-
Notifications
You must be signed in to change notification settings - Fork 2
/
hungarian.m
465 lines (368 loc) · 11.1 KB
/
hungarian.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
function [C,T]=hungarian(A)
%HUNGARIAN Solve the Assignment problem using the Hungarian method.
%
%[C,T]=hungarian(A)
%A - a square cost matrix.
%C - the optimal assignment.
%T - the cost of the optimal assignment.
%s.t. T = trace(A(C,:)) is minimized over all possible assignments.
% Adapted from the FORTRAN IV code in Carpaneto and Toth, "Algorithm 548:
% Solution of the assignment problem [H]", ACM Transactions on
% Mathematical Software, 6(1):104-111, 1980.
% v1.0 96-06-14. Niclas Borlin, [email protected].
% Department of Computing Science, Ume? University,
% Sweden.
% All standard disclaimers apply.
% A substantial effort was put into this code. If you use it for a
% publication or otherwise, please include an acknowledgement or at least
% notify me by email. /Niclas
[m,n]=size(A);
if (m~=n)
error('HUNGARIAN: Cost matrix must be square!');
end
% Save original cost matrix.
orig=A;
% Reduce matrix.
A=hminired(A);
% Do an initial assignment.
[A,C,U]=hminiass(A);
% Repeat while we have unassigned rows.
while (U(n+1))
% Start with no path, no unchecked zeros, and no unexplored rows.
LR=zeros(1,n);
LC=zeros(1,n);
CH=zeros(1,n);
RH=[zeros(1,n) -1];
% No labelled columns.
SLC=[];
% Start path in first unassigned row.
r=U(n+1);
% Mark row with end-of-path label.
LR(r)=-1;
% Insert row first in labelled row set.
SLR=r;
% Repeat until we manage to find an assignable zero.
while (1)
% If there are free zeros in row r
if (A(r,n+1)~=0)
% ...get column of first free zero.
l=-A(r,n+1);
% If there are more free zeros in row r and row r in not
% yet marked as unexplored..
if (A(r,l)~=0 & RH(r)==0)
% Insert row r first in unexplored list.
RH(r)=RH(n+1);
RH(n+1)=r;
% Mark in which column the next unexplored zero in this row
% is.
CH(r)=-A(r,l);
end
else
% If all rows are explored..
if (RH(n+1)<=0)
% Reduce matrix.
[A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR);
end
% Re-start with first unexplored row.
r=RH(n+1);
% Get column of next free zero in row r.
l=CH(r);
% Advance "column of next free zero".
CH(r)=-A(r,l);
% If this zero is last in the list..
if (A(r,l)==0)
% ...remove row r from unexplored list.
RH(n+1)=RH(r);
RH(r)=0;
end
end
% While the column l is labelled, i.e. in path.
while (LC(l)~=0)
% If row r is explored..
if (RH(r)==0)
% If all rows are explored..
if (RH(n+1)<=0)
% Reduce cost matrix.
[A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR);
end
% Re-start with first unexplored row.
r=RH(n+1);
end
% Get column of next free zero in row r.
l=CH(r);
% Advance "column of next free zero".
CH(r)=-A(r,l);
% If this zero is last in list..
if(A(r,l)==0)
% ...remove row r from unexplored list.
RH(n+1)=RH(r);
RH(r)=0;
end
end
% If the column found is unassigned..
if (C(l)==0)
% Flip all zeros along the path in LR,LC.
[A,C,U]=hmflip(A,C,LC,LR,U,l,r);
% ...and exit to continue with next unassigned row.
break;
else
% ...else add zero to path.
% Label column l with row r.
LC(l)=r;
% Add l to the set of labelled columns.
SLC=[SLC l];
% Continue with the row assigned to column l.
r=C(l);
% Label row r with column l.
LR(r)=l;
% Add r to the set of labelled rows.
SLR=[SLR r];
end
end
end
% Calculate the total cost.
T=sum(orig(logical(sparse(C,1:size(orig,2),1))));
function A=hminired(A)
%HMINIRED Initial reduction of cost matrix for the Hungarian method.
%
%B=assredin(A)
%A - the unreduced cost matris.
%B - the reduced cost matrix with linked zeros in each row.
% v1.0 96-06-13. Niclas Borlin, [email protected].
[m,n]=size(A);
% Subtract column-minimum values from each column.
colMin=min(A);
A=A-colMin(ones(n,1),:);
% Subtract row-minimum values from each row.
rowMin=min(A')';
A=A-rowMin(:,ones(1,n));
% Get positions of all zeros.
[i,j]=find(A==0);
% Extend A to give room for row zero list header column.
A(1,n+1)=0;
for k=1:n
% Get all column in this row.
cols=j(k==i)';
% Insert pointers in matrix.
A(k,[n+1 cols])=[-cols 0];
end
function [A,C,U]=hminiass(A)
%HMINIASS Initial assignment of the Hungarian method.
%
%[B,C,U]=hminiass(A)
%A - the reduced cost matrix.
%B - the reduced cost matrix, with assigned zeros removed from lists.
%C - a vector. C(J)=I means row I is assigned to column J,
% i.e. there is an assigned zero in position I,J.
%U - a vector with a linked list of unassigned rows.
% v1.0 96-06-14. Niclas Borlin, [email protected].
[n,np1]=size(A);
% Initalize return vectors.
C=zeros(1,n);
U=zeros(1,n+1);
% Initialize last/next zero "pointers".
LZ=zeros(1,n);
NZ=zeros(1,n);
for i=1:n
% Set j to first unassigned zero in row i.
lj=n+1;
j=-A(i,lj);
% Repeat until we have no more zeros (j==0) or we find a zero
% in an unassigned column (c(j)==0).
while (C(j)~=0)
% Advance lj and j in zero list.
lj=j;
j=-A(i,lj);
% Stop if we hit end of list.
if (j==0)
break;
end
end
if (j~=0)
% We found a zero in an unassigned column.
