- Installation
- Interfaces
- Supported dataset formats and annotations
- Supported data formats
- Command line workflow
- Command reference
- Convert datasets
- Create project
- Add and remove data
- Import project
- Filter project
- Update project (merge)
- Merge projects
- Export project
- Compare projects
- Obtaining project info
- Obtaining project statistics
- Validate project annotations
- Register model
- Run inference
- Run inference explanation
- Transform project
- Extending
- Links
- Python (3.6+)
- Optional: OpenVINO, TensforFlow, PyTorch, MxNet, Caffe, Accuracy Checker
Optionally, set up a virtual environment:
python -m pip install virtualenv
python -m virtualenv venv
. venv/bin/activate
Install:
# From PyPI:
pip install datumaro
# From the GitHub repository:
pip install 'git+https://github.com/openvinotoolkit/datumaro'
You can change the installation branch with
...@<branch_name>
Also use--force-reinstall
parameter in this case.
As a standalone tool:
datum --help
As a python module:
The directory containing Datumaro should be in the
PYTHONPATH
environment variable orcvat/datumaro/
should be the current directory.
python -m datumaro --help
python datumaro/ --help
python datum.py --help
As a python library:
import datumaro
List of supported formats:
- MS COCO (
image_info
,instances
,person_keypoints
,captions
,labels
,panoptic
,stuff
)- Format specification
- Dataset example
labels
are our extension - likeinstances
with onlycategory_id
- Format documentation
- PASCAL VOC (
classification
,detection
,segmentation
(class, instances),action_classification
,person_layout
) - YOLO (
bboxes
) - TF Detection API (
bboxes
,masks
)- Format specifications: bboxes, masks
- Dataset example
- WIDER Face (
bboxes
) - VGGFace2 (
landmarks
,bboxes
) - MOT sequences
- MOTS (png)
- ImageNet (
classification
,detection
)- Dataset example
- Dataset example (txt for classification)
- Detection format is the same as in PASCAL VOC
- CIFAR-10/100 (
classification
(python version)) - MNIST (
classification
) - MNIST in CSV (
classification
) - CamVid (
segmentation
) - Cityscapes (
segmentation
) - CVAT
- LabelMe
- ICDAR13/15 (
word_recognition
,text_localization
,text_segmentation
) - Market-1501 (
person re-identification
) - LFW (
classification
,person re-identification
,landmarks
)
List of supported annotation types:
- Labels
- Bounding boxes
- Polygons
- Polylines
- (Segmentation) Masks
- (Key-)Points
- Captions
Datumaro only works with 2d RGB(A) images.
To create an unlabelled dataset from an arbitrary directory with images use
ImageDir
format:
datum create -o <project/dir>
datum add path -p <project/dir> -f image_dir <directory/path/>
or if you work with Datumaro API:
For using with a project:
from datumaro.components.project import Project
project = Project()
project.add_source('source1', {
'format': 'image_dir',
'url': 'directory/path/'
})
dataset = project.make_dataset()
And for using as a dataset:
from datumaro.components.dataset import Dataset
dataset = Dataset.import_from('directory/path/', 'image_dir')
This will search for images in the directory recursively and add
them as dataset entries with names like <subdir1>/<subsubdir1>/<image_name1>
.
The list of formats matches the list of supported image formats in OpenCV.
.jpg, .jpeg, .jpe, .jp2, .png, .bmp, .dib, .tif, .tiff, .tga, .webp, .pfm,
.sr, .ras, .exr, .hdr, .pic, .pbm, .pgm, .ppm, .pxm, .pnm
After addition into a project, images can be split into subsets and renamed with transformations, filtered, joined with existing annotations etc.
To use a video as an input, one should either create an Extractor plugin, which splits a video into frames, or split the video manually and import images.
The key object is a project, so most CLI commands operate on projects.
However, there are few commands operating on datasets directly.
A project is a combination of a project's own dataset, a number of
external data sources and an environment.
