-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathframestacker.py
271 lines (243 loc) · 10.5 KB
/
framestacker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 6 18:23:37 2017
@author: Mark Dammer
This is the FrameStack class that does all the magic.
"""
from __future__ import division, print_function
import numpy as np
class FrameStack(object):
__slots__ = ['dyn_dark', 'filling_stack', 'flip_x', 'flip_y', 'blr_inp', 'blr_out',
'max_value', 'default_value', 'min_value', 'index', 'gain_inp', 'gain_out',
'offset_inp', 'offset_out', 'stacksize', 'stackrange', 'width', 'height',
'center_x', 'center_y', 'kernel_size', 'cumz',
'ulimit', 'llimit', 'pixelvalue', 'kernel_value', 'raw_inp', 'frame', 'tmp_frame',
'inp_frame', 'sum_frames', 'frame_stack', 'avg', 'sqd', 'sum_sqd', 'sqd_stack',
'dark_frame', 'var', 'sd', 'z', 'cumsum', 'left', 'right', 'upper', 'lower', 'full_avg', 'left_avg',
'left_diff', 'right_diff', 'upper_diff', 'lower_diff','left_sd', 'right_sd', 'upper_sd', 'lower_sd',
'right_avg', 'left_cumz', 'right_cumz', 'upper_cumz', 'lower_cumz',
'upper_avg', 'lower_avg', 'x_avg', 'y_avg', 'raw_out', 'float_out', 'r', 'c',
'max_inp', 'min_inp', 'max_out', 'min_out', 'kernel', 'i', 'proc_out',
'initframe', 'prefilter', 'trfilter', 'trpre', 'trflt']
def __init__(self, stacksize, stackrange, width, height):
self.width = int(width)
self.height = int(height)
self.center_x = int(self.width / 2)
self.center_y = int(self.height / 2)
self.dyn_dark = True
self.filling_stack = True
self.flip_x = False
self.flip_y = False
self.blr_inp = False
self.blr_out = False
self.left = []
self.right = []
self.upper = []
self.lower = []
self.left_diff = []
self.right_diff = []
self.upper_diff = []
self.lower_diff = []
self.full_avg = 0
self.left_avg = 0
self.right_avg = 0
self.upper_avg = 0
self.lower_avg = 0
self.left_cumz = 0
self.right_cumz = 0
self.upper_cumz = 0
self.lower_cumz = 0
self.left_sd = 0
self.right_sd = 0
self.upper_sd = 0
self.lower_sd = 0
self.max_value = 255
self.default_value = 127.5
self.min_value = 0
self.index = 0
self.gain_inp = 1.0
self.gain_out = 1.0
self.offset_inp = 0.0
self.offset_out = 0.0
self.stacksize = stacksize
self.stackrange = stackrange
self.kernel_size = 7
self.kernel = []
self.setKernel(self.kernel_size)
self.initframe = self.uniFrame(0)
self.initStack(self.stackrange)
self.resetCUMSUM()
def uniFrame(self, pixelvalue):
return np.full((self.height, self.width), pixelvalue, np.float32)
def setKernel(self, kernel_size):
self.kernel_size = kernel_size
self.kernel_value = float(1 / kernel_size)
self.kernel = [self.kernel_value for self.i in range(self.kernel_size)]
def addFrame(self, frame):
return self.addFloatFrame(np.float32(frame))
def addFloatFrame(self, frame):
self.raw_inp = frame
self.tmp_frame[:] = self.raw_inp
if self.flip_x:
self.tmp_frame = np.flipud(self.tmp_frame)
if self.flip_y:
self.tmp_frame = np.fliplr(self.tmp_frame)
self.frame = np.clip(
np.absolute(self.tmp_frame + self.offset_inp) * self.gain_inp, 0, 255)
if self.blr_inp:
for self.r in range(self.height):
self.frame[self.r, :] = np.convolve(
self.frame[self.r, :], self.kernel, 'same')
for self.c in range(self.width):
self.frame[:, self.c] = np.convolve(
self.frame[:, self.c], self.kernel, 'same')
self.inp_frame[:] = self.frame
self.sum_frames -= (self.frame_stack[self.index] - self.frame)
self.frame_stack[self.index] = self.frame
self.avg = self.sum_frames / self.stackrange
if self.dyn_dark == 1:
self.dark_frame = self.avg
self.sqd = np.square(self.frame - self.avg)
self.sum_sqd -= (self.sqd_stack[self.index] - self.sqd)
self.sqd_stack[self.index] = self.sqd
self.var = self.sum_sqd / self.stackrange
self.sd = np.sqrt(self.var)
self.z = (self.frame - self.avg) / self.sd
if self.index >= self.stackrange - 1:
self.index = 0
self.filling_stack = False
else:
self.index += 1
return self.filling_stack
def getINP(self):
return self.postProcess(self.inp_frame)
def getAVG(self):
return self.postProcess(self.avg)
def getVAR(self):
return self.postProcess(self.var)
def getSD(self):
return self.postProcess(np.sqrt(self.var))
def getDIFF(self):
return self.postProcess(np.absolute(self.inp_frame - self.dark_frame))
def getCUMSUM(self):
self.cumsum += (self.inp_frame - self.dark_frame)
return self.postProcess(np.absolute(self.cumsum))
def getCUMZ(self):
self.cumz += self.z
return self.postProcess(self.cumz)
def setVECROI(self, img):
