-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathtopology.v
7284 lines (6213 loc) · 288 KB
/
topology.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From mathcomp Require Import all_ssreflect all_algebra finmap generic_quotient.
From mathcomp.classical Require Import boolp classical_sets functions.
From mathcomp.classical Require Import cardinality mathcomp_extra fsbigop.
Require Import reals signed.
(******************************************************************************)
(* Filters and basic topological notions *)
(* *)
(* This file develops tools for the manipulation of filters and basic *)
(* topological notions. The development of topological notions builds on *)
(* "filtered types". They are types equipped with an interface that *)
(* associates to each element a set of sets, intended to represent a filter. *)
(* The notions of limit and convergence are defined for filtered types and in *)
(* the documentation below we call "canonical filter" of an element the set *)
(* of sets associated to it by the interface of filtered types. *)
(* *)
(* monotonous A f := {in A &, {mono f : x y / x <= y}} \/ *)
(* {in A &, {mono f : x y /~ x <= y}}. *)
(* *)
(* * Filters : *)
(* filteredType U == interface type for types whose *)
(* elements represent sets of sets on U. *)
(* These sets are intended to be filters *)
(* on U but this is not enforced yet. *)
(* FilteredType U T m == packs the function m: T -> set (set U) *)
(* to build a filtered type of type *)
(* filteredType U; T must have a *)
(* pointedType structure. *)
(* [filteredType U of T for cT] == T-clone of the filteredType U *)
(* structure cT. *)
(* [filteredType U of T] == clone of a canonical structure of *)
(* filteredType U on T. *)
(* Filtered.source Y Z == structure that records types X such *)
(* that there is a function mapping *)
(* functions of type X -> Y to filters on *)
(* Z. Allows to infer the canonical *)
(* filter associated to a function by *)
(* looking at its source type. *)
(* Filtered.Source F == if F : (X -> Y) -> set (set Z), packs *)
(* X with F in a Filtered.source Y Z *)
(* structure. *)
(* nbhs p == set of sets associated to p (in a *)
(* filtered type). *)
(* filter_from D B == set of the supersets of the elements *)
(* of the family of sets B whose indices *)
(* are in the domain D. *)
(* This is a filter if (B_i)_(i in D) *)
(* forms a filter base. *)
(* filter_prod F G == product of the filters F and G. *)
(* [filter of x] == canonical filter associated to x. *)
(* F `=>` G <-> G is included in F; F and G are sets *)
(* of sets. *)
(* F --> G <-> the canonical filter associated to G *)
(* is included in the canonical filter *)
(* associated to F. *)
(* lim F == limit of the canonical filter *)
(* associated with F if there is such a *)
(* limit, i.e., an element l such that *)
(* the canonical filter associated to l *)
(* is a subset of F. *)
(* [lim F in T] == limit of the canonical filter *)
(* associated to F in T where T has type *)
(* filteredType U. *)
(* [cvg F in T] <-> the canonical filter associated to F *)
(* converges in T. *)
(* cvg F <-> same as [cvg F in T] where T is *)
(* inferred from the type of the *)
(* canonical filter associated to F. *)
(* Filter F == type class proving that the set of *)
(* sets F is a filter. *)
(* ProperFilter F == type class proving that the set of *)
(* sets F is a proper filter. *)
(* UltraFilter F == type class proving that the set of *)
(* sets F is an ultrafilter *)
(* filter_on T == interface type for sets of sets on T *)
(* that are filters. *)
(* FilterType F FF == packs the set of sets F with the proof *)
(* FF of Filter F to build a filter_on T *)
(* structure. *)
(* pfilter_on T == interface type for sets of sets on T *)
(* that are proper filters. *)
(* PFilterPack F FF == packs the set of sets F with the proof *)
(* FF of ProperFilter F to build a *)
(* pfilter_on T structure. *)
(* fmap f F == image of the filter F by the function *)
(* f *)
(* E @[x --> F] == image of the canonical filter *)
(* associated to F by the function *)
(* (fun x => E). *)
(* f @ F == image of the canonical filter *)
(* associated to F by the function f. *)
(* fmapi f F == image of the filter F by the relation *)
(* f *)
(* E `@[x --> F] == image of the canonical filter *)
(* associated to F by the relation *)
(* (fun x => E). *)
(* f `@ F == image of the canonical filter *)
(* associated to F by the relation f. *)
(* globally A == filter of the sets containing A. *)
(* @frechet_filter T := [set S : set T | finite_set (~` S)] *)
(* a.k.a. cofinite filter *)
(* at_point a == filter of the sets containing a. *)
(* within D F == restriction of the filter F to the *)
(* domain D. *)
(* principal_filter x == filter containing every superset of x. *)
(* subset_filter F D == similar to within D F, but with *)
(* dependent types. *)
(* powerset_filter_from F == The filter of downward closed subsets *)
(* of F. Enables use of near notation to *)
(* pick suitably small members of F *)
(* in_filter F == interface type for the sets that *)
(* belong to the set of sets F. *)
(* InFilter FP == packs a set P with a proof of F P to *)
(* build a in_filter F structure. *)
(* \oo == "eventually" filter on nat: set of *)
(* predicates on natural numbers that are *)
(* eventually true. *)
(* separate_points_from_closed f == For a closed set U and point x outside *)
(* some member of the family f sends *)
(* f_i(x) outside (closure (f_i @` U)). *)
(* Used together with join_product. *)
(* join_product f == The function (x => f ^~ x). When the *)
(* family f separates points from closed *)
(* sets, join_product is an embedding. *)
(* *)
(* * Near notations and tactics: *)
(* --> The purpose of the near notations and tactics is to make the *)
(* manipulation of filters easier. Instead of proving F G, one can *)
(* prove G x for x "near F", i.e. for x such that H x for H arbitrarily *)
(* precise as long as F H. The near tactics allow for a delayed *)