An empty Project can be created by project create
command,
an existing dataset can be imported with project import
command.
A typical way to obtain projects is to export tasks in CVAT UI.
If you want to interact with models, you need to add them to project first.
└── project/
├── .datumaro/
| ├── config.yml
│ ├── .git/
│ ├── models/
│ └── plugins/
│ ├── plugin1/
│ | ├── file1.py
│ | └── file2.py
│ ├── plugin2.py
│ ├── custom_extractor1.py
│ └── ...
├── dataset/
└── sources/
├── source1
└── ...
Note: command invocation syntax is subject to change, always refer to command --help output
This command allows to convert a dataset from one format into another. In fact, this
command is a combination of project import
and project export
and just provides a simpler
way to obtain the same result when no extra options is needed. A list of supported
formats can be found in the --help
output of this command.
Usage:
datum convert --help
datum convert \
-i <input path> \
-if <input format> \
-o <output path> \
-f <output format> \
-- [extra parameters for output format]
Example: convert a VOC-like dataset to a COCO-like one:
datum convert --input-format voc --input-path <path/to/voc/> \
--output-format coco
This command creates a Project from an existing dataset.
Supported formats are listed in the command help. Check extending tips for information on extra format support.
Usage:
datum import --help
datum import \
-i <dataset_path> \
-o <project_dir> \
-f <format>
Example: create a project from COCO-like dataset
datum import \
-i /home/coco_dir \
-o /home/project_dir \
-f coco
An MS COCO-like dataset should have the following directory structure:
COCO/
├── annotations/
│ ├── instances_val2017.json
│ ├── instances_train2017.json
├── images/
│ ├── val2017
│ ├── train2017
Everything after the last _
is considered a subset name in the COCO format.
The command creates an empty project. Once a Project is created, there are a few options to interact with it.
Usage:
datum create --help
datum create \
-o <project_dir>
Example: create an empty project my_dataset
datum create -o my_dataset/
A Project can contain a number of external Data Sources. Each Data Source
describes a way to produce dataset items. A Project combines dataset items from
all the sources and its own dataset into one composite dataset. You can manage
project sources by commands in the source
command line context.
Datasets come in a wide variety of formats. Each dataset format defines its own data structure and rules on how to interpret the data. For example, the following data structure is used in COCO format:
/dataset/
- /images/<id>.jpg
- /annotations/
Supported formats are listed in the command help. Check extending tips for information on extra format support.
Usage:
datum add --help
datum remove --help
datum add \
path <path> \
-p <project dir> \
-f <format> \
-n <name>
datum remove \
-p <project dir> \
-n <name>
Example: create a project from a bunch of different annotations and images, and generate TFrecord for TF Detection API for model training
datum create
# 'default' is the name of the subset below
datum add path <path/to/coco/instances_default.json> -f coco_instances
datum add path <path/to/cvat/default.xml> -f cvat
datum add path <path/to/voc> -f voc_detection
datum add path <path/to/datumaro/default.json> -f datumaro
datum add path <path/to/images/dir> -f image_dir
datum export -f tf_detection_api
This command allows to create a sub-Project from a Project. The new project includes only items satisfying some condition. XPath is used as a query format.
There are several filtering modes available (-m/--mode
parameter).
Supported modes:
i
,items
a
,annotations
i+a
,a+i
,items+annotations
,annotations+items
When filtering annotations, use the items+annotations
mode to point that annotation-less dataset items should be
removed. To select an annotation, write an XPath that
returns annotation
elements (see examples).