self.left = img[0:self.height,0:self.center_x]
self.right = img[0:self.height,self.center_x:self.width]
self.upper = img[0:self.center_y,0:self.width]
self.lower = img[self.center_y:self.height,0:self.width]
return
def getVectorCUMZ(self, img):
self.setVECROI(img)
self.full_avg = np.nanmean(img)
self.left_avg = np.nanmean(self.left)
self.right_avg = np.nanmean(self.right)
self.upper_avg = np.nanmean(self.upper)
self.lower_avg = np.nanmean(self.lower)
self.left_diff = self.left - self.left_avg
self.left_sd = np.sqrt(np.sum(np.square(self.left_diff)) / self.left.size)
self.left_cumz += np.sum(self.left_diff / self.left_sd)
self.right_diff = self.right - self.right_avg
self.right_sd = np.sqrt(np.sum(np.square(self.right_diff)) / self.right.size)
self.right_cumz += np.sum(self.right_diff / self.right_sd)
self.upper_diff = self.upper - self.upper_avg
self.upper_sd = np.sqrt(np.sum(np.square(self.upper_diff)) / self.upper.size)
self.upper_cumz += np.sum(self.upper_diff / self.upper_sd)
self.lower_diff = self.lower - self.lower_avg
self.lower_sd = np.sqrt(np.sum(np.square(self.lower_diff)) / self.lower.size)
self.lower_cumz += np.sum(self.lower_diff / self.lower_sd)
self.x_avg = self.right_cumz - self.left_cumz
self.y_avg = self.upper_cumz - self.lower_cumz
return self.full_avg, self.x_avg, self.y_avg
def getVectorAVG(self, img):
self.setVECROI(img)
self.full_avg = np.nanmean(img)
self.left_avg = np.nanmean(self.left)
self.right_avg = np.nanmean(self.right)
self.upper_avg = np.nanmean(self.upper)
self.lower_avg = np.nanmean(self.lower)
self.x_avg = self.right_avg - self.left_avg
self.y_avg = self.upper_avg - self.lower_avg
return self.full_avg, self.x_avg, self.y_avg
def getTRFILTER(self, img):
self.prefilter = self.trfilter
self.trfilter = img
self.trpre = np.nanmean(abs(self.prefilter))
self.trflt = np.nanmean(abs(self.trfilter))
return self.trpre, self.trflt
def resetCUMSUM(self):
self.cumsum[:] = self.uniFrame(self.default_value)
self.cumz[:] = self.uniFrame(self.default_value)
def loadDark(self, frame):
self.dark_frame = np.float32(frame)
def postProcess(self, raw_out):
self.raw_out = raw_out
self.float_out = (self.raw_out + self.offset_out) * self.gain_out
self.proc_out = np.clip(self.float_out, self.min_value, self.max_value)
if self.blr_out:
for self.r in range(self.height):
self.proc_out[self.r, :] = np.convolve(
self.proc_out[self.r, :], self.kernel, 'same')
for self.c in range(self.width):
self.proc_out[:, self.c] = np.convolve(
self.proc_out[:, self.c], self.kernel, 'same')
return np.uint8(self.proc_out)
def autoInpGain(self):
self.max_inp = np.nanmax(self.raw_inp)
self.min_inp = np.nanmin(self.raw_inp)
gain_inp = 255.0 / abs(self.max_inp - self.min_inp)
offset_inp = -self.min_inp
return gain_inp, offset_inp
def autoOutGain(self):
self.max_out = np.nanmax(self.raw_out)
self.min_out = np.nanmin(self.raw_out)
gain_out = 255.0 / abs(self.max_out - self.min_out)
offset_out = -self.min_out
return gain_out, offset_out
def resetStack(self):
for self.i in range(self.stackrange):
self.frame_stack[self.i] = self.initframe
self.sqd_stack[self.i] = self.initframe
self.frame[:] = self.initframe
self.inp_frame[:] = self.initframe
self.raw_inp[:] = self.initframe
self.raw_out[:] = self.initframe
self.sum_frames[:] = self.initframe
self.sum_sqd[:] = self.initframe
self.z[:] = self.initframe
self.prefilter[:] = self.initframe
self.trfilter[:] = self.initframe
self.index = 0
self.resetCUMSUM()
self.filling_stack = True
def initStack(self, stackrange):
self.stackrange = stackrange
if self.stackrange > self.stacksize:
self.stackrange = self.stacksize
if self.stackrange < 1:
self.stackrange = 1
self.dark_frame = np.copy(self.initframe)
self.frame = np.copy(self.initframe)
self.tmp_frame = np.copy(self.initframe)
self.inp_frame = np.copy(self.initframe)
self.raw_inp = np.copy(self.initframe)
self.raw_out = np.copy(self.initframe)
self.sum_frames = np.copy(self.initframe)
self.sum_sqd = np.copy(self.initframe)
self.z = np.copy(self.initframe)
self.cumz = np.copy(self.initframe)
self.cumsum = np.copy(self.initframe)
self.prefilter = np.copy(self.initframe)
self.trfilter = np.copy(self.initframe)
self.frame_stack = []
self.sqd_stack = []
for self.i in range(self.stackrange):
self.frame_stack.append(np.copy(self.initframe))
self.sqd_stack.append(np.copy(self.initframe))
self.index = 0
self.filling_stack = True