-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmain_attention.py
355 lines (313 loc) · 13.9 KB
/
main_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import sys
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from keras.layers import Dense, Input, GlobalMaxPooling1D
from keras.layers import Conv1D, MaxPooling1D, Embedding
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.optimizers import Adam
from keras.models import Model
from keras.initializers import Constant
from keras.layers import Bidirectional, TimeDistributed
from keras import backend as K
from keras import regularizers
from keras.engine.topology import Layer
from keras.models import Sequential, Model
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer, text_to_word_sequence
from keras.utils.np_utils import to_categorical
from keras.layers import Dense, Embedding, Input, CuDNNGRU, GlobalMaxPooling1D, BatchNormalization, TimeDistributed, Flatten
from keras.layers import Convolution1D, Dropout, GRU
from keras_preprocessing import sequence
import seaborn as sns
from keras import backend as K
from keras.engine.topology import Layer
from nltk.tokenize import TweetTokenizer
import datetime
from scipy import stats
from scipy.sparse import hstack, csr_matrix
from sklearn.model_selection import train_test_split, cross_val_score
from wordcloud import WordCloud
from collections import Counter
from nltk.corpus import stopwords
from nltk.util import ngrams
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
from sklearn.multiclass import OneVsRestClassifier
pd.set_option('max_colwidth',400)
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Dense, Input, LSTM, Embedding, Dropout, Activation, Conv1D, GRU, CuDNNGRU, CuDNNLSTM, BatchNormalization
from keras.layers import Bidirectional, GlobalMaxPool1D, MaxPooling1D, Add, Flatten
from keras.layers import GlobalAveragePooling1D, GlobalMaxPooling1D, concatenate, SpatialDropout1D
from keras.models import Model, load_model
from keras import initializers, regularizers, constraints, optimizers, layers, callbacks
from keras import backend as K
from keras.engine import InputSpec, Layer
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, TensorBoard, Callback, EarlyStopping
from sklearn.preprocessing import OneHotEncoder
from tqdm import tqdm
import re
import nltk
from sklearn.utils import shuffle
from tqdm import tqdm
#nltk.download('stopwords')
from sklearn import metrics
train_path = '/LIAR-PLUS/dataset/train2.tsv'
test_path = '/LIAR-PLUS/dataset/test2.tsv'
val_path = '/LIAR-PLUS/dataset/val2.tsv'
train_df = pd.read_csv(train_path, sep="\t", header=None)
test_df = pd.read_csv(test_path, sep="\t", header=None)
val_df = pd.read_csv(val_path, sep="\t", header=None)
train = train_df.values
test = test_df.values
val = val_df.values
labels = {'train':[train[i][2] for i in range(len(train))], 'test':[test[i][2] for i in range(len(test))], 'val':[val[i][2] for i in range(len(val))]}
statements = {'train':[train[i][3] for i in range(len(train))], 'test':[test[i][3] for i in range(len(test))], 'val':[val[i][3] for i in range(len(val))]}
subjects = {'train':[train[i][4] for i in range(len(train))], 'test':[test[i][4] for i in range(len(test))], 'val':[val[i][4] for i in range(len(val))]}
speaker = {'train':[train[i][5] for i in range(len(train))], 'test':[test[i][5] for i in range(len(test))], 'val':[val[i][5] for i in range(len(val))]}
job = {'train':[train[i][6] for i in range(len(train))], 'test':[test[i][6] for i in range(len(test))], 'val':[val[i][6] for i in range(len(val))]}