Usage:
datum filter --help
datum filter \
-p <project dir> \
-e '<xpath filter expression>'
Example: extract a dataset with only images which width
< height
datum filter \
-p test_project \
-e '/item[image/width < image/height]'
Example: extract a dataset with only images of subset train
.
datum project filter \
-p test_project \
-e '/item[subset="train"]'
Example: extract a dataset with only large annotations of class cat
and any non-persons
datum filter \
-p test_project \
--mode annotations -e '/item/annotation[(label="cat" and area > 99.5) or label!="person"]'
Example: extract a dataset with only occluded annotations, remove empty images
datum filter \
-p test_project \
-m i+a -e '/item/annotation[occluded="True"]'
Item representations are available with --dry-run
parameter:
<item>
<id>290768</id>
<subset>minival2014</subset>
<image>
<width>612</width>
<height>612</height>
<depth>3</depth>
</image>
<annotation>
<id>80154</id>
<type>bbox</type>
<label_id>39</label_id>
<x>264.59</x>
<y>150.25</y>
<w>11.199999999999989</w>
<h>42.31</h>
<area>473.87199999999956</area>
</annotation>
<annotation>
<id>669839</id>
<type>bbox</type>
<label_id>41</label_id>
<x>163.58</x>
<y>191.75</y>
<w>76.98999999999998</w>
<h>73.63</h>
<area>5668.773699999998</area>
</annotation>
...
</item>
This command updates items in a project from another one (check Merge Projects for complex merging).
Usage:
datum merge --help
datum merge \
-p <project dir> \
-o <output dir> \
<other project dir>
Example: update annotations in the first_project
with annotations
from the second_project
and save the result as merged_project
datum merge \
-p first_project \
-o merged_project \
second_project
This command merges items from 2 or more projects and checks annotations for errors.
Spatial annotations are compared by distance and intersected, labels and attributes
are selected by voting.
Merge conflicts, missing items and annotations, other errors are saved into a .json
file.
Usage:
datum merge --help
datum merge <project dirs>
Example: merge 4 (partially-)intersecting projects,
- consider voting succeeded when there are 3+ same votes
- consider shapes intersecting when IoU >= 0.6
- check annotation groups to have
person
,hand
,head
andfoot
(?
for optional)
datum merge project1/ project2/ project3/ project4/ \
--quorum 3 \
-iou 0.6 \
--groups 'person,hand?,head,foot?'
This command exports a Project as a dataset in some format.
Supported formats are listed in the command help. Check extending tips for information on extra format support.
Usage:
datum export --help
datum export \
-p <project dir> \
-o <output dir> \
-f <format> \
-- [additional format parameters]
Example: save project as VOC-like dataset, include images, convert images to PNG
datum export \
-p test_project \
-o test_project-export \
-f voc \
-- --save-images --image-ext='.png'
This command outputs project status information.
Usage:
datum info --help
datum info \
-p <project dir>
Example:
datum info -p /test_project
Project:
name: test_project
location: /test_project
Sources:
source 'instances_minival2014':
format: coco_instances
url: /coco_like/annotations/instances_minival2014.json
Dataset:
length: 5000
categories: label
label:
count: 80
labels: person, bicycle, car, motorcycle (and 76 more)
subsets: minival2014
subset 'minival2014':
length: 5000
categories: label
label:
count: 80
labels: person, bicycle, car, motorcycle (and 76 more)
This command computes various project statistics, such as:
- image mean and std. dev.
