-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMountainCar-v0.py
129 lines (103 loc) · 3.08 KB
/
MountainCar-v0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gym
import numpy as np
import matplotlib.pyplot as plt
env = gym.make("MountainCar-v0")
MAXSTATES = 10**2
GAMMA = 0.9
ALPHA = 0.01
def max_dict(d):
max_v = float('-inf')
max_key = None
for key, val in d.items():
if val > max_v:
max_v = val
max_key = key
return max_key, max_v
def create_bins():
bins = np.zeros((2, 10))
bins[0] = np.linspace(-1.2, 0.6, 10)
bins[1] = np.linspace(-0.07, 0.07, 10)
# bins[2] = np.linspace(-.418, .418, 10)
# bins[3] = np.linspace(-5, 5, 10)
return bins
def assign_bins(observation, bins):
state = np.zeros(2)
for i in range(2):
state[i] = np.digitize(observation[i], bins[i])
return state
def get_state_as_string(state):
state_string = "".join(str(int(e)) for e in state)
return state_string
def get_all_states_as_strings():
states = []
for i in range(MAXSTATES):
states.append(str(i).zfill(2))
return states
def initialize_Q():
Q = {}
all_states = get_all_states_as_strings()
for state in all_states:
Q[state] = {}
for action in range(env.action_space.n):
Q[state][action] = 0
return Q
def play_one_game(bins, Q, eps=0.5):
observation = env.reset()
done = False
count = 0
state = get_state_as_string(assign_bins(observation, bins))
total_reward = 0
while not done:
count += 1
if np.random.uniform() < eps:
act = env.action_space.sample()
else:
act = max_dict(Q[state])[0]
observation, reward, done, _ = env.step(act)
total_reward += reward
if done and count < 200:
reward = 100
state_new = get_state_as_string(assign_bins(observation, bins))
a1, max_q_s1a1 = max_dict(Q[state_new])
Q[state][act] += ALPHA*(reward + GAMMA*max_q_s1a1 - Q[state][act])
state, act = state_new, a1
return total_reward, count
def play_many_games(bins, N=10000):
Q = initialize_Q()
length = []
reward = []
for i in range(N):
eps = 1.0 / np.sqrt(i+1)
episode_reward, episode_length = play_one_game(bins, Q, eps)
if i % 100 == 0:
print(i, "%4f" % eps, episode_reward)
length.append(episode_length)
reward.append(episode_length)
return length, reward, Q
def plot_running_avg(total_rewards):
N = len(total_rewards)
running_avg = np.empty(N)
for i in range(N):
running_avg[i] = np.mean(total_rewards[max(0, i-100): i+1])
if running_avg[i] < 110:
print("Won at", i)
# print(total_rewards)
# print(running_avg)
plt.plot(running_avg)
plt.title("Running Average")
plt.show()
bins = create_bins()
lengths, rewards, Q = play_many_games(bins, 10000)
plot_running_avg(rewards)
done = False
count = 0
observation = env.reset()
total_reward = 0
while not done:
env.render()
count += 1
state = get_state_as_string(assign_bins(observation, bins))
act = max_dict(Q[state])[0]
observation, reward, done, _ = env.step(act)
total_reward += reward
print(count, total_reward)