-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathutils.py
202 lines (176 loc) · 7.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
import time
import datasets
import torchvision.transforms as transforms
import numpy as np
from sklearn.metrics.cluster import normalized_mutual_info_score
import sklearn
from sklearn.cluster import KMeans
def kNN(epoch, net, trainloader, testloader, K, sigma, ndata, low_dim = 128):
net.eval()
net_time = AverageMeter()
cls_time = AverageMeter()
total = 0
correct_t = 0
testsize = testloader.dataset.__len__()
if hasattr(trainloader.dataset, 'imgs'):
trainLabels = torch.LongTensor([y for (p, y) in trainloader.dataset.imgs]).cuda()
else:
try:
trainLabels = torch.LongTensor(trainloader.dataset.train_labels).cuda()
except:
trainLabels = torch.LongTensor(trainloader.dataset.labels).cuda()
trainFeatures = np.zeros((low_dim, ndata))
C = trainLabels.max() + 1
C = np.int(C)
with torch.no_grad():
transform_bak = trainloader.dataset.transform
trainloader.dataset.transform = testloader.dataset.transform
temploader = torch.utils.data.DataLoader(trainloader.dataset, batch_size=100, shuffle=False, num_workers=4)
for batch_idx, (inputs, _, targets, indexes) in enumerate(temploader):
targets = targets.cuda(async=True)
batchSize = inputs.size(0)
features = net(inputs)
#
trainFeatures[:, batch_idx*batchSize:batch_idx*batchSize+batchSize] = features.data.t()
trainloader.dataset.transform = transform_bak
#
trainFeatures = torch.Tensor(trainFeatures).cuda()
top1 = 0.
top5 = 0.
end = time.time()
with torch.no_grad():
retrieval_one_hot = torch.zeros(K, C).cuda()
for batch_idx, (inputs, targets, indexes) in enumerate(testloader):
end = time.time()
targets = targets.cuda(async=True)
batchSize = inputs.size(0)
features = net(inputs)
total += targets.size(0)
net_time.update(time.time() - end)
end = time.time()
dist = torch.mm(features, trainFeatures)
yd, yi = dist.topk(K, dim=1, largest=True, sorted=True)
candidates = trainLabels.view(1,-1).expand(batchSize, -1)
retrieval = torch.gather(candidates, 1, yi)
retrieval_one_hot.resize_(batchSize * K, C).zero_()
retrieval_one_hot.scatter_(1, retrieval.view(-1, 1), 1)
yd_transform = yd.clone().div_(sigma).exp_()
probs = torch.sum(torch.mul(retrieval_one_hot.view(batchSize, -1 , C), yd_transform.view(batchSize, -1, 1)), 1)
_, predictions = probs.sort(1, True)
# Find which predictions match the target
correct = predictions.eq(targets.data.view(-1,1))
cls_time.update(time.time() - end)
top1 = top1 + correct.narrow(1,0,1).sum().item()
top5 = top5 + correct.narrow(1,0,5).sum().item()
print('Test [{}/{}]\t'
'Net Time {net_time.val:.3f} ({net_time.avg:.3f})\t'
'Cls Time {cls_time.val:.3f} ({cls_time.avg:.3f})\t'
'Top1: {:.2f} Top5: {:.2f}'.format(
total, testsize, top1*100./total, top5*100./total, net_time=net_time, cls_time=cls_time))
print(top1*100./total)
return top1*100./total
def eval_nmi_recall(epoch, net, lemniscate, testloader, feature_dim = 128):
net.eval()
net_time = AverageMeter()
val_time = AverageMeter()
total = 0
testsize = testloader.dataset.__len__()
ptr =0
nmi = 0.
recal = 0.
end = time.time()
test_features = np.zeros((testsize,feature_dim))
test_labels = np.zeros(testsize)
with torch.no_grad():
for batch_idx, (inputs, targets, indexes) in enumerate(testloader):
# end = time.time()
batchSize = inputs.size(0)
real_size = min(batchSize, testsize-ptr)
targets = np.asarray(targets)
batch_features = net(inputs)
test_features[ptr:ptr+real_size,:] = batch_features
test_labels[ptr:ptr+real_size] = targets
ptr += real_size
net_time.update(time.time() - end)
print('Extracting Time:\t'
'Net Time {net_time.val:.3f}s \t'
.format(net_time=net_time))
#
# print('Evaluating.....')
end = time.time()
recal = eval_recall(test_features,test_labels)
nmi = eval_nmi(test_features, test_labels)
val_time.update(time.time() - end)
print('Evaluating Time:\t'
'Eval Time {val_time.val:.3f}s \t'
.format(val_time=val_time))
return recal, nmi
def eval_recall(embedding, label):
norm = np.sum(embedding*embedding,axis = 1)
right_num = 0
for i in range(embedding.shape[0]):
dis = norm[i] + norm - 2*np.squeeze(np.matmul(embedding[i],embedding.T))
dis[i] = 1e10
pred = np.argmin(dis)
if label[i]==label[pred]:
right_num = right_num+1
recall = float(right_num)/float(embedding.shape[0])
return recall
def eval_nmi(embedding, label, normed_flag = False, fast_kmeans = False):
unique_id = np.unique(label)
num_category = len(unique_id)
if normed_flag:
for i in range(embedding.shape[0]):
embedding[i,:] = embedding[i,:]/np.sqrt(np.sum(embedding[i,:] ** 2)+1e-4)
if fast_kmeans:
kmeans = KMeans(n_clusters=num_category, n_init = 1, n_jobs=8)
else:
kmeans = KMeans(n_clusters=num_category,n_jobs=8)
kmeans.fit(embedding)
y_kmeans_pred = kmeans.predict(embedding)
nmi = normalized_mutual_info_score(label, y_kmeans_pred)
return nmi
def eval_recall_K(embedding, label, K_list =None):
if K_list is None:
K_list = [1, 2, 4, 8]
norm = np.sum(embedding*embedding,axis = 1)
right_num = 0
recall_list = np.zeros(len(K_list))
for i in range(embedding.shape[0]):
dis = norm[i] + norm - 2*np.squeeze(np.matmul(embedding[i],embedding.T))
dis[i] = 1e10
index = np.argsort(dis)
list_index = 0
for k in range(np.max(K_list)):
if label[i]==label[index[k]]:
recall_list[list_index] = recall_list[list_index]+1
break
if k>=K_list[list_index]-1:
list_index = list_index + 1
recall_list = recall_list/float(embedding.shape[0])
for i in range(recall_list.shape[0]):
if i == 0:
continue
recall_list[i] = recall_list[i]+recall_list[i-1]
return recall_list
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def set_bn_to_eval(m):
# 1. no update for running mean and var
# 2. scale and shift parameters are still trainable
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.eval()