- class and attribute balance
- mask pixel balance
- segment area distribution
Usage:
datum stats --help
datum stats \
-p <project dir>
Example:
datum stats -p test_project
{
"annotations": {
"labels": {
"attributes": {
"gender": {
"count": 358,
"distribution": {
"female": [
149,
0.41620111731843573
],
"male": [
209,
0.5837988826815642
]
},
"values count": 2,
"values present": [
"female",
"male"
]
},
"view": {
"count": 340,
"distribution": {
"__undefined__": [
4,
0.011764705882352941
],
"front": [
54,
0.1588235294117647
],
"left": [
14,
0.041176470588235294
],
"rear": [
235,
0.6911764705882353
],
"right": [
33,
0.09705882352941177
]
},
"values count": 5,
"values present": [
"__undefined__",
"front",
"left",
"rear",
"right"
]
}
},
"count": 2038,
"distribution": {
"car": [
340,
0.16683022571148184
],
"cyclist": [
194,
0.09519136408243375
],
"head": [
354,
0.17369970559371933
],
"ignore": [
100,
0.04906771344455348
],
"left_hand": [
238,
0.11678115799803729
],
"person": [
358,
0.17566241413150147
],
"right_hand": [
77,
0.037782139352306184
],
"road_arrows": [
326,
0.15996074582924436
],
"traffic_sign": [
51,
0.025024533856722278
]
}
},
"segments": {
"area distribution": [
{
"count": 1318,
"max": 11425.1,
"min": 0.0,
"percent": 0.9627465303140978
},
{
"count": 1,
"max": 22850.2,
"min": 11425.1,
"percent": 0.0007304601899196494
},
{
"count": 0,
"max": 34275.3,
"min": 22850.2,
"percent": 0.0
},
{
"count": 0,
"max": 45700.4,
"min": 34275.3,
"percent": 0.0
},
{
"count": 0,
"max": 57125.5,
"min": 45700.4,
"percent": 0.0
},
{
"count": 0,
"max": 68550.6,
"min": 57125.5,
"percent": 0.0
},
{
"count": 0,
"max": 79975.7,
"min": 68550.6,
"percent": 0.0
},
{
"count": 0,
"max": 91400.8,
"min": 79975.7,
"percent": 0.0
},
{
"count": 0,
"max": 102825.90000000001,
"min": 91400.8,
"percent": 0.0
},
{
"count": 50,
"max": 114251.0,
"min": 102825.90000000001,
"percent": 0.036523009495982466
}
],
"avg. area": 5411.624543462382,
"pixel distribution": {
"car": [
13655,
0.0018431496518735067
],
"cyclist": [
939005,
0.12674674030446592
],
"head": [
0,
0.0
],
"ignore": [
5501200,
0.7425510702956085
],
"left_hand": [
0,
0.0
],
"person": [
954654,
0.12885903974805205
],
"right_hand": [
0,
0.0
],
"road_arrows": [
0,
0.0
],
"traffic_sign": [
0,
0.0
]
}
}
},
"annotations by type": {
"bbox": {
"count": 548
},
"caption": {
"count": 0
},
"label": {
"count": 0
},
"mask": {
"count": 0
},
"points": {
"count": 669
},
"polygon": {
"count": 821
},
"polyline": {
"count": 0
}
},
"annotations count": 2038,
"dataset": {
"image mean": [
107.06903686941979,
79.12831698580979,
52.95829558185416
],
"image std": [
49.40237673503467,
43.29600731496902,
35.47373007603151
],
"images count": 100
},
"images count": 100,
"subsets": {},
"unannotated images": [
"img00051",
"img00052",
"img00053",
"img00054",
"img00055",
],
"unannotated images count": 5,
"unique images count": 97,
"repeating images count": 3,
"repeating images": [
[("img00057", "default"), ("img00058", "default")],
[("img00059", "default"), ("img00060", "default")],
[("img00061", "default"), ("img00062", "default")],
],
}
This command inspects annotations with respect to the task type and stores the result in JSON file.
The task types supported are classification
, detection
, and segmentation
.
The validation result contains
- annotation statistics based on the task type
- validation reports, such as
- items not having annotations
- items having undefined annotations
- imbalanced distribution in class/attributes
- too small or large values
- summary
Usage:
datum validate --help
datum validate -p <project dir> <task_type>
Here is the list of validation items(a.k.a. anomaly types).
