diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 7de783728..2af1a12c8 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -11,6 +11,11 @@ + lemma `ge0_integralZr` - file `function_spaces.v` +- in file `normedtype.v`, + + new definition `completely_regular_space`. + + new lemmas `point_uniform_separator`, and + `uniform_completely_regular`. + ### Changed - moved from `topology.v` to `function_spaces.v`: `prod_topology`, `product_topology_def`, `proj_continuous`, `dfwith_continuous`, diff --git a/theories/normedtype.v b/theories/normedtype.v index e0f2f841f..eaff40cd7 100644 --- a/theories/normedtype.v +++ b/theories/normedtype.v @@ -46,6 +46,8 @@ Require Import ereal reals signed topology prodnormedzmodule function_spaces. (* Urysohn A B == a continuous function T -> [0,1] which *) (* separates A and B when *) (* `uniform_separator A B` *) +(* completely_regular_space == a space where points and closed sets can *) +(* be separated by a function into R *) (* uniform_separator A B == there is a suitable uniform space and *) (* entourage separating A and B *) (* nbhs_norm == neighborhoods defined by the norm *) @@ -3644,6 +3646,7 @@ Qed. End normal_uniform_separators. End Urysohn. + Lemma uniform_separatorP {T : topologicalType} {R : realType} (A B : set T) : uniform_separator A B <-> exists (f : T -> R), [/\ continuous f, range f `<=` `[0, 1], @@ -3711,6 +3714,35 @@ Proof. exact: (normal_spaceP 0%N 1%N). Qed. End normalP. +Section completely_regular. + +Definition completely_regular_space {R : realType} {T : topologicalType} := + forall (a : T) (B : set T), closed B -> ~ B a -> exists f : T -> R, [/\ + continuous f, + f a = 0 & + f @` B `<=` [set 1] ]. + +Lemma point_uniform_separator {T : uniformType} (x : T) (B : set T) : + closed B -> ~ B x -> uniform_separator [set x] B. +Proof. +move=> clB nBx; have : open (~` B) by rewrite openC. +rewrite openE => /(_ _ nBx); rewrite /interior /= -nbhs_entourageE. +case=> E entE EnB. +pose T' := [the pseudoMetricType Rdefinitions.R of gauge.type entE]. +exists (Uniform.class T); exists E; split => //; last by move => ?. +by rewrite -subset0 => -[? w [/= [-> ? ?]]]; exact: (EnB w). +Qed. + +Lemma uniform_completely_regular {R : realType} {T : uniformType} : + @completely_regular_space R T. +Proof. +move=> x B clB Bx. +have /(@uniform_separatorP _ R) [f] := point_uniform_separator clB Bx. +by case=> ? _; rewrite image_set1 => fx ?; exists f; split => //; exact: fx. +Qed. + +End completely_regular. + Section pseudometric_normal. Lemma uniform_regular {X : uniformType} : @regular_space X.