-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathtest_pffft.cpp
377 lines (322 loc) · 11.5 KB
/
test_pffft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
Copyright (c) 2013 Julien Pommier ( [email protected] )
Copyright (c) 2020 Dario Mambro ( [email protected] )
Copyright (c) 2020 Hayati Ayguen ( [email protected] )
Small test & bench for PFFFT, comparing its performance with the scalar
FFTPACK, FFTW, and Apple vDSP
How to build:
on linux, with fftw3:
gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c
test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm
on macos, without fftw3:
clang -o test_pffft -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c
-L/usr/local/lib -I/usr/local/include/ -framework Accelerate
on macos, with fftw3:
clang -o test_pffft -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c
test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f
-framework Accelerate
as alternative: replace clang by gcc.
on windows, with visual c++:
cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffft.c pffft.c fftpack.c
build without SIMD instructions:
gcc -o test_pffft -DPFFFT_SIMD_DISABLE -O3 -Wall -W pffft.c test_pffft.c
fftpack.c -lm
*/
#include "pffft.hpp"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
/* define own constants required to turn off g++ extensions .. */
#ifndef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#endif
/* maximum allowed phase error in degree */
#define DEG_ERR_LIMIT 1E-4
/* maximum allowed magnitude error in amplitude (of 1.0 or 1.1) */
#define MAG_ERR_LIMIT 1E-6
#define PRINT_SPEC 0
#define PWR2LOG(PWR) ((PWR) < 1E-30 ? 10.0 * log10(1E-30) : 10.0 * log10(PWR))
template<typename T>
bool
Ttest(int N, bool useOrdered)
{
typedef pffft::Fft<T> Fft;
typedef typename pffft::Fft<T>::Scalar FftScalar;
typedef typename Fft::Complex FftComplex;
const bool cplx = pffft::Fft<T>::isComplexTransform();
const double EXPECTED_DYN_RANGE = Fft::isDoubleScalar() ? 215.0 : 140.0;
assert(Fft::isPowerOfTwo(N));
Fft fft = Fft(N); // instantiate and prepareLength() for length N
#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900)
// possible ways to declare/instatiate aligned vectors with C++11
// some lines require a typedef of above
auto X = fft.valueVector(); // for X = input vector
pffft::AlignedVector<typename Fft::Complex> Y = fft.spectrumVector(); // for Y = forward(X)
pffft::AlignedVector<FftScalar> R = fft.internalLayoutVector(); // for R = forwardInternalLayout(X)
pffft::AlignedVector<T> Z = fft.valueVector(); // for Z = inverse(Y) = inverse( forward(X) )
// or Z = inverseInternalLayout(R)
#else
// possible ways to declare/instatiate aligned vectors with C++98
pffft::AlignedVector<T> X = fft.valueVector(); // for X = input vector
pffft::AlignedVector<FftComplex> Y = fft.spectrumVector(); // for Y = forward(X)
pffft::AlignedVector<typename Fft::Scalar> R = fft.internalLayoutVector(); // for R = forwardInternalLayout(X)
pffft::AlignedVector<T> Z = fft.valueVector(); // for Z = inverse(Y) = inverse( forward(X) )
// or Z = inverseInternalLayout(R)
#endif
// work with complex - without the capabilities of a higher c++ standard
FftScalar* Xs = reinterpret_cast<FftScalar*>(X.data()); // for X = input vector
FftScalar* Ys = reinterpret_cast<FftScalar*>(Y.data()); // for Y = forward(X)
