr_distl => /andP[]. Qed. - -Lemma ler_distW (R : realDomainType) (x y e : R): - `|x - y| <= e -> y - e <= x. -Proof. by rewrite ler_distl => /andP[]. Qed. - -End add_to_mathcomp. - Local Open Scope classical_set_scope. Lemma nbhsN (R : numFieldType) (x : R^o) : @@ -330,10 +317,9 @@ Lemma in_segment_addgt0Pr (R : numFieldType) (x y z : R) : reflect (forall e, e > 0 -> y \in `[(x - e), (z + e)]) (y \in `[x, z]). Proof. apply/(iffP idP)=> [xyz _/posnumP[e] | xyz_e]. - rewrite inE/=; apply/andP; split; last by rewrite ler_paddr // (itvP xyz). - by rewrite ler_subl_addr ler_paddr // (itvP xyz). -rewrite inE/=; apply/andP. -by split; apply/ler_addgt0Pr => ? /xyz_e /andP /= []; rewrite ler_subl_addr. + by rewrite in_itv /= ler_subl_addr !ler_paddr // (itvP xyz). +by rewrite in_itv /= ; apply/andP; split; apply/ler_addgt0Pr => ? /xyz_e; + rewrite in_itv /= ler_subl_addr => /andP []. Qed. Lemma in_segment_addgt0Pl (R : numFieldType) (x y z : R) : @@ -1034,7 +1020,7 @@ Lemma Rhausdorff (R : realFieldType) : hausdorff [topologicalType of R^o]. Proof. move=> x y clxy; apply/eqP; rewrite eq_le. apply/(@in_segment_addgt0Pr _ x _ x) => _ /posnumP[e]. -rewrite inE -ler_distl; set he := (e%:num / 2)%:pos. +rewrite in_itv /= -ler_distl; set he := (e%:num / 2)%:pos. have [z []] := clxy _ _ (nbhsx_ballx x he) (nbhsx_ballx y he). move=> zx_he yz_he. rewrite -(subrKA z) (le_trans (ler_norm_add _ _) _)// ltW //. @@ -2066,9 +2052,8 @@ have /cauchy_ballP /cauchyP /(_ 1) [//|x0 x01] := F_cauchy. have D_has_sup : has_sup D; first split. - exists (x0 - 1) => A FA. near F => x. - apply/downP; exists x. - by near: x. - by rewrite ler_distW 1?distrC 1?ltW ?andbT //; near: x. + apply/downP; exists x; first by near: x. + by rewrite ler_distl_subl // ltW //; near: x. - exists (x0 + 1); apply/ubP => x /(_ _ x01) /downP [y]. rewrite -[ball _ _ _]/(_ (_ < _)) ltr_distl ltr_subl_addr => /andP[/ltW]. by move=> /(le_trans _) yx01 _ /yx01. @@ -2120,25 +2105,6 @@ End at_left_right. Typeclasses Opaque at_left at_right. - -Section TODO_add_to_ssrnum. - -Lemma maxr_real (K : realDomainType) (x y : K) : - x \is Num.real -> y \is Num.real -> maxr x y \is Num.real. -Proof. -by rewrite !realE => /orP[|] x0 /orP[|] y0; rewrite le_maxr le_maxl x0 y0 !(orbT,orTb). -Qed. - -Lemma bigmaxr_real (K : realDomainType) (R : choiceType) (x : K) (D : seq R) (f : R -> K): - x \is Num.real -> - (forall x, x \in D -> f x \is Num.real) -> - \big[maxr/x]_(n <- D) f n \is Num.real. -Proof. -move=> ?; elim/big_ind : _ => // *; by [rewrite maxr_real | rewrite num_real]. -Qed. - -End TODO_add_to_ssrnum. - Section cvg_seq_bounded. Context {K : numFieldType}. Local Notation "'+oo'" := (@pinfty_nbhs K). @@ -2254,37 +2220,32 @@ rewrite [X in closed X](_ : (eq^~ _) = ~` (xpredC (eq_op^~ y))). by rewrite predeqE /setC => x /=; rewrite (rwP eqP); case: eqP; split. Qed. -(* TODO: move after rebase on mathcomp 1.12? *) -Definition isBOpen (b : itv_bound R) := - if b is BOpen _ then true else false. - -Definition isBClosed (b : itv_bound R) := - if b is BOpen_if false _ then true else false. +Definition bound_side d (T : porderType d) (c : bool) (x : itv_bound T) := + if x is BSide c' _ then c == c' else false. -Lemma interval_open a b : ~~ isBClosed a -> ~~ isBClosed b -> +Lemma interval_open a b : ~~ bound_side true a -> ~~ bound_side false b -> open [set x : R^o | x \in Interval a b]. Proof. -move: a b => [[]//a|] [[]//b|] _ _. +move: a b => [[]a|[]] [[]b|[]]// _ _. - have -> : [set x | a < x < b] = [set x | a < x] `&` [set x | x < b]. by rewrite predeqE => r; rewrite /mkset; split => [/andP[? ?] //|[-> ->]]. by apply openI; [exact: open_gt | exact: open_lt]. -- rewrite (_ : [set x | x \in _] = [set x : R^o | x > a]) //. - by rewrite predeqE => r; split => //; rewrite /mkset ?