% Assign row i to column j.
C(j)=i;
% Remove A(i,j) from unassigned zero list.
A(i,lj)=A(i,j);
% Update next/last unassigned zero pointers.
NZ(i)=-A(i,j);
LZ(i)=lj;
% Indicate A(i,j) is an assigned zero.
A(i,j)=0;
else
% We found no zero in an unassigned column.
% Check all zeros in this row.
lj=n+1;
j=-A(i,lj);
% Check all zeros in this row for a suitable zero in another row.
while (j~=0)
% Check the in the row assigned to this column.
r=C(j);
% Pick up last/next pointers.
lm=LZ(r);
m=NZ(r);
% Check all unchecked zeros in free list of this row.
while (m~=0)
% Stop if we find an unassigned column.
if (C(m)==0)
break;
end
% Advance one step in list.
lm=m;
m=-A(r,lm);
end
if (m==0)
% We failed on row r. Continue with next zero on row i.
lj=j;
j=-A(i,lj);
else
% We found a zero in an unassigned column.
% Replace zero at (r,m) in unassigned list with zero at (r,j)
A(r,lm)=-j;
A(r,j)=A(r,m);
% Update last/next pointers in row r.
NZ(r)=-A(r,m);
LZ(r)=j;
% Mark A(r,m) as an assigned zero in the matrix . . .
A(r,m)=0;
% ...and in the assignment vector.
C(m)=r;
% Remove A(i,j) from unassigned list.
A(i,lj)=A(i,j);
% Update last/next pointers in row r.
NZ(i)=-A(i,j);
LZ(i)=lj;
% Mark A(r,m) as an assigned zero in the matrix . . .
A(i,j)=0;
% ...and in the assignment vector.
C(j)=i;
% Stop search.
break;
end
end
end
end
% Create vector with list of unassigned rows.
% Mark all rows have assignment.
r=zeros(1,n);
rows=C(C~=0);
r(rows)=rows;
empty=find(r==0);
% Create vector with linked list of unassigned rows.
U=zeros(1,n+1);
U([n+1 empty])=[empty 0];
function [A,C,U]=hmflip(A,C,LC,LR,U,l,r)
%HMFLIP Flip assignment state of all zeros along a path.
%
%[A,C,U]=hmflip(A,C,LC,LR,U,l,r)
%Input:
%A - the cost matrix.
%C - the assignment vector.
%LC - the column label vector.
%LR - the row label vector.
%U - the
%r,l - position of last zero in path.
%Output:
%A - updated cost matrix.
%C - updated assignment vector.
%U - updated unassigned row list vector.
% v1.0 96-06-14. Niclas Borlin, [email protected].
n=size(A,1);
while (1)
% Move assignment in column l to row r.
C(l)=r;
% Find zero to be removed from zero list..
% Find zero before this.
m=find(A(r,:)==-l);
% Link past this zero.
A(r,m)=A(r,l);
A(r,l)=0;
% If this was the first zero of the path..
if (LR(r)<0)
...remove row from unassigned row list and return.
U(n+1)=U(r);
U(r)=0;
return;
else
% Move back in this row along the path and get column of next zero.
l=LR(r);
% Insert zero at (r,l) first in zero list.
A(r,l)=A(r,n+1);
A(r,n+1)=-l;
% Continue back along the column to get row of next zero in path.
r=LC(l);
end
end
function [A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR)
%HMREDUCE Reduce parts of cost matrix in the Hungerian method.
%
%[A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR)
%Input:
%A - Cost matrix.
%CH - vector of column of 'next zeros' in each row.
%RH - vector with list of unexplored rows.
%LC - column labels.
%RC - row labels.
%SLC - set of column labels.
%SLR - set of row labels.
%
%Output:
%A - Reduced cost matrix.
%CH - Updated vector of 'next zeros' in each row.
%RH - Updated vector of unexplored rows.
% v1.0 96-06-14. Niclas Borlin, [email protected].
n=size(A,1);
% Find which rows are covered, i.e. unlabelled.
coveredRows=LR==0;
% Find which columns are covered, i.e. labelled.
coveredCols=LC~=0;
r=find(~coveredRows);
c=find(~coveredCols);
% Get minimum of uncovered elements.
m=min(min(A(r,c)));
% Subtract minimum from all uncovered elements.
A(r,c)=A(r,c)-m;
% Check all uncovered columns..
for j=c
% ...and uncovered rows in path order..
for i=SLR
% If this is a (new) zero..
if (A(i,j)==0)
% If the row is not in unexplored list..
if (RH(i)==0)
% ...insert it first in unexplored list.
RH(i)=RH(n+1);
RH(n+1)=i;
% Mark this zero as "next free" in this row.
CH(i)=j;
end
% Find last unassigned zero on row I.
row=A(i,:);
colsInList=-row(row<0);
if (length(colsInList)==0)
% No zeros in the list.
l=n+1;
else
l=colsInList(row(colsInList)==0);
end
% Append this zero to end of list.
A(i,l)=-j;
end
end
end
% Add minimum to all doubly covered elements.
r=find(coveredRows);
c=find(coveredCols);
% Take care of the zeros we will remove.
[i,j]=find(A(r,c)<=0);
i=r(i);
j=c(j);
for k=1:length(i)
% Find zero before this in this row.
lj=find(A(i(k),:)==-j(k));
% Link past it.
A(i(k),lj)=A(i(k),j(k));
% Mark it as assigned.
A(i(k),j(k))=0;
end
A(r,c)=A(r,c)+m;