state = {'train':[train[i][7] for i in range(len(train))], 'test':[test[i][7] for i in range(len(test))], 'val':[val[i][7] for i in range(len(val))]}
affiliation = {'train':[train[i][8] for i in range(len(train))], 'test':[test[i][8] for i in range(len(test))], 'val':[val[i][8] for i in range(len(val))]}
credit = {'train':[train[i][9:14] for i in range(len(train))], 'test':[test[i][9:14] for i in range(len(test))], 'val':[val[i][9:14] for i in range(len(val))]}
context = {'train':[train[i][14] for i in range(len(train))], 'test':[test[i][14] for i in range(len(test))], 'val':[val[i][14] for i in range(len(val))]}
justification = {'train':[train[i][15] for i in range(len(train))], 'test':[test[i][15] for i in range(len(test))], 'val':[val[i][15] for i in range(len(val))]}
def to_onehot(a):
a_cat = [0]*len(a)
for i in range(len(a)):
if a[i]=='true':
a_cat[i] = [1,0,0,0,0,0]
elif a[i]=='mostly-true':
a_cat[i] = [0,1,0,0,0,0]
elif a[i]=='half-true':
a_cat[i] = [0,0,1,0,0,0]
elif a[i]=='barely-true':
a_cat[i] = [0,0,0,1,0,0]
elif a[i]=='false':
a_cat[i] = [0,0,0,0,1,0]
elif a[i]=='pants-fire':
a_cat[i] = [0,0,0,0,0,1]
else:
print('Incorrect label')
return a_cat
def to_onehot(a):
a_cat = [0]*len(a)
for i in range(len(a)):
if a[i]=='true':
a_cat[i] = [1,0]
elif a[i]=='mostly-true':
a_cat[i] = [1,0]
elif a[i]=='half-true':
a_cat[i] = [1,0]
elif a[i]=='barely-true':
a_cat[i] = [0,1]
elif a[i]=='false':
a_cat[i] = [0,1]
elif a[i]=='pants-fire':
a_cat[i] = [0,1]
else:
print('Incorrect label')
return a_cat
labels_onehot = {'train':to_onehot(labels['train']), 'test':to_onehot(labels['test']), 'val':to_onehot(labels['val'])}
BASE_DIR = '/home/ubuntu/fake_news'
GLOVE_DIR = os.path.join(BASE_DIR, 'glove.6B')
TEXT_DATA_DIR = os.path.join(BASE_DIR, 'LIAR-PLUS/dataset')
MAX_SEQUENCE_LENGTH = 1000
MAX_NUM_WORDS = 20000
EMBEDDING_DIM = 100
NUM_FILTERS = 50
WINDOW_SIZE = 8
# first, build index mapping words in the embeddings set
# to their embedding vector
print('Indexing word vectors.')
embeddings_index = {}
with open(os.path.join(GLOVE_DIR, 'glove.6B.100d.txt')) as f:
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
print('Found %s word vectors.' % len(embeddings_index))
# Train
tokenizer = Tokenizer(num_words=MAX_NUM_WORDS)
tokenizer.fit_on_texts(statements['train'])
sequences_train = tokenizer.texts_to_sequences(statements['train'])
word_index = tokenizer.word_index
print('Found %s unique tokens in Train.' % len(word_index))
data_train = pad_sequences(sequences_train, maxlen=MAX_SEQUENCE_LENGTH)
print('Shape of Train data tensor:', data_train.shape)
# Test
#tokenizer = Tokenizer(num_words=MAX_NUM_WORDS)
tokenizer.fit_on_texts(statements['test'])
sequences_test = tokenizer.texts_to_sequences(statements['test'])
word_index = tokenizer.word_index
print('Found %s unique tokens in Test.' % len(word_index))
data_test = pad_sequences(sequences_test, maxlen=MAX_SEQUENCE_LENGTH)
print('Shape of Test data tensor:', data_test.shape)
# Val
#tokenizer = Tokenizer(num_words=MAX_NUM_WORDS)
tokenizer.fit_on_texts(statements['val'])
sequences_val = tokenizer.texts_to_sequences(statements['val'])
word_index = tokenizer.word_index
print('Found %s unique tokens in val.' % len(word_index))
data_val = pad_sequences(sequences_val, maxlen=MAX_SEQUENCE_LENGTH)
print('Shape of val data tensor:', data_val.shape)
#word_index_ = {**word_index_train, **word_index_test, **word_index_val}
x_train = data_train
y_train = np.asarray(labels_onehot['train'])
x_val = data_val
y_val = np.asarray(labels_onehot['val'])
x_test = data_test
y_test = np.asarray(labels_onehot['test'])
print('Preparing embedding matrix.')