(* introduction of H: H is introduced as an existential variable and *)
(* progressively instantiated during the proof process. *)
(* --> Notations: *)
(* {near F, P} == the property P holds near the *)
(* canonical filter associated to F; P *)
(* must have the form forall x, Q x. *)
(* Equivalent to F Q. *)
(* \forall x \near F, P x <-> F (fun x => P x). *)
(* \near x, P x := \forall y \near x, P y. *)
(* {near F & G, P} == same as {near H, P}, where H is the *)
(* product of the filters F and G. *)
(* \forall x \near F & y \near G, P x y := {near F & G, forall x y, P x y}. *)
(* \forall x & y \near F, P x y == same as before, with G = F. *)
(* \near x & y, P x y := \forall z \near x & t \near y, P x y. *)
(* x \is_near F == x belongs to a set P : in_filter F. *)
(* --> Tactics: *)
(* - near=> x introduces x: *)
(* On the goal \forall x \near F, G x, introduces the variable x and an *)
(* "existential", and unaccessible hypothesis ?H x and asks the user to *)
(* prove (G x) in this context. *)
(* Under the hood delays the proof of F ?H and waits for near: x *)
(* Also exists under the form near=> x y. *)
(* - near: x discharges x: *)
(* On the goal H_i x, and where x \is_near F, it asks the user to prove *)
(* that (\forall x \near F, H_i x), provided that H_i x does not depend *)
(* on variables introduced after x. *)
(* Under the hood, it refines by intersection the existential variable *)
(* ?H attached to x, computes the intersection with F, and asks the *)
(* user to prove F H_i, right now *)
(* - end_near should be used to close remaining existentials trivially *)
(* - near F => x poses a variable near F, where F is a proper filter *)
(* adds to the context a variable x that \is_near F, i.e. one may *)
(* assume H x for any H in F. This new variable x can be dealt with *)
(* using near: x, as for variables introduced by near=>. *)
(* *)
(* * Topology : *)
(* topologicalType == interface type for topological space *)
(* structure. *)
(* TopologicalMixin nbhs_filt nbhsE == builds the mixin for a topological *)
(* space from the proofs that nbhs *)
(* outputs proper filters and defines the *)
(* same notion of neighbourhood as the *)
(* open sets. *)
(* topologyOfFilterMixin nbhs_filt nbhs_sing nbhs_nbhs == builds the mixin *)
(* for a topological space from the *)
(* properties of nbhs and hence assumes *)
(* that the carrier is a filterType *)
(* topologyOfOpenMixin opT opI op_bigU == builds the mixin for a *)
(* topological space from the properties *)
(* of open sets, assuming the carrier is *)
(* a pointed type. nbhs_of_open must be *)
(* used to declare a filterType. *)
(* topologyOfBaseMixin b_cover b_join == builds the mixin for a topological *)
(* space from the properties of a base of *)
(* open sets; the type of indices must be *)
(* a pointedType, as well as the carrier. *)
(* nbhs_of_open \o open_from must be *)
(* used to declare a filterType *)
(* topologyOfSubbaseMixin D b == builds the mixin for a topological *)
(* space from a subbase of open sets b *)
(* indexed on domain D; the type of *)
(* indices must be a pointedType. *)
(* TopologicalType T m == packs the mixin m to build a *)
(* topologicalType; T must have a *)
(* canonical structure of filteredType T. *)
(* weak_topologicalType f == weak topology by f : S -> T on S; S *)
(* must be a pointedType and T a *)
(* topologicalType. *)
(* sup_topologicalType Tc == supremum topology of the family of *)
(* topologicalType structures Tc on T; T *)
(* must be a pointedType. *)
(* product_topologicalType T == product topology of the family of *)
(* topologicalTypes T. *)
(* [topologicalType of T for cT] == T-clone of the topologicalType *)
(* structure cT. *)
(* [topologicalType of T] == clone of a canonical structure of *)
(* topologicalType on T. *)
(* open == set of open sets. *)
(* open_nbhs p == set of open neighbourhoods of p. *)
(* continuous f <-> f is continuous w.r.t the topology. *)
(* x^' == set of neighbourhoods of x where x is *)
(* excluded (a "deleted neighborhood"). *)
(* closure A == closure of the set A. *)
(* limit_point E == the set of limit points of E *)
(* closed == set of closed sets. *)
(* cluster F == set of cluster points of F. *)
(* compact == set of compact sets w.r.t. the filter- *)
(* based definition of compactness. *)
(* compact_near F == the filter F contains a closed comapct *)
(* set *)
(* precompact A == The set A is contained in a closed and *)
(* compact set *)
(* locally_compact A == every point in A has a compact *)
(* (and closed) neighborhood *)
(* hausdorff_space T <-> T is a Hausdorff space (T_2). *)
(* discrete_space T <-> every nbhs is a principal filter *)
(* finite_subset_cover D F A == the family of sets F is a cover of A *)
(* for a finite number of indices in D *)
(* cover_compact == set of compact sets w.r.t. the open *)
(* cover-based definition of compactness. *)
(* near_covering == a reformulation of covering compact *)
(* better suited for use with `near` *)
(* connected A <-> the only non empty subset of A which *)
(* is both open and closed in A is A. *)
(* kolmogorov_space T <-> T is a Kolmogorov space (T_0). *)
(* accessible_space T <-> T is an accessible space (T_1). *)
(* separated A B == the two sets A and B are separated *)
(* component x == the connected component of point x *)
(* perfect_set A == A is closed, and is every point in A *)
(* is a limit point of A. *)
(* [locally P] := forall a, A a -> G (within A (nbhs x)) *)
(* if P is convertible to G (globally A) *)
(* *)
(* * Function space topologies : *)
(* {uniform` A -> V} == The space U -> V, equipped with the topology of *)
(* uniform convergence from a set A to V, where *)
(* V is a uniformType. *)
(* {uniform U -> V} := {uniform` [set: U] -> V} *)
(* {uniform A, F --> f} == F converges to f in {uniform A -> V}. *)
(* {uniform, F --> f} := {uniform setT, F --> f} *)
(* {ptws U -> V} == The space U -> V, equipped with the topology of *)
