-
Notifications
You must be signed in to change notification settings - Fork 2
/
runway_model.py
97 lines (73 loc) · 3.33 KB
/
runway_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# MIT License
# Copyright (c) 2019 Runway AI, Inc
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# =========================================================================
# This example contains the minimum specifications and requirements
# to port a machine learning model to Runway.
# For more instructions on how to port a model to Runway, see the Runway Model
# SDK docs at https://sdk.runwayml.com
# RUNWAY
# www.runwayml.com
# =========================================================================
# Import the Runway SDK. Please install it first with
# `pip install runway-python`.
import runway
from runway.data_types import number, text, image, vector
import pickle
import numpy as np
import tensorflow as tf
import dnnlib.tflib as tflib
import runway
import re
import dnnlib
import dnnlib.tflib as tflib
np.random.seed(0)
tf.random.set_random_seed(0)
# Setup the model, initialize weights, set the configs of the model, etc.
# Every model will have a different set of configurations and requirements.
# Check https://docs.runwayapp.ai/#/python-sdk to see a complete list of
# supported configs. The setup function should return the model ready to be
# used.
@runway.setup(options={'checkpoint': runway.file(extension='.pkl')})
def setup(opts):
global Gs
tflib.init_tf()
# with open(opts['checkpoint'], 'rb') as file:
# G, D, Gs = pickle.load(file)
# Turn this on to develop locally
with open('model.pkl', 'rb') as file:
G, D, Gs = pickle.load(file)
return Gs
generate_inputs = {
'z': runway.vector(512, sampling_std=0.5),
'truncation': runway.number(min=0, max=3, default=0.8, step=0.01)
}
@runway.command('generate', inputs=generate_inputs, outputs={'image': runway.image})
def convert(model, inputs):
z = inputs['z']
truncation = inputs['truncation']
latents = z.reshape((1, 512))
label = np.zeros([1] + Gs.input_shapes[1][1:])
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
images = model.run(latents, label, truncation_psi=truncation, randomize_noise=False, output_transform=fmt)
output = np.clip(images[0], 0, 255).astype(np.uint8)
return {'image': output}
if __name__ == '__main__':
# run the model server using the default network interface and ports,
# displayed here for convenience
runway.run(host='0.0.0.0', port=8000)