FftScalar* Zs = reinterpret_cast<FftScalar*>(Z.data()); // for Z = inverse(Y) = inverse( forward(X) )
int k, j, m, iter, kmaxOther;
bool retError = false;
double freq, dPhi, phi, phi0;
double pwr, pwrCar, pwrOther, err, errSum, mag, expextedMag;
double amp = 1.0;
for (k = m = 0; k < (cplx ? N : (1 + N / 2)); k += N / 16, ++m) {
amp = ((m % 3) == 0) ? 1.0F : 1.1F;
freq = (k < N / 2) ? ((double)k / N) : ((double)(k - N) / N);
dPhi = 2.0 * M_PI * freq;
if (dPhi < 0.0)
dPhi += 2.0 * M_PI;
iter = -1;
while (1) {
++iter;
if (iter)
printf("bin %d: dphi = %f for freq %f\n", k, dPhi, freq);
/* generate cosine carrier as time signal - start at defined phase phi0 */
phi = phi0 =
(m % 4) * 0.125 * M_PI; /* have phi0 < 90 deg to be normalized */
for (j = 0; j < N; ++j) {
if (cplx) {
Xs[2 * j] = (FftScalar)( amp * cos(phi) ); /* real part */
Xs[2 * j + 1] = (FftScalar)( amp * sin(phi) ); /* imag part */
} else
Xs[j] = (FftScalar)( amp * cos(phi) ); /* only real part */
/* phase increment .. stay normalized - cos()/sin() might degrade! */
phi += dPhi;
if (phi >= M_PI)
phi -= 2.0 * M_PI;
}
/* forward transform from X --> Y .. using work buffer W */
if (useOrdered)
fft.forward(X, Y);
else {
fft.forwardToInternalLayout(X, R); /* use R for reordering */
fft.reorderSpectrum(R, Y); /* have canonical order in Y[] for power calculations */
}
pwrOther = -1.0;
pwrCar = 0;
/* for positive frequencies: 0 to 0.5 * samplerate */
/* and also for negative frequencies: -0.5 * samplerate to 0 */
for (j = 0; j < (cplx ? N : (1 + N / 2)); ++j) {
if (!cplx && !j) /* special treatment for DC for real input */
pwr = Ys[j] * Ys[j];
else if (!cplx && j == N / 2) /* treat 0.5 * samplerate */
pwr = Ys[1] *
Ys[1]; /* despite j (for freq calculation) we have index 1 */
else
pwr = Ys[2 * j] * Ys[2 * j] + Ys[2 * j + 1] * Ys[2 * j + 1];
if (iter || PRINT_SPEC)
printf("%s fft %d: pwr[j = %d] = %g == %f dB\n",
(cplx ? "cplx" : "real"),
N,
j,
pwr,
PWR2LOG(pwr));
if (k == j)
pwrCar = pwr;
else if (pwr > pwrOther) {
pwrOther = pwr;
kmaxOther = j;
}
}
if (PWR2LOG(pwrCar) - PWR2LOG(pwrOther) < EXPECTED_DYN_RANGE) {
printf("%s fft %d amp %f iter %d:\n",
(cplx ? "cplx" : "real"),
N,
amp,
iter);
printf(" carrier power at bin %d: %g == %f dB\n",
k,
pwrCar,
PWR2LOG(pwrCar));
printf(" carrier mag || at bin %d: %g\n", k, sqrt(pwrCar));
printf(" max other pwr at bin %d: %g == %f dB\n",
kmaxOther,
pwrOther,
PWR2LOG(pwrOther));
printf(" dynamic range: %f dB\n\n",
PWR2LOG(pwrCar) - PWR2LOG(pwrOther));
retError = true;
if (iter == 0)
continue;
}
if (k > 0 && k != N / 2) {
phi = atan2(Ys[2 * k + 1], Ys[2 * k]);
if (fabs(phi - phi0) > DEG_ERR_LIMIT * M_PI / 180.0) {
retError = true;
printf("%s fft %d bin %d amp %f : phase mismatch! phase = %f deg "
"expected = %f deg\n",
(cplx ? "cplx" : "real"),
N,
k,
amp,
phi * 180.0 / M_PI,
phi0 * 180.0 / M_PI);
}
}
expextedMag = cplx ? amp : ((k == 0 || k == N / 2) ? amp : (amp / 2));
mag = sqrt(pwrCar) / N;
if (fabs(mag - expextedMag) > MAG_ERR_LIMIT) {
retError = true;
printf("%s fft %d bin %d amp %f : mag = %g expected = %g\n",
(cplx ? "cplx" : "real"),
N,
k,
amp,
mag,
expextedMag);
}
/* now convert spectrum back */
if (useOrdered)
fft.inverse(Y, Z);
else
fft.inverseFromInternalLayout(R, Z); /* inverse() from internal Layout */
errSum = 0.0;
