Skip to content

Latest commit

 

History

History
1382 lines (1148 loc) · 39.2 KB

user_manual.md

File metadata and controls

1382 lines (1148 loc) · 39.2 KB

User manual

Contents

Installation

Dependencies

  • Python (3.6+)
  • Optional: OpenVINO, TensforFlow, PyTorch, MxNet, Caffe, Accuracy Checker

Installation steps

Optionally, set up a virtual environment:

python -m pip install virtualenv
python -m virtualenv venv
. venv/bin/activate

Install:

# From PyPI:
pip install datumaro

# From the GitHub repository:
pip install 'git+https://github.com/openvinotoolkit/datumaro'

You can change the installation branch with ...@<branch_name> Also use --force-reinstall parameter in this case.

Interfaces

As a standalone tool:

datum --help

As a python module:

The directory containing Datumaro should be in the PYTHONPATH environment variable or cvat/datumaro/ should be the current directory.

python -m datumaro --help
python datumaro/ --help
python datum.py --help

As a python library:

import datumaro

Supported Formats

List of supported formats:

List of supported annotation types:

  • Labels
  • Bounding boxes
  • Polygons
  • Polylines
  • (Segmentation) Masks
  • (Key-)Points
  • Captions

Data formats

Datumaro only works with 2d RGB(A) images.

To create an unlabelled dataset from an arbitrary directory with images use ImageDir format:

datum create -o <project/dir>
datum add path -p <project/dir> -f image_dir <directory/path/>

or if you work with Datumaro API:

For using with a project:

from datumaro.components.project import Project

project = Project()
project.add_source('source1', {
  'format': 'image_dir',
  'url': 'directory/path/'
})
dataset = project.make_dataset()

And for using as a dataset:

from datumaro.components.dataset import Dataset

dataset = Dataset.import_from('directory/path/', 'image_dir')

This will search for images in the directory recursively and add them as dataset entries with names like <subdir1>/<subsubdir1>/<image_name1>. The list of formats matches the list of supported image formats in OpenCV.

.jpg, .jpeg, .jpe, .jp2, .png, .bmp, .dib, .tif, .tiff, .tga, .webp, .pfm,
.sr, .ras, .exr, .hdr, .pic, .pbm, .pgm, .ppm, .pxm, .pnm

After addition into a project, images can be split into subsets and renamed with transformations, filtered, joined with existing annotations etc.

To use a video as an input, one should either create an Extractor plugin, which splits a video into frames, or split the video manually and import images.

Command line workflow

The key object is a project, so most CLI commands operate on projects. However, there are few commands operating on datasets directly. A project is a combination of a project's own dataset, a number of external data sources and an environment. An empty Project can be created by project create command, an existing dataset can be imported with project import command. A typical way to obtain projects is to export tasks in CVAT UI.

If you want to interact with models, you need to add them to project first.

Project structure

└── project/
    ├── .datumaro/
    |   ├── config.yml
    │   ├── .git/
    │   ├── models/
    │   └── plugins/
    │       ├── plugin1/
    │       |   ├── file1.py
    │       |   └── file2.py
    │       ├── plugin2.py
    │       ├── custom_extractor1.py
    │       └── ...
    ├── dataset/
    └── sources/
        ├── source1
        └── ...

Command reference

Note: command invocation syntax is subject to change, always refer to command --help output

Available CLI commands: CLI design doc

Convert datasets

This command allows to convert a dataset from one format into another. In fact, this command is a combination of project import and project export and just provides a simpler way to obtain the same result when no extra options is needed. A list of supported formats can be found in the --help output of this command.

Usage:

datum convert --help

datum convert \
    -i <input path> \
    -if <input format> \
    -o <output path> \
    -f <output format> \
    -- [extra parameters for output format]

Example: convert a VOC-like dataset to a COCO-like one:

datum convert --input-format voc --input-path <path/to/voc/> \
              --output-format coco

Import project

This command creates a Project from an existing dataset.

Supported formats are listed in the command help. Check extending tips for information on extra format support.