(* pointwise convergence from U to V, where V is a *)
(* topologicalType. *)
(* {ptws, F --> f} == F converges to f in {ptws U -> V}. *)
(* {family fam, U -> V} == The space U -> V, equipped with the supremum *)
(* topology of {uniform A -> f} for each A in 'fam' *)
(* In particular {family compact, U -> V} is the *)
(* topology of compact convergence. *)
(* {family fam, F --> f} == F converges to f in {family fam, U -> V}. *)
(* *)
(* --> We used these topological notions to prove Tychonoff's Theorem, which *)
(* states that any product of compact sets is compact according to the *)
(* product topology. *)
(* * Uniform spaces : *)
(* nbhs_ ent == neighbourhoods defined using entourages *)
(* uniformType == interface type for uniform spaces: a *)
(* type equipped with entourages *)
(* UniformMixin efilter erefl einv esplit nbhse == builds the mixin for a *)
(* uniform space from the properties of *)
(* entourages and the compatibility between *)
(* entourages and nbhs *)
(* UniformType T m == packs the uniform space mixin into a *)
(* uniformType. T must have a canonical *)
(* structure of topologicalType *)
(* [uniformType of T for cT] == T-clone of the uniformType structure cT *)
(* [uniformType of T] == clone of a canonical structure of *)
(* uniformType on T *)
(* topologyOfEntourageMixin umixin == builds the mixin for a topological *)
(* space from a mixin for a uniform space *)
(* entourage == set of entourages in a uniform space *)
(* split_ent E == when E is an entourage, split_ent E is *)
(* an entourage E' such that E' \o E' is *)
(* included in E when seen as a relation *)
(* unif_continuous f <-> f is uniformly continuous. *)
(* weak_uniformType == the uniform space for weak topologies *)
(* sup_uniformType == the uniform space for sup topologies *)
(* *)
(* * PseudoMetric spaces : *)
(* entourage_ ball == entourages defined using balls *)
(* pseudoMetricType == interface type for pseudo metric space *)
(* structure: a type equipped with balls. *)
(* PseudoMetricMixin brefl bsym btriangle nbhsb == builds the mixin for a *)
(* pseudo metric space from the properties *)
(* of balls and the compatibility between *)
(* balls and entourages. *)
(* PseudoMetricType T m == packs the pseudo metric space mixin into *)
(* a pseudoMetricType. T must have a *)
(* canonical structure of uniformType. *)
(* [pseudoMetricType R of T for cT] == T-clone of the pseudoMetricType *)
(* structure cT, with R the ball radius. *)
(* [pseudoMetricType R of T] == clone of a canonical structure of *)
(* pseudoMetricType on T, with R the ball *)
(* radius. *)
(* uniformityOfBallMixin umixin == builds the mixin for a topological space *)
(* from a mixin for a pseudoMetric space. *)
(* ball x e == ball of center x and radius e. *)
(* nbhs_ball_ ball == nbhs defined using the given balls *)
(* nbhs_ball == nbhs defined using balls in a *)
(* pseudometric space *)
(* close x y <-> x and y are arbitrarily close w.r.t. to *)
(* balls. *)
(* weak_pseudoMetricType == the metric space for weak topologies *)
(* quotient_topology Q == the quotient topology corresponding to *)
(* quotient Q : quotType T. where T has *)
(* type topologicalType *)
(* *)
(* * Complete uniform spaces : *)
(* cauchy F <-> the set of sets F is a cauchy filter *)
(* (entourage definition) *)
(* completeType == interface type for a complete uniform *)
(* space structure. *)
(* CompleteType T cvgCauchy == packs the proof that every proper cauchy *)
(* filter on T converges into a *)
(* completeType structure; T must have a *)
(* canonical structure of uniformType. *)
(* [completeType of T for cT] == T-clone of the completeType structure *)
(* cT. *)
(* [completeType of T] == clone of a canonical structure of *)
(* completeType on T. *)
(* *)
(* * Complete pseudometric spaces : *)
(* cauchy_ex F <-> the set of sets F is a cauchy filter *)
(* (epsilon-delta definition). *)
(* cauchy F <-> the set of sets F is a cauchy filter *)
(* (using the near notations). *)
(* completePseudoMetricType == interface type for a complete *)
(* pseudometric space structure. *)
(* CompletePseudoMetricType T cvgCauchy == packs the proof that every proper *)
(* cauchy filter on T converges into a *)
(* completePseudoMetricType structure; T *)
(* must have a canonical structure of *)
(* pseudoMetricType. *)
(* [completePseudoMetricType of T for cT] == T-clone of the *)
(* completePseudoMetricType structure cT. *)
(* [completePseudoMetricType of T] == clone of a canonical structure of *)
(* completePseudoMetricType on T. *)
(* *)
(* ball_ N == balls defined by the norm/absolute *)
(* value N *)
(* dense S == the set (S : set T) is dense in T, with *)
(* T of type topologicalType *)
(* *)
(* * Subspaces of topological spaces : *)
(* subspace A == for (A : set T), this is a copy of T with *)
(* a topology that ignores points outside A *)
(* incl_subspace x == with x of type subspace A with (A : set T), *)
(* inclusion of subspace A into T *)
(* *)
(* * Arzela Ascoli' theorem : *)
(* singletons T := [set [set x] | x in [set: T]]. *)
(* equicontinuous W x == the set (W : X -> Y) is equicontinuous at x *)
(* pointwise_precompact W == For each (x : X), set of images [f x | f in W] *)
(* is precompact *)
(* *)
(* We endow several standard types with the types of topological notions: *)
(* - products: prod_topologicalType, prod_uniformType, prod_pseudoMetricType *)
(* - matrices: matrix_filtered, matrix_topologicalType, matrix_uniformType, *)
(* matrix_pseudoMetricType, matrix_completeType, *)
(* matrix_completePseudoMetricType *)
(* - nat: nat_filteredType, nat_topologicalType *)
(* - numFieldType: numField_filteredType, numField_topologicalType, *)
(* numField_uniformType, numField_pseudoMetricType (accessible with *)
(* "Import numFieldTopology.Exports.") *)
(******************************************************************************)
Reserved Notation "{ 'near' x , P }" (at level 0, format "{ 'near' x , P }").