Anomaly Type | Description | Task Type |
---|---|---|
MissingLabelCategories | Metadata (ex. LabelCategories) should be defined | common |
MissingAnnotation | No annotation found for an Item | common |
MissingAttribute | An attribute key is missing for an Item | common |
MultiLabelAnnotations | Item needs a single label | classification |
UndefinedLabel | A label not defined in the metadata is found for an item | common |
UndefinedAttribute | An attribute not defined in the metadata is found for an item | common |
LabelDefinedButNotFound | A label is defined, but not found actually | common |
AttributeDefinedButNotFound | An attribute is defined, but not found actually | common |
OnlyOneLabel | The dataset consists of only label | common |
OnlyOneAttributeValue | The dataset consists of only attribute value | common |
FewSamplesInLabel | The number of samples in a label might be too low | common |
FewSamplesInAttribute | The number of samples in an attribute might be too low | common |
ImbalancedLabels | There is an imbalance in the label distribution | common |
ImbalancedAttribute | There is an imbalance in the attribute distribution | common |
ImbalancedDistInLabel | Values (ex. bbox width) are not evenly distributed for a label | detection, segmentation |
ImbalancedDistInAttribute | Values (ex. bbox width) are not evenly distributed for an attribute | detection, segmentation |
NegativeLength | The width or height of bounding box is negative | detection |
InvalidValue | There's invalid (ex. inf, nan) value for bounding box info. | detection |
FarFromLabelMean | An annotation has an too small or large value than average for a label | detection, segmentation |
FarFromAttrMean | An annotation has an too small or large value than average for an attribute | detection, segmentation |
Validation Result Format:
{
'statistics': {
## common statistics
'label_distribution': {
'defined_labels': <dict>, # <label:str>: <count:int>
'undefined_labels': <dict>
# <label:str>: {
# 'count': <int>,
# 'items_with_undefined_label': [<item_key>, ]
# }
},
'attribute_distribution': {
'defined_attributes': <dict>,
# <label:str>: {
# <attribute:str>: {
# 'distribution': {<attr_value:str>: <count:int>, },
# 'items_missing_attribute': [<item_key>, ]
# }
# }
'undefined_attributes': <dict>
# <label:str>: {
# <attribute:str>: {
# 'distribution': {<attr_value:str>: <count:int>, },
# 'items_with_undefined_attr': [<item_key>, ]
# }
# }
},
'total_ann_count': <int>,
'items_missing_annotation': <list>, # [<item_key>, ]
## statistics for classification task
'items_with_multiple_labels': <list>, # [<item_key>, ]
## statistics for detection task
'items_with_invalid_value': <dict>,
# '<item_key>': {<ann_id:int>: [ <property:str>, ], }
# - properties: 'x', 'y', 'width', 'height',
# 'area(wxh)', 'ratio(w/h)', 'short', 'long'
# - 'short' is min(w,h) and 'long' is max(w,h).
'items_with_negative_length': <dict>,
# '<item_key>': { <ann_id:int>: { <'width'|'height'>: <value>, }, }
'bbox_distribution_in_label': <dict>, # <label:str>: <bbox_template>
'bbox_distribution_in_attribute': <dict>,
# <label:str>: {<attribute:str>: { <attr_value>: <bbox_template>, }, }
'bbox_distribution_in_dataset_item': <dict>,
# '<item_key>': <bbox count:int>
## statistics for segmentation task
'items_with_invalid_value': <dict>,
# '<item_key>': {<ann_id:int>: [ <property:str>, ], }
# - properties: 'area', 'width', 'height'
'mask_distribution_in_label': <dict>, # <label:str>: <mask_template>
'mask_distribution_in_attribute': <dict>,
# <label:str>: {
# <attribute:str>: { <attr_value>: <mask_template>, }
# }
'mask_distribution_in_dataset_item': <dict>,
# '<item_key>': <mask/polygon count: int>
},
'validation_reports': <list>, # [ <validation_error_format>, ]
# validation_error_format = {
# 'anomaly_type': <str>,
# 'description': <str>,
# 'severity': <str>, # 'warning' or 'error'
# 'item_id': <str>, # optional, when it is related to a DatasetItem
# 'subset': <str>, # optional, when it is related to a DatasetItem
# }
'summary': {