Usage:

datum import --help

datum import \
    -i <dataset_path> \
    -o <project_dir> \
    -f <format>

Example: create a project from COCO-like dataset

datum import \
    -i /home/coco_dir \
    -o /home/project_dir \
    -f coco

An MS COCO-like dataset should have the following directory structure:

COCO/
├── annotations/
│   ├── instances_val2017.json
│   ├── instances_train2017.json
├── images/
│   ├── val2017
│   ├── train2017

Everything after the last _ is considered a subset name in the COCO format.

Create project

The command creates an empty project. Once a Project is created, there are a few options to interact with it.

Usage:

datum create --help

datum create \
    -o <project_dir>

Example: create an empty project my_dataset

datum create -o my_dataset/

Add and remove data

A Project can contain a number of external Data Sources. Each Data Source describes a way to produce dataset items. A Project combines dataset items from all the sources and its own dataset into one composite dataset. You can manage project sources by commands in the source command line context.

Datasets come in a wide variety of formats. Each dataset format defines its own data structure and rules on how to interpret the data. For example, the following data structure is used in COCO format:

/dataset/
- /images/<id>.jpg
- /annotations/

Supported formats are listed in the command help. Check extending tips for information on extra format support.

Usage:

datum add --help
datum remove --help

datum add \
    path <path> \
    -p <project dir> \
    -f <format> \
    -n <name>

datum remove \
    -p <project dir> \
    -n <name>

Example: create a project from a bunch of different annotations and images, and generate TFrecord for TF Detection API for model training

datum create
# 'default' is the name of the subset below
datum add path <path/to/coco/instances_default.json> -f coco_instances
datum add path <path/to/cvat/default.xml> -f cvat
datum add path <path/to/voc> -f voc_detection
datum add path <path/to/datumaro/default.json> -f datumaro
datum add path <path/to/images/dir> -f image_dir
datum export -f tf_detection_api

Filter project

This command allows to create a sub-Project from a Project. The new project includes only items satisfying some condition. XPath is used as a query format.

There are several filtering modes available (-m/--mode parameter). Supported modes:

  • i, items
  • a, annotations
  • i+a, a+i, items+annotations, annotations+items

When filtering annotations, use the items+annotations mode to point that annotation-less dataset items should be removed. To select an annotation, write an XPath that returns annotation elements (see examples).

Usage:

datum filter --help

datum filter \
    -p <project dir> \
    -e '<xpath filter expression>'

Example: extract a dataset with only images which width < height

datum filter \
    -p test_project \
    -e '/item[image/width < image/height]'

Example: extract a dataset with only images of subset train.

datum project filter \
    -p test_project \
    -e '/item[subset="train"]'

Example: extract a dataset with only large annotations of class cat and any non-persons

datum filter \
    -p test_project \
    --mode annotations -e '/item/annotation[(label="cat" and area > 99.5) or label!="person"]'

Example: extract a dataset with only occluded annotations, remove empty images

datum filter \
    -p test_project \
    -m i+a -e '/item/annotation[occluded="True"]'

Item representations are available with --dry-run parameter:

<item>
  <id>290768</id>
  <subset>minival2014</subset>
  <image>
    <width>612</width>
    <height>612</height>
    <depth>3</depth>
  </image>
  <annotation>
    <id>80154</id>
    <type>bbox</type>
    <label_id>39</label_id>
    <x>264.59</x>
    <y>150.25</y>
    <w>11.199999999999989</w>
    <h>42.31</h>
    <area>473.87199999999956</area>
  </annotation>
  <annotation>
    <id>669839</id>
    <type>bbox</type>
    <label_id>41</label_id>
    <x>163.58</x>
    <y>191.75</y>
    <w>76.98999999999998</w>
    <h>73.63</h>
    <area>5668.773699999998</area>
  </annotation>
  ...
</item>

Update project

This command updates items in a project from another one (check Merge Projects for complex merging).