Reserved Notation "'\forall' x '\near' x_0 , P"
(at level 200, x name, P at level 200,
format "'\forall' x '\near' x_0 , P").
Reserved Notation "'\near' x , P"
(at level 200, x at level 99, P at level 200,
format "'\near' x , P", only parsing).
Reserved Notation "{ 'near' x & y , P }"
(at level 0, format "{ 'near' x & y , P }").
Reserved Notation "'\forall' x '\near' x_0 & y '\near' y_0 , P"
(at level 200, x name, y name, P at level 200,
format "'\forall' x '\near' x_0 & y '\near' y_0 , P").
Reserved Notation "'\forall' x & y '\near' z , P"
(at level 200, x name, y name, P at level 200,
format "'\forall' x & y '\near' z , P").
Reserved Notation "'\near' x & y , P"
(at level 200, x, y at level 99, P at level 200,
format "'\near' x & y , P", only parsing).
Reserved Notation "[ 'filter' 'of' x ]" (format "[ 'filter' 'of' x ]").
Reserved Notation "F `=>` G" (at level 70, format "F `=>` G").
Reserved Notation "F --> G" (at level 70, format "F --> G").
Reserved Notation "[ 'lim' F 'in' T ]" (format "[ 'lim' F 'in' T ]").
Reserved Notation "[ 'cvg' F 'in' T ]" (format "[ 'cvg' F 'in' T ]").
Reserved Notation "x \is_near F" (at level 10, format "x \is_near F").
Reserved Notation "E @[ x --> F ]"
(at level 60, x name, format "E @[ x --> F ]").
Reserved Notation "f @ F" (at level 60, format "f @ F").
Reserved Notation "E `@[ x --> F ]"
(at level 60, x name, format "E `@[ x --> F ]").
Reserved Notation "f `@ F" (at level 60, format "f `@ F").
Reserved Notation "A ^°" (at level 1, format "A ^°").
Reserved Notation "[ 'locally' P ]" (at level 0, format "[ 'locally' P ]").
Reserved Notation "x ^'" (at level 2, format "x ^'").
Reserved Notation "{ 'within' A , 'continuous' f }"
(at level 70, A at level 69, format "{ 'within' A , 'continuous' f }").
Reserved Notation "{ 'uniform`' A -> V }"
(at level 0, A at level 69, format "{ 'uniform`' A -> V }").
Reserved Notation "{ 'uniform' U -> V }"
(at level 0, U at level 69, format "{ 'uniform' U -> V }").
Reserved Notation "{ 'uniform' A , F --> f }"
(at level 0, A at level 69, F at level 69,
format "{ 'uniform' A , F --> f }").
Reserved Notation "{ 'uniform' , F --> f }"
(at level 0, F at level 69,
format "{ 'uniform' , F --> f }").
Reserved Notation "{ 'ptws' U -> V }"
(at level 0, U at level 69, format "{ 'ptws' U -> V }").
Reserved Notation "{ 'ptws' , F --> f }"
(at level 0, F at level 69, format "{ 'ptws' , F --> f }").
Reserved Notation "{ 'family' fam , U -> V }"
(at level 0, U at level 69, format "{ 'family' fam , U -> V }").
Reserved Notation "{ 'family' fam , F --> f }"
(at level 0, F at level 69, format "{ 'family' fam , F --> f }").
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(* Making sure that [Program] does not automatically introduce *)
Obligation Tactic := idtac.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Section bigmaxmin.
Local Notation max := Order.max.
Local Notation min := Order.min.
Local Open Scope order_scope.
Variables (d : unit) (T : orderType d) (x : T) (I : finType) (P : pred I)
(m : T) (F : I -> T).
Lemma bigmax_geP : reflect (m <= x \/ exists2 i, P i & m <= F i)
(m <= \big[max/x]_(i | P i) F i).
Proof.
apply: (iffP idP) => [|[mx|[i Pi mFi]]].
- rewrite leNgt => /bigmax_ltP /not_andP[/negP|]; first by rewrite -leNgt; left.
by move=> /existsNP[i /not_implyP[Pi /negP]]; rewrite -leNgt; right; exists i.
- by rewrite bigmax_idl le_maxr mx.
- by rewrite (bigmaxD1 i)// le_maxr mFi.
Qed.
Lemma bigmax_gtP : reflect (m < x \/ exists2 i, P i & m < F i)
(m < \big[max/x]_(i | P i) F i).
Proof.
apply: (iffP idP) => [|[mx|[i Pi mFi]]].
- rewrite ltNge => /bigmax_leP /not_andP[/negP|]; first by rewrite -ltNge; left.
by move=> /existsNP[i /not_implyP[Pi /negP]]; rewrite -ltNge; right; exists i.
- by rewrite bigmax_idl lt_maxr mx.
- by rewrite (bigmaxD1 i)// lt_maxr mFi.
Qed.
Lemma bigmin_leP : reflect (x <= m \/ exists2 i, P i & F i <= m)
(\big[min/x]_(i | P i) F i <= m).
Proof.
apply: (iffP idP) => [|[xm|[i Pi Fim]]].
- rewrite leNgt => /bigmin_gtP /not_andP[/negP|]; first by rewrite -leNgt; left.
by move=> /existsNP[i /not_implyP[Pi /negP]]; rewrite -leNgt; right; exists i.
- by rewrite bigmin_idl le_minl xm.
- by rewrite (bigminD1 i)// le_minl Fim.
Qed.
Lemma bigmin_ltP : reflect (x < m \/ exists2 i, P i & F i < m)
(\big[min/x]_(i | P i) F i < m).
Proof.
apply: (iffP idP) => [|[xm|[i Pi Fim]]].
- rewrite ltNge => /bigmin_geP /not_andP[/negP|]; first by rewrite -ltNge; left.
by move=> /existsNP[i /not_implyP[Pi /negP]]; rewrite -ltNge; right; exists i.
- by rewrite bigmin_idl lt_minl xm.