(inE,lersifT,andbT). +- by under eq_set do rewrite itv_ge// inE. +- by under eq_set do rewrite in_itv andbT/=; exact: open_gt. - exact: open_lt. - by rewrite (_ : mkset _ = setT); [exact: openT | rewrite predeqE]. Qed. -Lemma interval_closed a b : ~~ isBOpen a -> ~~ isBOpen b -> +Lemma interval_closed a b : ~~ bound_side false a -> ~~ bound_side true b -> closed [set x : R^o | x \in Interval a b]. Proof. -move: a b => [[]//a|] [[]//b|] _ _. +move: a b => [[]a|[]] [[]b|[]]// _ _; + do ?by under eq_set do rewrite itv_ge// inE falseE; apply: closed0. - have -> : [set x | x \in `[a, b]] = [set x | x >= a] `&` [set x | x <= b]. - by rewrite predeqE => ?; rewrite /= inE; split=> [/andP [] | /= [->]]. + by rewrite predeqE => ?; rewrite /= in_itv/=; split=> [/andP[]|[->]]. by apply closedI; [exact: closed_ge | exact: closed_le]. -- rewrite (_ : mkset _ = [set x : R^o | x >= a]); first exact :closed_ge. - by rewrite predeqE => r; split => //; rewrite /mkset ?(inE,lersifT,andbT). +- by under eq_set do rewrite in_itv andbT/=; exact: closed_ge. - exact: closed_le. -- by rewrite (_ : mkset _ = setT); [exact: closedT|rewrite predeqE]. Qed. End open_closed_sets. @@ -2349,16 +2310,9 @@ Qed. Lemma interval_is_interval (i : interval R) : is_interval [set x | x \in i]. Proof. -move: i => [[[] i|] [[] j|]] //= x y; rewrite /mkset !(inE,lersifT,lersifF); - move=> /andP[ax ?] /andP[? yb] z /andP[? ?]; rewrite !(inE,lersifT,lersifF). -by rewrite (lt_trans ax) // (lt_trans _ yb). -by rewrite (lt_trans ax) // (le_trans (ltW _) yb). -by rewrite (lt_trans ax). -by rewrite (le_trans ax (ltW _)) // (lt_trans _ yb). -by rewrite (le_trans ax (ltW _)) // (le_trans (ltW _) yb). -by rewrite (le_trans ax (ltW _)). -by rewrite (lt_trans _ yb). -by rewrite (le_trans (ltW _) yb). +by case: i => -[[]a|[]] [[]b|[]] // x y /=; do ?[by rewrite ?itv_ge//]; + move=> xi yi z; rewrite -[x < z < y]/(z \in `]x, y[); apply/subitvP; + rewrite subitvE /Order.le/= ?(itvP xi, itvP yi). Qed. End interval. @@ -2448,7 +2402,7 @@ Proof. move=> iX bX aX; rewrite eqEsubset; split=> [r Xr|]. apply/andP; split; [exact: left_bounded_interior|exact: right_bounded_interior]. -rewrite -open_subsetE; last exact: (@interval_open _ (BOpen _) (BOpen _)). +rewrite -open_subsetE; last exact: (@interval_open _ (BRight _) (BLeft _)). move=> r /andP[iXr rsX]. have [/set0P X0|/negPn/eqP X0] := boolP (X != set0); last first. by move: (lt_trans iXr rsX); rewrite X0 inf_out ?sup_out ?ltxx // => - [[]]. @@ -2461,31 +2415,30 @@ by rewrite opprB addrCA subrr addr0 => rf; apply: (iX _ _ Xe Xf); rewrite er rf. Qed. Definition Rhull (X : set R) : interval R := Interval - (if `[< has_lbound X >] then BOpen_if (~~ `[< X (inf X) >]) (inf X) - else BInfty _) - (if `[< has_ubound X >] then BOpen_if (~~ `[< X (sup X) >]) (sup X) - else BInfty _). + (if `[< has_lbound X >] then BSide `[< X (inf X) >] (inf X) + else BInfty _ true) + (if `[< has_ubound X >] then BSide (~~ `[< X (sup X) >]) (sup X) + else BInfty _ false). Lemma sub_Rhull (X : set R) : X `<=` [set x | x \in Rhull X]. Proof. -move=> x Xx/=; rewrite inE/=. +move=> x Xx/=; rewrite in_itv/=. case: (asboolP (has_lbound _)) => ?; case: (asboolP (has_ubound _)) => ? //=. + by case: asboolP => ?; case: asboolP => ? //=; - rewrite !