Usage:

datum merge --help

datum merge \
    -p <project dir> \
    -o <output dir> \
    <other project dir>

Example: update annotations in the first_project with annotations from the second_project and save the result as merged_project

datum merge \
    -p first_project \
    -o merged_project \
    second_project

Merge projects

This command merges items from 2 or more projects and checks annotations for errors.

Spatial annotations are compared by distance and intersected, labels and attributes are selected by voting. Merge conflicts, missing items and annotations, other errors are saved into a .json file.

Usage:

datum merge --help

datum merge <project dirs>

Example: merge 4 (partially-)intersecting projects,

  • consider voting succeeded when there are 3+ same votes
  • consider shapes intersecting when IoU >= 0.6
  • check annotation groups to have person, hand, head and foot (? for optional)
datum merge project1/ project2/ project3/ project4/ \
    --quorum 3 \
    -iou 0.6 \
    --groups 'person,hand?,head,foot?'

Export project

This command exports a Project as a dataset in some format.

Supported formats are listed in the command help. Check extending tips for information on extra format support.

Usage:

datum export --help

datum export \
    -p <project dir> \
    -o <output dir> \
    -f <format> \
    -- [additional format parameters]

Example: save project as VOC-like dataset, include images, convert images to PNG

datum export \
    -p test_project \
    -o test_project-export \
    -f voc \
    -- --save-images --image-ext='.png'

Get project info

This command outputs project status information.

Usage:

datum info --help

datum info \
    -p <project dir>

Example:

datum info -p /test_project

Project:
  name: test_project
  location: /test_project
Sources:
  source 'instances_minival2014':
    format: coco_instances
    url: /coco_like/annotations/instances_minival2014.json
Dataset:
  length: 5000
  categories: label
    label:
      count: 80
      labels: person, bicycle, car, motorcycle (and 76 more)
  subsets: minival2014
    subset 'minival2014':
      length: 5000
      categories: label
        label:
          count: 80
          labels: person, bicycle, car, motorcycle (and 76 more)

Get project statistics

This command computes various project statistics, such as:

  • image mean and std. dev.
  • class and attribute balance
  • mask pixel balance
  • segment area distribution

Usage:

datum stats --help

datum stats \
    -p <project dir>

Example:

datum stats -p test_project

{
    "annotations": {
        "labels": {
            "attributes": {
                "gender": {
                    "count": 358,
                    "distribution": {
                        "female": [
                            149,
                            0.41620111731843573
                        ],
                        "male": [
                            209,
                            0.5837988826815642
                        ]
                    },
                    "values count": 2,
                    "values present": [
                        "female",
                        "male"
                    ]
                },
                "view": {
                    "count": 340,
                    "distribution": {
                        "__undefined__": [
                            4,
                            0.011764705882352941
                        ],
                        "front": [
                            54,
                            0.1588235294117647
                        ],
                        "left": [
                            14,
                            0.041176470588235294
                        ],
                        "rear": [
                            235,
                            0.6911764705882353
                        ],
                        "right": [
                            33,
                            0.09705882352941177
                        ]
                    },
                    "values count": 5,
                    "values present": [
                        "__undefined__",
                        "front",
                        "left",
                        "rear",
                        "right"
                    ]
                }
            },
            "count": 2038,
            "distribution": {
                "car": [
                    340,
                    0.16683022571148184
                ],
                "cyclist": [
                    194,
                    0.09519136408243375
                ],
                "head": [
                    354,
                    0.17369970559371933
                ],
                "ignore": [
                    100,
                    0.04906771344455348
                ],
                "left_hand": [
                    238,
                    0.11678115799803729
                ],
                "person": [
                    358,
                    0.17566241413150147
                ],
                "right_hand": [
                    77,
                    0.037782139352306184
                ],
                "road_arrows": [
                    326,
                    0.15996074582924436
                ],
                "traffic_sign": [
                    51,
                    0.025024533856722278
                ]
            }
        },
        "segments": {
            "area distribution": [
                {
                    "count": 1318,
                    "max": 11425.1,
                    "min": 0.0,
                    "percent": 0.9627465303140978
                },
                {
                    "count": 1,
                    "max": 22850.2,
                    "min": 11425.1,
                    "percent": 0.0007304601899196494
                },
                {
                    "count": 0,
                    "max": 34275.3,
                    "min": 22850.2,
                    "percent": 0.0
                },
                {
                    "count": 0,
                    "max": 45700.4,
                    "min": 34275.3,
                    "percent": 0.0
                },
                {
                    "count": 0,
                    "max": 57125.5,
                    "min": 45700.4,
                    "percent": 0.0
                },
                {
                    "count": 0,
                    "max": 68550.6,
                    "min": 57125.5,
                    "percent": 0.0
                },
                {
                    "count": 0,
                    "max": 79975.7,
                    "min": 68550.6,
                    "percent": 0.0
                },
                {
                    "count": 0,
                    "max": 91400.8,
                    "min": 79975.7,
                    "percent": 0.0
                },
                {
                    "count": 0,
                    "max": 102825.90000000001,
                    "min": 91400.8,
                    "percent": 0.0
                },
                {
                    "count": 50,
                    "max": 114251.0,
                    "min": 102825.90000000001,
                    "percent": 0.036523009495982466
                }
            ],
            "avg. area": 5411.624543462382,
            "pixel distribution": {
                "car": [
                    13655,
                    0.0018431496518735067
                ],
                "cyclist": [
                    939005,
                    0.12674674030446592
                ],
                "head": [
                    0,
                    0.0
                ],
                "ignore": [
                    5501200,
                    0.7425510702956085
                ],
                "left_hand": [
                    0,
                    0.0
                ],
                "person": [
                    954654,
                    0.12885903974805205
                ],
                "right_hand": [
                    0,
                    0.0
                ],
                "road_arrows": [
                    0,
                    0.0
                ],
                "traffic_sign": [
                    0,
                    0.0
                ]
            }
        }
    },
    "annotations by type": {
        "bbox": {
            "count": 548
        },
        "caption": {
            "count": 0
        },
        "label": {
            "count": 0
        },
        "mask": {
            "count": 0
        },
        "points": {
            "count": 669
        },
        "polygon": {
            "count": 821
        },
        "polyline": {
            "count": 0
        }
    },
    "annotations count": 2038,
    "dataset": {
        "image mean": [
            107.06903686941979,
            79.12831698580979,
            52.95829558185416
        ],
        "image std": [
            49.40237673503467,
            43.29600731496902,
            35.47373007603151
        ],
        "images count": 100
    },
    "images count": 100,
    "subsets": {},
    "unannotated images": [
        "img00051",
        "img00052",
        "img00053",
        "img00054",
        "img00055",
    ],
    "unannotated images count": 5,
    "unique images count": 97,
    "repeating images count": 3,
    "repeating images": [
        [("img00057", "default"), ("img00058", "default")],
        [("img00059", "default"), ("img00060", "default")],
        [("img00061", "default"), ("img00062", "default")],
    ],
}

Validate project annotations

This command inspects annotations with respect to the task type and stores the result in JSON file.

The task types supported are classification, detection, and segmentation.

The validation result contains

  • annotation statistics based on the task type
  • validation reports, such as
    • items not having annotations
    • items having undefined annotations
    • imbalanced distribution in class/attributes
    • too small or large values
  • summary

Usage:

datum validate --help

datum validate -p <project dir> <task_type>

Here is the list of validation items(a.k.a. anomaly types).