- by rewrite (bigminD1 _ _ _ Pi) lt_minl Fim.
Qed.
End bigmaxmin.
Definition monotonous d (T : porderType d) (pT : predType T) (A : pT) (f : T -> T) :=
{in A &, {mono f : x y / (x <= y)%O}} \/ {in A &, {mono f : x y /~ (x <= y)%O}}.
Lemma and_prop_in (T : Type) (p : mem_pred T) (P Q : T -> Prop) :
{in p, forall x, P x /\ Q x} <->
{in p, forall x, P x} /\ {in p, forall x, Q x}.
Proof.
split=> [cnd|[cnd1 cnd2] x xin]; first by split=> x xin; case: (cnd x xin).
by split; [apply: cnd1 | apply: cnd2].
Qed.
Lemma mem_inc_segment d (T : porderType d) (a b : T) (f : T -> T) :
{in `[a, b] &, {mono f : x y / (x <= y)%O}} ->
{homo f : x / x \in `[a, b] >-> x \in `[f a, f b]}.
Proof.
move=> fle x xab; have leab : (a <= b)%O by rewrite (itvP xab).
by rewrite in_itv/= !fle ?(itvP xab).
Qed.
Lemma mem_dec_segment d (T : porderType d) (a b : T) (f : T -> T) :
{in `[a, b] &, {mono f : x y /~ (x <= y)%O}} ->
{homo f : x / x \in `[a, b] >-> x \in `[f b, f a]}.
Proof.
move=> fge x xab; have leab : (a <= b)%O by rewrite (itvP xab).
by rewrite in_itv/= !fge ?(itvP xab).
Qed.
Section Linear1.
Context (R : ringType) (U : lmodType R) (V : zmodType) (s : R -> V -> V).
Canonical linear_eqType := EqType {linear U -> V | s} gen_eqMixin.
Canonical linear_choiceType := ChoiceType {linear U -> V | s} gen_choiceMixin.
End Linear1.
Section Linear2.
Context (R : ringType) (U : lmodType R) (V : zmodType) (s : R -> V -> V)
(s_law : GRing.Scale.law s).
Canonical linear_pointedType := PointedType {linear U -> V | GRing.Scale.op s_law}
(@GRing.null_fun_linear R U V s s_law).
End Linear2.
Module Filtered.
(* Index a family of filters on a type, one for each element of the type *)
Definition nbhs_of U T := T -> set (set U).
Record class_of U T := Class {
base : Pointed.class_of T;
nbhs_op : nbhs_of U T
}.
Section ClassDef.
Variable U : Type.
Structure type := Pack { sort; _ : class_of U sort }.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c := cT return class_of U cT in c.
Definition clone c of phant_id class c := @Pack T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of U xT).
Local Coercion base : class_of >-> Pointed.class_of.
Definition pack m :=
fun bT b of phant_id (Pointed.class bT) b => @Pack T (Class b m).
Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition fpointedType := @Pointed.Pack cT xclass.
End ClassDef.
(* filter on arrow sources *)
Structure source Z Y := Source {
source_type :> Type;
_ : (source_type -> Z) -> set (set Y)
}.
Definition source_filter Z Y (F : source Z Y) : (F -> Z) -> set (set Y) :=
let: Source X f := F in f.
Module Exports.
Coercion sort : type >-> Sortclass.
Coercion base : class_of >-> Pointed.class_of.
Coercion nbhs_op : class_of >-> nbhs_of.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion fpointedType : type >-> Pointed.type.
Canonical fpointedType.
Notation filteredType := type.
Notation FilteredType U T m := (@pack U T m _ _ idfun).
Notation "[ 'filteredType' U 'of' T 'for' cT ]" := (@clone U T cT _ idfun)
(at level 0, format "[ 'filteredType' U 'of' T 'for' cT ]") : form_scope.
Notation "[ 'filteredType' U 'of' T ]" := (@clone U T _ _ id)
(at level 0, format "[ 'filteredType' U 'of' T ]") : form_scope.
(* The default filter for an arbitrary element is the one obtained *)
(* from its type *)
Canonical default_arrow_filter Y (Z : pointedType) (X : source Z Y) :=
FilteredType Y (X -> Z) (@source_filter _ _ X).
Canonical source_filter_filter Y :=
@Source Prop _ (_ -> Prop) (fun x : (set (set Y)) => x).
Canonical source_filter_filter' Y :=
@Source Prop _ (set _) (fun x : (set (set Y)) => x).
End Exports.
End Filtered.
Export Filtered.Exports.
Definition nbhs {U} {T : filteredType U} : T -> set (set U) :=
Filtered.nbhs_op (Filtered.class T).
Arguments nbhs {U T} _ _ : simpl never.
Definition filter_from {I T : Type} (D : set I) (B : I -> set T) : set (set T) :=
[set P | exists2 i, D i & B i `<=` P].
(* the canonical filter on matrices on X is the product of the canonical filter
on X *)
Canonical matrix_filtered m n X (Z : filteredType X) : filteredType 'M[X]_(m, n) :=
FilteredType 'M[X]_(m, n) 'M[Z]_(m, n) (fun mx => filter_from
[set P | forall i j, nbhs (mx i j) (P i j)]
(fun P => [set my : 'M[X]_(m, n) | forall i j, P i j (my i j)])).
Definition filter_prod {T U : Type}
(F : set (set T)) (G : set (set U)) : set (set (T * U)) :=
filter_from (fun P => F P.1 /\ G P.2) (fun P => P.1 `*` P.2).
Section Near.
Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0).
Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0).
Local Notation "{ 'all3' P }" := (forall x y z, P x y z: Prop) (at level 0).
Local Notation ph := (phantom _).
Definition prop_near1 {X} {fX : filteredType X} (x : fX)
P (phP : ph {all1 P}) := nbhs x P.
Definition prop_near2 {X X'} {fX : filteredType X} {fX' : filteredType X'}
(x : fX) (x' : fX') := fun P of ph {all2 P} =>
filter_prod (nbhs x) (nbhs x') (fun x => P x.1 x.2).
End Near.