(lersifF, lersifT, sup_ub, inf_lb, sup_ub_strict, inf_lb_strict). -+ by case: asboolP => XinfX; rewrite !(lersifF, lersifT); + rewrite !(lteifF, lteifT, sup_ub, inf_lb, sup_ub_strict, inf_lb_strict). ++ by case: asboolP => XinfX; rewrite !(lteifF, lteifT); [rewrite inf_lb | rewrite inf_lb_strict]. -+ by case: asboolP => XsupX; rewrite !(lersifF, lersifT); ++ by case: asboolP => XsupX; rewrite !(lteifF, lteifT); [rewrite sup_ub | rewrite sup_ub_strict]. Qed. - Lemma is_intervalP (X : set R) : is_interval X <-> X = [set x | x \in Rhull X]. Proof. split=> [iX|->]; last exact: interval_is_interval. -rewrite predeqE => x /=; split; [exact: sub_Rhull | rewrite inE/=]. +rewrite predeqE => x /=; split; [exact: sub_Rhull | rewrite in_itv/=]. case: (asboolP (has_lbound _)) => ?; case: (asboolP (has_ubound _)) => ? //=. - case: asboolP => XinfX; case: asboolP => XsupX; - rewrite !(lersifF, lersifT). + rewrite !(lteifF, lteifT). + move=> /andP[]; rewrite le_eqVlt => /orP[/eqP <- //|infXx]. rewrite le_eqVlt => /orP[/eqP -> //|xsupX]. apply: (@interior_subset [topologicalType of R^o]). @@ -2498,7 +2451,7 @@ case: (asboolP (has_lbound _)) => ?; case: (asboolP (has_ubound _)) => ? //=. by rewrite interval_bounded_interior // /mkset infXx. + move=> ?; apply: (@interior_subset [topologicalType of R^o]). by rewrite interval_bounded_interior // /mkset infXx. -- case: asboolP => XinfX; rewrite !(lersifF, lersifT, andbT). +- case: asboolP => XinfX; rewrite !(lteifF, lteifT, andbT). + rewrite le_eqVlt => /orP[/eqP<-//|infXx]. apply: (@interior_subset [topologicalType of R^o]). by rewrite interval_right_unbounded_interior. @@ -2581,7 +2534,6 @@ split => [cE x y Ex Ey z /andP[xz zy]|]. Qed. End interval_realType. - Section segment. Variable R : realType. @@ -2614,11 +2566,11 @@ apply: segment_connected. rewrite openE => /(_ _ fx) [e egt0 xe_fi]; exists e => // y xe_y. exists D' => //; split; last by exists i => //; apply/xe_fi. move=> z /= ayz; case: (lerP z x) => [lezx|ltxz]. - by apply/saxUf; rewrite /= inE/= (itvP ayz) lezx. + by apply/saxUf; rewrite /= in_itv/= (itvP ayz) lezx. exists i => //; apply/xe_fi; rewrite /ball_/= distrC ger0_norm. have lezy : z <= y by rewrite (itvP ayz). rewrite ltr_subl_addl; apply: le_lt_trans lezy _; rewrite -ltr_subl_addr. - by have := xe_y; rewrite /ball_ => /ltr_distW. + by have := xe_y; rewrite /ball_ => /ltr_distlC_subl. by rewrite subr_ge0; apply/ltW. exists A; last by rewrite predeqE => x; split=> [[] | []]. move=> x clAx; have abx : x \in `[a, b]. @@ -2631,13 +2583,13 @@ split=> [z axz|]; last first. exists i; first by rewrite /= !inE eq_refl. by apply/xe_fi; rewrite /ball_/= subrr normr0. case: (lerP z y) => [lezy|ltyz]. - have /sayUf [j Dj fjz] : z \in `[a, y] by rewrite inE/= (itvP axz) lezy. + have /sayUf [j Dj fjz] : z \in `[a, y] by rewrite in_itv /= (itvP axz) lezy. by exists j => //=; rewrite inE orbC Dj. exists i; first by rewrite /= !inE eq_refl. apply/xe_fi; rewrite /ball_/= ger0_norm; last first. by rewrite subr_ge0 (itvP axz). rewrite ltr_subl_addl -ltr_subl_addr; apply: lt_trans ltyz. -by apply: ltr_distW; rewrite distrC. +by apply: ltr_distlC_subl; rewrite distrC. Qed. End