From 0a1e11256556bcf282a5993c3efc45d1f723177a Mon Sep 17 00:00:00 2001 From: affeldt-aist <33154536+affeldt-aist@users.noreply.github.com> Date: Tue, 3 Dec 2024 23:28:21 +0900 Subject: [PATCH] prod notation for ereal and lemmas (#1418) * prod notation for ereal and lemmas --- CHANGELOG_UNRELEASED.md | 4 ++++ reals/constructive_ereal.v | 35 +++++++++++++++++++++++++++++++++++ 2 files changed, 39 insertions(+) diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index d6b4d1e35..08c7e13dd 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -13,6 +13,10 @@ - in `mathcomp_extra.v`: + lemma `partition_disjoint_bigfcup` +- in `constructive_ereal.v`: + + notations `\prod` in scope ereal_scope + + lemmas `prode_ge0`, `prode_fin_num` + ### Changed ### Renamed diff --git a/reals/constructive_ereal.v b/reals/constructive_ereal.v index a2155ef0e..3c9cc0940 100644 --- a/reals/constructive_ereal.v +++ b/reals/constructive_ereal.v @@ -46,6 +46,7 @@ From mathcomp Require Import mathcomp_extra signed. (* (_ <= _)%E, (_ < _)%E, == comparison relations for extended reals *) (* (_ >= _)%E, (_ > _)%E *) (* (\sum_(i in A) f i)%E == bigop-like notation in scope %E *) +(* (\prod_(i in A) f i)%E == bigop-like notation in scope %E *) (* maxe x y, mine x y == notation for the maximum/minimum of two *) (* extended real numbers *) (* ``` *) @@ -551,6 +552,31 @@ Notation "\sum_ ( i 'in' A ) F" := Notation "\sum_ ( i 'in' A ) F" := (\big[+%E/0%E]_(i in A) F%E) : ereal_scope. +Notation "\prod_ ( i <- r | P ) F" := + (\big[*%E/1%:E]_(i <- r | P%B) F%E) : ereal_scope. +Notation "\prod_ ( i <- r ) F" := + (\big[*%E/1%:E]_(i <- r) F%E) : ereal_scope. +Notation "\prod_ ( m <= i < n | P ) F" := + (\big[*%E/1%:E]_(m <= i < n | P%B) F%E) : ereal_scope. +Notation "\prod_ ( m <= i < n ) F" := + (\big[*%E/1%:E]_(m <= i < n) F%E) : ereal_scope. +Notation "\prod_ ( i | P ) F" := + (\big[*%E/1%:E]_(i | P%B) F%E) : ereal_scope. +Notation "\prod_ i F" := + (\big[*%E/1%:E]_i F%E) : ereal_scope. +Notation "\prod_ ( i : t | P ) F" := + (\big[*%E/1%:E]_(i : t | P%B) F%E) (only parsing) : ereal_scope. +Notation "\prod_ ( i : t ) F" := + (\big[*%E/1%:E]_(i : t) F%E) (only parsing) : ereal_scope. +Notation "\prod_ ( i < n | P ) F" := + (\big[*%E/1%:E]_(i < n | P%B) F%E) : ereal_scope. +Notation "\prod_ ( i < n ) F" := + (\big[*%E/1%:E]_(i < n) F%E) : ereal_scope. +Notation "\prod_ ( i 'in' A | P ) F" := + (\big[*%E/1%:E]_(i in A | P%B) F%E) : ereal_scope. +Notation "\prod_ ( i 'in' A ) F" := + (\big[*%E/1%:E]_(i in A) F%E) : ereal_scope. + Section ERealOrderTheory. Context {R : numDomainType}. Implicit Types x y z : \bar R. @@ -928,6 +954,11 @@ Lemma fin_numM x y : x \is a fin_num -> y \is a fin_num -> x * y \is a fin_num. Proof. by move: x y => [x| |] [y| |]. Qed. +Lemma prode_fin_num (I : Type) (s : seq I) (P : pred I) (f : I -> \bar R) : + (forall i, P i -> f i \is a fin_num) -> + \prod_(i <- s | P i) f i \is a fin_num. +Proof. by move=> ffin; elim/big_ind : _ => // x y x0 y0; rewrite fin_numM. Qed. + Lemma fin_numX x n : x \is a fin_num -> x ^+ n \is a fin_num. Proof. by elim: n x => // n ih x finx; rewrite expeS fin_numM// ih. Qed. @@ -1164,6 +1195,10 @@ move: x y => [x||] [y||]//=; rewrite /mule/= ?(lee_fin, eqe, lte_fin, lt0y)//. by rewrite gt_eqF // y0 le0y. Qed. +Lemma prode_ge0 (I : Type) (s : seq I) (P : pred I) (f : I -> \bar R) : + (forall i, P i -> 0 <= f i) -> 0 <= \prod_(i <- s | P i) f i. +Proof. by move=> f0; elim/big_ind : _ => // x y x0 y0; rewrite mule_ge0. Qed. + Lemma mule_gt0 x y : 0 < x -> 0 < y -> 0 < x * y. Proof. by rewrite !lt_def => /andP[? ?] /andP[? ?]; rewrite mule_neq0 ?mule_ge0.