'errors': <count: int>,
'warnings': <count: int>
}
}
item_key
is defined as,
item_key = (<DatasetItem.id:str>, <DatasetItem.subset:str>)
bbox_template
and mask_template
are defined as,
bbox_template = {
'width': <numerical_stat_template>,
'height': <numerical_stat_template>,
'area(wxh)': <numerical_stat_template>,
'ratio(w/h)': <numerical_stat_template>,
'short': <numerical_stat_template>, # short = min(w, h)
'long': <numerical_stat_template> # long = max(w, h)
}
mask_template = {
'area': <numerical_stat_template>,
'width': <numerical_stat_template>,
'height': <numerical_stat_template>
}
numerical_stat_template
is defined as,
numerical_stat_template = {
'items_far_from_mean': <dict>,
# {'<item_key>': {<ann_id:int>: <value:float>, }, }
'mean': <float>,
'stdev': <float>,
'min': <float>,
'max': <float>,
'median': <float>,
'histogram': {
'bins': <list>, # [<float>, ]
'counts': <list>, # [<int>, ]
}
}
Supported models:
- OpenVINO
- Custom models via custom
launchers
Usage:
datum model add --help
Example: register an OpenVINO model
A model consists of a graph description and weights. There is also a script used to convert model outputs to internal data structures.
datum create
datum model add \
-n <model_name> -l open_vino -- \
-d <path_to_xml> -w <path_to_bin> -i <path_to_interpretation_script>
Interpretation script for an OpenVINO detection model (convert.py
):
You can find OpenVINO™ model interpreter samples in datumaro/plugins/openvino/samples. Instruction
from datumaro.components.extractor import *
max_det = 10
conf_thresh = 0.1
def process_outputs(inputs, outputs):
# inputs = model input, array or images, shape = (N, C, H, W)
# outputs = model output, shape = (N, 1, K, 7)
# results = conversion result, [ [ Annotation, ... ], ... ]
results = []
for input, output in zip(inputs, outputs):
input_height, input_width = input.shape[:2]
detections = output[0]
image_results = []
for i, det in enumerate(detections):
label = int(det[1])
conf = float(det[2])
if conf <= conf_thresh:
continue
x = max(int(det[3] * input_width), 0)
y = max(int(det[4] * input_height), 0)
w = min(int(det[5] * input_width - x), input_width)
h = min(int(det[6] * input_height - y), input_height)
image_results.append(Bbox(x, y, w, h,
label=label, attributes={'score': conf} ))
results.append(image_results[:max_det])
return results
def get_categories():
# Optionally, provide output categories - label map etc.
# Example:
label_categories = LabelCategories()
label_categories.add('person')
label_categories.add('car')
return { AnnotationType.label: label_categories }
This command applies model to dataset images and produces a new project.
Usage:
datum model run --help
datum model run \
-p <project dir> \
-m <model_name> \
-o <save_dir>
Example: launch inference on a dataset
datum import <...>
datum model add mymodel <...>
datum model run -m mymodel -o inference
The command compares two datasets and saves the results in the specified directory. The current project is considered to be "ground truth".
datum diff --help
datum diff <other_project_dir> -o <save_dir>
Example: compare a dataset with model inference
datum import <...>
datum model add mymodel <...>
datum transform <...> -o inference
datum diff inference -o diff
Usage:
datum explain --help
datum explain \
-m <model_name> \
-o <save_dir> \
-t <target> \
<method> \
<method_params>
Example: run inference explanation on a single image with visualization
datum create <...>
datum model add mymodel <...>
datum explain \
-m mymodel \
-t 'image.png' \
rise \
-s 1000 --progressive
This command allows to modify images or annotations in a project all at once.
datum transform --help
datum transform \
-p <project_dir> \
-o <output_dir> \
-t <transform_name> \
-- [extra transform options]
Example: split a dataset randomly to train
and test
subsets, ratio is 2:1
datum transform -t random_split -- --subset train:.67 --subset test:.33
Example: split a dataset in task-specific manner. The tasks supported are classification, detection, segmentation and re-identification.
