-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
237 lines (197 loc) · 8.25 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import datetime
import os, os.path
import pandas as pd
import mysql.connector
from abc import ABCMeta, abstractmethod
from event import MarketEvent
class DataHandler(object):
"""
DataHandler is an abstract base class providing an interface for
all subsequent (inherited) data handlers (both live and historic).
The goal of a (derived) DataHandler object is to output a generated
set of bars (OLHCVI) for each symbol requested.
This will replicate how a live strategy would function as current
market data would be sent "down the pipe". Thus a historic and live
system will be treated identically by the rest of the backtesting suite.
"""
__metaclass__ = ABCMeta
@abstractmethod
def get_latest_bars(self, symbol, N=1):
"""
Returns the last N bars from the latest_symbol list,
or fewer if less bars are available.
"""
raise NotImplementedError("Should implement get_latest_bars()")
@abstractmethod
def update_bars(self):
"""
Pushes the latest bar to the latest symbol structure
for all symbols in the symbol list.
"""
raise NotImplementedError("Should implement update_bars()")
class HistoricCSVDataHandler(DataHandler):
"""
HistoricCSVDataHandler is designed to read CSV files for
each requested symbol from disk and provide an interface
to obtain the "latest" bar in a manner identical to a live
trading interface.
"""
def __init__(self, events ,csv_dir, symbol_list):
"""
Initialises the historic data handler by requesting
the location of the CSV files and a list of symbols.
It will be assumed that all files are of the form
'symbol.csv', where symbol is a string in the list.
Parameters:
events - The Event Queue.
csv_dir - Absolute directory path to the CSV files.
symbol_list - A list of symbol strings.
"""
self.events = events
self.csv_dir = csv_dir
self.symbol_list = symbol_list
self.symbol_data = {}
self.latest_symbol_data = {}
self.continue_backtest = True
self._open_convert_csv_files()
def _open_convert_csv_files(self):
"""
Opens the CSV files from the data directory, converting
them into pandas DataFrames within a symbol dictionary.
For this handler it will be assumed that the data is
taken from DTN IQFeed. Thus its format will be respected.
"""
column_names = ['Date','Open','High','Low','Close', "Adj Close", 'Volume']
# column_names = ['Date','Open','High','Low','Close','WAP','No. of Shares','No. of Trades','Total Turnover','Deliverable Quantity','% Deli. Qty to Traded Qty','Spread H-L','Spread C-O']
comb_index = None
for s in self.symbol_list:
# Load the CSV file with no header information, indexed on date
self.symbol_data[s] = pd.io.parsers.read_csv(
os.path.join(self.csv_dir, '%s.csv' % s),
header=0, index_col=0,
names= column_names
)
# Combine the index to pad forward values
if comb_index is None:
comb_index = self.symbol_data[s].index
else:
comb_index.union(self.symbol_data[s].index)
self.latest_symbol_data[s] = []
# Reindex the dataframes
for s in self.symbol_list:
self.symbol_data[s] = self.symbol_data[s].reindex(index=comb_index, method='pad').iterrows()
def _get_new_bar(self, symbol):
"""
Returns the latest bar from the data feed as a tuple of
(sybmbol, datetime, open, low, high, close, volume).
"""
for b in self.symbol_data[symbol]:
yield tuple([
symbol, datetime.datetime.strptime(b[0], '%Y-%m-%d').date(), b[1][0], b[1][1], b[1][2], b[1][3], b[1][4] , b[1][5]])
def get_latest_bars(self, symbol, N=1):
"""
Returns the last N bars from the latest_symbol list,
or N-k if less available.
"""
try:
bars_list = self.latest_symbol_data[symbol]
print('bars_list[-N:]', bars_list[-N:])
except KeyError:
print("That symbol is not available in the historical data set.")
else:
return bars_list[-N:]
def update_bars(self):
"""
Pushes the latest bar to the latest_symbol_data structure
for all symbols in the symbol list.
"""
for s in self.symbol_list:
try:
bar = self._get_new_bar(s).__next__()
except StopIteration:
self.continue_backtest = False
else:
if bar is not None:
self.latest_symbol_data[s].append(bar)
self.events.put(MarketEvent())
class HistoricMySQLDataHandler(DataHandler):
"""
HistoricMySQLDataHandler is designed to read historical data for
each requested symbol from a MySQL database and provide an interface
to obtain the "latest" bar in a manner identical to a live
trading interface.
"""
def __init__(self, events, db_config, symbol_list):
"""
Initialises the historic data handler by requesting
the database connection parameters and a list of symbols.
Parameters:
events - The Event Queue.
db_config - A dictionary containing MySQL connection parameters.
symbol_list - A list of symbol strings.
"""
self.events = events
self.db_config = db_config
self.symbol_list = symbol_list
self.symbol_data = {}
self.latest_symbol_data = {}
self.symbol_generators = {}
self.continue_backtest = True
self._open_convert_db_data()
def _open_convert_db_data(self):
"""
Opens the database connection, fetching historical data for each symbol
and converting them into pandas DataFrames within a symbol dictionary.
"""
conn = mysql.connector.connect(**self.db_config)
cursor = conn.cursor()
for s in self.symbol_list:
cursor.execute(f"SELECT * FROM {s}")
rows = cursor.fetchall()
# Ensure these column names match your database table column names
columns = ['Date', 'open', 'high', 'low', 'close', 'adjClose', 'volume', 'industry', 'sector']
df = pd.DataFrame(rows, columns=columns)
df.set_index('Date', inplace=True)
self.symbol_data[s] = df
self.latest_symbol_data[s] = []
self.symbol_generators[s] = self._create_symbol_generator(s)
cursor.close()
conn.close()
def _create_symbol_generator(self, symbol):
"""
Creates a generator that yields bars from the DataFrame.
"""
for index, row in self.symbol_data[symbol].iterrows():
yield tuple([
symbol, index, row['open'], row['high'], row['low'], row['close'], row['adjClose'], row['volume'], row['industry'], row['sector']
])
def _get_new_bar(self, symbol):
"""
Returns the latest bar from the data feed as a tuple of
(symbol, datetime, open, low, high, close, adjClose, volume, industry, sector).
"""
return next(self.symbol_generators[symbol], None)
def get_latest_bars(self, symbol, N=1):
"""
Returns the last N bars from the latest_symbol list,
or N-k if less available.
"""
try:
bars_list = self.latest_symbol_data[symbol]
except KeyError:
print("That symbol is not available in the historical data set.")
else:
return bars_list[-N:]
def update_bars(self):
"""
Pushes the latest bar to the latest_symbol_data structure
for all symbols in the symbol list.
"""
for s in self.symbol_list:
bar = self._get_new_bar(s)
print('bar', bar)
if bar is not None:
self.latest_symbol_data[s].append(bar)
else:
self.continue_backtest = False
self.events.put(MarketEvent())