Notation "{ 'near' x , P }" := (@prop_near1 _ _ x _ (inPhantom P)) : type_scope.
Notation "'\forall' x '\near' x_0 , P" := {near x_0, forall x, P} : type_scope.
Notation "'\near' x , P" := (\forall x \near x, P) : type_scope.
Notation "{ 'near' x & y , P }" :=
(@prop_near2 _ _ _ _ x y _ (inPhantom P)) : type_scope.
Notation "'\forall' x '\near' x_0 & y '\near' y_0 , P" :=
{near x_0 & y_0, forall x y, P} : type_scope.
Notation "'\forall' x & y '\near' z , P" :=
{near z & z, forall x y, P} : type_scope.
Notation "'\near' x & y , P" := (\forall x \near x & y \near y, P) : type_scope.
Arguments prop_near1 : simpl never.
Arguments prop_near2 : simpl never.
Lemma nearE {T} {F : set (set T)} (P : set T) : (\forall x \near F, P x) = F P.
Proof. by []. Qed.
Lemma eq_near {T} {F : set (set T)} (P Q : set T) :
(forall x, P x <-> Q x) ->
(\forall x \near F, P x) = (\forall x \near F, Q x).
Proof. by move=> /predeqP ->. Qed.
Definition filter_of X (fX : filteredType X) (x : fX) of phantom fX x :=
nbhs x.
Notation "[ 'filter' 'of' x ]" :=
(@filter_of _ _ _ (Phantom _ x)) : classical_set_scope.
Arguments filter_of _ _ _ _ _ /.
Lemma filter_of_filterE {T : Type} (F : set (set T)) : [filter of F] = F.
Proof. by []. Qed.
Lemma nbhs_filterE {T : Type} (F : set (set T)) : nbhs F = F.
Proof. by []. Qed.
Module Export NbhsFilter.
Definition nbhs_simpl := (@filter_of_filterE, @nbhs_filterE).
End NbhsFilter.
Definition cvg_to {T : Type} (F G : set (set T)) := G `<=` F.
Notation "F `=>` G" := (cvg_to F G) : classical_set_scope.
Lemma cvg_refl T (F : set (set T)) : F `=>` F.
Proof. exact. Qed.
Arguments cvg_refl {T F}.
#[global] Hint Resolve cvg_refl : core.
Lemma cvg_trans T (G F H : set (set T)) :
(F `=>` G) -> (G `=>` H) -> (F `=>` H).
Proof. by move=> FG GH P /GH /FG. Qed.
Notation "F --> G" := (cvg_to [filter of F] [filter of G]) : classical_set_scope.
Definition type_of_filter {T} (F : set (set T)) := T.
Definition lim_in {U : Type} (T : filteredType U) :=
fun F : set (set U) => get (fun l : T => F --> l).
Notation "[ 'lim' F 'in' T ]" := (@lim_in _ T [filter of F]) : classical_set_scope.
Notation lim F := [lim F in [filteredType _ of @type_of_filter _ [filter of F]]].
Notation "[ 'cvg' F 'in' T ]" := (F --> [lim F in T]) : classical_set_scope.
Notation cvg F := [cvg F in [filteredType _ of @type_of_filter _ [filter of F]]].
Section FilteredTheory.
Canonical filtered_prod X1 X2 (Z1 : filteredType X1)
(Z2 : filteredType X2) : filteredType (X1 * X2) :=
FilteredType (X1 * X2) (Z1 * Z2)
(fun x => filter_prod (nbhs x.1) (nbhs x.2)).
Lemma cvg_prod T {U U' V V' : filteredType T} (x : U) (l : U') (y : V) (k : V') :
x --> l -> y --> k -> (x, y) --> (l, k).
Proof.
move=> xl yk X [[X1 X2] /= [HX1 HX2] H]; exists (X1, X2) => //=.
split; [exact: xl | exact: yk].
Qed.
Lemma cvg_ex {U : Type} (T : filteredType U) (F : set (set U)) :
[cvg F in T] <-> (exists l : T, F --> l).
Proof. by split=> [cvg|/getPex//]; exists [lim F in T]. Qed.
Lemma cvgP {U : Type} (T : filteredType U) (F : set (set U)) (l : T) :
F --> l -> [cvg F in T].
Proof. by move=> Fl; apply/cvg_ex; exists l. Qed.
Lemma cvg_toP {U : Type} (T : filteredType U) (F : set (set U)) (l : T) :
[cvg F in T] -> [lim F in T] = l -> F --> l.
Proof. by move=> /[swap]->. Qed.
Lemma dvgP {U : Type} (T : filteredType U) (F : set (set U)) :
~ [cvg F in T] -> [lim F in T] = point.
Proof. by rewrite /lim_in /=; case xgetP. Qed.
Lemma cvgNpoint {U} (T : filteredType U) (F : set (set U)) :
[lim F in T] != point -> [cvg F in T].
Proof. by apply: contra_neqP; apply: dvgP. Qed.
End FilteredTheory.
Arguments cvgP {U T F} l.
Arguments dvgP {U} T {F}.
Lemma nbhs_nearE {U} {T : filteredType U} (x : T) (P : set U) :
nbhs x P = \near x, P x.
Proof. by []. Qed.
Lemma near_nbhs {U} {T : filteredType U} (x : T) (P : set U) :
(\forall x \near nbhs x, P x) = \near x, P x.
Proof. by []. Qed.
Lemma near2_curry {U V} (F : set (set U)) (G : set (set V)) (P : U -> set V) :
{near F & G, forall x y, P x y} = {near (F, G), forall x, P x.1 x.2}.
Proof. by []. Qed.
Lemma near2_pair {U V} (F : set (set U)) (G : set (set V)) (P : set (U * V)) :
{near F & G, forall x y, P (x, y)} = {near (F, G), forall x, P x}.
Proof. by symmetry; congr (nbhs _); rewrite predeqE => -[]. Qed.
Definition near2E := (@near2_curry, @near2_pair).