segment. @@ -2665,9 +2617,9 @@ move=> leab fcont; gen have ivt : f v fcont / f a <= v <= f b -> by move=> x /fcont; apply: (@continuousN _ [normedModType R of R^o]). by rewrite ler_oppr opprK ler_oppr opprK andbC. move=> /andP[]; rewrite le_eqVlt => /orP [/eqP<- _|ltfav]. - by exists a => //; rewrite inE/= lexx leab. + by exists a => //; rewrite in_itv /= lexx leab. rewrite le_eqVlt => /orP [/eqP->|ltvfb]. - by exists b => //; rewrite inE/= lexx leab. + by exists b => //; rewrite in_itv /= lexx leab. set A := [set c | (c <= b) && (f c <= v)]. have An0 : nonempty A by exists a; apply/andP; split=> //; apply: ltW. have supA : has_sup A by split=> //; exists b; apply/ubP => ? /andP []. @@ -2694,7 +2646,7 @@ have /fcont /(_ _ (@nbhsx_ballx _ [normedModType R of R^o] _ e)) [_/posnumP[d] s have atrF := at_right_proper_filter (sup A); near (at_right (sup A)) => x. have /supdfe /= : @ball _ [normedModType R of R^o] (sup A) d%:num x. by near: x; rewrite /= nbhs_simpl; exists d%:num => //. -rewrite /= => /ltr_distW; apply: le_lt_trans. +rewrite /= => /ltr_distlC_subl; apply: le_lt_trans. rewrite ler_add2r ltW //; suff : forall t, t \in `](sup A), b] -> v < f t. apply; rewrite inE; apply/andP; split; first by near: x; exists 1. near: x; exists (b - sup A) => /=. @@ -2702,8 +2654,8 @@ rewrite ler_add2r ltW //; suff : forall t, t \in `](sup A), b] -> v < f t. by move: lefsupv; rewrite leNgt -besup ltvfb. move=> t lttb ltsupt; move: lttb; rewrite /= distrC. by rewrite gtr0_norm ?subr_gt0 // ltr_add2r; apply: ltW. -move=> t /andP [ltsupt /= letb]; rewrite ltNge; apply/negP => leftv. -move: ltsupt => /=; rewrite ltNge => /negP; apply. +move=> t; rewrite in_itv /=; case/andP => ltsupt letb. +apply/contra_lt: ltsupt => leftv. by move/ubP : (sup_upper_bound supA); apply; rewrite /A/= leftv letb. Grab Existential Variables. all: end_near. Qed. @@ -2871,8 +2823,8 @@ have /Aco [] := covA. by rewrite -{1}(subrK p q) ler_norm_add. move=> D _ DcovA. exists (\big[maxr/0]_(i : D) (fsval i)%:~R). -rewrite bigmaxr_real ?real0 //; split => //. -move=> x ltmaxx p /DcovA [n Dn /lt_trans /(_ _)/ltW]. +rewrite bigmax_real ?real0//; last by move=> ? _; rewrite realz. +split => // x ltmaxx p /DcovA [n Dn /lt_trans /(_ _)/ltW]. apply; apply: le_lt_trans ltmaxx. have {} : n \in enum_fset D by []. rewrite enum_fsetE => /mapP[/= i iD ->]; exact/BigmaxBigminr.ler_bigmaxr. diff --git a/theories/reals.v b/theories/reals.v index 97a62a112..d77417672 100644 --- a/theories/reals.v +++ b/theories/reals.v @@ -13,6 +13,8 @@ From mathcomp Require Import all_ssreflect all_algebra. Require Import Setoid. +Declare Scope real_scope. + (* -------------------------------------------------------------------- *) Set Implicit Arguments. Unset Strict Implicit. diff --git a/theories/topology.v b/theories/topology.v index a92f1bbf2..ccdebdd38 100644 --- a/theories/topology.v +++ b/theories/topology.v @@ -2823,7 +2823,7 @@ Lemma open_hausdorff : hausdorff T = [/\ open AB.1, open AB.2 & AB.1 `&` AB.2 == set0]). Proof. rewrite propeqE; split => [T_filterT2|T_openT2] x y. - have := contra_not (T_filterT2 x y); rewrite (rwP eqP) (rwP negP) => cl /cl. + have := contra_not _ _ (T_filterT2 x y); rewrite (rwP eqP) (rwP negP) => cl /cl. rewrite [cluster _ _](rwP forallp_asboolP) => /negP. rewrite forallbE => /existsp_asboolPn/=[A]/negP/existsp_asboolPn/=[B]. rewrite [nbhs _ _ -> _](rwP imply_asboolP) => /negP.