Anomaly Type Description Task Type
MissingLabelCategories Metadata (ex. LabelCategories) should be defined common
MissingAnnotation No annotation found for an Item common
MissingAttribute An attribute key is missing for an Item common
MultiLabelAnnotations Item needs a single label classification
UndefinedLabel A label not defined in the metadata is found for an item common
UndefinedAttribute An attribute not defined in the metadata is found for an item common
LabelDefinedButNotFound A label is defined, but not found actually common
AttributeDefinedButNotFound An attribute is defined, but not found actually common
OnlyOneLabel The dataset consists of only label common
OnlyOneAttributeValue The dataset consists of only attribute value common
FewSamplesInLabel The number of samples in a label might be too low common
FewSamplesInAttribute The number of samples in an attribute might be too low common
ImbalancedLabels There is an imbalance in the label distribution common
ImbalancedAttribute There is an imbalance in the attribute distribution common
ImbalancedDistInLabel Values (ex. bbox width) are not evenly distributed for a label detection, segmentation
ImbalancedDistInAttribute Values (ex. bbox width) are not evenly distributed for an attribute detection, segmentation
NegativeLength The width or height of bounding box is negative detection
InvalidValue There's invalid (ex. inf, nan) value for bounding box info. detection
FarFromLabelMean An annotation has an too small or large value than average for a label detection, segmentation
FarFromAttrMean An annotation has an too small or large value than average for an attribute detection, segmentation

Validation Result Format:

{
    'statistics': {
        ## common statistics
        'label_distribution': {
            'defined_labels': <dict>,   # <label:str>: <count:int>
            'undefined_labels': <dict>
            # <label:str>: {
            #     'count': <int>,
            #     'items_with_undefined_label': [<item_key>, ]
            # }
        },
        'attribute_distribution': {
            'defined_attributes': <dict>,
            # <label:str>: {
            #     <attribute:str>: {
            #         'distribution': {<attr_value:str>: <count:int>, },
            #         'items_missing_attribute': [<item_key>, ]
            #     }
            # }
            'undefined_attributes': <dict>
            # <label:str>: {
            #     <attribute:str>: {
            #         'distribution': {<attr_value:str>: <count:int>, },
            #         'items_with_undefined_attr': [<item_key>, ]
            #     }
            # }
        },
        'total_ann_count': <int>,
        'items_missing_annotation': <list>, # [<item_key>, ]

        ## statistics for classification task
        'items_with_multiple_labels': <list>, # [<item_key>, ]

        ## statistics for detection task
        'items_with_invalid_value': <dict>,
        # '<item_key>': {<ann_id:int>: [ <property:str>, ], }
        # - properties: 'x', 'y', 'width', 'height',
        #               'area(wxh)', 'ratio(w/h)', 'short', 'long'
        # - 'short' is min(w,h) and 'long' is max(w,h).
        'items_with_negative_length': <dict>,
        # '<item_key>': { <ann_id:int>: { <'width'|'height'>: <value>, }, }
        'bbox_distribution_in_label': <dict>, # <label:str>: <bbox_template>
        'bbox_distribution_in_attribute': <dict>,
        # <label:str>: {<attribute:str>: { <attr_value>: <bbox_template>, }, }
        'bbox_distribution_in_dataset_item': <dict>,
        # '<item_key>': <bbox count:int>

        ## statistics for segmentation task
        'items_with_invalid_value': <dict>,
        # '<item_key>': {<ann_id:int>: [ <property:str>, ], }
        # - properties: 'area', 'width', 'height'
        'mask_distribution_in_label': <dict>, # <label:str>: <mask_template>
        'mask_distribution_in_attribute': <dict>,
        # <label:str>: {
        #     <attribute:str>: { <attr_value>: <mask_template>, }
        # }
        'mask_distribution_in_dataset_item': <dict>,
        # '<item_key>': <mask/polygon count: int>
    },
    'validation_reports': <list>, # [ <validation_error_format>, ]
    # validation_error_format = {
    #     'anomaly_type': <str>,
    #     'description': <str>,
    #     'severity': <str>, # 'warning' or 'error'
    #     'item_id': <str>,  # optional, when it is related to a DatasetItem
    #     'subset': <str>,   # optional, when it is related to a DatasetItem
    # }
    'summary': {
        'errors': <count: int>,
        'warnings': <count: int>
    }
}

item_key is defined as,

item_key = (<DatasetItem.id:str>, <DatasetItem.subset:str>)