datum transform -t split -- \
-t classification --subset train:.5 --subset val:.2 --subset test:.3
datum transform -t split -- \
-t detection --subset train:.5 --subset val:.2 --subset test:.3
datum transform -t split -- \
-t segmentation --subset train:.5 --subset val:.2 --subset test:.3
datum transform -t split -- \
-t reid --subset train:.5 --subset val:.2 --subset test:.3 \
--query .5
Example: convert polygons to masks, masks to boxes etc.:
datum transform -t boxes_to_masks
datum transform -t masks_to_polygons
datum transform -t polygons_to_masks
datum transform -t shapes_to_boxes
Example: remap dataset labels, person
to car
and cat
to dog
, keep bus
, remove others
datum transform -t remap_labels -- \
-l person:car -l bus:bus -l cat:dog \
--default delete
Example: rename dataset items by a regular expression
- Replace
pattern
withreplacement
- Remove
frame_
from item ids
datum transform -t rename -- -e '|pattern|replacement|'
datum transform -t rename -- -e '|frame_(\d+)|\\1|'
Example: sampling dataset items as many as the number of target samples with sampling method entered by the user, divide into sampled
and unsampled
subsets
- There are five methods of sampling the m option.
topk
: Return the k with high uncertainty datalowk
: Return the k with low uncertainty datarandk
: Return the random k datamixk
: Return half to topk method and the rest to lowk methodrandtopk
: First, select 3 times the number of k randomly, and return the topk among them.
datum transform -t sampler -- \
-a entropy \
-i train \
-o sampled \
-u unsampled \
-m topk \
-k 20
Example : control number of outputs to 100 after NDR
- There are two methods in NDR e option
random
: sample from removed data randomlysimilarity
: sample from removed data with ascending
- There are two methods in NDR u option
uniform
: sample data with uniform distributioninverse
: sample data with reciprocal of the number
datum transform -t ndr -- \
-w train \
-a gradient \
-k 100 \
-e random \
-u uniform
There are few ways to extend and customize Datumaro behaviour, which is supported by plugins. Check our contribution guide for details on plugin implementation. In general, a plugin is a Python code file. It must be put into a plugin directory:
<project_dir>/.datumaro/plugins
for project-specific plugins<datumaro_dir>/plugins
for global plugins
Datumaro provides several builtin plugins. Plugins can have dependencies, which need to be installed separately.
The plugin provides support of TensorFlow Detection API format, which includes
boxes and masks. It depends on TensorFlow, which can be installed with pip
:
pip install tensorflow
# or
pip install tensorflow-gpu
# or
pip install datumaro[tf]
# or
pip install datumaro[tf-gpu]
This plugin allows to use Accuracy Checker
to launch deep learning models from various frameworks
(Caffe, MxNet, PyTorch, OpenVINO, ...) through Accuracy Checker's API.
The plugin depends on Accuracy Checker, which can be installed with pip
:
pip install 'git+https://github.com/openvinotoolkit/open_model_zoo.git#subdirectory=tools/accuracy_checker'
This plugin provides support for model inference with OpenVINO™. The plugin depends on the OpenVINO™ Toolkit, which can be installed by following these instructions
Dataset reading is supported by Extractors and Importers. An Extractor produces a list of dataset items corresponding to the dataset. An Importer creates a project from the data source location. It is possible to add custom Extractors and Importers. To do this, you need to put an Extractor and Importer implementation scripts to a plugin directory.
Dataset writing is supported by Converters. A Converter produces a dataset of a specific format from dataset items. It is possible to add custom Converters. To do this, you need to put a Converter implementation script to a plugin directory.
A Transform is a function for altering a dataset and producing a new one. It can update dataset items, annotations, classes, and other properties. A list of available transforms for dataset conversions can be extended by adding a Transform implementation script into a plugin directory.
A list of available launchers for model execution can be extended by adding a Launcher implementation script into a plugin directory.