diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index fbc855f68..9ee17da31 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -9,6 +9,8 @@ + canonicals `ereal_blatticeType`, `ereal_tblatticeType` - in `lebesgue_measure.v`: + lemma `emeasurable_itv` +- in `lebesgue_integral.v`: + + lemma `sfinite_Fubini` - file `itv.v`: + definition `wider_itv` diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index 9142ec7aa..a8afe9068 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -5002,3 +5002,59 @@ Theorem Fubini : Proof. by rewrite fubini1 -fubini2. Qed. End fubini. + +Section sfinite_fubini. +Local Open Scope ereal_scope. +Context d d' (X : measurableType d) (Y : measurableType d') (R : realType). +Variables (m1 : {sfinite_measure set X -> \bar R}). +Variables (m2 : {sfinite_measure set Y -> \bar R}). +Variables (f : X * Y -> \bar R) (f0 : forall xy, 0 <= f xy). +Hypothesis mf : measurable_fun setT f. + +Lemma sfinite_Fubini : + \int[m1]_x \int[m2]_y f (x, y) = \int[m2]_y \int[m1]_x f (x, y). +Proof. +pose s1 := sfinite_measure_seq m1. +pose s2 := sfinite_measure_seq m2. +rewrite [LHS](eq_measure_integral [the measure _ _ of mseries s1 0]); last first. + by move=> A mA _; rewrite /=; exact: sfinite_measure_seqP. +transitivity (\int[mseries s1 0]_x \int[mseries s2 0]_y f (x, y)). + apply: eq_integral => x _; apply: eq_measure_integral => ? ? _. + exact: sfinite_measure_seqP. +transitivity (\sum_(n t _; exact: integral_ge0. + rewrite [X in measurable_fun _ X](_ : _ = + fun x => \sum_(n x. + by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1. + apply: ge0_emeasurable_fun_sum; first by move=> k x; exact: integral_ge0. + by move=> k; apply: measurable_fun_fubini_tonelli_F. + apply: eq_eseriesr => n _; apply: eq_integral => x _. + by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod1. +transitivity (\sum_(n n _; rewrite integral_nneseries//. + by move=> m; exact: measurable_fun_fubini_tonelli_F. + by move=> m x _; exact: integral_ge0. +transitivity (\sum_(n n _; apply: eq_eseriesr => m _. + by rewrite fubini_tonelli//; exact: finite_measure_sigma_finite. +transitivity (\sum_(n n _; rewrite ge0_integral_measure_series//. + by move=> y _; exact: integral_ge0. + exact: measurable_fun_fubini_tonelli_G. +transitivity (\int[mseries s2 0]_y \sum_(n n; apply: measurable_fun_fubini_tonelli_G. + by move=> n y _; exact: integral_ge0. +transitivity (\int[mseries s2 0]_y \int[mseries s1 0]_x f (x, y)). + apply: eq_integral => y _. + by rewrite ge0_integral_measure_series//; exact/measurable_fun_prod2. +transitivity (\int[m2]_y \int[mseries s1 0]_x f (x, y)). + by apply: eq_measure_integral => A mA _ /=; rewrite sfinite_measure_seqP. +apply: eq_integral => y _; apply: eq_measure_integral => A mA _ /=. +by rewrite sfinite_measure_seqP. +Qed. + +End sfinite_fubini. +Arguments sfinite_Fubini {d d' X Y R} m1 m2 f.