bbox_template and mask_template are defined as,

bbox_template = {
    'width': <numerical_stat_template>,
    'height': <numerical_stat_template>,
    'area(wxh)': <numerical_stat_template>,
    'ratio(w/h)': <numerical_stat_template>,
    'short': <numerical_stat_template>, # short = min(w, h)
    'long': <numerical_stat_template>   # long = max(w, h)
}
mask_template = {
    'area': <numerical_stat_template>,
    'width': <numerical_stat_template>,
    'height': <numerical_stat_template>
}

numerical_stat_template is defined as,

numerical_stat_template = {
    'items_far_from_mean': <dict>,
    # {'<item_key>': {<ann_id:int>: <value:float>, }, }
    'mean': <float>,
    'stdev': <float>,
    'min': <float>,
    'max': <float>,
    'median': <float>,
    'histogram': {
        'bins': <list>,   # [<float>, ]
        'counts': <list>, # [<int>, ]
    }
}

Register model

Supported models:

  • OpenVINO
  • Custom models via custom launchers

Usage:

datum model add --help

Example: register an OpenVINO model

A model consists of a graph description and weights. There is also a script used to convert model outputs to internal data structures.

datum create
datum model add \
    -n <model_name> -l open_vino -- \
    -d <path_to_xml> -w <path_to_bin> -i <path_to_interpretation_script>

Interpretation script for an OpenVINO detection model (convert.py): You can find OpenVINO™ model interpreter samples in datumaro/plugins/openvino/samples. Instruction

from datumaro.components.extractor import *

max_det = 10
conf_thresh = 0.1

def process_outputs(inputs, outputs):
    # inputs = model input, array or images, shape = (N, C, H, W)
    # outputs = model output, shape = (N, 1, K, 7)
    # results = conversion result, [ [ Annotation, ... ], ... ]
    results = []
    for input, output in zip(inputs, outputs):
        input_height, input_width = input.shape[:2]
        detections = output[0]
        image_results = []
        for i, det in enumerate(detections):
            label = int(det[1])
            conf = float(det[2])
            if conf <= conf_thresh:
                continue

            x = max(int(det[3] * input_width), 0)
            y = max(int(det[4] * input_height), 0)
            w = min(int(det[5] * input_width - x), input_width)
            h = min(int(det[6] * input_height - y), input_height)
            image_results.append(Bbox(x, y, w, h,
                label=label, attributes={'score': conf} ))

            results.append(image_results[:max_det])

    return results

def get_categories():
    # Optionally, provide output categories - label map etc.
    # Example:
    label_categories = LabelCategories()
    label_categories.add('person')
    label_categories.add('car')
    return { AnnotationType.label: label_categories }

Run model

This command applies model to dataset images and produces a new project.

Usage:

datum model run --help

datum model run \
    -p <project dir> \
    -m <model_name> \
    -o <save_dir>

Example: launch inference on a dataset

datum import <...>
datum model add mymodel <...>
datum model run -m mymodel -o inference

Compare projects

The command compares two datasets and saves the results in the specified directory. The current project is considered to be "ground truth".

datum diff --help

datum diff <other_project_dir> -o <save_dir>

Example: compare a dataset with model inference

datum import <...>
datum model add mymodel <...>
datum transform <...> -o inference
datum diff inference -o diff

Explain inference

Usage:

datum explain --help

datum explain \
    -m <model_name> \
    -o <save_dir> \
    -t <target> \
    <method> \
    <method_params>

Example: run inference explanation on a single image with visualization

datum create <...>
datum model add mymodel <...>
datum explain \
    -m mymodel \
    -t 'image.png' \
    rise \
    -s 1000 --progressive

Transform Project

This command allows to modify images or annotations in a project all at once.

datum transform --help

datum transform \
    -p <project_dir> \
    -o <output_dir> \
    -t <transform_name> \
    -- [extra transform options]

Example: split a dataset randomly to train and test subsets, ratio is 2:1

datum transform -t random_split -- --subset train:.67 --subset test:.33

Example: split a dataset in task-specific manner. The tasks supported are classification, detection, segmentation and re-identification.

