-
Notifications
You must be signed in to change notification settings - Fork 13
/
tf_util.py
195 lines (164 loc) · 6.58 KB
/
tf_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
""" Wrapper functions for TensorFlow layers.
Author: Charles R. Qi
Date: November 2016
downladed from: https://github.com/charlesq34/pointnet
"""
import numpy as np
import tensorflow as tf
def _variable_on_cpu(name, shape, initializer, use_fp16=False):
"""Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
with tf.device('/cpu:0'):
dtype = tf.float16 if use_fp16 else tf.float32
var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
return var
def _variable_with_weight_decay(name, shape, stddev, wd, use_xavier=True):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
use_xavier: bool, whether to use xavier initializer
Returns:
Variable Tensor
"""
if use_xavier:
initializer = tf.contrib.layers.xavier_initializer()
else:
initializer = tf.truncated_normal_initializer(stddev=stddev)
var = _variable_on_cpu(name, shape, initializer)
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def fully_connected(inputs,
num_outputs,
scope,
use_xavier=True,
stddev=1e-3,
weight_decay=0.0,
activation_fn=tf.nn.relu,
bn=False,
bn_decay=None,
is_training=None):
""" Fully connected layer with non-linear operation.
Args:
inputs: 2-D tensor BxN
num_outputs: int
Returns:
Variable tensor of size B x num_outputs.
"""
with tf.variable_scope(scope) as sc:
num_input_units = inputs.get_shape()[-1].value
weights = _variable_with_weight_decay('weights',
shape=[num_input_units, num_outputs],
use_xavier=use_xavier,
stddev=stddev,
wd=weight_decay)
outputs = tf.matmul(inputs, weights)
biases = _variable_on_cpu('biases', [num_outputs],
tf.constant_initializer(0.0))
outputs = tf.nn.bias_add(outputs, biases)
if bn:
outputs = batch_norm_for_fc(outputs, is_training, bn_decay, 'bn')
if activation_fn is not None:
outputs = activation_fn(outputs)
return outputs
def batch_norm_template(inputs, is_training, scope, moments_dims, bn_decay):
""" Batch normalization on convolutional maps and beyond...
Ref.: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow
Args:
inputs: Tensor, k-D input ... x C could be BC or BHWC or BDHWC
is_training: boolean tf.Varialbe, true indicates training phase
scope: string, variable scope
moments_dims: a list of ints, indicating dimensions for moments calculation
bn_decay: float or float tensor variable, controling moving average weight
Return:
normed: batch-normalized maps
"""
with tf.variable_scope(scope) as sc:
num_channels = inputs.get_shape()[-1].value
beta = tf.Variable(tf.constant(0.0, shape=[num_channels]),
name='beta', trainable=True)
gamma = tf.Variable(tf.constant(1.0, shape=[num_channels]),
name='gamma', trainable=True)
batch_mean, batch_var = tf.nn.moments(inputs, moments_dims, name='moments')
decay = bn_decay if bn_decay is not None else 0.9
ema = tf.train.ExponentialMovingAverage(decay=decay)
# Operator that maintains moving averages of variables.
ema_apply_op = tf.cond(is_training,
lambda: ema.apply([batch_mean, batch_var]),
lambda: tf.no_op())
# Update moving average and return current batch's avg and var.
def mean_var_with_update():
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
# ema.average returns the Variable holding the average of var.
mean, var = tf.cond(is_training,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(inputs, mean, var, beta, gamma, 1e-3)
return normed
def batch_norm_for_fc(inputs, is_training, bn_decay, scope):
""" Batch normalization on FC data.
Args:
inputs: Tensor, 2D BxC input
is_training: boolean tf.Varialbe, true indicates training phase
bn_decay: float or float tensor variable, controling moving average weight
scope: string, variable scope
Return:
normed: batch-normalized maps
"""
return batch_norm_template(inputs, is_training, scope, [0,], bn_decay)
def dropout(inputs,
is_training,
scope,
keep_prob=0.5,
noise_shape=None):
""" Dropout layer.
Args:
inputs: tensor
is_training: boolean tf.Variable
scope: string
keep_prob: float in [0,1]
noise_shape: list of ints
Returns:
tensor variable
"""
with tf.variable_scope(scope) as sc:
outputs = tf.cond(is_training,
lambda: tf.nn.dropout(inputs, keep_prob, noise_shape),
lambda: inputs)
return outputs
def max_pool2d(inputs,
kernel_size,
scope,
stride=[2, 2],
padding='VALID'):
""" 2D max pooling.
Args:
inputs: 4-D tensor BxHxWxC
kernel_size: a list of 2 ints
stride: a list of 2 ints
Returns:
Variable tensor
"""
with tf.variable_scope(scope) as sc:
kernel_h, kernel_w = kernel_size
stride_h, stride_w = stride
outputs = tf.nn.max_pool(inputs,
ksize=[1, kernel_h, kernel_w, 1],
strides=[1, stride_h, stride_w, 1],
padding=padding,
name=sc.name)
return outputs