Lemma filter_of_nearI (X : Type) (fX : filteredType X)
(x : fX) (ph : phantom fX x) : forall P,
@filter_of X fX x ph P = @prop_near1 X fX x P (inPhantom (forall x, P x)).
Proof. by []. Qed.
Module Export NearNbhs.
Definition near_simpl := (@near_nbhs, @nbhs_nearE, filter_of_nearI).
Ltac near_simpl := rewrite ?near_simpl.
End NearNbhs.
Lemma near_swap {U V} (F : set (set U)) (G : set (set V)) (P : U -> set V) :
(\forall x \near F & y \near G, P x y) = (\forall y \near G & x \near F, P x y).
Proof.
rewrite propeqE; split => -[[/=A B] [FA FB] ABP];
by exists (B, A) => // -[x y] [/=Bx Ay]; apply: (ABP (y, x)).
Qed.
(** * Filters *)
(** ** Definitions *)
Class Filter {T : Type} (F : set (set T)) := {
filterT : F setT ;
filterI : forall P Q : set T, F P -> F Q -> F (P `&` Q) ;
filterS : forall P Q : set T, P `<=` Q -> F P -> F Q
}.
Global Hint Mode Filter - ! : typeclass_instances.
Class ProperFilter' {T : Type} (F : set (set T)) := {
filter_not_empty : not (F (fun _ => False)) ;
filter_filter' : Filter F
}.
(* TODO: Reuse :> above and remove the following line and the coercion below
after 8.17 is the minimum required version for Coq *)
Global Existing Instance filter_filter'.
Global Hint Mode ProperFilter' - ! : typeclass_instances.
Arguments filter_not_empty {T} F {_}.
Notation ProperFilter := ProperFilter'.
Lemma filter_setT (T' : Type) : Filter [set: set T'].
Proof. by constructor. Qed.
Lemma filterP_strong T (F : set (set T)) {FF : Filter F} (P : set T) :
(exists Q : set T, exists FQ : F Q, forall x : T, Q x -> P x) <-> F P.
Proof.
split; last by exists P.
by move=> [Q [FQ QP]]; apply: (filterS QP).
Qed.
Structure filter_on T := FilterType {
filter :> (T -> Prop) -> Prop;
_ : Filter filter
}.
Definition filter_class T (F : filter_on T) : Filter F :=
let: FilterType _ class := F in class.
Arguments FilterType {T} _ _.
#[global] Existing Instance filter_class.
(* Typeclasses Opaque filter. *)
Coercion filter_filter' : ProperFilter >-> Filter.
Structure pfilter_on T := PFilterPack {
pfilter :> (T -> Prop) -> Prop;
_ : ProperFilter pfilter
}.
Definition pfilter_class T (F : pfilter_on T) : ProperFilter F :=
let: PFilterPack _ class := F in class.
Arguments PFilterPack {T} _ _.
#[global] Existing Instance pfilter_class.
(* Typeclasses Opaque pfilter. *)
Canonical pfilter_filter_on T (F : pfilter_on T) :=
FilterType F (pfilter_class F).
Coercion pfilter_filter_on : pfilter_on >-> filter_on.
Definition PFilterType {T} (F : (T -> Prop) -> Prop)
{fF : Filter F} (fN0 : not (F set0)) :=
PFilterPack F (Build_ProperFilter' fN0 fF).
Arguments PFilterType {T} F {fF} fN0.
Canonical filter_on_eqType T := EqType (filter_on T) gen_eqMixin.
Canonical filter_on_choiceType T :=
ChoiceType (filter_on T) gen_choiceMixin.
Canonical filter_on_PointedType T :=
PointedType (filter_on T) (FilterType _ (filter_setT T)).
Canonical filter_on_FilteredType T :=
FilteredType T (filter_on T) (@filter T).
Global Instance filter_on_Filter T (F : filter_on T) : Filter F.
Proof. by case: F. Qed.
Global Instance pfilter_on_ProperFilter T (F : pfilter_on T) : ProperFilter F.
Proof. by case: F. Qed.
Lemma nbhs_filter_onE T (F : filter_on T) : nbhs F = nbhs (filter F).
Proof. by []. Qed.
Definition nbhs_simpl := (@nbhs_simpl, @nbhs_filter_onE).
Lemma near_filter_onE T (F : filter_on T) (P : set T) :
(\forall x \near F, P x) = \forall x \near filter F, P x.
Proof. by []. Qed.
Definition near_simpl := (@near_simpl, @near_filter_onE).
Program Definition trivial_filter_on T := FilterType [set setT : set T] _.
Next Obligation.
split=> // [_ _ -> ->|Q R sQR QT]; first by rewrite setIT.
by move; rewrite eqEsubset; split => // ? _; apply/sQR; rewrite QT.
Qed.
Canonical trivial_filter_on.
Lemma filter_nbhsT {T : Type} (F : set (set T)) :
Filter F -> nbhs F setT.
Proof. by move=> FF; apply: filterT. Qed.
#[global] Hint Resolve filter_nbhsT : core.
Lemma nearT {T : Type} (F : set (set T)) : Filter F -> \near F, True.
Proof. by move=> FF; apply: filterT. Qed.
#[global] Hint Resolve nearT : core.
Lemma filter_not_empty_ex {T : Type} (F : set (set T)) :
(forall P, F P -> exists x, P x) -> ~ F set0.
Proof. by move=> /(_ set0) ex /ex []. Qed.
Definition Build_ProperFilter {T : Type} (F : set (set T))
(filter_ex : forall P, F P -> exists x, P x)
(filter_filter : Filter F) :=
Build_ProperFilter' (filter_not_empty_ex filter_ex) (filter_filter).
Lemma filter_ex_subproof {T : Type} (F : set (set T)) :
~ F set0 -> (forall P, F P -> exists x, P x).
Proof.
move=> NFset0 P FP; apply: contra_notP NFset0 => nex; suff <- : P = set0 by [].
by rewrite funeqE => x; rewrite propeqE; split=> // Px; apply: nex; exists x.
Qed.
Definition filter_ex {T : Type} (F : set (set T)) {FF : ProperFilter F} :=
filter_ex_subproof (filter_not_empty F).