# prepare embedding matrix
num_words = min(MAX_NUM_WORDS, len(word_index)) + 1
print(num_words)
embedding_matrix = np.zeros((num_words, EMBEDDING_DIM))
for word, i in word_index.items():
if i > MAX_NUM_WORDS:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
# load pre-trained word embeddings into an Embedding layer
# note that we set trainable = False so as to keep the embeddings fixed
embedding_layer = Embedding(num_words,
EMBEDDING_DIM,
embeddings_initializer=Constant(embedding_matrix),
input_length=MAX_SEQUENCE_LENGTH,
trainable=False)
class Position_Embedding(Layer):
def __init__(self, size=None, mode='sum', **kwargs):
self.size = size
self.mode = mode
super(Position_Embedding, self).__init__(**kwargs)
def call(self, x):
if (self.size == None) or (self.mode == 'sum'):
self.size = int(x.shape[-1])
batch_size,seq_len = K.shape(x)[0],K.shape(x)[1]
position_j = 1. / K.pow(10000., \
2 * K.arange(self.size / 2, dtype='float32' \
) / self.size)
position_j = K.expand_dims(position_j, 0)
position_i = K.cumsum(K.ones_like(x[:,:,0]), 1)-1
position_i = K.expand_dims(position_i, 2)
position_ij = K.dot(position_i, position_j)
position_ij = K.concatenate([K.cos(position_ij), K.sin(position_ij)], 2)
if self.mode == 'sum':
return position_ij + x
elif self.mode == 'concat':
return K.concatenate([position_ij, x], 2)
def compute_output_shape(self, input_shape):
if self.mode == 'sum':
return input_shape
elif self.mode == 'concat':
return (input_shape[0], input_shape[1], input_shape[2]+self.size)
'''
output dimention: [batch_size, time_step, nb_head*size_per_head]
every word can be represented as a vector [nb_head*size_per_head]
'''
class Attention(Layer):
def __init__(self, nb_head, size_per_head, **kwargs):
self.nb_head = nb_head
self.size_per_head = size_per_head
self.output_dim = nb_head*size_per_head
super(Attention, self).__init__(**kwargs)
def build(self, input_shape):
self.WQ = self.add_weight(name='WQ',
shape=(input_shape[0][-1], self.output_dim),
initializer='glorot_uniform',
trainable=True)
self.WK = self.add_weight(name='WK',
shape=(input_shape[1][-1], self.output_dim),
initializer='glorot_uniform',
trainable=True)
self.WV = self.add_weight(name='WV',
shape=(input_shape[2][-1], self.output_dim),
initializer='glorot_uniform',
trainable=True)
super(Attention, self).build(input_shape)
def Mask(self, inputs, seq_len, mode='mul'):
if seq_len == None:
return inputs
else:
mask = K.one_hot(seq_len[:,0], K.shape(inputs)[1])
mask = 1 - K.cumsum(mask, 1)
for _ in range(len(inputs.shape)-2):
mask = K.expand_dims(mask, 2)
if mode == 'mul':
return inputs * mask
if mode == 'add':
return inputs - (1 - mask) * 1e12
def call(self, x):
if len(x) == 3:
Q_seq,K_seq,V_seq = x
Q_len,V_len = None,None
elif len(x) == 5:
Q_seq,K_seq,V_seq,Q_len,V_len = x
Q_seq = K.dot(Q_seq, self.WQ)
Q_seq = K.reshape(Q_seq, (-1, K.shape(Q_seq)[1], self.nb_head, self.size_per_head))
Q_seq = K.permute_dimensions(Q_seq, (0,2,1,3))
K_seq = K.dot(K_seq, self.WK)
K_seq = K.reshape(K_seq, (-1, K.shape(K_seq)[1], self.nb_head, self.size_per_head))
K_seq = K.permute_dimensions(K_seq, (0,2,1,3))
V_seq = K.dot(V_seq, self.WV)
V_seq = K.reshape(V_seq, (-1, K.shape(V_seq)[1], self.nb_head, self.size_per_head))
V_seq = K.permute_dimensions(V_seq, (0,2,1,3))
A = K.batch_dot(Q_seq, K_seq, axes=[3,3]) / self.size_per_head**0.5
A = K.permute_dimensions(A, (0,3,2,1))
A = self.Mask(A, V_len, 'add')
A = K.permute_dimensions(A, (0,3,2,1))
A = K.softmax(A)
O_seq = K.batch_dot(A, V_seq, axes=[3,2])
O_seq = K.permute_dimensions(O_seq, (0,2,1,3))
O_seq = K.reshape(O_seq, (-1, K.shape(O_seq)[1], self.output_dim))
O_seq = self.Mask(O_seq, Q_len, 'mul')
return O_seq
def compute_output_shape(self, input_shape):
return (input_shape[0][0], input_shape[0][1], self.output_dim)
config = {
"trainable": False,
"max_len": 70,
"max_features": 95000,
"embed_size": 300,
"units": 64,
"num_heads": 8,
"dr": 0.5,
"epochs": 2,
"model_checkpoint_path": "best_weights",
}
def build_model(config):
inp = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
x = embedding_layer(inp)
x = Position_Embedding()(x)
x = Attention(config["num_heads"], config["units"])([x, x, x]) #output: [batch_size, time_step, nb_head*size_per_head]
x = GlobalAveragePooling1D()(x)
x = Dropout(config["dr"])(x)
x = Dense(2, activation='softmax')(x)
model = Model(inputs = inp, outputs = x)
model.compile(
loss = "categorical_crossentropy",
#optimizer = Adam(lr = config["lr"], decay = config["lr_d"]),
optimizer = Adam(lr=0.0001),
metrics = ["accuracy"])
return model
'''model.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=0.001),
metrics=['accuracy'])
'''
model = build_model(config)
model.fit(x_train, y_train,
batch_size=64,
epochs=20,
validation_data=(x_val, y_val))
model.save('model_attention.h5')