for (j = 0; j < (cplx ? (2 * N) : N); ++j) {
/* scale back */
Zs[j] /= N;
/* square sum errors over real (and imag parts) */
err = (Xs[j] - Zs[j]) * (Xs[j] - Zs[j]);
errSum += err;
}
if (errSum > N * 1E-7) {
retError = true;
printf("%s fft %d bin %d : inverse FFT doesn't match original signal! "
"errSum = %g ; mean err = %g\n",
(cplx ? "cplx" : "real"),
N,
k,
errSum,
errSum / N);
}
break;
}
}
// using the std::vector<> base classes .. no need for alignedFree() for X, Y, Z and R
return retError;
}
bool
test(int N, bool useComplex, bool useOrdered)
{
if (useComplex) {
return
#ifdef PFFFT_ENABLE_FLOAT
Ttest< std::complex<float> >(N, useOrdered)
#endif
#if defined(PFFFT_ENABLE_FLOAT) && defined(PFFFT_ENABLE_DOUBLE)
&&
#endif
#ifdef PFFFT_ENABLE_DOUBLE
Ttest< std::complex<double> >(N, useOrdered)
#endif
;
} else {
return
#ifdef PFFFT_ENABLE_FLOAT
Ttest<float>(N, useOrdered)
#endif
#if defined(PFFFT_ENABLE_FLOAT) && defined(PFFFT_ENABLE_DOUBLE)
&&
#endif
#ifdef PFFFT_ENABLE_DOUBLE
Ttest<double>(N, useOrdered)
#endif
;
}
}
int
main(int argc, char** argv)
{
int N, result, resN, resAll, k, resNextPw2, resIsPw2, resFFT;
int inp_power_of_two[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 511, 512, 513 };
int ref_power_of_two[] = { 1, 2, 4, 4, 8, 8, 8, 8, 16, 512, 512, 1024 };
resNextPw2 = 0;
resIsPw2 = 0;
for (k = 0; k < (sizeof(inp_power_of_two) / sizeof(inp_power_of_two[0]));
++k) {
#ifdef PFFFT_ENABLE_FLOAT
N = pffft::Fft<float>::nextPowerOfTwo(inp_power_of_two[k]);
#else
N = pffft::Fft<double>::nextPowerOfTwo(inp_power_of_two[k]);
#endif
if (N != ref_power_of_two[k]) {
resNextPw2 = 1;
printf("pffft_next_power_of_two(%d) does deliver %d, which is not "
"reference result %d!\n",
inp_power_of_two[k],
N,
ref_power_of_two[k]);
}
#ifdef PFFFT_ENABLE_FLOAT
result = pffft::Fft<float>::isPowerOfTwo(inp_power_of_two[k]);
#else
result = pffft::Fft<double>::isPowerOfTwo(inp_power_of_two[k]);
#endif
if (inp_power_of_two[k] == ref_power_of_two[k]) {
if (!result) {
resIsPw2 = 1;
printf("pffft_is_power_of_two(%d) delivers false; expected true!\n",
inp_power_of_two[k]);
}
} else {
if (result) {
resIsPw2 = 1;
printf("pffft_is_power_of_two(%d) delivers true; expected false!\n",
inp_power_of_two[k]);
}
}
}
if (!resNextPw2)
printf("tests for pffft_next_power_of_two() succeeded successfully.\n");
if (!resIsPw2)
printf("tests for pffft_is_power_of_two() succeeded successfully.\n");
resFFT = 0;
for (N = 32; N <= 65536; N *= 2) {
result = test(N, 1 /* cplx fft */, 1 /* useOrdered */);
resN = result;
resFFT |= result;
result = test(N, 0 /* cplx fft */, 1 /* useOrdered */);
resN |= result;
resFFT |= result;
result = test(N, 1 /* cplx fft */, 0 /* useOrdered */);
resN |= result;
resFFT |= result;
result = test(N, 0 /* cplx fft */, 0 /* useOrdered */);
resN |= result;
resFFT |= result;
if (!resN)
printf("tests for size %d succeeded successfully.\n", N);
}
if (!resFFT)
printf("all pffft transform tests (FORWARD/BACKWARD, REAL/COMPLEX, "
#ifdef PFFFT_ENABLE_FLOAT
"float"
#endif
#if defined(PFFFT_ENABLE_FLOAT) && defined(PFFFT_ENABLE_DOUBLE)
"/"
#endif
#ifdef PFFFT_ENABLE_DOUBLE
"double"
#endif
") succeeded successfully.\n");
resAll = resNextPw2 | resIsPw2 | resFFT;
if (!resAll)
printf("all tests succeeded successfully.\n");
else
printf("there are failed tests!\n");
return resAll;
}