Arguments filter_ex {T F FF _}.
Lemma filter_getP {T : pointedType} (F : set (set T)) {FF : ProperFilter F}
(P : set T) : F P -> P (get P).
Proof. by move=> /filter_ex /getPex. Qed.
(* Near Tactic *)
Record in_filter T (F : set (set T)) := InFilter {
prop_in_filter_proj : T -> Prop;
prop_in_filterP_proj : F prop_in_filter_proj
}.
(* add ball x e as a canonical instance of nbhs x *)
Module Type PropInFilterSig.
Axiom t : forall (T : Type) (F : set (set T)), in_filter F -> T -> Prop.
Axiom tE : t = prop_in_filter_proj.
End PropInFilterSig.
Module PropInFilter : PropInFilterSig.
Definition t := prop_in_filter_proj.
Lemma tE : t = prop_in_filter_proj. Proof. by []. Qed.
End PropInFilter.
(* Coercion PropInFilter.t : in_filter >-> Funclass. *)
Notation prop_of := PropInFilter.t.
Definition prop_ofE := PropInFilter.tE.
Notation "x \is_near F" := (@PropInFilter.t _ F _ x).
Definition is_nearE := prop_ofE.
Lemma prop_ofP T F (iF : @in_filter T F) : F (prop_of iF).
Proof. by rewrite prop_ofE; apply: prop_in_filterP_proj. Qed.
Definition in_filterT T F (FF : Filter F) : @in_filter T F :=
InFilter (filterT).
Canonical in_filterI T F (FF : Filter F) (P Q : @in_filter T F) :=
InFilter (filterI (prop_in_filterP_proj P) (prop_in_filterP_proj Q)).
Lemma filter_near_of T F (P : @in_filter T F) (Q : set T) : Filter F ->
(forall x, prop_of P x -> Q x) -> F Q.
Proof.
by move: P => [P FP] FF /=; rewrite prop_ofE /= => /filterS; apply.
Qed.
Fact near_key : unit. Proof. exact. Qed.
Lemma mark_near (P : Prop) : locked_with near_key P -> P.
Proof. by rewrite unlock. Qed.
Lemma near_acc T F (P : @in_filter T F) (Q : set T) (FF : Filter F)
(FQ : \forall x \near F, Q x) :
locked_with near_key (forall x, prop_of (in_filterI FF P (InFilter FQ)) x -> Q x).
Proof. by rewrite unlock => x /=; rewrite !prop_ofE /= => -[Px]. Qed.
Lemma near_skip_subproof T F (P Q : @in_filter T F) (G : set T) (FF : Filter F) :
locked_with near_key (forall x, prop_of P x -> G x) ->
locked_with near_key (forall x, prop_of (in_filterI FF P Q) x -> G x).
Proof.
rewrite !unlock => FG x /=; rewrite !prop_ofE /= => -[Px Qx].
by have /= := FG x; apply; rewrite prop_ofE.
Qed.
Tactic Notation "near=>" ident(x) := apply: filter_near_of => x ?.
Ltac just_discharge_near x :=
tryif match goal with Hx : x \is_near _ |- _ => move: (x) (Hx); apply: mark_near end
then idtac else fail "the variable" x "is not a ""near"" variable".
Ltac near_skip :=
match goal with |- locked_with near_key (forall _, @PropInFilter.t _ _ ?P _ -> _) =>
tryif is_evar P then fail "nothing to skip" else apply: near_skip_subproof end.
Tactic Notation "near:" ident(x) :=
just_discharge_near x;
tryif do ![apply: near_acc; first shelve|near_skip]
then idtac
else fail "the goal depends on variables introduced after" x.
Ltac under_near i tac := near=> i; tac; near: i.
Tactic Notation "near=>" ident(i) "do" tactic1(tac) := under_near i ltac:(tac).
Tactic Notation "near=>" ident(i) "do" "[" tactic4(tac) "]" := near=> i do tac.
Tactic Notation "near" "do" tactic1(tac) :=
let i := fresh "i" in under_near i ltac:(tac).
Tactic Notation "near" "do" "[" tactic4(tac) "]" := near do tac.
Ltac end_near := do ?exact: in_filterT.
Ltac done :=
trivial; hnf; intros; solve
[ do ![solve [trivial | apply: sym_equal; trivial]
| discriminate | contradiction | split]
| case not_locked_false_eq_true; assumption
| match goal with H : ~ _ |- _ => solve [case H; trivial] end
| match goal with |- ?x \is_near _ => near: x; apply: prop_ofP end ].
Lemma have_near (U : Type) (fT : filteredType U) (x : fT) (P : Prop) :
ProperFilter (nbhs x) -> (\forall x \near x, P) -> P.
Proof. by move=> FF nP; have [] := @filter_ex _ _ FF (fun=> P). Qed.
Arguments have_near {U fT} x.
Tactic Notation "near" constr(F) "=>" ident(x) :=
apply: (have_near F); near=> x.
Lemma near T (F : set (set T)) P (FP : F P) (x : T)
(Px : prop_of (InFilter FP) x) : P x.
Proof. by move: Px; rewrite prop_ofE. Qed.
Arguments near {T F P} FP x Px.
Lemma nearW {T : Type} {F : set (set T)} (P : T -> Prop) :
Filter F -> (forall x, P x) -> (\forall x \near F, P x).
Proof. by move=> FF FP; apply: filterS filterT. Qed.
Lemma filterE {T : Type} {F : set (set T)} :
Filter F -> forall P : set T, (forall x, P x) -> F P.
Proof. by move=> [FT _ +] P fP => /(_ setT); apply. Qed.
Lemma filter_app (T : Type) (F : set (set T)) :
Filter F -> forall P Q : set T, F (fun x => P x -> Q x) -> F P -> F Q.
Proof. by move=> FF P Q subPQ FP; near=> x do suff: P x.
Unshelve. all: by end_near. Qed.
Lemma filter_app2 (T : Type) (F : set (set T)) :
Filter F -> forall P Q R : set T, F (fun x => P x -> Q x -> R x) ->