datum transform -t split -- \
    -t classification --subset train:.5 --subset val:.2 --subset test:.3

datum transform -t split -- \
    -t detection --subset train:.5 --subset val:.2 --subset test:.3

datum transform -t split -- \
    -t segmentation --subset train:.5 --subset val:.2 --subset test:.3

datum transform -t split -- \
    -t reid --subset train:.5 --subset val:.2 --subset test:.3 \
    --query .5

Example: convert polygons to masks, masks to boxes etc.:

datum transform -t boxes_to_masks
datum transform -t masks_to_polygons
datum transform -t polygons_to_masks
datum transform -t shapes_to_boxes

Example: remap dataset labels, person to car and cat to dog, keep bus, remove others

datum transform -t remap_labels -- \
    -l person:car -l bus:bus -l cat:dog \
    --default delete

Example: rename dataset items by a regular expression

  • Replace pattern with replacement
  • Remove frame_ from item ids
datum transform -t rename -- -e '|pattern|replacement|'
datum transform -t rename -- -e '|frame_(\d+)|\\1|'

Example: sampling dataset items as many as the number of target samples with sampling method entered by the user, divide into sampled and unsampled subsets

  • There are five methods of sampling the m option.
    • topk: Return the k with high uncertainty data
    • lowk: Return the k with low uncertainty data
    • randk: Return the random k data
    • mixk: Return half to topk method and the rest to lowk method
    • randtopk: First, select 3 times the number of k randomly, and return the topk among them.
datum transform -t sampler -- \
    -a entropy \
    -i train \
    -o sampled \
    -u unsampled \
    -m topk \
    -k 20

Example : control number of outputs to 100 after NDR

  • There are two methods in NDR e option
    • random: sample from removed data randomly
    • similarity: sample from removed data with ascending
  • There are two methods in NDR u option
    • uniform: sample data with uniform distribution
    • inverse: sample data with reciprocal of the number
datum transform -t ndr -- \
    -w train \
    -a gradient \
    -k 100 \
    -e random \
    -u uniform

Extending

There are few ways to extend and customize Datumaro behaviour, which is supported by plugins. Check our contribution guide for details on plugin implementation. In general, a plugin is a Python code file. It must be put into a plugin directory:

  • <project_dir>/.datumaro/plugins for project-specific plugins
  • <datumaro_dir>/plugins for global plugins

Built-in plugins

Datumaro provides several builtin plugins. Plugins can have dependencies, which need to be installed separately.

TensorFlow

The plugin provides support of TensorFlow Detection API format, which includes boxes and masks. It depends on TensorFlow, which can be installed with pip:

pip install tensorflow
# or
pip install tensorflow-gpu
# or
pip install datumaro[tf]
# or
pip install datumaro[tf-gpu]

Accuracy Checker

This plugin allows to use Accuracy Checker to launch deep learning models from various frameworks (Caffe, MxNet, PyTorch, OpenVINO, ...) through Accuracy Checker's API. The plugin depends on Accuracy Checker, which can be installed with pip:

pip install 'git+https://github.com/openvinotoolkit/open_model_zoo.git#subdirectory=tools/accuracy_checker'

OpenVINO™

This plugin provides support for model inference with OpenVINO™. The plugin depends on the OpenVINO™ Toolkit, which can be installed by following these instructions

Dataset Formats

Dataset reading is supported by Extractors and Importers. An Extractor produces a list of dataset items corresponding to the dataset. An Importer creates a project from the data source location. It is possible to add custom Extractors and Importers. To do this, you need to put an Extractor and Importer implementation scripts to a plugin directory.

Dataset writing is supported by Converters. A Converter produces a dataset of a specific format from dataset items. It is possible to add custom Converters. To do this, you need to put a Converter implementation script to a plugin directory.

Dataset Conversions ("Transforms")

A Transform is a function for altering a dataset and producing a new one. It can update dataset items, annotations, classes, and other properties. A list of available transforms for dataset conversions can be extended by adding a Transform implementation script into a plugin directory.

Model launchers

A list of available launchers for model execution can be extended by adding a Launcher implementation script into a plugin directory.

Links